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Chapter 2

Models-of-Computation (MoC)

THIS chapter is dedicated to different Models of Computation (MoC) that serve as
the application specification. In particular, we focus on a process-based MoC,

namely Polyhedral Process Networks (PPN), in Section 2.1, and two actor-based
MoCs, SDF and CSDF in Sections 2.2.1 and 2.2.2, respectively. The PPN MoC is
used as the implementation model in DaedalusRT and it is the input to the solutions
proposed in Chapters 3 and 4. The SDF MoC is the input to the solution proposed
in Chapter 5. The CSDF MoC is used to perform HRT analysis. In Section 2.3, an
overview of the HRT analysis is given to better understand the solutions proposed in
Chapters 5 and 7. Throughout this thesis, we use the set of mathematical notations
listed in Table 2.1.

Both PPN and (C)SDF MoCs are specified as a graph consisting of vertices
and edges. Normally, all vertices denote concurrently executing computation tasks.
For (C)SDF, the vertices are called actors, whereas the vertices in a PPN are called
processes. The edges denote FIFOs for data communication between actors/processes.
It is possible to compute a safe FIFO size [110, 125] for each edge that guarantees
the absence of deadlock in the graph.

2.1 Polyhedral Process Networks (PPN)

An important advantage of adopting the PPN MoC in DaedalusRT is that it can
be automatically derived from an input-output equivalent sequential specification
with certain restrictions using the PNgen [125] compiler. Thus, the error-prone
process of deriving a concurrent model manually can be avoided. Moreover, the
ESPAM [96] tool is able to generate final parallel implementation for the PPN
MoC in an automated way. Consequently, design productivity can be significantly
improved. In the following sub-sections, we first explain the polytope model, which
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22 Chapter 2. Models-of-Computation (MoC)

Notation Meaning
N the set of natural numbers excluding zero
Q the set of rational numbers
Z the set of integer numbers
x̌ lower bound (minimum) of values x
x̂ upper bound (maximum) of values x
lcm least common multiple
dxe smallest integer that is greater than or equal to x
bxc greatest integer that is smaller than or equal to x
|X | cardinality of a set X
~x vector x

Table 2.1: Mathematical notations.

we use as the formal representation of the PPN MoC and the P3N MoC developed
in Chapter 6. It is followed by an explanation of the sequential specification with
restrictions in detail. Then, we introduce the PPN MoC based on the polytope
model derived from the sequential specification.

Polytope Model

The Polytope model [42] is often used in the compiler domain to represent loop nests,
which perfectly match the behavior of streaming applications. The polytope model
allows powerful transformation techniques that are used to explore and exploit
parallelism in Chapters 3 and 4. It also serves as the foundation of the analysis
presented in Chapter 6. This section presents an overview of the polytope model to
make this thesis self-contained. A more detailed treatment of the polytope model can
be found in [26]. The mathematical background can be found in popular textbooks,
such as [105]. Throughout this thesis, the notations related to the polytope mode
are listed in Table 2.2.

We start with some fundamental definitions. Assuming a vector ~y ∈ Rn and
a constant α, H = {~x | ~x · ~yT ≥ α} is called a closed half-space. Then, we define a
polyhedron as follows:

Definition 2.1.1 (Polyhedron). A polyhedron D is the intersection of a set of
finitely many closed half-space, i.e.,

D = {~x ∈Qd | A~x ≥~c}, (2.1)

where A∈Zm×d is a constant matrix and c ∈Zm is a constant vector.
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D a polyhedron

D(~p) a parametric polyhedron

D̄ a polytope

D̄(~p) a parametric polytope

|D̄| cardinality of polytope

R dependence relation

ranR range of a dependence relation

domR domain of a dependence relation

Table 2.2: Polyhedral notations.
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Figure 2.1: A polyhedron.

Definition 2.1.2 (Polytope). A polytope D̄ is a bounded polyhedron.

Consider for instance a polyhedron defined as follows:

D =
(

(w, i , j ) ∈Q3 |
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= {(w, i , j ) ∈Q3 | w ≥ 0∧ 1≤ i ≤ 10∧ 1≤ j ≤ 3}. (2.2)

The polyhedron is illustrated in Figure 2.1 using grey boxes. We can see that the
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polyhedron is unbounded along w-dimension. If we consider any w equal to a
constant c , we obtain a polytope D̄w as:

D̄ =
(

(w, i , j ) ∈Q3 |
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,

= {(w, i , j ) ∈Q3 | w = c ∧ 1≤ i ≤ 10∧ 1≤ j ≤ 3}.

We can see that the initial D in Equation (2.2) is now bounded on the w dimension.
More specifically, D̄ can be considered as a "plane" spread along i and j axes shown
in Figure 2.1.

In Chapter 6, we use the concept of parametric polyhedron to represent adaptive
streaming applications.

Definition 2.1.3 (Parametric Polyhedron). A parametric polyhedron D(~p) is a
polyhedron D affinely depending on a parameter vector ~p ∈Qn , i.e.,

D(~p) = {~x ∈Qd | A ·~x ≥ B ·~p +~b}, (2.3)

where ~p is bounded by a polytope D̄~p = {~p ∈ Qn | C · ~p ≥ ~h}. A, B , and C are

constant integer matrices. ~b and~h are constant vectors.

Similarly, we have the notion of parametric polytope, which is a bounded
parametric polyhedron.

Consider two parameters m and n that are bounded by a polytope

D̄(m,n) = {(m, n) ∈Q2 | 0≤ m ≤ 100∧ 0≤ n ≤ 100}. (2.4)

We can have a parametric polyhedron defined as follows:

D(m, n) = {(w, i , j ) ∈Q3 | w > 0∧ 1≤ i ≤ 2m ∧ 1≤ j ≤ n− 2i}.

A parametric polytope can be

D̄1(m, n) = {(w, i , j ) ∈Q3 | w = 1∧ 1≤ i ≤ 2m ∧ 1≤ j ≤ n− 2i}. (2.5)

In this thesis, we are also interested in the number of integer points in a set
D̄(~p)∩Zd , called cardinality and denoted by |D̄(~p)|. For a set D̄∩Zd , its cardinal-
ity |D̄| can be obtained as a constant, whereas |D̄(~p)| is expressed as a piecewise
quasi-polynomial. A piecewise quasi-polynomial consists of one or more quasi-
polynomials.
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Definition 2.1.4 (Quasi-polynomial). A quasi-polynomial q(x) in the integer vari-
ables x is a polynomial expression in greatest integer parts of affine expressions in
the variables.

Definition 2.1.5 (Piecewise Quasi-polynomial). A piecewise quasi-polynomial q(~x),
with ~x ∈ Zd consists of one or more quasi-polynomials. Each quasi-polynomial
qi (~x) is defined only for a disjoint piece D̄i (~x) of a parametric polytope D̄(~x). Each
D̄i (~x) is also called a chamber Ci . For a given point ~x ∈ D̄(~x), the piecewise quasi-
polynomial evaluates to

q(~x) =
¨

qi (~x) if x ∈ D̄i (~x)
0 otherwise.

(2.6)

Consider the parametric polytope D̄1(m, n) in Equation (2.5) with parameters m
and n bounded by the polytope in Equation (2.4). For the number of integer points
in the set D̄1(m, n)∩∩Z3, |D̄1(m, n)| can be obtained as a piecewise quasi-polynomial
as follows:

¨

−2m− 4m2+ 2mn if (m, n) ∈C 1
− 1

4 n+ 1
4 n2− 1

2 · {0,1}n if (m, n) ∈C 2

where {0,1}n is called a periodic number with period 2. C 1 and C 2 are called
chambers given as

C 1= {(m, n) ∈Z2 | 2+ 4m ≤ n ∧ 1≤ m ≤ 100∧ 0≤ n ≤ 100},
C 2= {(m, n) ∈Z2 | n ≤ 1+ 4m ∧ 3≤ n ≤ 100∧ 0≤ m ≤ 100}.

Often when we use the polytope mode to represent execution of a program, we
need the definition of a lexicographic order.

Definition 2.1.6 (Lexicographic order). Given that two vectors ~a,~b ∈ Zn are ele-
ments of a polyhedron. ~a ≺ ~b denotes that ~a is lexicographically smaller than ~b ,
if

n
∨

i=1

�

ai < bi ∧
i−1
∧

j=1

a j = b j
�

For instance, given ~a = (w, i , j ) = (0,1,3) and ~b = (w, i , j ) = (0,2,1), we have
~a ≺ ~b .

When using the polytope model to represent loop nests, we often need to deal
with dependence relations to express data dependencies.
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Definition 2.1.7 (Dependence Relation [122]). A dependence relation R, also called
a basic polyhedral map, is defined as

R= {~x1→ ~x2 ∈Z
d1 ×Zd2 | ~x1 ∈D1 ∧~x2 ∈D2 ∧~x2 =A~x1+~c}, (2.7)

where A is an integer matrix and ~c is a constant vector. The polyhedron D1 is the
domain of dependence relation R, denoted by domR. The polyhedron D2 is the
range of dependence relation R, denoted by ranR.

For instance, we have a dependence relation

R={(w1, i1, j 1)→ (w2, i2, j 2) ∈Z3×Z3

| (w1, i1, j 1) ∈D1 ∧ (w2, i2, j 2) ∈D2 ∧ i2= i1− 1∧ j 2= j 1+ 1∧w1= w2},

where

domR=D1 = {(w1, i1, j 1) ∈Z3 | w1≥ 0∧ 1≤ i1≤ 7∧ 0≤ j 1≤ 7− i1}

and

ranR=D2 = {(w2, i2, j 2) ∈Z3 | w2≥ 0∧ 0≤ i2≤ 6∧ 1≤ j 2≤ 8− i2}.

Static Affine Nested Loop Programs (SANLP)

The sequential application specifications considered in this thesis are in the form of
Static Affine Nested Loop Programs (SANLP).

A SANLP consists of several primitive functions. A function is considered as
a primitive in this thesis. This means that no explicit parallelization is performed
within the function. In general, parallelism within functions can be explored at finer
level, e.g., by vectorization [98]. A function serves mainly as the computational part
of an application task. Note that there is no restriction on the structure within a
function. That means that a function may contain an arbitrary structure of code.

However, restrictions do exist at the level of SANLP, in which functions are
called and executed. We summarize the key restrictions of SANLPs as follows.

Definition 2.1.8 (Static Affine Nested Loop Program (SANLP) [41]). A static affine
nested loop program contains a set of functions, each of which is enclosed by one
or more loops and if -statements. The loops and if -statements have the following
restrictions:

• loops have a constant step size;
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• loop bounds are affine expressions of the enclosing loop iterators, static param-
eters, and constants. Static parameters are those whose value cannot change at
run-time;

• if -statements have affine conditions in terms of the loop iterators, static
parameters, and constants;

• index expressions of array references are affine constructs of the enclosing
loop iterators, static parameters, and constants;

• the data flow between functions in the loop is explicit, which prohibits that
two functions communicate through shared variables invisible at the SANLP
level.

An example of a SANLP is shown in Listing 1. Although it is represented
using the C syntax, in principle SANLP can be expressed in other forms, such as
Matlab [66] or Fortran [101]. Four functions read_image, fiter1, filter2,
and write_image only exchange data through indexed arrays img and ref_img.
Executing the loop body once is called an iteration. For function read_image, the
polyhedral representation of its execution is given in Equation (2.2) and illustrated
in Figure 2.2. The black dots denote individual iterations. According to Defini-
tion 2.1.6, iteration ~a = (w, i , j ) = (0,1,3) is executed before ~b = (w, i , j ) = (0,2,1),
denoted as ~a ≺ ~b .

PPN

A Polyhedral Process Networks (PPN) [125] is defined as a graph G = (P ,E),
where P is the set of processes and E is the set of edges. The PPN MoC is a special

while(1){
for (i = 1; i <= 10; i++){ // Width

for (j = 1; j <= 3; j++){ // Height
read_image(&img[i][j], &ref_img[i][j]);

if (j <= 2)
img[i][j] = filter1(img[i][j]);

else
img[i][j] = filter2(img[i][j]);

write_image(img[i][j], ref_img[i][j]);
} } }

Listing 1: An example of a SANLP
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case of the Kahn Process Networks (KPN) [64]MoC. That is, PPN processes are
synchronized through FIFOs, i.e., any process is blocked when attempting to read
from an empty FIFO or write to a full FIFO. In the definition of the KPN MoC, no
restriction is imposed on the structure of the KPN processes. In contrast, a PPN
process has a particular structure due to the fact that it is automatically derived from
a SANLP using the PNgen [125] compiler.

Each function in a SANLP corresponds to a separate process in the derived PPN.
If two functions access the same data array through their input/output arguments,
they may thus have data dependencies, which is determined by Array Dataflow
Analysis (ADA) [41].

The execution of a PPN process is specified using affine nested for-loops, called
domain. Formally, a domain D is defined as a polyhedron following Definition 2.1.1,
i.e., D = {~I ∈ Zd | A · ~I ≥ ~b}, where A ∈ Zm×d , ~b ∈ Zd , ~I is an iteration vector,
and d indicates the nested-loop depth. At each iteration ~I during the execution
of a PPN process P , namely ~I ∈ DP , P first reads data from input ports (IP) in
the input port domain DIP if ~I ∈ DIP. Then the process executes the process
function (computation) and subsequently writes results to output ports (OP) in the
output port domain DOP if ~I ∈DOP. The order of executing different iterations in a
process domain is specified by a lexicographic order according to Definition 2.1.6 on
page 25. The set of iterations, at which a PPN process writes data to the environment,
are called sink iterations, denoted by Dsnk. Furthermore, a dependence relation RE
in Definition 2.1.7 on page 26 is defined for each edge E in a PPN. For an edge E ,
RE is specified as RE = {~I → ~J ∈ Zd1×Zd2 | ~I ∈ DIP ∧~J ∈ DOP ∧~J = B · ~I +~c}. It
indicates that data produced at iteration ~J ∈DOP is consumed at iteration ~I ∈DIP if
output port OP is connected to input port IP via edge E .

Consider the sequential C program given in Listing 1. The equivalent PPN that
can be derived using the PNgen [125] compiler is shown in Figure 2.3. For the
behavior of process snk, its process domain is given as

Dsnk = {(w, i , j ) ∈Z3 | w > 0∧ 1≤ i ≤ 10∧ 1≤ j ≤ 3}. (2.8)

Reading data tokens from input port IP1 to initialize function argument in1 of
function write_image is represented as input port domain

DIP1
= {(w, i , j ) ∈Z3 | w > 0∧ 1≤ i ≤ 10∧ 1≤ j ≤ 2}.

For edge E5, the dependence relation RE5
is expressed as

RE5
={(w1, i1, j 1)→ (w2, i2, j 2) ∈Z3×Z3

| (w1, i1, j 1) ∈DIP3
∧ (w2, i2, j 2) ∈DOP3

∧w1= w2∧ i1= i2 j 1= j 2},
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Figure 2.2: The polyhedral representation of the execution of function
read_image in Listing 1.

Process src

while(1) {

for(i=1;i<=10;i++) {

for(j=1;j<=3;j++) {

src(&out1,&out2);

if(j<=2)

WRITE(&out1,OP1);

else

WRITE(&out1,OP2);

WRITE(&out2,OP3);

} } }

OP1

OP2

OP3

Process �lter1

while(1) {

READ(&in1, IP1);

out1 = filter1(in1);

WRITE(&out1,OP1);

}

IP1

OP1

Process �lter2

while(1) {

READ(&in1, IP1);

out1 = filter2(in1);

WRITE(&out1,OP1);

}

IP1

OP1

Process snk

while(1) {

for(i=1;i<=10;i++) {

for(j=1;j<=3;j++) {

if(j<=2)

READ(&in1,IP1);

else

READ(&in1,IP2);

READ(&in2,IP3);

write_image(in1,in2);

} } }

IP1

IP2

IP3

E1 E2

E3 E4

E5

Figure 2.3: PPN corresponding to the SANLP in Listing 1.

where DOP3
=DIP3

=Dsnk.

2.2 Actor-based Data Flow MoCs

In this section, we give some important definitions concerning the SDF and CSDF
MoCs. The related notations are listed in Table 2.3.
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2.2.1 Synchronous Data Flow (SDF)

A Synchronous Data Flow (SDF) [75] graph G is defined as G = (A,E), where A
is the set of actors and E is the set of edges. For each actor Ai ∈ A, an execution
is called firing. It produces/consumes a constant number of data tokens to/from
edges, denoted by prd ∈N+ and cns ∈N+, respectively. As a special case, the MoC
is called Homogeneous Synchronous Data Flow (HSDF) if prd = cns = 1 for all
production/consumption rates and all actors. To be eligible to fire, each incoming
edge E j of an actor must contain at least cns j tokens. In this thesis, we assume that
auto-concurrent firing of actors are implicitly excluded. We also assume that all cns j
tokens are consumed at the beginning of a firing of an actor. At the end of the firing,
all prdk tokens are produced to each outgoing edge Ek . A token transfered through
edges here refers to an atomic data object which can be either an integer or a complex
data structure. Tokens are transfered in FIFO fashion. Let us consider for instance
the image filter algorithm illustrated in Figure 2.4(a). Its corresponding SDF graph is
shown in Figure 2.4(b). At the beginning of the firing, actor filter consumes 3× 3= 9
pixels from edge E1 and produces 1 pixel to edge E2 at the end of the firing.

One important advantage of the SDF MoC is that its functional properties, e.g.,
consistency and deadlock-free, can be verified at compile-time. Considering streaming
applications which typically execute in a non-terminating fashion, both properties
are important to ensure that a given SDF graph can execute indefinitely without
causing unbounded token accumulation in FIFOs (buffer overflow), or deadlock.
To verify consistency of an SDF graph, a balance equation [75] can be established as
follows:

ΓG · ~qG =~0, (2.9)

(a) filter operating on
a 3 × 3 sliding win-
dow on the image
from left to right
and from top to bot-
tom.

src filter display
1 9 1 1

E1 E2

(b) An SDF graph G. FIFOs are not illustrated to
avoid clutter.

Figure 2.4: An example of an image filter algorithm modeled using the SDF MoC.
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Ai actor
Ei edge in data flow graph
prd production rate
cns consumption rate
PRD production sequence
CNS consumption sequence

Table 2.3: Data flow notations.

where ΓG is called topology matrix and ~qG is called repetition vector. ΓG is defined
as:

ΓG =











Γ1,1 . . . Γ1,|A|
... Γ j ,i

...
Γ|E |,1 . . . Γ|E |,|A|











(2.10)

with:

Γ j ,i =







prd j if actor Ai produces to edge E j
−cns j if actor Ai consumes from edge E j
0 otherwise.

(2.11)

In [75], it is shown that a connected SDF graph is consistent iff rank(ΓG) = |A| − 1,
which ensures ΓG has a 1-dimensional null space. That is, Equation (2.9) has a
non-trivial solution for ~qG . To execute an SDF graph indefinitely with a periodic
schedule without unbounded token accumulation, the consistency property is a
necessary condition. Consider the SDF graph shown in Figure 2.4(b), its topology
matrix ΓG is given by

ΓG =
�

1 −9 0
0 1 −1

�

Therefore, its repetition vector can be obtained as

~qG = [qsrc, qfilter, qdisplay]

= [9,1,1].

A consistent SDF graph may still deadlock due to insufficient amount of initial
tokens. A SDF graph is said to be deadlocked if none of the actors is eligible to fire at
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certain point in time. To detect such a scenario, a periodic admissible schedule [75]
can be constructed. If such a schedule does not exist, the SDF graph will deadlock
during its execution. Finally, a consistent and deadlock-free SDF graph is said to be
live. Only live SDF graphs are considered in this thesis.

2.2.2 Cyclo-Static Data Flow (CSDF)

A Cyclo-Static Data Flow (CSDF) [30] graph is similarly defined as G = (A,E),
where A is the set of actors and E is the set of edges. CSDF generalizes the SDF
MoC by introducing periodically changing token consumption and production
rates, called production/consumption sequence, denoted by PRD ∈Nφ and CNS ∈Nφ,
respectively. The production/consumption sequences consist of φ phases. For the
xthe firing of an actor Ai , it consumes CNS j [((x − 1) mod φi ) + 1] tokens from
each incoming edge E j and produces PRDk[((x − 1) mod φi )+ 1] tokens to each

outgoing edge Ek . PRDk and CNS j are defined as PRDk = [prdk
1 , . . . ,prdk

φ] and

CNS j = [cns j
1, . . . , cns j

φ
], respectively. The length of the production/consumption

sequence may vary between CSDF actors. Note that auto-concurrent firing of CSDF
actors are implicitly excluded as well.

Similar to the SDF MoC, the consistency of the CSDF MoC is also an important
property. For a CSDF graph G = (A,E), the balance equation [30] is established as
follows:

ΓG ·~rG =~0, (2.12)

with

Γ j ,i =







∑k=φi
k=1

prd j
k

if actor Ai produces to edge E j

−
∑k=φi

k=1
cns j

k
if actor Ai consumes from edge E j

0 otherwise.

(2.13)

Assuming n = |A|, the repetition vector ~qG = [q1, . . . , qi , . . . , qn] is then given by

~qG =Q ·~rG with Q =Zn×n and Qj,i =
�

φi if j = i
0 otherwise.

(2.14)

φi is the length of consumption/production sequences of actor Ai . Again, only
consistent and deadlock-free, namely live, CSDF graphs are considered in this thesis.

Consider the CSDF graph G1 in Figure 2.5. The topology matrix of G1 is given
by

ΓG1
=







1 −40 0 0
0 1 0 −1
0 0 1 −66






,
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Motion

Sen.

Rate

Adaptor

Pacing

Logic

1 40 1 [0,…,0,1]

E1 E2

EKG

Sen.

}65 times

1

E3

[1,…,1]

}66 times

A1 A2 A4

A3

Figure 2.5: A CSDF graph G1 of a pacemaker application (taken from [99]).

and Q in Equation (2.14) is given by

Q =











1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 66











.

Thus, we can obtain

~qG = [q1, q2, q3, q4]
= [40,1,66,66].

2.3 Hard Real Time Scheduling of Acyclic (C)SDF Graphs

To find a schedule for CSDF graphs where certain performance constraints are
guaranteed, periodic schedules are considered to be a common approach. We shall
distinguish the periodic schedules considered here from the one defined in [30, 75].
The periodic schedule considered in this thesis emphasizes on the fact that the sched-
ule of each actor firing repeats in a strictly periodical way (see Definition 2.3.1). The
authors in [22, 31] have developed efficient techniques that can derive such Strictly
Periodic Schedules (SPS) in polynomial time. Note that the periodic scheduling of
the CSDF MoC can be also applied to the SDF MoC, since the CSDF MoC is the
superset of the SDF MoC. In particular, the SPS framework for an acyclic CSDF
graph developed in [22] is implemented in the DaedalusRT design flow and thus it
is considered in this thesis. To ease the discussion of the SPS concept, we use the
notations listed in Table 2.4.

Definition 2.3.1 (Strictly Periodic Schedule (SPS) ). A schedule of a CSDF graph
G = (A,E) is said to be strictly periodic iff

∀Ai ∈A and x ∈N+ : si (x) = Si +(x − 1)Ti , (2.15)
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where si (x) ∈ N+ denotes the xth release time of actor Ai , Si ∈ N is the earliest
starting time of Ai , and Ti ∈ N+ denotes the interval between two consecutive
firings of Ai , called period.

Essentially, the actors of a CSDF graph under SPS are considered as a set of
independent, real-time tasks with implicit deadlines [35]. Therefore, such a real-time
task corresponding to a CSDF actor is associated with two parameters, namely
period T and earliest starting time S, where the deadline of the task is equal to its
period (i.e., implicit deadline).

The main advantage of SPS is that a variety of well-known HRT scheduling
algorithms, such as Earliest Deadline First (EDF) [80] or Rate Monotonic (RM) [80],
can be applied to temporally schedule CSDF actors allocated on a PE. Meanwhile,
temporal isolation of different applications, i.e., different CSDF graphs, that share a
single MPSoC platform can be achieved. Moreover, the required platform including
the number of PEs and buffer sizes needed to schedule the CSDF graph can be
determined in polynomial time.

Under SPS, a firing of a CSDF actor must finish before its deadline which is
equal to its period. If the sink actor of a CSDF graph Asnk produces prd tokens per
firing and has a period Tsnk, the SPS thus guarantees a throughput prd

Tsnk
for the CSDF

graph. To compute the period of each actor, the following definition is needed first.

Definition 2.3.2 (Workload of an Actor). The workload of a CSDF actor Ai ∈A
per graph iteration, denoted by Wi , is given by Wi = qi Ci , where qi is the repetition
entry of Ai and Ci is the Worst Case Execution Time (WCET) of Ai .

Accordingly, the maximum workload per graph iteration, denoted by ŴG , is defined
as ŴG =maxAi∈A(qi Ci ). The minimum period Ťi [22] of an actor Ai under SPS
can be computed in linear time as

Ťi =
lcm(~qG)

qi

&

ŴG

lcm(~qG)

'

, (2.16)

Ci Worst-case execution time of an actor Ai
Ti guaranteed period of an actor Ai
Hi iteration period of an actor Ai
ui utilization of an actor Ai
m number of PEs

Table 2.4: Notations for HRT scheduling of CSDF MoCs.
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where lcm(~qG) is the least common multiple of all repetition entries qi ∈ ~qG , and
Ci is the WCET of firing a CSDF actor Ai . The minimum period of the sink actor
for a CSDF graph determines the maximum throughout that this graph can achieve.
To sustain a strictly periodic execution with the period derived by Equation (2.16),
the earliest starting time Si ∈N [22] of an actor Ai can be obtained as

Si =

(

0 if prec(Ai ) = ;
maxAk∈prec(Ai )

(Sk→i ) otherwise,
(2.17)

where prec(Ai ) represents the set of predecessor actors of Ai and Sk→i is given by

Sk→i = min
t∈[0,Sk+H ]

{t : Prd
[Sk ,max{Sk ,t}+d )

(Ak , E j )≥

Cns
[t ,max{Sk ,t}+d]

(Ai , E j ), ∀d ∈ [0, H ], d ∈N}, (2.18)

where H is defined as an iteration period obtained by H = qi Ti .
Prd[Sk ,max{Sk ,t}+d )(Ak , E j ) denotes the total number of tokens produced by actor Ak
to edge E j during the time interval [Sk ,max{Sk , t}+ d ) and
Cns[t ,max{Sk ,t}+d](Ai , E j ) denotes the total number of tokens consumed by actor
Ai from edge E j during the time interval [t ,max{Sk , t}+ d]. In addition, edge E j
connects actors Ak and Ai .

Let us consider the example of the acyclic CSDF graph G2 in Figure 2.6(a).
WCET Ci of each actor is given below the actor name Ai . We can first compute the
repetition vector of G2 in Figure 2.6(a) according to Equation (2.14) on page 32 as:

~qG2
= [q1,1, q2,1, q3,1, q3,2, q3,3, q4,1, q5,1]

= [3,3,2,2,2,3,3]

Under SPS, the period of each actor can be obtained using Equation (2.16) as:

~̌
TG2
= [Ť1,1, Ť2,1, Ť3,1, Ť3,2, Ť3,3, Ť4,1, Ť5,1]

= [8,8,12,12,12,8,8] (2.19)

The periodic task-set representation of G2 is illustrated in Figure 2.6(b). The x-axis
represents time. The upper arrows indicate the earliest starting times of individual
actors and the grey bars denote WCETs of actor firings. For the sake of discussion,
Figure 2.6(b) only illustrates up to time unit 58 on the x-axis and the last firings of
actors A2,1,A3,1,A3,2 and A3,3 are truncated. We can see in Figure 2.6(b) that, after
the earliest starting time of each actor, the actor is scheduled in a strictly periodic
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(a) A CSDF graph G2. A1,1 and A5,1 are considered as the source and sink actors,
respectively.
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(b) Periodic task-set representation of G2.

Figure 2.6: An example of a CSDF graph and its real-time task-set representa-
tion. Since the execution of the actors repeats indefinitely, the last execution of
A2,1,A3,1,A3,2, and A3,3 in the figure is truncated and shown in black.

way. For instance, actor A5,1 has the earliest starting time S5,1 = 48. After that, each

firing of A5,1 occurs every Ť5,1 = 8 time units. Given that A5,1 has no outgoing edges
and thus it is the sink actor of G2. Therefore, the maximum throughput of G2 is 1

8 .
Once periods and earliest starting times of all actors in an acyclic CSDF are

derived, the next step is to determine the number of required PEs to schedule the
actors and to guarantee that the deadlines (equal to derived periods) of actors are
met. To this end, the SPS framework leverages extensively the results from the HRT
scheduling theory. Here we only give a brief overview of the HRT scheduling theory
that is relevant to this thesis. For the complete treatment of the HRT scheduling
topic, please refer to [33]. First, the notion of utilization needs to be introduced. Let
G = (A,E) be a CSDF graph, the period of a CSDF actor Ai ∈A be Ti , and WCET
of Ai be Ci . The utilization of Ai , denoted by ui , can be computed as

ui =
Ci

Ti
, ∀Ai ∈A. (2.20)
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For instance, using the EDF scheduling algorithm, a set of n actors is schedulable on
a PE if the following equation is satisfied [80]:

n
∑

i=1

ui ≤ 1. (2.21)

If migration of CSDF actors across PEs is allowed at run-time (global scheduling),
the number of required PEs M (G) for a CSDF graph G can be simply computed as

M (G) =
�

∑

Ai∈A
ui

�

. (2.22)

In case that no migration of CSDF actors is allowed at run-time (partitioned schedul-
ing), determining the number of required PEs is thus equivalent to the bin-packing
problem and can be solved by either exact or approximate allocation algorithms.
An example of an exact allocation algorithm is proposed in [83], which returns an
optimal allocation of actors. One disadvantage of using an exact algorithm is its high
computational complexity. Therefore, to have a trade-off between optimality of the
allocation and computational complexity, an approximate allocation algorithm such
as the First-Fit Decreasing (FFD) algorithm [61] can be considered. Let MFFD(G)
denote the number of PEs needed for a CSDF graph G under FFD and MOPT(G)
denote the number of PEs needed for G using an exact allocation algorithm. It is
proven in [134] that the following inequality holds:

MFFD(G)≤
11

9
MOPT(G)+ 1. (2.23)

Once allocation of a CSDF graph is determined, the schedule on each PE itself can
be built either off-line for efficiency, or on-line for flexibility according to the system
requirements.

Let us consider CSDF graph G2 in Figure 2.6(a). Given
~̌
TG2

in Equation (2.19),
we obtain

M (G2) = d
1

8
+

8

8
+

12

12
+

12

12
+

12

12
+

2

8
+

1

8
e= 5. (2.24)

That is, 5 PEs are required to schedule G2 using the EDF algorithm and to achieve
the maximum throughput of 1

8 .
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