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Chapter 6

A New MoC for Modeling Adaptive
Streaming Applications

Jiali Teddy Zhai, Hristo Nikolov, Todor Stefanov, “Modeling Adaptive Streaming
Applications with Parameterized Polyhedral Process Networks”, In the Proceedings of the 48th
IEEE/ACM Design Automation Conference (DAC’11), pp. 116–121, San Diego, CA, USA, June
5-9, 2011.

THE popular parallel MoCs for streaming applications are compared in Figure 1.6
on page 10 in terms of expressiveness against compile-time analyzability. For

example, models such as SDF, CSDF, and PPN are fairly popular due to their
design-time analyzability. However, they have the limitation of allowing only static
parameters, whose values are fixed at design-time and they can not be changed at
run-time. As a consequence, adaptive streaming applications cannot be expressed
using these MoCs.

In contrast, the general MoCs shown in Figure 1.6 include BDF, SADF, KPN,
and RPN. They provide capability of modeling adaptive application behavior. How-
ever, these general models are not analyzable at design-time. Therefore, we are
interested in a model which is able to capture adaptive/dynamic behavior in appli-
cations while allowing design-time analyzability to some extent. In this context,
Parameterized SDF/CSDF (PSDF/PCSDF) and FSM-SADF models have been pro-
posed as extensions of the SDF/CSDF models. However, scenario reconfiguration in
FSM-SADF is limited to a set of pre-defined scenarios. For PSDF/PCSDF, a complex
consistency check and computing schedules have to be performed at run-time.

To overcome these issues, in this chapter we introduce a parameterized extension
of the PPN model, called Parameterized Polyhedral Process Networks (P3N). P3N
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100 Chapter 6. A New MoC for Modeling Adaptive Streaming Applications

improves the expressiveness of PPN, allowing to model adaptive streaming appli-
cations. Compared to the aforementioned PSDF/PCSDF and FSM-SADF models,
P3N allows more flexible parameter reconfiguration and enables efficient techniques
(less complex) for run-time consistency check by performing part of the consistency
check at design-time. In the DaedalusRT design flow, the P3N MoC is used as the
implementation model similar to the PPN MoC for static streaming applications.

6.1 Related Work

In [94], a mathematical model and semantics for reconfiguration of dataflow models
are proposed. This approach analyzes where and how parameter values can be
changed dynamically and consistently according to dependence relations between
parameters. Our P3N model provides similar semantics for reconfiguration. In
particular, for P3Ns, it is possible to extract dependence relations between dependent
parameters at design-time, which is not discussed in [94].

In PSDF/PCSDF [29], separate init and sub-init graphs are proposed to re-
configure body graphs in a hierarchical manner. In the PSDF/PCSDF models, for
every combination of parameter values, both computing a schedule and verifying
consistency need to be resolved at run-time. In contrast, our P3N model does not
require computing schedules at run-time because all processes are self-scheduled
based on the KPN semantics. Therefore, at run-time, only the consistency check has
to be performed. The consistency check is furthermore facilitated by the efficient
approach we have devised (and present further in this chapter) to extract relations
between dependent parameters at design-time.

In SADF [114] and FSM-SADF [47], detector actors are introduced to parame-
terize the SDF model. All valid scenarios must be pre-defined at design-time. Each
scenario consists of a set of valid parameter combination that determines a scenario
of SADF. This guarantees the consistency of SADF in individual scenarios, there-
fore, no run-time consistency check is required. In a scenario, the SADF model
behaves the same ways as the SDF model. Therefore, an SADF graph can be seen
as a set of SDF graphs. In the initial FSM-SADF definition, all the production and
consumption rates of the dataflow edges are constant within a graph iteration of a
scenario. Recently in [49], an extension, called weak consistency, has been made to
FSM-SADF. A weakly-consistent FSM-SADF graph allows scenario changes within
a graph iteration of a scenario. For P3N, no prior knowledge of valid parameter
combinations is assumed, as the run-time consistency check (see Section 6.3) will
guarantee consistency of the P3N model. We consider that this flexibility is desired
compared to FSM-SADF. Once a P3N model is reconfigured, it behaves as a PPN
model. Therefore, a P3N can be seen as a set of PPNs. Production and consumption



6.2. Model Definition 101

patterns in the P3N model thus may still vary during the execution of a particular
parameter configuration1.

For all parameterized models discussed above, the performance penalty due to re-
configuration of parameters at run-time has never been evaluated when these models
are executed on MPSoC platforms. This can be an important factor in determining
the metric of implementation efficiency (see Figure 1.6(b)) while comparing two
adaptive models. In contrast, in this chapter we study the performance penalty
introduced by the run-time consistency check and the reconfiguration of our P3Ns
on real MPSoC implementations.

6.2 Model Definition

Consider the example of a P3N given in Figure 6.1(c) and a non-parameterized PPN
in Figure 6.1(a). Although the dataflow topology of the P3N is the same as the
PPN, processes P2 and P3 are parameterized by two parameters M and N which
values are updated by the environment at run-time using process Ctrl and edges E7,
E8, E9. PPN process P3 is shown in Figure 6.1(b) and P3N Process P3 is shown in
Figure 6.1(d). We use this example throughout the chapter. Below, we formally
define the P3N model.

6.2.1 Parameterized Polyhedral Process Networks

Definition 6.2.1 (Parameterized Polyhedral Process Network). A Parameterized
Polyhedral Process Network (P3N) is defined by a graph G = (P , Pctrl,E), where

• P = {P1, ..., P|P |} is a set of dataflow processes,

• Pctrl is the control process,

• E = {E1, ..., E|E |} is a set of edges, which are FIFOs.

For the P3N shown in Figure 6.1(c), P = {P1, P2, P3} is the set of dataflow
processes. Process Ctrl is the control process Pctrl. E = {E1, E2, E3, E4, E7, E8, E9} is
the set of edges, which are FIFOs.

Definition 6.2.2 (Dataflow Process). A dataflow process P is described by a tuple
(IP , OP , FP , DP ), where

• IP = {IP1, ..., IP|IP |} is a set of input ports,

• OP = {OP1, ..., OP|OP |} is a set of output ports,

1This is called a process cycle in Definition 6.2.8 and it is equivalent to a scenario in the SADF model.
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(a) A PPN.

 for( i=0; i<=10; i++) {
   for( j=0; j<=8; j++ ){
     if( i <= 5 && j >=4 ) 
       READ( in1, IP1 );
     else 

       READ( in1, IP2 );
     READ( in2, IP3 );     

     out = F3( in1, in2 );
     

     WRITE( out, OP5 );
     WRITE( out, OP6 );
 } } 

IP1

IP2

IP3

OP5
OP6

(b) PPN process P3.
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(c) A P3N.

1 while(1){
2   READ( M , IP8 )
3   READ( N , IP9 )
4   for(i=0; i<=M; i++ ) {   
5     for(j=0; j<=N-2*i; j++){
6       if(  i  <= N ) 
7         READ( in1, IP1 );
8       else 

9         READ( in1, IP2 );
10      READ( in2, IP3 );
     

11     out = F3( in1, in2 );
     

12       WRITE( out, OP5 );
13       WRITE( out, OP6 );
 } } }

IP8

IP9

IP1

IP2

IP3

E1

E2
E3

E8

E9

OP5

OP6

(d) P3N process P3.

Figure 6.1: Comparsion between a PPN and a P3N.

• FP is the process function defined by a tuple (MP ,ARGin,ARGout), where
ARGin and ARGout are sets of variables and MP : ARGin→ ARGout is a map-
ping relation,

• DP is the process domain defined by a parametric polyhedron (see Defini-
tion 2.1.3 on page 24).

In Figure 6.1(d), dataflow process P3 has input ports IP3
= {IP1, IP2, IP3, IP8, IP9}

and output ports OP3
= {OP5,OP6}. Process function F3 = (F3,{in1,in2},out)

maps variables in1 and in2 to variable out with process function F3. Assume that
the range of parameters M and N is bounded by the polytope (see Definition 2.1.2
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on page 23) D̄(M ,N ) as

D̄(M ,N ) = {(M ,N ) ∈Z2 | 0≤M ≤ 100∧ 0≤N ≤ 100},

then the process domain of P3 is represented as a parametric polyhedron

DP3
(M ,N ) = {(w, i , j ) ∈Z3 | w > 0∧ 0≤ i ≤M ∧ 0≤ j ≤N − 2i}.

Definition 6.2.3 (Input Port). An input port IP of process P is described by a tuple
(V , DIP), where

• V is a variable which:

– binds the port to process function FP if V ∈ARGin;

– binds the port to process domain DP or other port domains DIP, DOP if
V ∈ ~p, where ~p is the parameter vector defined in Definition 2.1.3 on
page 24,

• DIP is the input port domain defined by a parametric polyhedron, where
DIP ⊆DP .

Definition 6.2.4 (Output Port). An output port OP of process P is described by a
tuple (V , DOP)

• V is a variable which binds the port to process function FP if V ∈ARGout,

• DOP is the output port domain defined by a parametric polyhedron, where
DOP ⊆DP .

In Figure 6.1(d), input port IP1 of process P3 is defined as IP1 = (in1, DIP1
),

where

DIP1
(M ,N ) = {(w, i , j ) ∈Z3 | w > 0∧ 0≤ i ≤M ∧ i ≤N ∧ 0≤ j ≤N − 2i}.

Similarly, output port OP5 is defined as OP5 = (out, DOP5
), where OP5 is bound to

variable out and DOP5
(M ,N ) =D3(M ,N ).

Definition 6.2.5 (Control Process). A control process Pctrl is described by a tuple
(Ictrl, Fctrl,Octrl, Dctrl), where

• Ictrl = {(⊥, p1, DIP), ..., (⊥, pm , DIP)} is a set of input ports.

• Fctrl is the process function defined by a tuple (Eval, {~p, ~pold}, ~pnew), where
~p, ~pold and ~pnew are parameter vectors. Eval : (~p,~pold)→ ~pnew is the specific
mapping relation discussed in Sections 6.2.2 and 6.3.
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• Octrl = (V , DOP), ..., (V , DOP) is a set of output ports, where V ∈ ~pnew.

• Dctrl is the process domain, where Dctrl =DIP =DOP = {w ∈Z | w > 0}.

Control process Ctrl of the P3N shown in Figure 6.1(c), is given in Figure 6.2(a).
Its structure and behavior are discussed in Section 6.2.2 in detail.

Definition 6.2.6 (Edge). An edge E ∈ E is defined by a tuple
�

(Pi ,OPk ), (P j , IPl )
�

where

• Pi is the process that writes data to edge E through output port OPk .

• P j is the process that reads data from edge E through input port IPl .

In P3Ns, the process domain and port domains are formally defined as parametric
polyhedrons (see Definition 2.1.3 on page 24), which allows for mathmatical analysis
and manipulation. The polyhedral representation of P3N can be easily converted to
sequential nested-loop programs [25] and vice versa [126]. Thus, for the sake of
clarity, we present processes in the form of sequential programs in the examples of
this chapter.

6.2.2 Operational Semantics

The processes in our P3N MoC execute autonomously and communicate via FIFOs
obeying the KPN semantics, which is similar to the PPN MoC. In this section, we
formally define our additional, specific operational semantics of the P3N MoC that
makes it different from the PPN MoC.

Definition 6.2.7 (Process Iteration). A process iteration of process P is a point
(w, x1, ..., xd ) ∈DP , where the following operations are performed sequentially:

1. reading one token from each IP if (w, x1, ..., xd ) ∈DIP.

2. executing process function FP .

3. writing one token to each OP if (w, x1, ..., xd ) ∈DOP.

In process P3 shown in Figure 6.1(d), a process iteration (lines 6-13) consists of
reading one token for variable in1 from either input port IP1 or IP2, one token for
variable in2 from input port IP3, executing process function F3, and writing one
token for variable out to output ports OP5 and OP6.
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Definition 6.2.8 (Process Cycle). The ith process cycle CYCP (i , ~pi ) ∈ DP of a
process P is a set of lexicographically ordered process iterations. It is expressed as a
polytope

CYCP (i , ~pi ) = {(w, x1, ..., xd ) ∈Z
d+1 | A · (w, x1, ..., xd )

T ≥ B · ~pi + b ∧w = i},

where i ∈Z+ and ~pi ∈ D̄P
~p
⊆ D̄~p .

Definition 6.2.9 (Process Execution). Process execution EXP is a sequence of pro-
cess cycles denoted by

CYCP (1,~p1)←CYCP (2,~p2)← ...←CYCP (i ,~pi ),

where i →∞ and ~pi ∈ D̄P
~p

.

Overall, every process in a P3N executes on indefinite number of process cycles
in accordance with Definition 6.2.9. For instance, CYCP3

(2, (7,8)) denotes the
second process cycle that corresponds to the execution of the nested for-loops (lines
4-13) when (M ,N ) = (7,8) during the execution of process P3 given in Figure 6.1(d).

In the P3N model, parameters in dataflow processes can change values during the
execution, i.e., ~pi 6= ~pi+1. Thus, it is necessary to define the operational semantics
related to changing of parameter values. Similar to quiescent points in [94], we also
define the points at which changing the value of ~p is permitted.

Definition 6.2.10 (Quiescent Point of a Dataflow Process). A point

QP (i , ~pi ) ∈CYCP (i , ~pi )

of dataflow process P is a quiescent point if CYCP (i , ~pi ) ∈ EXP and it satisfies

¬(∃(w, x1, ..., xd ) ∈CYCP (i , ~pi ) : (w, x1, ..., xd )≺QP (i , ~pi ))

According to Definition 6.2.10, dataflow processes can change parameter values
at the first process iteration of any process cycle during the execution. For instance,
process P3 given in Figure 6.1(d) updates parameters (lines 2-3) before executing
the nested for-loops in every process cycle. Generally, updating parameters at each
quiescent point is initiated by reading from edges which are connected to the control
process.

The control process plays an important role in the P3N’s operational semantics.
It reads parameter values from the environment and propagates only valid parameter
values to the dataflow processes. Valid parameter values lead to consistent execution
of P3Ns (see Section 6.3). The validity of the parameter values is evaluated by
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1  M_new = M_init
2  N_new = N_init    
    while(1){

3    READ_PARM( M, IP10 );
4    READ_PARM( N, IP11 );

5    [M_new, N_new]=

        Eval(M, N, M_new, N_new);

6    WRITE_PARM( M_new, OP7 );
7    WRITE_PARM( M_new, OP8 ); 
8    WRITE_PARM( N_new, OP9 );
    } 

IP10

IP11

OP7

OP9

OP8 E8
E9

E7

(a) Control process Ctrl in Figure 6.1(c).

 [ M_new, N_new ] 

 Eval(M, N, M_old, N_old){
   
   // checking parameters  

   par_ok = Check(M, N);

   if( par_ok ){
     return (M, N);
   else {
     return(M_old, N_old);
 } }

(b) Function Eval.

Figure 6.2: Control process and evaluation function.

process function Eval defined in Definition 6.2.5. The control process sends the
latest parameter combination that has been evaluated as valid, which means that
P3Ns always respond to changes of the environment as fast as possible. Also, the
dataflow processes need to read the parameter values in the correct order. Therefore,
to keep the same order of parameter values for all dataflow processes, the control
process writes to the control edges, e.g., edges E7, E8 and E9 in Figure 6.1(c), only
when all control edges have at least one buffer space available. Here the control edges
are implemented as non-bloking-write FIFOs. In case that any of these FIFOs is full,
the incoming parameter combination is discarded and the control process continue
to read the next parameter combination from the environment. Furthermore, the
depth of the FIFOs of the control edges determines how many process cycles of the
dataflow processes are allowed to overlap.

Let us consider the P3N shown in Figure 6.1(c). The behavior of the control
process is given in Figure 6.2(a). Process Ctrl starts with at least one valid parameter
combination (lines 1-2) and then reads parameters from the environment (lines
3-4) repetitively. For every incoming parameter combination, the process function
Eval (line 5) checks whether the combination of parameter values is valid. The
implementation of function Eval is given in Figure 6.2(b). In Section 6.3, we
present details about the implementation of function Check. If the combination is
valid, then function Eval returns the current parameter values (M, N). Otherwise,
the last valid parameters combination (propagated through M_new, N_new in this
example) is returned. After the evaluation of the parameter combination, process
Ctrl writes the parameter values to output ports (lines 6-8) when all edges E7, E8, and
E9 have at least one buffer space available.
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6.3 Consistency

As defined in Section 6.2, P3Ns operate on input streams with infinite length. Thus,
the P3Ns, we are interested in, must be able to execute without deadlocks and only
using FIFOs with finite capacity. This kind of P3Ns is considered to be consistent.
In this section, we first define the consistency condition of the P3N model and then
present an approach to preserve the consistent execution of P3Ns at run-time.

Definition 6.3.1 (Consistency of a P3N). A P3N is consistent if

∀E = ((Pi ,OPk ), (P j , IPl ))

and k→∞, it satisfies
|DCYC

OPk
|= |DCYC

IPl
|,

where
DCYC

OP =CYCPi
(c ,~ps )∩DOPk

,

DCYC
IP =CYCP j

(c ,~pt )∩DIPl
,

CYCPi
(c , ~ps ) ∈ EXPi

, and CYCP j
(c , ~pt ) ∈ EXP j

.

Consider edge E3 connecting processes P2 and P3 of the P3N given in Fig-
ure 6.1(c). The execution of processes P2 and P3 is illustrated in Fig. 6.3. The
access of both processes to edge E3 is depicted in Figure 6.4. Definition 6.3.1 re-
quires that, for each corresponding process cycle of both processes CYCP2

(i , Mi ) and
CYCP3

(i , Mi ,Ni ), the number of tokens |DCYC
OP3
(M )| produced by process P2 to edge

E3 must be equal to the number of tokens |DCYC
IP3
(M ,N )| consumed by process P3

from edge E3.
It is not trivial to preserve the consistent execution of a P3N as defined in

Definition 6.3.1. First of all, at each quiescent point QP during the execution of a
process, the incoming parameter values ~ps and ~pt are unknown at design-time, which
may result in different |DCYC

OPk
| and |DCYC

IPl
| at run-time for any edge E connecting

dataflow processes. Therefore, whether a P3N can be executed consistently with a
given parameter combination, has to be checked at run-time. Secondly, computing
|DCYC

OPk
| and |DCYC

IPl
| is challenging as well. Below, we demonstrate the difficulties

associated with checking the consistency using edge E3 given in Figure 6.4 as an
example. One question that naturally arises is which combinations of (M ,N ) ensure
the consistency condition as defined by Definition 6.3.1. For instance, if (M ,N ) =
(7,8), P2 produces 25 tokens to E3 and P3 consumes 25 tokens from the same edge
after one corresponding process cycle of both processes. It can be verified that P2
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CYC P3 (1, M1, N1)

CYC P3 (i, Mi, Ni )

P2 P3

...

...

CYC P2 (1, M1)

CYC P2 (i, Mi)

E3

E3

Q P2 (i, Mi)

Q P2 (1, M1)

Q P3 (i, Mi, Ni)

Q P3 (1, M1, N1)

...

...

OP3 IP3

E3

Figure 6.3: Consistent execution of process P2 and P3 w.r.t. edge E3.

 while(1){
   READ(M, IP7); 

   for(i=0; i<=3*M+3; i++)
     …

     WRITE( out, OP3 );
 } }

P2
P3

 while(1){
   READ(M, IP8);
   READ(N, IP9); 

   for(i=0; i<=M; i++)
     for(j=0; j<=N-2*i; j++)
       ...     

       READ( in2, IP3 );    
       ...
 } } }

  

E3

OP3 IP3

Figure 6.4: Which combinations (M ,N ) do ensure consistency of P3N?

produces 13 tokens to E3 while P3 requires 20 tokens from it if (M ,N ) = (3,7) in
a corresponding process cycle. Thereby, in order to complete one execution cycle
of P3 in this case, it will read data from E3 which will be produced during the next
execution cycle of P2. Evidently this leads to an incorrect execution of the P3N.
From this example, we can clearly see that the incoming values of (M ,N ) must
satisfy certain relation to ensure the consistent execution of the P3N.

Although the consistency of a P3N has to be checked at run-time, still some
analysis can be done at design-time. First, from Definition 6.3.1, we can see that both
DCYC

OP and DCYC
IP are parametric polytopes. We can check the condition |DCYC

OP | =
|DCYC

IP | by comparing the number of integer points in both parametric polytopes
DCYC

OP and DCYC
IP . This is thus equivalent to computing cardinality of both DCYC

OP
and DCYC

IP . In this work, we use the Barvinok library [127] to compute cardinality
of a parametric polytope. The Barvinok library can solve the problem in polynomial
time. In general, the number of integer points inside a parametric polytope is defined
as a list of (quasi-)polynomials (see Definition 2.1.4 on page 25). A quasi-polynomial
is a polynomial with periodic numbers as coefficients. For instance, considering
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input port IP3 shown in Figure 6.4, DCYC
IP3

is given as

DCYC
IP3
(M ,N ) = {(i , j ) ∈Z2 | 0≤ i ≤M ∧ 0≤ j ≤N − 2i}.

The number of tokens |DCYC
IP3
(M ,N )| read by function READ(in2, IP3) in one

process cycle is represented as the list of polynomials found by the Barvinok library:
¨

1+N +N ·M −M 2 if (M ,N ) ∈C 1
1+ 3

4 N + 1
4 N 2+ 1

4 N − 1
4 · {0,1}n if (M ,N ) ∈C 2

(6.1)

where C 1 and C 2 are called chambers (see Definition 2.1.4 on page 25) given as

C 1= {(M ,N ) ∈Z2 | M ≤N ∧ 2M ≥ 1+N},
C 2= {(M ,N ) ∈Z2 | 2M ≤N}.

In addition, the second polynomial is a quasi-polynomial, in which {0,1}n is a
periodic coefficient with period 2. For instance, function READ(in2, IP3) reads
1+ 3

4 × 7+ 1
4 × 72 + 1

4 × 7− 1
4 × 1 = 20 tokens in one process cycle if (M ,N ) =

(3,7) ∈C 2. Below, we present the approach we have devised to extract all parameter
combinations that satisfy the consistency condition defined in Definition 6.3.1.
Algorithm 8 summarizes the analysis we performed at design-time. Recall that
the condition |DCYC

OP | = |D
CYC
IP | must be satisfied for a consistent execution of a

P3N. Thus, for each edge connecting dataflow processes, we first compute |DCYC
OP |

and |DCYC
IP |. Two lists of (quasi-)polynomials are obtained. If a P3N can execute

consistently with a certain parameter combination, individual (quasi-)polynomials
in both lists must be equal. We check the equivalence by subtracting the (quasi-
)polynomials from both lists symbolically. The symbolic subtraction can result in
zero, a non-zero constant, or (quasi-)polynomial. If the result is zero, the consistency
is always preserved for all parameters within the range of chamber Cres. At run-time,
these parameters are propagated immediately to destination dataflow processes. If a
non-zero constant is obtained, all parameters within the range of chamber Cres are
discarded at run-time, because these parameter values would break the consistency
condition of the resulting P3N. In the third case, the result is a (quasi-)polynomial
in which only some parameter combinations within the range of chamber Cres
are valid for the consistency condition. We provide two alternatives to extract all
valid parameter combinations within this range by solving the resulting equation
qres( ~p j t ) = 0. In the first alternative, the equation can be solved at design-time against
all possible parameter combinations. A table, which contains all solutions, i.e., all
valid parameter combinations, is generated and stored in function Check. At run-
time, the control process only propagates those incoming parameter combinations
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Algorithm 8: Generation of polynomials for function Check

Input: A P3N
Result: A list of (quasi-)polynomials
foreach edge E corresponding (OPPO

, IPPI
) do1

Compute |DCYC
OP | and |DCYC

IP | using the Barvinok library;2

foreach (quasi-)polynomial qOP(~p j ) in |DCYC
OP | do3

Get chamber C ;4

foreach (quasi-)polynomial qIP(~pt ) in |DCYC
IP | do5

Get chamber C ′ ;6

Compute qres( ~p j t ) = qOP(~p j )− qIP(~pt );7

Compute chamber Cres =C ∪C ′ ;8

if qres( ~p j t ) = 0 then9

Consistency is preserved for chamber Cres;10

else if qres( ~p j t ) is a non-zero constant then11

Eliminate chamber Cres;12

else13

Store (quasi-)polynomial qres( ~p j t ) with Cres ;14

that match an entry in the table. In the second alternative, function Check evaluates
qres( ~p j t ) against zero with incoming parameter values at run-time.

Let us consider the example shown in Figure 6.4 again. We apply Algorithm 8
to extract the valid parameter combinations. Besides |DCYC

IP3
(M ,N )| as given in

Equation (6.1), |DCYC
OP3
(M )|= 3M + 4 is obtained. Subtraction of the

(quasi-)polynomials in |DCYC
OP2
(M )| and |DCYC

IP2
(M ,N )| yields two qres(M ,N ):

¨

(1+N +N ·M −M 2)− (3M + 4) = 0 if (M ,N ) ∈C 1
(1+ 3

4 N + 1
4 N 2+ 1

4 N − 1
4 · {0,1}n)− (3M + 4) = 0 if (M ,N ) ∈C 2

(6.2)

where chambers C 1 and C 2 are equal to the chambers in Equation (6.1). Clearly
this corresponds to the third case in Algorithm 8 (see line 14). The structure of
the two alternatives of function Check is given in Figures 6.5(a) and 6.5(b). The
solutions to Equation (6.2) stored in table tab is shown in Figure 6.5(a), whereas
evaluating Equation (6.2) directly against zero at run-time is depicted in Figure 6.5(b).
In this example, if the range of the parameters is 0 ≤ M ,N ≤ 100, then there are
only 10 valid parameter combinations. In addition, if 0 ≤ M ,N ≤ 1000, the valid
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 [ par_ok ]

 Check ( M , N ) {
   tab =  [ (4, 6), 
            (7, 8),
            (15, 12),
             …  ]; 

   // found M , N in tab
   if ( found ) 
     return par_ok = true; 
   else 
     return par_ok = false;  
 }

(a) First alternative.

 [ par_ok ]

 Check ( M , N ) {
   // chamber C1
   if ( M <= N && 2M >= N+1 ) 
     res = -M^2 + N *M – 3M + N -3;
   
   // chamber C2
   if ( 2M <= N  )      
     res = N^2/4 + 3N/4 + (N%2)/2 – 3M -3;
   
   if ( res == 0) 
     return(true);
   else
     return(false);  
 }

(b) Second alternative.

Figure 6.5: Two alternatives of Function Check in Figure 6.2(b).

number of parameter combinations are 34, and if 0≤M ,N ≤ 10000, the number of
combinations increases to 114.

6.4 Experimental Results

In order to evaluate the run-time overhead introduced by the reconfiguration of our
P3N model, in this section, we present the results we have obtained by mapping a
P3N onto a Xilinx Virtex 6 FPGA platform. We have selected a synthetic P3N with
complex quasi-polynomials in order to quantify the performance penalty caused
by evaluating complex quasi-polynomials at run-time. In order to measure the
run-time reconfiguration overhead, we have also implemented the reference PPNs.
These PPNs contain only the dataflow processing of the corresponding P3N. The
experiments have been conducted using the ESPAM tool and the Xilinx Platform
Studio (XPS) 13.2 tool. The generated MPSoCs consist of several MicroBlaze (MB)
soft-core processors connected using Xilinx’ Fast Simplex Link (FSL) FIFOs. To
avoid additional execution overhead, in these experiments, every process has been
mapped onto a separate MB processor.

The P3N we consider is depicted in Fig. 6.6. It is formed by the processes in
Figure 6.4 and one additional process P4. Figure 6.6 also shows the representation
of processes P3 and P4 in order to show the domains DCYC

OP5
(M ,N ) and DCYC

IP5
(N )

of ports OP5 and IP5, connected to edge E5. Consequently, applying Algorithm 8
yields the following two polynomials for edge E5:

¨

(1+N +N ·M −M 2)− (3N + 1) = 0 if (M ,N ) ∈C 1
(1+ 3

4 N + 1
4 N 2+ 1

4 N − 1
4 · {0,1}n)− (3N + 1) = 0 if (M ,N ) ∈C 2

(6.3)



112 Chapter 6. A New MoC for Modeling Adaptive Streaming Applications

ctrl

P2 P3

M N

E3 P4

 while(1){ 
   READ( N, IP6 );

   for(i=0; i<=3*N; i++)
     READ( in, IP5 );
     …
 } }

 while(1)
   READ( M, IP8 );
   READ( N, IP9 ); 

   for (i= 0; i<= M; i++){      
     for(j=0; j<=N–2*i; j++){
       READ( in2, IP3 );
       …
       WRITE( out, OP5 );
 } } }

E7 E6

P3

P4

E5

E8 E9

 while(1){
   READ( M, IP7 ); 

   for(i= 0; i<=3*M+3; i++)
     …
     WRITE( out, OP3 );
 } }

P2

E3

E5

E8

E9

E6

E7

Figure 6.6: P3N of our experiment

where

C 1= {(M ,N ) ∈Z2 | M ≤N ∧ 2M ≥ 1+N},
C 2= {(M ,N ) ∈Z2 | 2M ≤N}.

For edge E3, the dependence relation of parameters M and N is already given in
Equation (6.2). In a first implementation alternative, we solved Equations 6.2 and 6.3
at design-time and stored all possible parameter values that have been found in a table
into function Check of control process ctrl. In a second implementation alternative,
the polynomials in Equations 6.2 and 6.3 have been evaluated directly in function
Check at run-time. Furthermore, we have configured five different workloads of
the dataflow processes by gradually increasing the execution latency of processes
P2, P3, and P4. We have run the MPSoC implementations on an FPGA board for 10
different valid parameter combinations, i.e., process ctrl reconfigures the dataflow
processes 10 times within parameter range 0≤M ,N ≤ 100.

For the P3Ns which evaluate the polynomials at run-time (the third bar of each
configuration), we have made the following observations. First, configurations 1 and
2 show a relatively large overhead. This is because these configurations correspond
to the situation where the execution latency of processes P2, P3, and P4 is very small.
That is, the dataflow processes are very light-weight, therefore, they are mostly
blocked on reading from the control edges in order to update values of parameters
M and N . In this way, configurations 1 and 2 give a good indication about the time
needed to evaluate the polynomials. Second, if we increase the execution latency
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Figure 6.7: Performance results of PPN and P3N implementations

of the dataflow processes, then the introduced overhead is significantly reduced,
see configurations 3, 4, and 5 in Figure 6.7. In these three configurations, the
overhead is only 9%, 5%, and 4%, respectively. In addition, we have observed that
the absolute values of the overhead (in clk cycles) stay constant. This is because in
these three configurations, the dataflow completely overlaps with the evaluation of
the polynomials. We have found that the difference with the reference PPN is caused
by i) the time for the first evaluation of the polynomials at the beginning of the
P3N execution, i.e., in the beginning no overlap is possible, and ii) the time to read
the parameter values from the control edges, i.e., such reading is not present in the
reference PPNs. This is an important observation because it shows that the run-time
reconfiguration of the P3N model can be very efficient. Moreover, in most real-life
streaming applications, a process execution latency is large enough to cancel out
the overhead caused by the evaluation of the polynomials. For example, a discrete
cosine transform (used in JPEG encoders) implemented on a MB processor requires
a couple of thousand of clk cycles. Therefore, we conclude that the introduced
run-time overhead is reasonable considering the more expressive power that the
P3N model provides than other models.
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