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Chapter 4

Exploiting Maximum Data-level
Parallelism without Inter-processor
Communication

Jiali Teddy Zhai, Hristo Nikolov, and Todor Stefanov, “Mapping of Streaming Applications
considering Alternative Application Specifications”, in ACM Transactions on Embedded
Computing Systems (TECS), vol. 12, Issue 1s, Article 34, March 2013.
Jiali Teddy Zhai, Hristo Nikolov, Todor Stefanov, “Mapping Streaming Applications
considering Alternative Application Specifications (Extended Abstract)”, In Proceedings of the
10th IEEE Symposium on Embedded System for Real-Time Multimedia (ESTIMedia’12), Tampere,
Finland, October 11-12, 2012.

AS explained in Section 1.1.4, during the synthesis step of a model-based design
methodology, all possible combinations of Processing Element (PE) allocation

and assignment of application tasks to PEs constitute an enormous design space. To
efficiently search the design space and find an optimum mapping solution, existing
DSE approaches search the design space using different algorithms, e.g., stepwise
refinement in [51], heuristics in [109] and [111], evolutionary algorithms in [100,
115], branch-and-bound in [34], and constraint programming in [139]. These DSE
approaches consider only a single application specification given by application
designers.

As mentioned in Section 1.2, an application specification given by application
designers often does not take into account the underlying computation and com-
munication capability of an MPSoC. Indeed, the authors in [71] showed that, for a
set of representative streaming benchmarks, the theoretical speedup of mapping the
initial parallel application specifications, given by the application designer, can only
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52 Chapter 4. Exploiting Maximum Data-level Parallelism without Inter-processor Communication

reach up to a limited number.
The discussion above indicates that alternative application specifications may

be needed for efficient mapping of an application. In this thesis, we consider an
alternative application specification as a different description of the same application
behavior using the same MoC. For the same application behavior, there exists a
large number of alternative specifications. Among them, the considered application
specification should be the one that best matches the underlying MPSoC platform.
Ideally, the best application specification, if it exists, to be mapped onto n PEs is the
one that consists of n independent and load-balanced tasks. Then, without complex
DSE, mapping these n tasks onto n PEs will always result in n times speedup. In this
case, all PEs are equally loaded and 100% utilized without the need to synchronize
and communicate data with each other.

In this chapter, we study the problem of whether an alternative PPN exists for
an initial PPN, which consists of only independent and load-balanced processes.
Specifically, we divide the problem into two stages. In the first stage, we analyti-
cally identify independent execution of PPN processes, called communication-free
partitions. If they exist, the initial PPN is automatically transformed to a set of
communication-free partitions, i.e., an alternative PPN. In the second stage, given n
PEs, the application mapping problem is considered as grouping the set of obtained
communication-free partitions to balance the application workloads across all PEs,
such that the resulting performance (i.e., throughput) is maximized. To achieve the
load-balancing, any existing DSE algorithm can be leveraged. As a result, mapping
an application using this alternative PPN leads to better performance than mapping
the initial PPN.

Scope of Work

In this chapter, we consider streaming applications which can be modeled using the
PPN MoC. We assume that there are only one source and sink processes respectively
and they are orders of magnitude faster than the remaining processes that perform
computation. The source and sink processes represent environment and are thus not
partitioned. Furthermore, the achievable performance of a PPN is not constrained
by the buffer size required for each communication edge. It is possible to compute
a buffer size for each PPN edge using the PNgen compiler such that larger buffer
sizes do not increase the performance. We statically allocate a FIFO buffer for each
PPN edge on target platforms. The target platforms considered in this chapter are
homogeneous MPSoCs consisting of programmable PEs interconnected via any
type of communication infrastructure. After communication-free partitioning, we
assume that one partition completely fits onto one PE, in terms of program and data
memory usage.
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4.1 Motivating Example

To demonstrate the importance and usefulness of considering alternative application
specifications, let us consider an example application modeled using the PPN MoC
shown in Figure 4.1(a). This example is used throughout this chapter as a running
example. The PPN represents a common topology of a parallel application speci-
fication and consists of three PPN processes P1, P2, and P3 communicating data
via FIFO edges. Note that P3 has cyclic data dependences through edge E3. The
behavior of each PPN process is given as C code above the corresponding process.
Besides the PPN processes expressing the application behavior, the processes src and
snk represent the environment which provides input data and collects results. Their
execution is expressed by two domains, namely Dsrc = DIP and Dsnk = DOP = D3.
For instance, Dsnk is given as

Dsnk = {(i3, j 3) ∈Z2 | 0≤ i3≤ 7∧ 0≤ j 3≤ 7− i3}. (4.1)

Suppose that processes src and snk are much faster than the PPN processes and the
PPN is to be mapped onto the platform shown in Figure 4.2. The workloads of
functions F1, F2, and F3 in Figure 4.1(a) on the PEs are 6, 100, and 30 time units,
respectively. Communication latency via the interconnection structure is assumed
to be 5 time units and communication latency through local memory is considered
as negligible. Naturally, the maximum performance of mapping the initial PPN can
be achieved if each PPN process is mapped onto a separate PE, namely 3 PEs in this
example. In case that more than 3 PEs are available, the existing DSE approaches are
incapable of exploring the mapping possibilities that utilize all PEs. Thus, further
performance improvements of the system are not explored. In fact, considering
only the initial PPN shown in Figure 4.1(a), only 2 PEs are required to achieve the
maximum performance if we perform DSE to obtain pareto-optimal mappings of
processes. That is, processes P1 and P2 are pipelined and mapped onto PE1, while
process P3 is mapped onto PE2 as shown in Figure 4.2. Figure 4.3 shows the achieved
speedup of pareto-optimal mappings of the initial PPN (denoted as Initial).

However, more parallelism is exposed and higher performance can be achieved,
if the initial PPN is transformed to a set of communication-free partitions. A
communication-free partition corresponds to a subset execution of PPN processes
to produce an output of the PPN, without the need to communicate data with other
partitions. To illustrate communication-free partitions, the execution of each PPN
process in Figure 4.1(a) is visualized in Figure 4.1(b). The dots represent individual
iterations of the PPN processes. For example, one iteration of P3 comprises one
execution of its loop body (lines 3 - 10 of P3 in Figure 4.1(a)). The arrows between
iterations denote data dependences. For this example, the initial PPN can be trans-
formed to 8 communication-free partitions denoted as Parti. 0 - 7 in Figure 4.1(b)
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P1 P2 P3

for(i1=0;i1<=7;i1++)
{

 READ(&in,IP);

 F1(in,&out);

 WRITE(out,OP1);
} 

1 for(i3=0;i3<=7;i3++){
2  for(j3=0;j3<=7-i3;j3++){
3   if(i3==0)
4    READ(&in,IP2);

5   if(i3>=1)
6    READ(&in,IP3);

7   F3(in,&out);

8   WRITE(&out,OP);
9   if(j3>=1&&i3<=6)
10   WRITE(out3,OP3);
}} 

OP1

PPN Process P1 PPN Process P2

PPN Process P3

for(i2=0;i2<=7;i2++)
{

  READ(&in,IP1);

  F2(in,&out);

  WRITE(out,OP2);
}

IP OPsrc snk
IP1

E1 E2

E3

OP2 IP2

IP3 OP3

(a) The PPN and behavior of each process shown using C code.
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(b) Process domains of all PPN processes and 8 communication-free partitions.

Figure 4.1: An example of a PPN and its communication-free partitions.

(each partition is surrounded by a dashed box). One can see in Figure 4.1(b) that no
arrows (data dependences) exist across the partitions. Each partition contains a subset
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P1 P2 P3

PE1

Interconnection

Mem. Mem.

PE2

E1 E2

E3

Figure 4.2: Mapping of the PPN in Figure 4.1(a) onto 2 PEs achieving the maximum
performance.
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Figure 4.3: Performance results of mapping the initial PPN and the alternative PPN
after communication-free partitioning.

execution of PPN processes P1, P2, and P3 in Figure 4.1(a). After communication-
free partitioning, the initial PPN in Figure 4.1(a) is transformed to the alternative
PPN shown in Figure 4.4(a). The only communication between PEs occurs when
input data is demultiplexed from process src to all partitions and output produced
by the partitions is multiplexed to process snk. For example, this can be seen with
the help of Figure 4.1(b). In the initial PPN, process src sends the input data to P1
at its iterations from (0) to (7) due to a dependence relation (see Definition 2.1.7
on page 26). In the alternative PPN, with the same dependence relation, process
src sends the input data at iteration (0) of P1 to partition Parti. 0, the input data at
iteration (1) of P1 to partition Parti. 1, and so on. Analogously, in the alternative
PPN, process snk collects the output data produced at iteration (0,0) of P3 from
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Parti. 0

Parti. 7

src Parti. 3 snk

...

...

...

...
...

(a) The alternative PPN.

PE1

Interconnection

Mem. Mem.

PE2 PE3

Parti. 0

Parti. 7

Parti. 1

Parti. 6

Parti. 2

Parti. 5

Parti. 3

Parti. 4

Mem.

PE4

Mem.

(b) Mapping of the alternative PPN onto 4 PEs (the data source
and sink as well as all edges connected to both of them are omitted
for succinctness).

Figure 4.4: The PPN in Figure 4.1(a) after communication-free partitioning and its
mapping.

partition Parti. 0, the output data produced at iterations (0,1) and (1,2) of P3 from
partition Parti. 1, and so on. With a given dependence relation in the initial PPN,
the correct demultiplexing and multiplexing in the alternative PPN from the data
source to all partitions and from all partitions to the data sink are automatically
generated by our approach. Except the communication between the partitions and
the data source/sink, mapping the obtained partitions onto PEs will only result in
local communication whose cost can be neglected on any platform. For instance,
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in case of 4 PEs available, mapping the derived alternative PPN in Figure 4.4(a) is
shown in Figure 4.4(b).

Figure 4.3 also shows the achieved speedup of pareto-optimal mappings of the
alternative PPN in Figure 4.4(a) (denoted as Alternative). Compared to mapping the
initial PPN, mapping the alternative PPN constantly leads to a better performance.
Moreover, the alternative PPN allows us to utilize up to 8 PEs, thereby achieving
even higher speedup, which is not possible by considering only the initial PPN.
Figure 4.3 shows that, for the alternative PPN, a linear speedup is observed up to 5
PEs. This is because the grouping of the 8 communication-free partitions can balance
the workloads across up to 5 PEs. For instance, 4 groups with 2 partitions each
shown in Figure 4.4(b) have the same workload, i.e., the total number of iterations
(dots) in all such 4 groups is equal. The speedup of mapping the derived alternative
PPN onto 6 to 8 PEs saturates due to unbalanced workloads. From this motivating
example, we can see the necessity and usefulness of considering alternative applica-
tion specifications, particularly the one containing only communication-free and
load-balanced partitions.

4.2 Related Work

An alternative application specification modeled as a SDF graph is considered
in [133]. To exploit better parallelism in the SDF graph, all actors in the initial
SDF graph are converted to their equivalent Homogeneous SDF actors (all produc-
tion/consumption rates equal to 1). The conversion may lead to an exponential
increase in the size of the graph. Therefore, the authors propose a heuristic based on
an evolutionary algorithm to find a mapping and a schedule for the resulting Homo-
geneous SDF graph. Compared to [133], we consider a more expressive MoC than
SDF, i.e., the PPN MoC. Also, instead of completely unfolding all PPN processes
(equal to unfolding actors in [133]), we operate on a compact representation which
avoids the explosion in the size of the graph. Moreover, this compact representation
also allows us to analytically determine the maximum amount of DLP, i.e., the
maximal number of communication-free partitions.

Similar to [133], SDF is also used as the underlying MoC in [54]. Each SDF actor
is furthermore restricted to have only one input and one output port. Based on this
assumption, stateless actors (the actors without cyclic dependences) in the SDF graph
are first fused into compound actors. Then, those compound actors are duplicated by
inserting splitters and joiners to distribute data and collect results. Conceptually, this
method also aims at extracting DLP without communication between the compound
actors. Compared to [54], the PPN MoC considered in this chapter is more general
with an arbitrary number of input and output ports of PPN processes. The problem
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addressed in this chapter is thus more difficult as simple fusion-duplication is not
applicable to PPN processes. Also, stateful actors (see for instance process P3 in
Figure 4.1(a)) cannot be fused and duplicated in [54]. Instead, software pipelining
techniques are applied to the stateful actors. Software pipelining brings performance
improvement assuming that communication latency between different PEs, on
which different pipeline stages are assigned, could be completely overlapped by
computation. However, we believe that the communication latency may not be
hidden and completely overlapped by computation, especially considering emerging
MPSoC platforms interconnected via NoCs as motivated in Section 1.1.3. In contrast,
our approach tries to extract maximum DLP even for the PPN processes with cyclic
data dependences while completely avoiding communication between PEs. This
parallelization strategy may fit better future MPSoC platforms with increasingly
larger communication latency.

The PPN MoC is used in [86]. The authors suggest that a perfect alternative
application specification can be achieved by first partitioning PPN processes and
then merging some PPN processes into a compound one. However, a procedure
of partitioning and merging PPN processes is not discussed. In this chapter, we
propose a systematic procedure to partition and merge PPN processes in a PPN.

In [78], affine partitioning is used in the Brook language to map streaming
applications. Similar to the affine partitioning, our communication-free partitioning
also aims at obtaining coarse-grained PPN processes. In contrast, our partitioning
strategy is able to completely eliminate communication, which might not be possible
in some cases using affine partitioning.

4.3 Finding all Dependences in a PPN

For streaming applications, input data is read from the data source (i.e., environment),
subsequently processed by PPN processes at their iterations during the execution,
and finally written to the data sink. Recall that a PPN produces output to the
environment, represented as a sink process whose domain is denoted as Dsnk. The
output produced at an iteration ~I ∈ Dsnk directly or indirectly depends on several
iterations of PPN processes. If two dependent iterations mapped onto different PEs,
inter-PE communication will take place. To find out communication-free partitions
in a PPN, we need to solve the problem of finding all “direct” and “indirect” data
dependences in a PPN.

The direct dependences result immediately from the dependence relations as
defined in Definition 2.1.7 on page 26. For example, Figure 4.5 illustrates the process
domain D3 of process P3 in Figure 4.1(a). Dependence relation R3 = {(1,2)→ (0,3)}
in Figure 4.5 (the bold arrow) expresses a direct dependence. In contrast, iteration
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Figure 4.5: Domain of PPN process P3 in Figure 4.1(a). The input port domain of
IP3 (surrounded by the solid triangle), output port domain of OP3 (surrounded by
the dotted triangle), and dependence relation R3 (denoted by the arrows between
dots).

(2,1) indirectly depends on iteration (0,3) through iteration (1,2). In this chapter,
we formulate the problem of finding all direct and indirect data dependences by
computing transitive closure [65, 102], denoted by R+, of affine dependence relation
R. It is formally defined as:

~I → ~J ∈ R+⇔ (~I → ~J ) ∈ R∨∃~K s.t. (~I → ~K) ∈ R∧ (~K→ ~J ) ∈ R+. (4.2)

From Equation (4.2), we can see that “direct” and “indirect” dependences are uni-
formly expressed as transitive closure of dependence relations. Thus, we use the
term transitive dependences to denote both types of dependences. Note that transitive
closure of a set of affine relations is not an affine form in general. An under-
approximated and closed affine form is computed in [65]. In contrast, we con-
sider an affine over-approximation in case of non-affine closed form. First, the
over-approximation guarantees that a valid schedule always can be found for each
communication-free partition, but at the cost of potentially fewer communication-
free partitions. Second, existing powerful code generation methods [25] for affine
dependence relations still can be leveraged.

Now, finding all transitive dependences in a PPN is translated to computing
transitive closure of all dependence relations. Therefore, we first take a union Rdeps
of all dependence relations in a PPN as:

Rdeps =
⋃

∀Ei∈E

Ri ,
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where E is the set of edges in the PPN. Subsequently, we can compute the transitive
closure of the union Rdeps. In this chapter, we use the isl [123] library to compute the
transitive closure of affine dependence relations in a potentially over-approximated
closed form. For the PPN in Figure 4.1(a), computing the union of all dependence
relations yields:

Rdeps =R1 ∪R2 ∪R3.

Then, by computing the transitive closure of Rdeps, we obtain:

R+
deps
=Rdeps ∪R+13 ∪R+23 ∪R+33,

where R+13, R+23, and R+33 are transitive dependence relations, represented as follows:

R+13 ={(i3, j 3)→ (i1) | 0≤ i3≤ i1∧ i1≤ 7∧ i1= i3+ j 3}, (4.3a)

R+23 ={(i3, j 3)→ (i2) | 0≤ i3≤ i2∧ i2≤ 7∧ i2= i3+ j 3}, (4.3b)

R+33 ={(i3, j 3)→ (i3′, j 3′) | 1≤ i3≤ 7∧ 0≤ j 3≤ 7− i3∧ 0≤ i3′ ≤ 6

∧ 0≤ i3′ ≤ i3+ j 3− 1∧ j 3′ = i3+ j 3− i3′}. (4.3c)

After computing the transitive closure of all dependence relations in the PPN in
Figure 4.1(a), 3 extra edges E13, E23, and E33 corresponding to the transitive depen-
dence relations are added in the PPN as shown in Figure 4.6(a). For the execution of
the PPN (domains of PPN processes P1, P2, and P3) shown in Figure 4.1(b), a set of
transitive dependences is illustrated as dashed arrows in Figure 4.6(b). For instance,
R+33 = {(3,0)→ (0,3)}, shown as the bold and dashed arrow, indicates that iteration
(3,0) of PPN process P3 transitively depends on iteration (0,3) of itself.

4.4 Computing the Number of Communication-free Partitions

As explained in Section 4.3, we derive all dependent iterations that generate an
output at any iteration ~I ∈ Dsnk. Based on this information, in this section, we
compute the number of communication-free partitions that can be derived from a
given PPN.

Essentially, we need to find a set of iterations in domain Dsnk that are independent
from each other. Each of these iterations identifies a distinct communication-free
partition (see the dashed boxes in Figure 4.1(b)). Consider the PPN in Figure 4.1(a)
and its execution illustrated in Figure 4.1(b). As explained in Section 4.1, Dsnk =D3
(see the triangular part in Figure 4.1(b) denoted as D3). Our goal is to find the 8
iterations marked by circles in Figure 4.1(b). It can be seen that they are independent
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P1 P2 P3

E3

E1 E2

E13

E33E23

(a) Transitive dependences of the PPN in Fig-
ure 4.1(a).
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(b) The set of transitive dependences for communication-free partition
Parti. 3 in Figure 4.1(b).

Figure 4.6: Finding transitive dependences of the PPN.

of each other and they identify the 8 communication-free partitions. Therefore, the
number of these iterations determines the number of communication-free partitions.

In general, to find the set of iterations mentioned above, we first state the
following lemma:

Lemma 4.4.1. For a PPN, any transitive dependence relation

R+i = {~I → ~J | ~I ∈DIP ∧~J ∈DOP}

is a total and surjective affine relation, which maps iterations ~I in input port domain
DIP to iterations ~J in output port domain DOP.
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Proof. Totality of a transitive dependence relation R+E holds because of the following
property of the PPN MoC. For streaming applications operating on infinite input
streams, we are only interested in consistent and deadlock-free PPNs1. Therefore,
if an iteration in an input domain (~I ∈ DIP) is unmapped, it means that the PPN
will deadlock at this iteration during execution of the PPN. At the same time, R+E
is also surjective, because several iterations in an input domain can be mapped to
the same iteration in an output domain. This can be seen from the definition of the
transitive closure of affine relations in Equation (4.2). If there exists ~I → ~K ∈ R and
~K→ ~J ∈ R, both iterations ~I and ~K are mapped to iteration ~J in R+. �

For instance, transitive relation R+23 in Figure 4.6(b) denotes that iterations
(0,3), (1,2), (2,1), and (3,0) of P3 are mapped to iteration (3) of P2. That is, R+23

maps the iterations ~I ∈DIP2
∪DIP3

to the iterations ~J ∈DOP2
shown in Figure 4.1(a).

In addition to Lemma 4.4.1, we introduce a definition, called independent sink
domain, denoted by D ind

snk
.

Definition 4.4.1 (Independent Sink Domain). The independent sink domain D ind
snk

for a PPN is a subset of the process domain of the sink process Dsnk, namely
D ind

snk
⊆ Dsnk. The following condition holds for any two iterations (~I ,~J ) ∈ D ind

snk
,

where ~I 6= ~J :
¬∃(~I ,~J ) ∈D ind

snk : ~I → ~J ∈ R+. (4.4)

D ind
snk

is given by

D ind
snk =

{~I ∈Zd | ∃R+ : ~I → ~J ∈ R+ ∧ ~I ∈Dsnk ∧~J ∈Dsnk ∧ ~I ∈ (domR+− ranR+)}
(4.5a)

⋃

{~I ∈Zd | ∀R+ : ~I → ~J ∈ R+ ∧ ~I ∈Dsnk ∧~J /∈Dsnk ∧ ~I ∈ domR+}, (4.5b)

where domR+ is the domain of transitive relation R+ and ranR+ is the range of
transitive relation R+.

The condition in Equation (4.4) states that the iterations in D ind
snk

are not transi-
tively dependent on each other.

Based on Lemma 4.4.1 and Definition 4.4.1, we can have the following theorem.

1The PPNs with these two properties are called live.
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Theorem 4.4.1. For any PPN, the number of communication-free partitions is equal
to |D ind

snk
|.

Proof. For an iteration ~I ∈Dsnk, it satisfies one of two mutually exclusive conditions.
That is, the iteration either transitively depends on other iterations ~J ∈ Dsnk, or
does not transitively depend on any iteration ~J ∈ Dsnk. The former condition is
stated as ~I → ~J ∈ R+ ∧~J ∈ Dsnk in Equation (4.5a), whereas the latter condition is
expressed as ~I → ~J ∈ R+ ∧~J /∈Dsnk (Equation (4.5b)). For the former condition, the
surjective property of a transitive dependence R+ stated in Lemma 4.4.1 indicates
that multiple iterations ~I ∈ domR+ ⊂ Dsnk may depend on the same ~J ∈ ranR+ ⊂
Dsnk. We thus need to find out distinct iterations ~I ∈ domR+, which are not mapped
from any other iterations ~I ∈ Dsnk. It is essentially equivalent to computing the
lexicographically maximal iteration ~I if ~I → ~J ∈ R+. Such iterations ~I can be
found by domR+ − ranR+. On the other hand, if an iteration ~I ∈ Dsnk does not
transitively depend on any other iteration ~J ∈Dsnk, where ~I 6= ~J , all these iterations
are independent. This means all such iterations can definitely find independent
communication-free partitions. Finally all those iterations in domain D ind

snk
⊆ Dsnk

can be computed by taking the union as given in Equations (4.5a) and (4.5b). �

Consider the PPN in Figure 4.1(a). The sink iterations are described by the
domain of process snk, Dsnk as given in Equation (4.1). Upon computing transitive
closure R+

deps
of all dependence relations presented in Section 4.3, there are three tran-

sitive dependence relations on Dsnk, namely R+13, R+23, and R+33. Among them, R+33

satisfies the condition ~I → ~J ∈ R+ ∧ ~I ∈Dsnk ∧~J ∈Dsnk as stated in Equation (4.5a).
The domain and range of R+33 thus are:

domR+33 = {(i3, j 3) ∈Z2 | 1≤ i3≤ 7∧ 0≤ j 3≤ 7− i3},
ranR+33 = {(i3, j 3) ∈Z2 | 0≤ i3≤ 7∧ 1≤ j 3≤ 7− i3}.

Then, domR+33− ranR+33 in accordance with Equation (4.5a) yields:

D ind1
snk
= {(i3, j 3) ∈Z2 | 1≤ i3≤ 7∧ j 3= 0}. (4.6)

Furthermore, we compute those iterations that satisfy the second condition in
Equation (4.5b) , namely they do not depend on any other iterations in domain Dsnk.
That is:

D ind2
snk = {(i3, j 3) | i3= 0∧ j 3= 0}. (4.7)
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Finally, D ind
snk

can be computed by taking the union of D ind1
snk

obtained in Equa-
tion (4.6) and D ind2

snk
obtained in Equation (4.7):

D ind
snk

=D ind1
snk
∪D ind2

snk
= {(i3, i3) ∈Z2 | 0≤ i3≤ 7∧ j 3= 0}.

(4.8)

In general, D ind
snk

computed in accordance with Equation (4.5) is a union of
domains represented by polytopes. Then, computing the number of communication-
free partitions is equal to counting the number of integer points in the union of
polytopes, denoted by |D ind

snk
|. The counting problem can be efficiently solved in

polynomial time using the barvinok [127] library. Finally, for the PPN shown in
Figure 4.1(a) and D ind

snk
obtained in Equation (4.8), counting the number of integer

points in D ind
snk

yields |D ind
snk
|= 8. This confirms the same number of communication-

free partitions, namely 8 as shown in Figure 4.1(b). Also, D ind
snk

corresponds to the
iterations marked by circles show in both Figures 4.1(b) and 4.6(b).

4.5 Communication-free Partitioning Algorithm

If the number of communication-free partitions computed in Section 4.4 is greater
than 1, we can transform the initial PPN to a set of communication-free partitions.
We first show an example of constructing one of the communication-free partitions
for the PPN in Figure 4.1(a). Subsequently, we present the general partitioning
algorithm.

An Illustrative Example

Consider the PPN in Figure 4.1(a) and its execution illustrated in Figure 4.1(b). Let
us for example construct communication-free partition Parti. 3 in Figure 4.1(b). In
the partitioning algorithm for this example, our goal is to partition the domains
of the PPN processes and obtain all iterations surrounded by the dashed box for
Parti. 3. These iterations are transitively dependent on the iteration that identifies
Parti. 3. In this case, Parti. 3 is identified by iteration (i3, j 3) = (3,0) ∈ D ind

snk
of process P3 as computed in Equation (4.8). All transitive dependence relations
R+33, R+23, and R+13 to iteration (3,0) are computed in Equations (4.3a) to (4.3c) and
illustrated in Figure 4.6(b). In the first step of the partitioning algorithm for Parti. 3,
we instantiate process P33 (see Figure 4.7) of PPN process P3 through R+33. Process
P33 performs the same computational function as the original PPN process P3 does.
The only difference is that process P33 only executes in a subdomain D33 of the
original domain D3. For Parti. 3, besides that iteration (3,0) belongs to domain D33
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of process P33, P33 contains also iterations (2,1), (1,2), and (0,3) of P3, on which
iteration (3,0) depends, as shown in Figure 4.6(b). These iterations can be derived
by “substituting” iteration (3,0) in R+33 (see Equation (4.3c)), denoted as R+33((3,0)):

R+33((3,0)) = {(i3′, j 3′) | (3,0)→ (i3′, j 3′) ∈ R+33}
= {(i3′, j 3′) | 0≤ i3′ ≤ 2∧ j 3′ = 3− i3′}. (4.9)

Then, domain D33 for Parti. 3 can be obtained by taking a union of iteration (3,0)
with the ones computed in Equation (4.9):

D33 = (3,0)∪R+33((3,0))
= {(i3′, j 3′) | 0≤ i3′ ≤ 3∧ j 3′ = 3− i3′}. (4.10)

Second, a process P23 (see Figure 4.7) of PPN process P2 is instantiated due to R+23
for Parti. 3. Domain D23 contains iteration (3) of P2 as shown Figure 4.6(b). It can
be derived by “substituting” domain D33, obtained in Equation (4.10), in R+23 (see
Equation (4.3b)), denoted as R+23(D33):

D22 = R+23(D33) = {( j 2) | (i3, j 3)→ ( j 2) ∈ R+23 ∧ (i3, j 3) ∈D33}
= {(i2) ∈Z | i2= 3}. (4.11)

Finally, we need to instantiate a process P13 (see Figure 4.7) with domain D13 due
to R+13. Domain D11 corresponds to iteration (3) in domain DP1 as shown in Fig-
ure 4.6(b). Analogous to obtaining domain D23, domain D13 can be obtained by
“substituting” domain D33 in R+13 (see Equation (4.3a)):

D13 = R+13(D33) = {(i1) ∈Z | i1= 3}.

Once all processes for Parti 3 are instantiated, next we instantiate edges for the
new processes. Basically, if an edge in the initial PPN is incident with the new
process, a new edge is instantiated. For Parti. 3, edge E3 in the initial PPN is incident
with the new process P33. Then, a new edge E33 is instantiated with the associated
input port domain DIP33

, output port domain DOP33
, and dependence relation R33:

DIP33
= DIP3

∩D33
= {(i3, j 3) | 1≤ i3≤ 3∧ j 3= 3− i3},

DOP33
= DOP3

∩D33
= {(i3′, j 3′) | 0≤ i3′ ≤ 2∧ j 3′ = 3− i3′},

R33 = {(i3, j 3)→ (i3′, j 3′) | (i3, j 3) ∈DIP33
∧ (i3′, j 3′) ∈DOP33

∧i3′ = i3− 1∧ j 3′ = j 3+ 1}.

(4.12)
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Figure 4.7: The PPN in Figure 4.1(a) after communication-free partitioning.

Two other edges E13, E23 can be instantiated in a similar way, due to edges E1, E2
in the initial PPN. In this way, communication-free partition Parti. 3 shown in
Figure 4.1(b) is constructed and illustrated by the solid box in Figure 4.7. In the
next step, we merge all process instances P33, P23, and P13 into a single compound
process Parti. 3 as shown in Figure 4.4(a). We generate a static schedule, similar to the
one proposed in [124], that executes all dependent iterations of the new processes as
close as possible.

General Partitioning Algorithm

In general, to instantiate new processes and edges, we devise Algorithm 3. The input
to Algorithm 3 is a PPN with all transitive dependences (E+) computed in Section 4.3
and D ind

snk
⊆Dsnk obtained in Theorem 4.4.1. Every sink iteration ~K ∈D ind

snk
is used

to identify a distinct communication-free partition. The output of Algorithm 3 is
|D ind

snk
| communication-free partitions. The core part of the algorithm is presented

below.
Algorithm 3 starts partitioning a PPN from the sink process, namely partition-

ing Psnk into |D ind
snk
| number of processes Psnk_inst. For each iteration ~K ∈D ind

snk
of the

sink process, we instantiate a new process Psnk_inst. The loop iterates over all PPN
processes to instantiate all processes in all communication-free partitions. Basically,
for a particular partition, we construct the domain for each new process through
all transitive dependence relations R+E on iteration ~K . First, we construct domain

DPsnk_inst
. If this iteration ~K transitively depends on other iterations in domain Dsnk,
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Algorithm 3: Communication-free partitioning procedure

Input: A PPN= (P ,E), E+, and D ind
snk

obtained in Theorem 4.4.1.
Result: A PPN′ = (P ′,E ′).
P ′←;, E ′←; ;1

Get sink process Psnk, Dsnk_inst←; ;2

foreach ~K ∈D ind
snk

do3

Psnk_inst← Psnk ;4

foreach Edge E+ ∈ E+ incident with Psnk do5

Get R+E associated with edge E+ ;6

if ~K /∈ domR+E then7

continue;8

if ranR+E ⊆Dsnk then /* ~K depends on other iterations9

in Dsnk */

DPsnk_inst
←DPsnk_inst

∪ ~K ∪R+E (
~K) ;10

else /* ~K depends on another process P */11

DPsnk_inst
←DPsnk_inst

∪ ~K ;12

Get process P ∈P incident with edge E+;13

Pinst← P ;14

DPinst
← R+E (Dsnk_inst) ;15

P ′←P ′ ∪ Pinst ;16

P ′←P ′ ∪ Psnk_inst ;17

foreach Pinst ∈P ′ do18

Einst← instantiateChannels(Pinst, E) ;19

E ′← E ′ ∪ Einst;20

then domain DPsnk_inst
contains also all iterations in Dsnk that iteration ~K depends

on. All such iterations can be computed by slicing a transitive dependence R+ using
iteration ~K , denoted as R+(~K). It is formally defined as:

R+(~K) = {~J | ~I → ~J ∈ R+ ∧ ~I = ~K},

where ~K is a constant vector (see an example in Equation (4.9)). Therefore, in this
case, we can obtain DPsnk_inst

in Algorithm 3. In contrast, if the iteration ~K does

not depend on any other iteration in Dsnk, then DPsnk_inst
is simply equal to ~K . Also,
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Algorithm 4: Procedure instantiateChannels
Input: A process instance Pinst and a set edges E .
Result: A set of edges Einst incident with process instance Pinst.
Get DPinst

of Pinst;1

foreach Channel E ∈ E incident with Pinst do2

Get DIP and DOP associated with edge E ;3

Einst← E ;4

if DIP ∩DPinst
6= ; and DOP ∩DPinst

6= ; then /* a self-edge */5

DIP_inst←Dinst ∩DIP , domREinst
←DIP_inst;6

DOP_inst←Dinst ∩DOP, ranREinst
←DOP_inst ;7

Einst← Einst ∪ Einst ;8

else if DIP ∩DPinst
6= ; and DOP ∩DPinst

= ; then /* an incoming9

edge */
DIP_inst←Dinst ∩DIP, domREinst

←DIP_inst ;10

Einst← Einst ∪ Einst ;11

else if DIP ∩DPinst
= ; and DOP ∩DPinst

6= ; then /* an outgoing12

edge */
DOP_inst←Dinst ∩DOP, ranREinst

←DOP_inst ;13

in this case, ~K transitively depends on another PPN process P through transitive
dependence relation R+E , where P 6= Psnk. Therefore, we need to instantiate a process
instance Pinst for process P . Domain DPinst

can be computed by applying domain
DPsnk_inst

to dependence relation R+E , denoted as R+E (DPsnk_inst
). R+E (DPsnk_inst

) is given
as:

R+E (DPsnk_inst
) = {~J | ~I → ~J ∈ R+E ∧ ~I ∈DPsnk_inst

}.

An example of the applying operation can be seen in Equation (4.11). Finally, all
process instances in the same communication-free partitions can be instantiated.

Once all processes for each communication-free partition are instantiated, as
the next step, we need to instantiate edges for all processes in Algorithm 3. The
procedure of instantiating all edges for a process instance is depicted in Algorithm 4.
As input, it takes a process Pinst with constructed domain Dinst and all edges E in
the initial PPN. The algorithm outputs a set of edges Einst incident with process
instance Pinst. In Algorithm 4, if both the input port and output port of a edge E are
incident with Pinst, a new self-edge Einst is instantiated with the corresponding input
and output port domains. An example of instantiating self-edge E33 for new process
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P33 can be seen in Equation (4.12). If only the input port or output port of an edge
E is incident with Pinst, it represents a dependence relation from/to another process
instance in the same communication-free partition. In other words, it is either an
incoming or outgoing edge of process instance Pinst. In this case, we instantiate only
one edge with its corresponding input and output port domains. Therefore, using
Algorithm 4, we can instantiate all edges incident with a new process Pinst.

4.6 Experimental Results

In this section, we present the performance results obtained by applying our ap-
proach explained previously and prototyping two real-life streaming applications on
two different platforms. Then, we present a set of experiments to evaluate the time
complexity of our approach.

We selected two different platforms, a Xilinx ML605 board equipped with a
Virtex 6 FPGA (referred as FPGA platform hereinafter) and a desktop multi-core
platform containing an Intel i7-920 processor running at 2.66GHz with 4 cores and
4GB system memory (referred as desktop platform hereinafter). For the FPGA
platform, the generated MPSoCs consist of up to 8 MicroBlaze (MB) soft-cores
interconnected via Xilinx’ Fast Simplex Link FIFOs. All MBs run at 100Mhz
with their own 64KB program memory and 64KB data memory. On the desktop
platform, a main thread was used to measure the performance and to spawn up to
8 threads, due to hyper-threading. The inter-core data communication cost on the
desktop platform is much higher than that on the FPGA platform. Therefore, the
performance gain introduced using our approach was evaluated on the platforms
with different computation/communication characteristics. We implemented the
partitioning algorithm presented in Section 4.5 in PNtool as part of the DaedalusRT

design flow shown in Figure 1.7 on page 13. We conducted all experiments using
the ESPAM [96] tool, the Xilinx Platform Studio 13.2, and Microsoft Visual Studio
2008. All generated programs were compiled using compilers mb-g++4.6.2 and
g++4.52 on the selected platforms respectively, with optimization level -O2.

Case Studies

We considered two real-life applications modeled using the PPN MoC, namely a
Motion-JPEG (MJPEG) encoder used in [34] and the FM radio application taken
from the StreamIT benchmark suite [54]. The MJPEG encoder encodes frames of
size 128× 128 pixels. For the FM radio application, we took the provided sequen-
tial C implementation to generate the initial PPN with the following parameters:
decimation rate 4, tap size 64, and 10 equalization bands. To optimally balance the
workloads across a particular number of PEs, we exhaustively mapped all possible
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Figure 4.8: Performance results of mapping the MJPEG encoder onto (a) FPGA-
based MPSoC platforms and onto (b) a desktop multi-core platform.

groupings of the obtained communication-free partitions on both platforms. As a
reference, we also implemented the initial PPNs of both applications on the selected
platforms by performing maximal load-balancing and optimal pipelining, such that
the best possible mapping was found for a given number of MBs or threads. The
metric used to evaluate the performance results is the relative speedup compared to
the 1-MB or 1-thread system implementation.

The performance results of mapping the MJPEG encoder are plotted in Fig-
ure 4.8(a) for the FPGA platform and in Figure 4.8(b) for the desktop platform. As
expected, the implementation on the desktop platform results in less speedup than
the one obtained on the FPGA platform for the same number of MBs or threads in
use. This is because of the shared memory architecture and very costly inter-thread
communication on the desktop platform. Also, the initial PPN mapped onto the
desktop platform using 1 thread is already highly optimized by the compiler. For
the mapping of the initial PPN (denoted as Initial), the initial PPN does not have
enough processes to utilize more than 5 MBs or threads. It can be seen that up to
1.91X speedup for the FPGA platforms and 1.64X speedup for the desktop platform
are achieved. The main reason is that the workloads of processes in the initial
PPN are not well-balanced, as the Discrete Cosine Transform (DCT) dominates the
total execution time of the MJPEG encoder. Although all PPN processes are fully
pipelined, the speedup is limited by the longest pipeline stage, the DCT process. For
the desktop platform, the pipelining leads to less benefits compared to the FPGA
platform because the communication between threads mapped onto different cores
cannot be completely overlapped by computation.

Compared to the mapping of the initial PPN for the MJPEG encoder, our
approach (denoted as Alternative in Figure 4.8(a) and 4.8(b)) leads to better per-



4.6. Experimental Results 71

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Sp
p

e
d

u
p

 

Number of MicroBlazes (MB) 

Initial

Alternative

(a)

0,5

1

1,5

2

2,5

3

3,5

1 2 3 4 5 6 7 8

Sp
p

e
d

u
p

 

Number of Threads 

Initial

Alternative

(b)

Figure 4.9: Performance results of mapping the FM radio application onto (a) FPGA-
based MPSoC platforms and onto (b) a desktop multi-core platform.

formance. Our approach outperforms the mapping of the initial PPN by 5% to
87.05% on 2 to 5 MBs. As shown in Figure 4.8(a) for the FPGA platform, the
speedup increases linearly for the mapping of the alternative PPN onto 1 to 4 MBs
(3.45X speedup on 4 MBs). In case of 5 to 7 MBs, the speedup increases only slightly
(3.6X to 4.09X speedup on 5 to 7 MBs). We found that unbalanced workloads and
the single data sink become bottlenecks for these cases. As the number of MBs
increases, a slightly unbalanced grouping of communication-free partitions has large
impact on the performance. As a consequence, the single data sink is constantly
blocking on the group of partitions with the heaviest workload. Of course, modern
architectures may have multiple I/O ports, namely multiple data sinks. For instance,
the authors in [54] observe 18.4% performance improvement on the 16-core RAW
architecture with 16 data sinks compared to the one with the single data sink. In
the best case, our approach results in 6.14X speedup on 8 MBs, when the grouping
of the obtained partitions balances the workload across 8 MBs. For the results on
the desktop platform shown in Figure 4.8(b), the mapping of the alternative PPN
outperforms the mapping of the initial PPN by 5.5% to 61.97% using 2 to 5 threads.
Moreover, the effect of unbalanced grouping of communication-free partitions is
amortized by the higher communication cost compared to the FPGA platform.
In the best case, 2.97X speedup is achieved using 7 threads. When 8 threads are
used, the main thread, mentioned earlier, introduces extra overhead. Therefore, the
8-thread implementation performs 3.68% worse than the 7-thread implementation.

For the FM radio application, the workloads of PPN processes in the initial PPN
are overall not balanced. The low pass and high pass filters in the equalizer dominate
the total execution time of the application. Moreover, the communication between
PPN processes is performed at more fine-grained level compared to the MJPEG



72 Chapter 4. Exploiting Maximum Data-level Parallelism without Inter-processor Communication

encoder, i.e., at each iteration, one audio sample is flowed through all PPN processes
instead of one macroblock as in the MJPEG encoder. The obtained speedup of
mapping the initial PPN (denoted as Initial) is plotted in Figure 4.9(a) for the FPGA
platform and in Figure 4.9(b) for the desktop platform. In the best case on the FPGA
platform, by pipelining all processes in the initial PPN and offloading the high pass
filter (or low pass filter) in the equalizer to a separate MB, 1.99X speedup is achieved
on 2 MBs. On the desktop platform shown in Figure 4.9(b), the best mapping of
the initial PPN is found using 5 threads occupying 4 cores, i.e., 1.27X speedup. In
case of 6 and 7 threads, the implementation slows down compared to the 1-thread
implementation. The fine-grained communication and the little workloads of some
threads (e.g., the Demodulation and the Amplify processes in the Equalizer) fully
expose the communication/synchronization overhead which dominates the total
execution time.

After communication-free partitioning, the alternative PPN of the FM radio
application exhibits ample data-level parallelism. Also, the fine-grained communi-
cation between MBs or threads in the initial PPN is completely eliminated, except
the communication from the data source and to the data sink. For the results on
the FPGA platform shown in Figure 4.9(a) (denoted as Alternative), the obtained
speedup by mapping the alternative PPN outperforms mapping the initial PPN by
32.05% to 97.74% on 3 to 7 MBs. Compared to the 4-MB implementation, the map-
ping of the alternative PPN onto 5 to 7 MBs does not result in further improvements.
This is because, as the number of MBs increases, the workloads of the obtained
communication-free partitions cannot be evenly distributed. This fact combined
with the relatively cheaper inter-MB communication on the FPGA platform, shows
that our communication-free partitioning does not bring too much benefits on 5
to 7 MBs. Once the workload is balanced, 7.83X speedup is achieved on 8 MBs.
On the desktop platform, our approach (denoted as Alternative in Figure 4.9(b))
outperforms the mapping of the initial PPN by 39.79% to 489.27% using 2 to 7
threads. In the best case, speedup 3.46X is observed using 7 threads. The 8-thread
implementation performs 1.51% worse compared to the 7-thread one due to the
overhead introduced by the main thread similar to the MJPEG case study.

Time Complexity of our Approach

To quantify the time complexity of our approach, we conducted experiments on
a set of real-life benchmarks from Polybench [101]. Other benchmarks are less
complex than the benchmarks listed in Table 4.1 in terms of their characteristics.
The characteristics of each benchmark are given in columns 2 to 4 in Table 4.1. The
benchmarks differ in the of number of PPN processes (denoted by |P |) and edges
(denoted by |E |) in the initial PPNs, as well as dimensions of data arrays accessed in
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Table 4.1: Execution time on benchmarks.
Benchmark |P | |E | Array dimensions Execution time (sec.)

ADI1 12 67 3 2.644
Gram-schmidt 8 19 2 0.924

FDTD2 9 27 2 0.604
Correlation 12 20 2 0.076
Reg-detect3 8 11 3 0.068
Dynprog4 8 12 3 0.064

Gauss5 11 18 2 0.044
Covariance 8 11 2 0.032

1 ADI: Alternating direction implicit solver
2 FDTD: 2D finite difference time domain kernel
3 Reg-detect: Regularity detection
4 Dynprog: Dynamic programming (2D)
5 Gauss: 2D gauss blur filter for image processing

PPN processes. For instance, the ADI solver in Table 4.1 operates on 3 dimensional
data arrays. In practice, it can be seen that, from the last column in Table 4.1, our
approach takes less than 3 seconds to derive all communication-free partitions for
the considered benchmarks. This shows that our approach is very fast even for
relatively large PPNs such as the PPN of the ADI benchmark.
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