
Adaptive streaming applications : analysis and implementation models
Zhai, J.T.

Citation
Zhai, J. T. (2015, May 13). Adaptive streaming applications : analysis and implementation
models. Retrieved from https://hdl.handle.net/1887/32963

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/32963

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/32963

Cover Page

The handle http://hdl.handle.net/1887/32963 holds various files of this Leiden University
dissertation

Author: Zhai, Jiali Teddy
Title: Adaptive streaming applications : analysis and implementation models
Issue Date: 2015-05-13

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/32963

Chapter 3

Automated Analysis Model
Construction: Deriving CSDF from
Equivalent PPN

Mohamed A. Bamakhrama, Jiali Teddy Zhai, Hristo Nikolov, Todor Stefanov, “A
Methodology for Automated Design of Hard-Real-Time Embedded Streaming Systems”, In
Proceedings of the Conference on Design, Automation and Test in Europe (DATE’12), pp.
941–946, Dresden, Germany, March 12-16, 2012.

IN this chapter, we present an approach to convert a PPN to its input-output
equivalent CSDF graph. As discussed previously, a wide range of powerful

analysis techniques exist for the CSDF MoC, whereas it is easier to generate code
for the PPN MoC. Considering the DaedalusRT design flow shown in Figure 1.7 on
page 13, deriving PPNs from SANLPs can be done in the PNgen compiler [125].
The code generation for the PPN MoC has been addressed in the ESPAM [96] tool.

Notation Meaning
α an input/output argument for a PPN function
S a sequence
Φ a set of input/output ports associated with a process variant
v a process variant

Table 3.1: Additional notations used in Chapter 3 besides the ones introduced in
Chapter 2.

39

40 Chapter 3. Automated Analysis Model Construction: Deriving CSDF from Equivalent PPN

Hard real-time scheduling of acyclic CSDF graphs has been proposed in [22]. To
have a fully automated design flow for designing hard real-time streaming systems,
automated derivation of the CSDF MoC is the only missing step. From a high-level
point of view, the contribution of this chapter enables to derive the equivalent CSDF
graph from any SANLP.

It has been shown in [37] that a PPN without parameters is equivalent to a
CSDF graph where the production/consumption sequences consist only of 0s and
1s. A ’0’ indicates that a token is not produced/consumed, whereas a ’1’ indicates
that a token is produced/consumed. This chapter focues on the algorithm to derive
the input-output equivalent CSDF graph from a PPN. Then, we demonstrate the
applicability of the algorithm on a set of benchmarks in terms of time complexity.
Finally, in the context of the DaedalusRT design flow, we show that it is fast to derive
CSDF graphs for three real-life streaming applications. Consequently, derivation of
CSDF graphs enables to design multiple streaming applications on a single MPSoC
platform in a short amount of time.

In addition to the notations introduced in Chapter 2, extra notations used in this
chapter are summarized in Table 3.1.

3.1 The Algorithm

The procedure to derive a CSDF graph from its equivalent PPN is depicted in
Algorithm 1. It consists of two main steps, namely 1) topology derivation and
2) consumption/production sequence derivation for input/output ports of each
CSDF actor. Deriving the topology of the CSDF graph is straightforward. That
is, the nodes, input/output ports, and edges in the CSDF graph have one-to-one
correspondence to those in the PPN. Recall the SANLP described in Listing 1 on
page 27 and its equivalent PPN shown in Figure 2.3. The derived CSDF graph is
shown in Figure 3.1. It can be seen that the topology of the derived CSDF graph
is the same as that of the PPN shown in Figure 2.3. Below, we focus on the second
step which derives the consumption/production sequences for an input/output port
of a CSDF actor.

The second step consists of three sub-steps. In the first sub-step (see line 3 in
Algorithm 1), for each CSDF actor, we find the access pattern of the corresponding
PPN process to its input/output ports. A more general MoC, Stream-based Func-
tions [68], captures the regular access pattern of a function to its input/output ports
using function variant. In this thesis, we introduce the notion of process variant,
which captures the consumption/production behavior of the process.

Definition 3.1.1 (Process Variant). A process variant v of a PPN process is defined
by a tuple (Dv ,Φ), where Dv is the variant domain with Dv ⊆DP , and Φ is a set of

3.1. The Algorithm 41

src snk

filter1

filter2

IP3: [1 1 1]

IP1: [1 1 0]

IP2: [0 0 1]

OP1: [1]IP1: [1]

OP1: [1]IP1: [1]

OP3: [1 1 1]

OP1: [1 1 0]

OP2: [0 0 1]

Figure 3.1: CSDF graph equivalent to the PPN shown in Figure 2.3.

Algorithm 1: Procedure to derive the CSDF MoC
Input: A PPN
Result: The equivalent CSDF graph
Derive the topology of the CSDF graph;1

foreach CSDF actor in the CSDF graph do2

Derive process variants (see Definition 3.1.1) for its corresponding PPN3

process ;
Derive a repetitive pattern of process variants ;4

foreach input/output port of the CSDF actor do5

foreach process variant in the derived pattern do6

Generate consumption/production sequence ;7

input/output ports.

For example, consider process snk shown in Figure 2.3 on page 29. One of the
process variants is (Dv ,{IP1, IP3}), where

Dv = {(w, i , j) ∈Z3 | w ≥ 0∧ 1≤ i ≤ 10∧ 1≤ j ≤ 2}.

According to Definition 3.1.1, for all iterations in domain Dv during the execution
of process snk, this process always reads data from input ports IP1 and IP3.

The infinite repetitive execution of a PPN process is initially represented by a
polyhedron. (e.g., see Dsnk in Equation (2.8)). Therefore, we project out dimension
w which denotes the while-loop from all the domains because it is irrelevant for
the subsequent steps. As a result, the execution of a PPN process is represented by a
polytope. Algorithm 2 is devised to derive the process variants for each PPN process.

42 Chapter 3. Automated Analysis Model Construction: Deriving CSDF from Equivalent PPN

j

i
1 2 3 4 5 6 7 8 9 10

1

 2

 3

w …

DIP3DIP1

DIP2

(a) Port domains

j

i1 2 3 4 5 6 7 8 9 10

1

 2

 3 DV2

DV1

(b) Variant domains

Figure 3.2: Domains of process snk in Figure 2.3.

Standard integer set operations are applied to the process domains. The basic idea is
that, each port domain bound to a process function argument is intersected with all
other port domains. The intersected domain and the difference between two port
domains are then added to the set of process variants. In this way, all process variants
are iteratively derived.

Consider process snk in Figure 2.3 on page 29. Its process function snk(in1,
in2) has two arguments represented as a set R= {in1,in2}, which is the input
to Algorithm 2. The port domains bound to in1 are DIP1

and DIP2
, while the port

domain bound to in2 is DIP3
. These port domains are illustrated in Figure 3.2(a),

surrounded by bold lines. Following the procedure described in Algorithm 2, we
start with projecting out dimension w in the port domains, which yields:

in1 : D ′IP1
= {(i , j) ∈Z2 | 1≤ i ≤ 10∧ 1≤ j ≤ 2},

D ′IP2
= {(i , j) ∈Z2 | 1≤ i ≤ 10∧ j = 3},

in2 : D ′IP3
= {(i , j) ∈Z2 | 1≤ i ≤ 10∧ 1≤ j ≤ 3}.

3.1. The Algorithm 43

Algorithm 2 produces the set of process variants V = {v1, v2}, where

v1 = (Dv1
,{IP1, IP3}),

Dv1
=D ′IP1

∩D ′IP3
= {(i , j) ∈Z2 | 1≤ i ≤ 10∧ 1≤ j ≤ 2},

v2 = (Dv2
,{IP2, IP3}),

Dv2
=D ′IP2

∩D ′IP3
= {(i , j) ∈Z2 | 1≤ i ≤ 10∧ j = 3}.

Process variant domains Dv1
and Dv2

are also illustrated in Figure 3.2(b). Process snk

reads data from input ports IP1 and IP3 in variant domain Dv1
, whereas it reads data

from input ports IP2 and IP3 in variant domain Dv2
.

In the second sub-step, (see line 4 in Algorithm 1), we find a one-dimensional,
repetitive pattern of the process variants derived in the first sub-step. To find the
repetitive pattern, we first project out dimension w in the process domain DP to
obtain domain D ′P . For a PPN process P , we build a sequence SD ′P

of the iterations
I ∈ D ′P according to their lexicographic order (see Definition 2.1.6 on page 25) as
follows:

SD ′P
= [I1, . . . , Ii , I j , . . . , I|D ′P |],

where
Ii ≺ I j , ∀1< i < j < |D ′P |.

Next, we replace each iteration in sequence SD ′P
with the process variant to which

the iteration belongs. For a PPN process P , the sequence of process variants SP is
given by

SP = [v1, . . . , vi , . . . , v|D ′P |] and Ii ∈ vi , ∀1< i < |D ′P |.

For example, for process snk in Figure 2.3 and Dsnk given in Equation (2.8) on page 28,
the process domain after projecting out the w dimension is given as

D ′snk = {(i , j) ∈Z2 | 1≤ i ≤ 10∧ 1≤ j ≤ 3}. (3.1)

The sequence of the iterations in process domain D ′snk is

SD ′snk
= [(1,1), (1,2), (1,3), (2,1), ..., (10,3)].

The lexicographic order of iterations in the sequence is represented using the arrows
in Figure 3.2(b). The corresponding sequence of the process variants of process snk is

Ssnk = [v1, v1, v2, v1, v1, v2, v1, v1, v2, v1, v1, v2, v1, v1, v2,
v1, v1, v2, v1, v1, v2, v1, v1, v2, v1, v1, v2, v1, v1, v2]. (3.2)

44 Chapter 3. Automated Analysis Model Construction: Deriving CSDF from Equivalent PPN

Algorithm 2: Procedure to derive process variants of a process
Input: R: the set of process function arguments
Result: V : a set of process variants
V←;;1

foreach α ∈R do2

foreach Dport bound to α do3

y← (Dport,{port});4

if V = ; then5

V←{y};6

else7

X ← V ;8

foreach V ∈ V do9

Dintersect← v.Dport ∩ y.Dport;10

if Dintersect 6= ; then11

xintersect← (Dintersect,{v.ports} ∪ {y.ports});12

xdiff1← (v.Dport− y.Dport,{v.ports});13

xdiff2← (y.Dport− v.Dport,{y.ports});14

X ←X ∪{xintersect};15

if xdiff1.Dport 6= ; then16

X ←X ∪{xdiff1};17

if xdiff2.Dport 6= ; then18

X ←X ∪{xdiff2};19

else20

X ←X ∪{y};21

V←X ;22

foreach v ∈ V do23

if |IP ∈ v.ports| 6= |αin ∈R| then24

V← V \ v;25

Essentially, the length of the derived sequence is equal to the cardinality of
process domain D ′P of a PPN process P , i.e., |D ′P |. Since |D ′P | can be very large,
the derived sequence might be very long. Thus, we express the sequence using the
shortest repetitive pattern that covers the whole sequence. This shortest repetitive
pattern can be found efficiently using a data structure called suffix tree [119]. In a

3.1. The Algorithm 45

suffix tree, the root node is defined as the node with only outgoing edges and the leaf
nodes are defined as the nodes with only incoming edges. The remaining nodes are
called internal. A suffix tree has the following properties:

• A suffix tree for a sequence S of characters can be built in O(|S|) time [119].

• Each edge in the suffix tree is labeled with a non-empty subsequence starting
from character S[i] to character S[j], where 1≤ i ≤ j ≤ |S|.

• No two edges out of a node in the tree can have labels beginning with the
same character. That is, the starting character of the label is different for all
outgoing edges of a node in the suffix tree.

• A subsequence obtained by concatenating all subsequences found on the
path from the root node to any internal node i occurs k times in the whole
sequence, where k is the number of leaf nodes that node i has.

• The suffix tree is padded with a terminal symbol $.

Once a suffix tree is constructed for the sequence of process variants SP according
to the algorithm presented in [119], our problem can be formulated as: search the
tree for the shortest repetitive pattern that covers the whole sequence SP , i.e., a
subsequence of SP . Our problem can be solved based on finding the longest repeated
substring in a given string, which can be solved in linear time. In our problem, we
first pre-process the constructed suffix-tree to count the number of leaf nodes for
each internal node. Among all outgoing edges of the root node, only the branch that
has the same starting process variant as SP is selected to explore. Then, a Breadth
First Search (BFS) procedure is used, because shorter subsequences found at the levels
closer to the root node are more likely to be the solution of our problem. For every
path starting from the root to any internal node, the BFS procedure concatenates the
labels on the edges. This concatenation results in a subsequence Ssub which occurs k
times in the original sequence SP . Finally, we select the subsequence Ssub with the
largest occurrence k that satisfies

|Ssub| × k = |SP |. (3.3)

Similar to the longest repeated substring problem, our problem also has the linear
time complexity.

Recall that the sequence of process variants Ssnk for process snk is given in
Equation (3.2). The corresponding suffix tree is constructed and illustrated in
Figure 3.3. The shadow node denotes the root node and the solid nodes denote the
leaf nodes. The others are internal nodes. It can be seen that every edge is labeled

46 Chapter 3. Automated Analysis Model Construction: Deriving CSDF from Equivalent PPN

1(20)

2(10)

v1 v2

v1v1v2

$

$ $

Root

$

~ ~

~ ~v1v2

v1v1v2$ v1v1v2$
v1v1v2$

v2

~ ~ ~~

Figure 3.3: Suffix tree for the sequence of process variants Ssnk. The tildes represent
the omitted part of the tree.

with a subsequence of process variants that occurs in the whole sequence Ssnk. In the
pre-processing, computing for instance the number of leaf nodes for node 1 results
in 20 (shown in the bracket in node 1). It means, the subsequence v1 occurs in Ssnk
20 times. In the beginning of BFS, only the edge connecting the root node to node 1
is selected to explore, because process variant v1 labeled on the edge is the same as
the first process variant in sequence Ssnk. In the next step, node 2 is selected and v1 is
concatenated with v1v2 labeled on the edge connecting node 1 and node 2. It yields

Ssub = [v1, v1, v2].
|Ssub| × 10= 30,

|Ssnk|= 30.

Ssub is shown in Figure 3.3 surrounded by a dashed line. At this step, the procedure
terminates because the criteria, namely Equation (3.3), is satisfied.

In the last sub-step (see lines 5-7 in Algorithm 1), a consumption/production
sequence is generated for each port of a CSDF actor. This is done by building a
table in which each row corresponds to an input/output port, and each column
corresponds to a process variant in the repetitive pattern derived in the second
sub-step. If the input/output port is in the set of ports of the process variant, then its
entry in the table is 1. Otherwise, its entry is 0. Each row in the resulting table repre-
sents a consumption/production sequence for the corresponding input/output port.

3.2. Experimental Results 47

Repetitive pattern
v1 v1 v2

Input/output ports
IP1 1 1 0
IP2 0 0 1
IP3 1 1 1

Table 3.2: Consumption/production sequences for actor snk in Figure 3.1.

Considering process snk, the consumption/production sequences of CSDF actor snk
are generated as shown in Table 3.2. It can be seen that the consumption/production
rates sequences for the ports are the same as the ones shown in Figure 3.1.

3.2 Experimental Results

We present in this section the experimental results of automated deriving CSDF
graphs for some real-life applications specified as SANLPs (see Definition 2.1.8 on
page 26). The main focus here is to demonstrate the applicability of our approach in
terms of time-complexity. Then, we further demonstrate the application of auto-
mated CSDF derivation in the context of our DaedalusRT framework for designing
hard real-time streaming systems.

We took two applications, Filterbank and FMRadio, with original C code
available from the StreamIT benchmark suit [54] and several reasonably complex1

benchmarks from Polybench [101]. The characteristics of all benchmarks are shown
in columns 2-4 in Table 3.3. For example, the Filterbank benchmark contains
367 lines of code in the SANLP. This excludes the code for each function in the
SANLP. We believe that it is reasonably complex to express high-level behavior for
most of real-life applications. Different benchmarks also vary in complexity of the
access pattern to data arrays. For example, the ADI benchmark has very complex
access pattern. Complex access pattern potentially increases the length of derived
production/consumption sequences for input/output ports of CSDF actors. Our
algorithm presented in this chapter was coded in C++ and integrated in PNtools as
part of DaedalusRT shown in Figure 1.7 on page 13. All experiments were conducted
on an Intel Core 2 Duo T9600 CPU running at 2.80 GHz with 4GB memory in
Linux Kubuntu 10.4.

The last column in Table 3.3 shows the running time needed to derive the
corresponding CSDF graph for each benchmark. We can see that our algorithm is
able to derive CSDF graphs in short amount of time. Note that the running time

1Other benchmarks either have simpler and less data dependencies or less number of tasks than the
ones we selected.

48 Chapter 3. Automated Analysis Model Construction: Deriving CSDF from Equivalent PPN

Table 3.3: Characteristics of benchmarks and running times to derive their corre-
sponding CSDF graphs.

Benchmarks No. of actors No. of channels Lines of code Running time
(in SANLP) (sec.)

Filterbank 69 89 367 1.60
FMRadio 28 39 195 0.66

ADI1 28 167 209 7.26
FDTD2 17 71 144 0.89
Gauss3 11 26 75 7.82

Gram-Schmidt 9 20 48 1.85
Regularity detector 8 11 54 2.86
1 ADI: Alternating direction implicit solver
2 FDTD: 2D finite difference time domain kernel
3 Gauss: 2D gauss blur filter for image processing

Table 3.4: Execution times of the phases in the DaedalusRT flow for three streaming
applications on a single MPSoC platform.

Phase Time Automation (Yes/No)
Parallelization 0.48 sec. Yes
WCET analysis 1 day No

Deriving the CSDF graphs 5 sec. Yes
Deriving the platform/mapping 0.03 sec. Yes

System synthesis 2.16 sec. Yes
Total ∼ 1 day -

Total (excl. WCET analysis) ∼ 7.67 sec. -

here includes the time starting from SANLPs to CSDF graphs. In addition, the time
to derive the implementation model, i.e., PPNs, using the PNgen compiler is also
included. In this way, we can see clearly the benefits of starting from a SANLP and
resulting in its equivalent CSDF graph. As mentioned previously, our approach can
be readily integrated into, e.g., the

∑

C toolchain [21], to greatly speedup application
development process.

In the second experiment, we took three streaming applications specified in
SANLPs, an edge-detection filter (Sobel) from the image processing domain, the
Motion JPEG (M-JPEG) video encoder from the video processing domain, and the
M-JPEG video decoder. Using the DaedalusRT framework, we generated a functional
implementation that can be synthesized in Xilinx Platform Studio 13.2 targeting

3.2. Experimental Results 49

Xilinx Virtex-6 FPGA ML605 evaluation kit [15]. Table 3.4 shows the running
time of each design phase in the DaedalusRT design flow. We observe that, if the
CSDF graphs of the three applications were derived manually by hand, it would
take several days. Instead, using the solution presented in this chapter, deriving these
three CSDF graphs takes 5 seconds. Thus, the automated CSDF derivation is one of
the key enablers for a fully automated and fast design flow.

50 Chapter 3. Automated Analysis Model Construction: Deriving CSDF from Equivalent PPN

