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Chapter 5

Exploiting Just-enough Parallelism in
Hard Real-time Systems

Jiali Teddy Zhai, Mohamed A. Bamakhrama, Todor Stefanov, “Exploiting Just-enough
Parallelism when Mapping Streaming Applications in Hard Real-time Systems”, In the
Proceedings of the 50th IEEE/ACM Design Automation Conference (DAC’13), pp. 170:1–170:8,
Austin, TX, USA, June 2 - 6, 2013.

AS we have seen in Chapter 4, the initial application specification, often in
the form of a graph, may be transformed to an alternative one that exposes

more parallelism while preserving the same application behavior. To this end, task
unfolding is an effective technique to generate such alternative graphs. Basically,
task unfolding replicates the functionality of a task by a certain number of times,
referred as unfolding factor. Then, replicas of tasks concurrently process different
data, thereby exploring also data-level parallelism next to the task-level parallelism.
For data flow MoCs, such as SDF, the unfolding has been extensively applied
in [40, 54, 56, 71].

In the context of DaedalusRT, unfolding individual actors in an initial SDF
graph by different unfolding factors results in a large number of possible alternative
CSDF graphs. To transform the initial SDF graph to an alternative CSDF one by
unfolding, the main problem is to determine a proper unfolding factor for each
task. This problem is challenging because platform constraints must be considered
during unfolding. The platform constraints can be the number of available PEs and
temporal scheduling of actors on the PEs. In Chapter 4 and other literature [40,133],
an unfolding factor1 is determined for each task in such a way that the obtained

1Our communication-free partitioning presented in Chapter 4 on PPN processes can be considered
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76 Chapter 5. Exploiting Just-enough Parallelism in Hard Real-time Systems

alternative graph exposes the maximum DLP without considering the platform
constraints. However, unfolding a task too many times reveals more parallelism than
the processing capability of the execution platform. The overwhelming parallelism
leads to an inefficient mapping of replicas of tasks. That is, the excessive number
of replicas cannot be efficiently allocated and temporally scheduled on the available
PEs. Moreover, the excessive number of replicas introduces significant memory
overhead for both code and data. On the other hand in [54, 71, 113], the authors
assume that the unfolding factor of a task cannot exceed the number of available
PEs on the execution platform. This assumption, however, restricts the amount of
revealed parallelism because a proper unfolding factor is not necessarily less than
or equal to the number of available PEs. As a consequence, the aforementioned
assumption might lead to under-utilized PEs. From the discussion above, we can see
that exploiting excessive or insufficient parallelism may result in sub-optimal system
utilization and performance. Therefore, in this chapter, we address the problem
of determining a proper unfolding factor of each SDF actor in a given initial SDF
graph, such that the obtained alternative CSDF graph exposes just-enough parallelism
to fully utilize the available PEs. This is achieved by considering the platform
constraints when determining the unfolding factors.

Scope of Work

In this chapter, we assume that a given SDF graph is acyclic. Note that this assump-
tion is not directly related to our approach in this chapter. Rather, it is merely a
restriction of the adopted hard real-time scheduling framework (see Section 2.3 on
page 33). Such assumption covers a large set of applications as it has been empirically
shown in [116] that around 90% of streaming applications can be modeled as acyclic
SDF graphs. Once a cycle exists in an SDF graph, one can always fuse all actors in
the cycle into a single stateful actor. A stateful actor is the one whose next execution
depends on the current execution. As a consequence, our approach does not unfold
stateful actors. Furthermore, the data source and sink actors, which represent the
external environment, are not unfolded. The target platform assumed in this work
is a homogeneous programmable MPSoC with distributed memory. The intercon-
nection structure between PEs must provide guaranteed communication latency,
e.g., Æthereal network-on-chip [53].

as a special case of unfolding.
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5.1 Related Work

The approach in [113] is closely related to our work, although the considered
problem is relaxed, i.e., without considering timing constraints, compared to our
problem. A genetic algorithm based heuristic is proposed to determine the unfolding
factor of an actor and allocation of all replicas. The unfolding factor of an actor
cannot exceed the number of PEs, which might result in sub-optimal solutions as we
show later in Section 5.5. Moreover, we show in the experiments that our approach
outperforms significantly the genetic algorithm based heuristic in terms of running
time.

In [71], an Integer Linear Programming (ILP) formulation gives exact solutions
to minimize makespan on any PE while simultaneously unfolding actors in an SDF
graph and allocating them to PEs. In the ILP formulation, an unfolding factor
of an actor cannot exceed the number of available PEs. This assumption might
lead to sub-optimal system performance as discussed previously. Moreover, it has
been shown in [40] that the ILP formulation is even intractable for benchmarks
with medium graph size. For instance, it takes around 70 hours to solve the ILP
formulation for the FFT benchmark with 26 actors on 4 PEs (see Table 2 in [40]).
In practice, real-life applications have been shown to contain up to 2868 actors [116].
Therefore, it is clear that the ILP-based approach suffers from severe scalability
issues. In contrast, our proposed algorithm solves the combined problem within a
reasonable amount of time as demonstrated later in Section 5.7.

To address the scalability issue of [71], the authors in [40] propose to decompose
the actor unfolding and allocation problem into two problems and solve them
separately. The separation of the two problems often leads to inferior performance,
as both problems are strongly related. In contrast, our proposed algorithm is capable
of solving the two problems simultaneously. Moreover, our algorithm takes into
account timing constraints, while the work in [40] does not.

In the context of synthesizing an SDF graph using dedicated hardware, the
authors in [56] also determine which actors to unfold and by what factor. The
addressed problem is easier than ours because there is no need to consider allocation
of actors after unfolding in case of hardware synthesis.

In [72], a synchronous programming model is used for the application speci-
fication under hard real-time scheduling. The term “synchronous” in this context
refers to the fact that a master thread can fork a job into several parallel execution
segments and they join upon completion. These parallel execution segments are, to
some extent, similar to unfolded actors in our case. There is also no need to consider
allocation of parallel segments at compile-time because migration at run-time is
allowed targeting MPSoC platforms with shared memory. In contrast, we solve
the problem of allocating actors at compile-time. Recall that we consider MPSoC
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platforms with distributed memory. On such platforms, migration of actors at
run-time introduces non-negligible overhead.

5.2 Unfolding of SDF Graphs

Before the problem formulation, we first present an unfolding algorithm for SDF
graphs. This will help better understand the problems stated in Section 5.3.

The unfolding operation on an SDF graph used in this thesis is conceptually
similar to the one used in [40,54,56,71], in which two special constructs splitter and
joiner are employed for the unfolded actors. Given a vector ~f ∈ Nn of unfolding
factors, where fi denotes the unfolding factor for actor Ai , the unfolding operation
replaces Ai by fi replicas of itself. Then, instead of inserting a splitter and joiner
before and after the fi replicas of Ai , we transform the initial SDF graph to a
functionally equivalent CSDF graph. To ensure the functional equivalence, the
production and consumption rates of an SDF actor are modified accordingly to
the production and consumption sequences in the resulting CSDF graph. This
modification results in a different repetition vector of the obtained CSDF graph to
ensure its consistency.

The algorithm for performing the unfolding of actors in SDF graphs is given in
Algorithm 5. The algorithm accepts as inputs an SDF graph G and a vector ~f of
unfolding factors. The algorithm produces as an output a CSDF graph G′, where
Ai , f denotes the f th replica of Ai with repetition qi , f given by

qi , f =
qi · lcm( ~f )

fi
, (5.1)

where qi is the repetition of actor Ai in the initial SDF graph and lcm( ~f ) denotes the
least common multiple of fi ∈ ~f . It follows that the repetition vector of G′, denoted

by ~q ′ ∈ Nn′ where n′ =
∑

Ai∈A fi , is given by ~q ′ = [q1,1, · · · , q1, f1
, · · · , qn, fn

]T and

n = |A|. After obtaining ~q ′ using Equation 5.1, production/consumption sequences
of each CSDF actor are generated accordingly.

Let us consider an SDF graph G1 is shown in Figure 5.1(a). The actors A1
and A5 are the data source and sink actors, respectively. G1 has five actors and a
repetition vector ~q = [1,1,2,1,1]T . The WCET of each actor is shown below its
name, e.g., C3 = 12 for actor A3. Suppose that a vector of unfolding factors is given
as ~f = [1,1,3,1,1] for G1 in Figure 5.1(a). Algorithm 5 outputs a CSDF graph G2
shown in Figure 5.1(b) with three replicas A3,1, A3,2 and A3,3 for actor A3 in G1. The
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Algorithm 5: Unfolding an SDF graph.

Input: An SDF graph G = (A,E) and a vector ~f of unfolding factors.
Result: The equivalent CSDF graph G′ = {A′,E ′}
A′ = ;,E ′ = ; ;1

foreach Ai ∈A do2

Add fi ∈ ~f replicas of Ai to A′ ;3

Set repetition entry qi ,i i =
qi ·lcm( ~f )

fi
,∀i i ∈ [1, fi] ;4

foreach E ∈ E do5

Get source actor Ai and sink actor Aj of edge E ;6

Get production rate prd(E) and consumption rate cns(E) ;7

lcm_pc= lcm(prd(E), cns(E)) ;8

if f j is dividable by fi then OP= f j/ fi ; IP= 1;9

else if fi is dividable by f j then IP= fi/ f j ;OP= 1;10

else IP= fi/ f j ;OP= 1;11

for i i = 1 to fi do12

Add OP output ports to Ai ,i i ;13

for k = 1 to OP do14

Initialize a production sequence Pi ,i i of length qi ,i i to 0;15

Pi ,i i[p] = prd(E),∀p ∈ [(k − 1) lcm_pc
prd(E) + 1, k lcm_pc

prd(E) ] ;16

if f j is dividable by fi then j j = (i i − 1)OP+ k ;17

else if fi is dividable by f j then j j = i i/IP ;18

else j j = k ;19

Initialize a consumption sequence C j , j j of length q j , j j to 0;20

C j , j j [c] = cns(E),∀c ∈ [(i i − 1) lcm_pc
cns(E) + 1, i i lcm_pc

cns(E) ] ;21

Create a new channel E ′ connecting replica Ai ,i i to replica Aj , j j ;22

Add channel E ′ to E ′ ;23

Compact the production and consumption sequences of each actor in A′;24

unfolding results in a repetition vector of G2 as:

~q ′G2
= [q1,1, q2,1, q3,1, q3,2, q3,3, q4,1, q5,1]

T

= [3,3,2,2,2,3,3]T

For example, SDF actor A4 executes only once (q4 = 1) in G1 per graph iteration,
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Figure 5.1: (a) An example of an SDF graph and (b) its equivalent CSDF graph by
unfolding actor A3 by factor 3.

while executing three times (q4,1 = 3) in G2 per graph iteration. Three consumption
sequences of actor A4,1 in G2 behave similar to a joiner, with which A4,1 collects data
tokens from the three replicas A3,1, A3,2 and A3,3. Analogous to a splitter, actor A2,1
with three production sequences distributes tokens to the three replicas.

5.3 Problem Formulation

First of all, recall the notations used for (C)SDF MoCs in Table 2.3 on page 31 and
the notations used for HRT scheduling of (C)SDF MoCs in Table 2.4. In addition,
we introduce some extra notations in Table 5.1 used in this chapter to facilitate the
following discussion. Let Ti be the actual period of actor Ai ∈A of a CSDF graph
G = (A,E). Ti can be obtained as Ti = cŤi , where Ťi is computed in Equation (2.16)
on page 34 and c is called scaling factor (see Section 5.4). Now, we formally define
our problem as follows:

Problem 5.3.1. Given an SDF graph G, where the actors are scheduled as strictly
periodic tasks, and m available PEs. Suppose that each actor Ai in G is to be unfolded
by an unfolding factor fi ∈N+. Find, for each actor Ai , the minimum value of fi and
the allocation of each replica Ai ,d , where 1≤ d ≤ fi , such that the period of the sink
actor Tsnk (see definition of Tsnk on page 34) in the unfolded graph is minimized.

If Problem 5.3.1 is considered as primal, its dual problem can be stated as follows:
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Problem 5.3.2. Given an SDF graph G, where the actors are scheduled as strictly
periodic tasks, and m available PEs. Suppose that each actor Ai in G is to be unfolded
by an unfolding factor fi . Find, for each actor Ai , the minimum value of fi and the
allocation of each replica Ai ,d , where 1≤ d ≤ fi , such that the total utilization

UG’ =
∑

Ai ,d∈A′

Ci ,d

Ti ,d

of the unfolded graph G′ on m PEs is maximized, where Ti ,d is the actual period of
replica Ai ,d .

It can be seen that Problems 5.3.1 and 5.3.2 are not trivial. In general, for a given
SDF graph, the number of possible alternative graphs that can be generated using
unfolding grows exponentially as the number of actors increases. Furthermore, for
each alternative graph, we have to perform allocation of unfolded actors which is by
itself an NP-hard problem.

Lemma 5.3.1. Problems 5.3.1 and 5.3.2 are equivalent.

Proof. The lemma is proven by showing that a solution to Problem 5.3.1 is also a
solution to Problem 5.3.2 (case I) and vice versa (case II).
Case I:

Let G′ be the unfolded graph of G. Suppose that ~f is the solution to Prob-
lem 5.3.1. This means that Tsnk is minimized. The period Ti , f of a replica Ai , f in G′

based on Equation (2.16) on page 34 can be written as

Ti , f = c · Ťi , f =
c · lcm(~q ′)

qi , f

� ŴG′

lcm(~q ′)

�

, (5.2)

Notation Meaning
c scaling factor for periods of all actors in a (C)SDF graph and c ∈Z+
fi unfolding factor for actor Ai
Ω ratio
ρ quality factor ρ ∈ (0,1]
θi code size of a (C)SDF actor Ai
Θ total code size of a (C)SDF graph, Θ=

∑

Ai∈Aθi

Table 5.1: Additional notations used in Chapter 5 besides the ones introduced in
Chapter 2.
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where c is the scaling factor. Thus, for the sink actor, it is

Tsnk · qsnk = c · lcm(~q ′)
� ŴG′

lcm(~q ′)

�

, (5.3)

where c · lcm(~q ′)
�

ŴG′/ lcm(~q ′)
�

is constant. Therefore, from Equations 5.2 and 5.3,
it holds

Tsnk · qsnk = Ti , f · qi , f ,∀Ai , f . (5.4)

Subsequently, Equation 5.4 can be re-written as

Ti , f =
Tsnk · qsnk

qi , f
. (5.5)

Due to the devised unfolding algorithm (see Algorithm 5), we have qi ,1 = qi ,d (see
Equation (5.1)), where 1 ≤ d ≤ f . Therefore, βi = qsnk/qi , f is constant. It then
follows

Ti , f =βi Tsnk (5.6)

It follows from Equation 5.6 that when Tsnk is minimized, then Ti , f is minimized.
Recall that the maximum total utilization ÛG′ is given by

ÛG′ =
∑

Ai , f ∈A

Ci , f

Ti , f
(5.7)

Since Ti , f is minimized for all the actors, it follows that ÛG′ is maximized. Therefore,
~f is also the solution to Problem 5.3.2.
Case II:

Suppose that ~f is the solution to Problem 5.3.2. This means that ÛG′ is max-
imized. Using Equation 5.4, we can replace each Ti , f in Equation 5.7 by Tsnk·qsnk

qi , f
,

which results in:

ÛG′ =
C1,1 · q1,1

Tsnk · qsnk
+ · · ·+

C2,1 · q2,1

Tsnk · qsnk
+ · · ·+

Csnk

Tsnk
(5.8)

The WCET Ci , f and repetition qi , f of each replica is constant. Therefore, Equa-
tion 5.8 can be re-written as:

ÛG′ =
α1,1

Tsnk
+ · · ·+

α2,1

Tsnk
+ · · ·+

αsnk

Tsnk
(5.9)

where αi , f = Ci , f · qi , f /qsnk. Since ÛG′ is maximized, it follows that Tsnk is mini-

mized. Therefore, ~f is also a solution to Problem 5.3.1. �
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5.4 Period Scaling under Hard Real-time Scheduling

As given in Equation (2.16) on page 34, a (C)SDF graph under SPS can achieve
the minimum period (inverse of maximum throughput) Ťi for each actor Ai . This
maximum performance also requires the largest number of PEs. If the maximum
performance is not necessary, the actually desired period Ti of Ai can be obtained
by scaling up Ťi by a scaling factor c ∈Z+ as Ti = cŤi . Using a scaling factor c , we
can have a trade-off between processing resources and guaranteed performance as
shown in the following proposition:

Proposition 5.4.1. Let G be a CSDF graph that is schedulable using a scheduling
algorithm SA and an allocation algorithm AA on m̌ PEs, when the minimum period of
each actor Ai is equal to Ťi . G is schedulable using the same SA and AA on

� m̌
c

�

PEs,
when the period of each actor Ai is scaled by c.

Proof. Let USA be the utilization bound of a scheduling algorithm SA. If G is schedu-
lable on m̌ PEs using SA and any AA, then this means that the total utilization of
the actors on each PE j , where 1≤ j ≤ m̌, is UPE j

∈ (0, USA]. If we scale the periods

of the actors in G by c , then this means that UPE j
∈ (0, USA

c ]. Therefore, it is possible
to combine the actors in every c PEs into 1 PE. Hence, the number of PEs needed
after scaling the periods is

� m̌
c

�

. �

Considering G2 in Figure 5.1(b), we have computed in Equation (2.24) on page 37

that it can be scheduled on 5 PEs while achieving
~̌
TG2

. Therefore, it can be scheduled

on d 5
2e= 3 PEs achieving a period T5,1 = 2× Ť5,1 = 16, i.e., throughput 1

16 by scaling
all minimum periods by c = 2.

Now, suppose that AA is an approximate allocation algorithm with an approxi-
mation ratio RAA. Then, we can have the following proposition:

Proposition 5.4.2. Let G be a CSDF graph that is schedulable using a scheduling
algorithm SA and any exact allocation algorithm on m̌ PEs, when the period of each
actor Ai is equal to cŤi . G is schedulable using SA and any approximate allocation
algorithm AA, with approximation ratio RAA, on m̌ PEs, when the period of each actor
Ai is equal to cRAAŤi .

5.5 Bounding Solution Space

In order to solve Problems 5.3.1 and 5.3.2 defined in Section 5.3, it is first necessary
to show that the solution space of the problems is bounded, i.e., the values of the
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unfolding factors fi must be bounded by finite integers. Bounding the solution space
ensures that the algorithm devised in Section 5.6 terminates. Now, we define the
upper bound on unfolding factors as follows:

Definition 5.5.1 (Upper bounds of Unfolding Factors). Let G be an SDF graph,
where the actors in G are under SPS shown in Section 2.3, and assume that the
number of PEs is unlimited. Suppose that every actor Ai in G is to be unfolded by
a factor fi resulting in a CSDF graph G′, for which Ťi , f is the minimum period of

each replica Ai , f and Ci , f =Ci is its WCET. The upper bound on fi , denoted by f̂i ,
is the minimum value which results in utilization

Ci , f

Ťi , f

= 1.0

for each replica Ai , f in G′.

In other words, unfolding an SDF graph G by a vector of unfolding factors
~̂f = [ f̂1, · · · , f̂n] results in a graph G′ with utilization UG′ = n′, where n′ is the
number of actors in the unfolded graph. Hence, unfolding any actor Ai by an
unfolding factor f ∗i > f̂i cannot result in any increase in the total utilization of the
unfolded graph. Moreover, the unfolded graph achieves the maximum achievable
throughput since the sink actor fully utilizes the PE on which it executes. Therefore,
~̂
f bounds the solution space that has an impact on the total utilization of the
unfolded graph.

Determining the upper bound
~̂f , however, is not trivial. One common assump-

tion, e.g., in [54] and [71], is to set
~̂f = [m, m, · · · , m], where m is the number of

PEs. In this section, we show, using an example, that this assumption may limit the
solution space. As a consequence, the limited solution space might not contain the
optimal solution to Problems 5.3.1 and 5.3.2.

Let us consider G1 in Figure 5.1(a) and suppose that 2 PEs are available. The
optimal alternative graph of G1 is G3, shown in Figure 5.2, when the vector of
unfolding factors is ~f = [1,2,4,1,1]. First, the repetition vector of G3 can be
computed according to Equation (5.1) as

~qG3
= [q1,1, q2,1, q2,2, q3,1, q3,2, q3,3, q3,4, q4,1, q5,1]

= [4,2,2,2,2,2,2,4,4].
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Figure 5.2: G3: Optimal alternative graph of G1 in Figure 5.1(a) with unfolding
factors f2 = 2, f3 = 4 when scheduled on 2 PEs.

It follows that ŴG3
= q3,1×C3,1 = 2× 12 and lcm(~qG3

) = 4. Solving Equation (2.16)
on page 34 yields the minimum period of the sink actor A5,1 as

Ťsnk =
4

4
· d

24

4
e= 6.

To achieve Ťsnk = 6, it requires 6 PEs. Then, we can scale all periods of the actors
in G3 by c = 3, which yields a period Tsnk = 3Ťsnk = 18. According to Proposi-
tion 5.4.1, the graph G3 is schedulable on d 6

3e= 2 PEs. After scaling the periods of
all actors, the total utilization UG3

of G3 on 2 PEs is UG3
= 2.0. Since Lemma 5.3.1

states that the maximum utilization corresponds to the minimum period that a
CSDF graph can achieve, no shorter period can be achieved for G3. Thus, G3 is the
optimal alternative graph of G1 for 2 PEs with an unfolding factor f3 = 4, which
is greater than the number of PEs available. Therefore, this example shows that

the optimal solution is beyond
~̂
f = [2,2,2,2,2], which defines the solution space

if we set
~̂f = [m, m, m, m, m]. Hence, we conclude that the upper bound on an

unfolding factor is not necessarily equal to the number of PEs.
Now, we derive the upper bound on the unfolding factor for each actor in the

initial SDF graph by stating the following theorem:

Theorem 5.5.1. Given an SDF graph G under SPS, suppose that each actor Ai is to
be unfolded by a factor fi . The upper bound on fi according to Definition 5.5.1 can be
computed as follows:

f̂i =
lcm{x1, x2, · · · , xn}

xi
, (5.10)
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where

xi =
lcm{W1,W2, · · · ,Wn}

Wi
. (5.11)

Wi is the workload of actor Ai given in Definition 2.3.2 on page 34.

Proof. Suppose that G′ is the CSDF graph obtained by unfolding each actor Ai in
the initial SDF graph G by f̂i . From Definition 5.5.1, it follows that every replica
Ai , f in G′ has Ťi , f =Ci , f =Ci . Therefore, we can re-write Equation 2.16 on page 34
as:

Ci =
lcm(~q ′)

qi , f

� ŴG′

lcm(~q ′)

�

(5.12)

where qi , f is the repetition of Ai , f in G′. Equation 5.12 can be re-written as:

qi , f Ci = lcm(~q ′)
� ŴG′

lcm(~q ′)

�

(5.13)

Since lcm(~q ′)dŴG′/ lcm(~q ′)e is constant, then we re-write Equation 5.13 as:

q1,1C1 = q1,2C1 = ...= q1, f1
C1 = ...= qn, fn

Cn (5.14)

Now, we can write qi , f = xi · qi , where qi is the repetition of Ai in the initial SDF
graph and xi is an integer factor. That is:

x1q1C1 = x2q2C2 = · · ·= xn qnCn (5.15)

Equation 5.15 can be re-written as:

x1W1 = x2W2 = · · ·= xnWn (5.16)

where Wi is the workload of actor Ai according to Definition 2.3.2 on page 34. The
minimum solution to Equation 5.16 is:

xi =
lcm{W1,W2, · · · ,Wn}

Wi
(5.17)

Since qi , f = xi qi and the graph is unfolded by
~̂f , we can substitute this in Equa-

tion 5.1 to get:

xi qi =
qi lcm( ~̂f )

f̂i

(5.18)
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which can be re-written as:

xi f̂i = lcm( ~̂f ) (5.19)

Since lcm( ~̂f ) is constant, Equation 5.19 can be re-written as:

x1 f̂1 = x2 f̂2 = · · ·= xn f̂n (5.20)

The minimum solution to Equation 5.20 is:

f̂i =
lcm{x1, x2, · · · , xn}

xi
(5.21)

�

Now, we give an example on how to compute
~̂f . For G1 in Figure 5.1(a), we

first compute lcm{W1,W2,W3,W4,W5}= 24. Then, ~x containing the values of xi is
given by

~x = [x1, x2, x3, x4, x5]

= [
24

1
,
24

8
,
24

24
,
24

2
,
24

1
]

= [24,3,1,12,24].

Finally we obtain lcm(~x) = 24, and

~̂
f = [ f1, f2, f3, f4, f5]

= [
24

24
,
24

3
,
24

12
,
24

12
,
24

24
]

= [1,8,24,2,1].

5.6 The Algorithm

Based on the upper bounds on unfolding factors, we devise, in this section, an
efficient algorithm to solve Problems 5.3.1 and 5.3.2 under a given number of PEs.

The algorithm accepts as an input the following:

1. the initial SDF graph G;

2. the number of available PEs m;
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3. the vector containing the upper bounds on the unfolding factors
~̂f computed

using Equation 5.10;

4. a pre-specified quality factor ρ ∈ (0,1], which is used to terminate the algo-
rithm. ρ= 1 indicates the highest quality that m PEs must be fully utilized
when allocating the resulting graph to the m PEs.

The outputs of the algorithm are:

1. a vector of unfolding factors that is the solution to Problems 5.3.1 and 5.3.2;

2. the allocation of the unfolded SDF graph on m PEs;

3. the minimum achievable period of the sink actor in the unfolded SDF graph
on m PEs which is the objective of Problem 5.3.1;

4. the maximum utilization of the unfolded SDF graph on m PEs which is the
objective of Problem 5.3.2.

The algorithm builds, incrementally during its execution, a list of nodes in
which each node represents a possible vector of unfolding factors ~f . Initially, the
list contains only a single node which corresponds to the given initial SDF graph
with a vector of unfolding factors ~f =~1. Then, we compute the minimum period of
the sink actor Tsnk in the initial SDF graph G, when G is allocated on m PEs, and
its total utilization UG . Both values initialize a tuple (Tbest, Ubest) which holds the
period and total utilization of the current best solution. During the execution of
the algorithm, new nodes are created and added to the list, where a node represents
an alternative CSDF graph G′ of the initial graph G with a vector ~f of unfolding
factors. Each entry fi ∈ ~f ranges from 1 up to f̂i derived in Equation (5.10).

A newly created node inherits from its previous node a copy of the unfolding
factors vector ~fprev used by the previous node to generate the unfolded graph G′prev.
After that, we search in G′prev for the bottleneck actor, denoted by Ab , f , which is the

one with the maximum workload ŴG as defined in Definition 2.3.2 on page 34. If
multiple actors have the same maximum workload, then the one with the smallest
code size is selected. Next, we increment by one the entry fb in the inherited
unfolding factors vector ~fprev, thereby, obtaining ~fcurr. Then, we unfold the initial

graph G by the factors in ~fcurr which results in a CSDF graph G′curr. The next step is
to evaluate the unfolded graph G′curr when it is allocated on m PEs. The procedure for
evaluating G′curr is explained in details later. The result of the evaluation procedure
is the minimum period of the sink actor Tsnk in G′curr, when G′curr is allocated on m
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PEs, and the total utilization of the graph Ucurr. If the obtained Ucurr is higher than
Ubest corresponding to the current best solution (i.e., Tsnk smaller than Tbest), then
Tbest and Ubest are updated with Tsnk and Ucurr, respectively. Otherwise, Tbest and
Ubest remain unchanged.

The creation of new nodes is terminated when one of the following conditions
is met:

1. The total utilization UG′ of the CSDF graph at the current node satisfies
UG′ ≥ ρm, where ρ ∈ (0,1] is the quality factor given as an input to the
algorithm.

2. The unfolding factor fi of an actor Ai exceeds either its upper bound f̂i if Ai
is stateless, or 1 if Ai is stateful or a data source/sink actor. Recall that stateful
actors together with the data source and sink actors cannot be unfolded.

After the creation of new nodes is terminated, we select the first node in the list
that has a minimum sink period and a total graph utilization equal to Tbest and Ubest,
respectively. The selected node contains the solution to Problems 5.3.1 and 5.3.2.

Evaluating Unfolded Graphs

As explained previously, at each node, the initial SDF graph G is unfolded to produce
a CSDF graph G′ = (A′,E ′). Then, we compute two values for G′, i.e.,

1. the minimum sink actor period Tsnk when G′ is allocated on m PEs;

2. its total utilization UG′ .

In this section, we explain in detail how these two values are computed. Recall from
Section 5.4 that Tsnk can be scaled by a scaling factor c given by Tsnk = cŤsnk, and
UG′ can be computed as follows:

UG′ =
∑

Ai , f ∈A′

Ci , f

c · Ťi , f

. (5.22)

Recall also that the objective of Problem 5.3.2 is to maximize the utilization. There-
fore, we need to find a value of scaling factor c , such that all actors Ai , f ∈ G′ are
schedulable on m PEs and UG′ is maximized. To do so, we first bound the search
range for c by deriving its lower and upper bounds. Using any allocation algorithm,
we have from Proposition 5.4.1 a lower bound on c , denoted by č , as follows:

č =
� 1

m

∑

Ai , f ∈A′

Ci , f

Ťi , f

�

. (5.23)
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Algorithm 6: The procedure for evaluating an unfolded graph.
Input: A CSDF graph G′, number of available PEs m, and the period and

total utilization corresponding to the current best solution Tbest and
Ubest.

Result: alloc which is an m-partition describing the allocation of the actors in
G′ onto m PEs

Compute č using Equation 5.23 and ĉ using Equation 5.24 ;1

for s = č to ĉ do2

Compute the period Ti , f of each actor Ai , f as Ti , f = cŤi , f ;3

if Tsnk ≥ Tbest then4

return ; ;5

Compute the utilization UG′ using Equation 5.22;6

Find an m′-partition of the actors in G′, denoted by alloc, using the FFD7

algorithm and assuming the EDF scheduling algorithm;
if m′ ≤ m then8

Ubest =UG′ , Tbest = Tsnk;9

return alloc ;10

That is, for any AA, the scaling factor c cannot be less than č . From Proposition 5.4.2,
we compute, using the approximation ratio of the First-Fit Decreasing (FFD) alloca-
tion algorithm given in Equation (2.23) on page 37, the upper bound on the scaling
factor c , denoted by ĉ , as follows:

ĉ =
� 11

9m

∑

Ai , f ∈A′

Ci , f

Ťi , f

�

+ 1. (5.24)

Once the lower and upper bounds of c are found using Equation (5.23) and Equa-
tion (5.24), respectively, we perform a linear search to seek the smallest c , such that
CSDF graph G′ is schedulable on m PEs. Specifically, we check if an m-partition
of all actors in G′ exists, assuming the EDF scheduling algorithm and the FFD allo-
cation algorithm explained in Section 2.3. The complete procedure for evaluating
the unfolded graphs is depicted in Algorithm 6. If the period resulting from a given
scaling factor c is greater than Tbest, then Algorithm 6 terminates immediately to
speed-up the search.
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0

1

2

3

4

~f = [1, 1, 1, 1, 1], č = 1, ĉ = 1,
UG1 = 1.5, Tsnk = 24,

(Tbest, Ubest) = (Tsnk, UG1) = (24, 1.5)
Bottleneck: A3

~f = [1, 1, 2, 1, 1], č = 2, ĉ = 2,
UG′ = 1.5, Tsnk = 24, (Tbest, Ubest) = (24, 1.5)

Bottleneck: A3,1

~f = [1, 1, 3, 1, 1], č = 3, ĉ = 3,
UG′ = 1.5, Tsnk = 24, (Tbest, Ubest) = (24, 1.5)

Bottleneck: A2,1

~f = [1, 2, 3, 1, 1], č = 3, ĉ = 3,
UG′ = 1.5, Tsnk = 24, (Tbest, Ubest) = (24, 1.5)

Bottleneck: A3,1

~f = [1, 2, 4, 1, 1], č = 3, ĉ = 4
UG′ = 2.0, Tsnk = 18,

(Tbest, Ubest) = (Tsnk, UG′) = (18, 2.0)

Figure 5.3: The list produced by the algorithm for G1 in Figure 5.1(a) on 2 PEs with
ρ= 0.95.

Example

Now, we illustrate our algorithm using graph G1 in Figure 5.1(a) and schedule the
resulting graph G′ on 2 PEs (i.e., m = 2) with the EDF algorithm. Suppose that
ρ = 0.95, i.e., the algorithm terminates when UG′ ≥ 0.95× 2 = 1.9. The whole
list produced by the algorithm is illustrated in Figure 5.3. The numbers inside the
nodes correspond to the sequence in which the nodes are created. The algorithm
starts with the initial G1 in node 0 and computes the scaling factors č and ĉ which
result in UG1

= 1.5 and period Tsnk = 24. At this point, Ubest is initialized to 1.5
and Tbest to 24. Node 1 inherits from node 0 a vector of unfolding factors equal
to [1,1,1,1,1]. After that, we search in G′prev =G1 for the bottleneck actor which
is A3. Next, we increment f3 in the inherited vector of unfolding factors at node
1 resulting in ~f = [1,1,2,1,1]. Then, G′ is generated and Algorithm 6 is invoked.
Since Ubest cannot be improved, the algorithm continues by creating node 2. At node
2, a new bottleneck actor A2,1 is introduced. Therefore, at node 3, the unfolding
factor f2 is incremented by 1. Then, the algorithm continues to node 4, at which
one termination criterion is met, namely UG′ ≥ 1.9. As a result, ~f = [1,2,4,1,1] is
the solution with Tbest = 18 and Ubest = 2.0.
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5.7 Experimental Evaluation

In this section, we present the results of evaluating our algorithm presented in
Section 5.6 using a set of real-life streaming applications. We evaluate the algorithm
by performing two experiments. In the first experiment, we run our algorithm on
the applications and report the following:

1. the performance gain resulting from mapping the SDF graph unfolded using
the unfolding factors obtained from our algorithm, compared to mapping the
initial SDF graph without unfolding;

2. the total time needed to execute our algorithm.

In the second experiment, we compare our proposed algorithm with one of the
state-of-the-art search meta-heuristics because Problems 5.3.1 and 5.3.2 in general can
be readily formulated and solved by these meta-heuristics, such as genetic algorithms,
simulated annealing, etc. However, meta-heuristics normally require parameter
tuning to achieve a good solution. In this work, we select a particular meta-heuristic,
namely Genetic Algorithms (GA) for two reasons:

1. they have been applied by several researchers to solve similar problems (e.g.,
[113]);

2. several researchers have reported the optimal parameter settings for GA in the
context of our problem (e.g., [118]).

In particular, we compare our proposed algorithm with the one based on the NSGA-
II genetic algorithm [36]. Specifically, we compare two metrics:

1. the total execution time needed by each algorithm to find a solution;

2. the total code size of the returned solution.

We conducted all experiments on 11 real-life streaming applications from the
StreamIt benchmarks suite [54]. The exact characteristics of the benchmarks are
outlined in Table 5.2. Overall, the number of actors in the benchmarks varies
from 8 to 120. The WCET of each actor was profiled on the RAW achitecture.
The benchmarks include two applications with stateful actors, namely MPEG2 and
Vocoder. Both our algorithm and the meta-heuristic were developed in the Phrt tool
as part of DaedalusRT shown in Figure 1.7 on page 13. For the NSGA-II GA, we
used the implementation from the DEAP [44] framework. All experiments were
performed on an Intel Core 2 Duo T9600 CPU running at 2.80 GHz with Linux
Kubuntu 10.4.
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Table 5.2: Benchmark characteristics.
Benchmark Num. of Actors Num. of Edges Has Stateful Actors?

DCT 8 7 No
FFT 17 16 No

Filterbank 85 99 No
TDE 29 28 No
DES 53 60 No

Serpent 120 128 No
Bitonic 40 46 No
MPEG2 23 26 Yes
Vocoder 114 147 Yes
FMRadio 43 53 No
Channel 55 70 No

Evaluating the Proposed Algorithm

First, we present the performance gain resulting from mapping the unfolded SDF
graph, compared to mapping the initial SDF graph without unfolding. We do so
by running the algorithm on the benchmarks and mapping each application on a
number of PEs that varies from 2 up to 128 PEs. We evaluate the trade-off between
the performance gain and total execution time by setting different quality factors
ρ ∈ {0.8,0.85,0.9,0.95}. To measure the performance gain, we compute, for each
benchmark, the ratio between the sink actor period resulting from mapping the
unfolded SDF graph, and the period resulting from mapping the initial SDF. This
ratio is denoted by Ω and is given by

Ω=
Tsnk of G′

Tsnk of G
,

where G′ is the unfolded graph, and G is the initial SDF graph. A lower value of Ω
indicates a shorter sink actor period in the unfolded graph, and therefore, a higher
throughput. In Figure 5.4, each vertical line shows the variations in Ω for all the
benchmarks. The marker at the middle of each vertical line represents the Geometric
Mean (GM) of Ω, while the upper and lower ends of the line represent the maximum
and minimum values ofΩ, respectively. It can be seen that mapping the unfolded SDF
graphs of the benchmarks achieves significant performance improvement compared
to mapping the initial SDF graphs of the benchmarks. As the number of PEs
increases, the unfolded SDF graphs utilize the PEs much better than the initial SDF
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Figure 5.4: Period ratio (lower is better).

graphs. For example, on 64 and 128 PEs, mapping the unfolded SDF graphs with
quality factor ρ= 0.95 achieves a GM of Ω equal to 0.2 and 0.1, respectively. The
DCT benchmark benefits significantly from the algorithm and achieves a GM of
Ω equal to 0.021 and 0.042 on 128 and 64 PEs, respectively. Even when a small
number of PEs is available, the unfolded SDF graphs still achieve, with quality factor
ρ= 0.95, a GM of Ω equal to 0.92 and 0.85 on 2 and 4 PEs, respectively.

During the experiment, we also find that the unfolding factor of an actor, ob-
tained using our algorithm, is not necessarily equal to the number of PEs. For
example, the obtained unfolded SDF graph of the Vocoder benchmark, when mapped
onto 8 PEs, requires the RectangularToPolar actor in the initial SDF graph to be un-
folded by a factor of 20. This confirms our statement in Section 5.5. With our
provable upper bound, our algorithm results in 4% period reduction for this bench-
mark compared to other approaches, in which the RectangularToPolar actor is only
unfolded with factor 8.

We also evaluate the total execution time of our algorithm, denoted by tours,
when it is invoked on the benchmarks. Figure 5.5 shows the total execution time of
our algorithm in seconds for all the benchmarks. For all benchmarks, our algorithm
takes a GM of 6.07 seconds for 128 PEs with utilization ratio ρ= 0.95. The Serpent
benchmark (the largest graph size with 120 actors) takes the longest running time
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Figure 5.5: Running time of our algorithm.

(78.90 seconds), while the DCT benchmarks takes the shortest running time (1.09
seconds). As the quality factor ρ is decreased from 0.95 to 0.9, the GM of the
running time drops to 2.49 seconds for 128 PEs. These results show clearly that our
algorithm results, within a reasonable amount of time, in a large performance gain.

Comparison with Genetic Algorithm

To compare our algorithm with the GA-based heuristic, we perform the following
steps. First, we run the GA to map each benchmark onto 64 PEs. It outputs an
achievable period T and total utilization UGA. Then, we run our algorithm to map
the same benchmark onto 64 PEs with a termination criterion UG′ ≥ UGA. This
criterion ensures a fair comparison since our algorithm runs till it finds the same or
better solution in terms of the sink actor period and total utilization compared to
the best solution found by the GA-based heuristic. Then, we compare two metrics:

1. the total execution time of each algorithm;

2. the total code size Θ resulting from the unfolding factors returned by each
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A1,1 ... A1, f̂1
... An,1 ... An, f̂n

j ... 0 ... 1 ... 2

Figure 5.6: An example of an individual. The first replica of A1 is allocated on the
j th PE and the f̂1th replica of A1 does not exist.

algorithm. The total code size is computed as

Θ=
∑

Ai , f ∈A′
θi , f

where θi , f is the code size for actor Ai , f .

For the GA-based heuristic, each individual (also known as a chromosome)
encodes a particular unfolding vector ~f of the initial SDF graph and the allocation
of the replicas on m PEs. The structure of an individual is visualized in Figure 5.6.
Basically, in an individual, each SDF actor Ai in the initial graph has f̂i cells as
derived in Equation 5.10, indicating that Ai may have up to f̂i replicas. Each cell
may have a value varying from 0 up to m. A value of 0 denotes that the replica does
not exist, while a value of 1 up to m denotes the PE on which the replica is allocated.
Then, we formulate Problem 5.3.1 as a multi-objective optimization problem with
two objectives. The first objective is to minimize the sink actor period, and the
second one is to minimize the total code size of the unfolded graph. During the
search, we use the evaluation function shown in Algorithm 7. The GA outputs a set
of Pareto points, for which we select the one with the shortest achievable period.
In order to control the GA, we use the parameters reported in [118], because the
target application domain and used platforms are similar to ours. The values of these
parameters are given in Table 5.3.

Figure 5.7 shows two ratios. The first ratio (shown in white bars) is the total
execution time ratio given by

Ωt =
tGA

tours
,

where tGA is the total time needed by the GA, and tours is the total time needed by
our algorithm. The second ratio in Figure 5.7 (shown in black bars) is the total code
size ratio given by

ΩΘ =
ΘGA

Θours
,
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Algorithm 7: Evaluation function in the GA-based meta-heuristic
Input: An individual to be evaluated
Result: An achievable period and total code size.
Check if the given individual is valid ;1

if the individual is invalid then return (−1, −1) ;2

Build the vector of unfolding factors ~f from the individual ;3

Generate the CSDF graph G′ by unfolding G with ~f using Algorithm 5;4

Compute the minimum achievable period Ťi , f of each actor Ai , f using5

Equation (2.16) ;
Compute č according to Equation 5.23 ;6

c = č ;7

while true do8

Compute the period Ti , f of each actor Ai , f as Ti , f = cŤi , f ;9

if G′ is schedulable on m PEs then10

Compute total code size Θ=
∑

Ai , f ∈A′ θi , f ;11

Get the period Tsnk of the sink actor in G′ ;12

return ((Tsnk, Θ) ;13

else14

c = c + 1 ;15

Table 5.3: Parameters for the genetic algorithm.
Parameter Recommended value in [118]

Population size 80

Number of generations 300

Crossover rate 0.9

Mutation rate 0.05

Mating rate 0.1

where ΘGA is the total code size of the solution obtained using the GA, and Θours
is the total code size of the solution obtained using our algorithm. Our algorithm
is on average 104 times faster than the GA-based heuristic. For example, to unfold
and map the FMRadio benchmark onto 64 PEs, our algorithm takes only 3 seconds,
while the GA-based heuristic takes 2439 seconds. This means that our algorithm,
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our algorithm.

for the FMRadio benchmark, is 813 times faster. We also see from Figure 5.7 that our
algorithm results in less total code size compared to the GA-based heuristic. These
results show clearly that our algorithm outperforms the GA-based heuristic in terms
of

1. the time needed to obtain the solution;

2. the total code size of the obtained solution.


