Universiteit

U Leiden
The Netherlands

Adaptive streaming applications : analysis and implementation models
Zhai, J.T.

Citation
Zhai, J. T. (2015, May 13). Adaptive streaming applications : analysis and implementation
models. Retrieved from https://hdl.handle.net/1887/32963

Version: Not Applicable (or Unknown)

Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/32963

License:

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/32963

Cover Page

The handle http://hdl.handle.net/1887/32963 holds various files of this Leiden University
dissertation

Author: Zhai, Jiali Teddy

Title: Adaptive streaming applications : analysis and implementation models
Issue Date: 2015-05-13

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/32963

Chapter 1

Introduction

MBEDDED systems are an essential part of our lives and exist in a wide variety.

In 2010, more than 15 billion embedded systems were sold globally [5]. The

market for embedded systems was $113 billion [17]. This market has exhibited
steady growth at a compound annual growth rate of 7% for the past 5 years.

An embedded system [84] is an information processing system embedded into
devices, products or other systems, for instance mechanical or electrical systems.
Different from servers or desktop PCs, embedded systems are often application
domain specific and perform certain specific functions tightly coupled to their
environment. Such systems can be hidden inside small and simple entities such
as digital watches and traffic lights. They can be also a part of large and complex
systems, such as Mars Exploration Rover [9].

Embedded streaming systems are an important class of embedded systems, which
are specifically designed to process streaming applications. A streaming applica-
tion [59] is a software program that processes large volume of continuous data
streams in short periods of time. Typically, the same operation is performed on
large set of data items in the stream. Therefore, there is little control flow between
processing different data items. Each data item has short life time and is discarded
after being processed. This type of applications is ubiquitous in telecommunica-
tions, health-care, transportation, retail, science, security, emergency response, and
finance. This thesis focuses on those streaming applications that are commonly used
in embedded systems. Figure 1.1 shows three popular streaming applications widely
used in our daily lives on mobile phones.

1

2 Chapter 1. Introduction

B
—_—

(a) Navigation. (b) Gaming. (c) Video decoding.

Figure 1.1: Three examples of embedded streaming applications.

1.1 Embedded Streaming System Design

Designing embedded streaming systems is definitely a complex process. It involves
three main aspects illustrated in the Y-chart [67], namely target applications, under-
lying platforms, and used design methodologies. This thesis primarily deals with the
aspect of design methodology by proposing several novel techniques and a highly
automated design framework. The proposed design techniques are highly optimized
towards the target applications and platforms with important design requirements
in mind. Therefore, first presenting the desired requirements, target applications,
and platforms helps understand better the context and contributions of this thesis.

We first show in Section 1.1.1 that the design requirements for embedded stream-
ing systems in general are more strict than general-purpose computing systems.
The design techniques proposed in this thesis focus on an important subset of re-
quirements, namely high throughout and hard real-time guarantees. Fortunately,
properties of streaming applications can be well exploited with appropriate design
techniques, such that the design requirements are satisfied. In addition, application
properties show that modern streaming applications exhibit adaptive behavior that
has to be explicitly captured in the design methodology. This is one major topic
of this thesis. Therefore, we characterize the target applications in Section 1.1.2.
Afterwards, we discuss the state-of-the-art hardware platforms in Section 1.1.3 and
aim at understanding the architecture capabilities. Ideally, the proper design tech-
niques should exploit application properties in such a way that matches exactly the
underlying architecture capabilities. This reinforces the contributions of this thesis.
Based on the application properties and selected architecture, we given an overview
of a widely acknowledged design methodology in Section 1.1.4. The techniques
developed in this thesis significantly extend and strengthen this design methodology.

1.1. Embedded Streaming System Design

Application Resolution | Frame rate | Uncompressed | Compressed
bit rate bit rate
HD-DVD 1920x1080 25 607 Mbps 8-20 Mbps
HDTV 1280x720 25 607 Mbps 2-8 Mbps
DVD 720x576 25 121 Mbps 1-2 Mbps
Video conferencing | 352x288 25 30 Mbps 128-1000 Kbps
Mobile video 176x144 15 9 Mbps 50-1000 Kbps

Table 1.1: Processing requirements for video decoding (taken from [19]).

Application Resolution | Uncompressed | Compressed
bit rate bit rate
Projection 1280x720 350 Mbps 17.5 Mbps
Electronic Cinema
Production HDTV | 1920x1080 995 Mbps 140 Mbps
Projection 4096x2048 6040 Mbps 450 Mbps
Digital Cinema
Production 4096x3112 | 11000 Gbps 2200 Mbps
Digital Cinema

Table 1.2: Processing requirements for image processing (taken from [43]). All
applications are assumed to operate at 24 FpsFrame per second.

1.1.1 Design Requirements

Requirements referred in this section are non-functional ones, such as performance,
timing predictability, thermal aspects [60], security [69], and reliability [128]. The
functional requirements such as deadlock-free execution are implicit. This thesis
addresses the requirements of high performance and timing predictability.

Embedded streaming systems are expected to have high performance. Sometimes
high performance is used interchangeably with high throughput. System throughput
is a performance metric which denotes the average number of output data produced
by the system per time unit. In general, a system with high throughput is referred
to be fast. A Digital Video Broadcasting-Handheld (DVB-H) receiver found in
mobile devices is a typical embedded streaming system with a certain throughput
requirement. Unable to satisfy the throughput requirement results in the videos
in slow motion and greatly degrades the user experience. In the video processing
domain, the requirements of processing power has also increased drastically as
screen resolution increases. Table 1.1 shows processing requirements for different
resolutions. The state-of-the-art mobile phones, such as Samsung S4 [12], already
have screens with the HD-DVD resolution. From the 5th column in Table 1.1, it

4 Chapter 1. Introduction

should be clear that designing embedded video streaming system that satisfies the HD-
DVD resolution poses a huge challenge. Image processing applications also require
high throughput Table 1.2 shows the processing requ1rements of different image
processing applications used for digital and electronic cinema. The extreme high data
rates clearly exceed the processing capacity of conventional embedded streaming
systems. For the wireless communication, the requirements have significantly
evolved over generations. The 3G standard targets 2 Mbps multimedia service
including voice, video, and wireless Internet access. In contrast, it has been proposed
in the 4G standard to increase the bandwidth of 100 Mbps or even 1 Gbps.

Besides high performance requirements, many embedded streaming systems
pose hard real-time (HRT) requirements. In a HRT system [33], each application
in the system has a deadline to indicate the maximum time within which the appli-
cation must complete its execution. Missing any deadline may cause catastrophic
consequence on the system. As noted in [33], a HRT system does not necessarily
need to have high throughput requirements. Instead, the timing predictability is the
major concern of the HRT system. That is, e.g., if a video conferencing system is
guaranteed to produce a decoded video within 1 hour, this system still can be called
a HRT system. Of course, this guarantee may not be useful in practice because the
latency of producing an output is beyond being acceptable. For a realistic embedded
streaming system, HRT constraints often come together with high throughput re-
quirements. For instance, a collision avoidance system in the automotive or avionics
domain is such an example. Processing input frames must be completed within a
tight deadline. Missing the deadline will lead to catastrophic consequence for the
vehicles, for instance potential collision to obstacles. At the same time, it has been
reported in [6] that these algorithms require approximately 170 million calculations
for each frame update, with the expectation of being executed on up to 64 processors.

1.1.2 Application Characterization

Although the requirements presented in Section 1.1.1 seem strict, streaming applica-
tions often contain ample amount of parallelism which can be exploited to satisfy
the requirements. Therefore, a characterization of the application properties is
needed, which heavily influences and motivates the solutions proposed in this thesis.
In this section, streaming applications from different domains are characterized in
terms of availability of parallelism and its different forms, computation and data
communication characteristics, and adaptive behavior. The selected application
domains contain those that are commonly used in embedded system, including
video processing, wireless communication, and image processing/computer vision.
Below we start by defining different forms of parallelism.
The type of parallelism is often categorized into three forms as follows:

1.1. Embedded Streaming System Design 5

Compressed Uncompressed
video stream . video stream
Entropy Inverse /a\ Deblocking

decoding | quantization IDCT * filter
l
l
l
| AN
| —| Intra Frame
: prediction buffer
l
|
| MC
: prediction
1

Figure 1.2: Block diagram of a H.264 decoder (taken from [18]). Each task is
represented by a rectangular block.

1. Task-Level Parallelism (TLP): TLP refers to running different tasks of an
application concurrently.

2. Data-Level Parallelism (DLP): DLP refers to running the same set of operations
on multiple datum simultaneously.

3. Pipeline-Level Parallelism (PLP): PLP refers to running different iterations of
a pair of producer and consumer tasks simultaneously.

In literature, TLP is often referred as thread level parallelism [58]. For instance,
the block diagram of an H.264 decoder is depicted in Figure 1.2. Its computation
can be partitioned into several tasks shown as blocks. Some of these tasks can run
on different processors concurrently, thereby increasing the performance. DLP
can be considered as a special case of instruction level parallelism [58], which was
intensively studied in the past. The difference lies in the fact that DLP is explored
at coarser level, e.g., at the processor level, whereas instruction level parallelism
is exploited at finer level, e.g., using different functional units such as multiple
Arithmetic and Logic Unit (ALU), floating point multipliers, ezc. For instance in
case of the H.264 video decoding, executing several video frames simultaneously on
different PEs results in performance gain. PLP is an important form to exploit when
parallelizing stateful computation (computation with cyclic dependencies) [54].

Video processing applications are in general good candidates for parallelization
and demonstrate inherently adaptive behavior. For instance, a H.264 decoder
contains major tasks, such as motion estimation, intra prediction, inverse discrete
cosine transform, deblocking filter, and entropy coding. The H.264 decoder operates
on data as set of Groups of Pictures (GoP). A GoP contains a set of frames. Several
slices constitute a frame. Finally, a slice consists of several marcoblocks. Parallel
scalability of H.264 video decoding is empirically studied in [85]. Large amount
of DLP is shown to exist at different levels. The authors emphasize that DLP at

6 Chapter 1. Introduction

different levels must be explored and especially at frame and marcoblock levels. In
addition, the H.264 decoder also exhibits adaptive application behavior, namely
three main types of slices/frames: I, P, and B types. For instance, a typical GoP
consists of a I-P-B-B-P-B-B sequence of frames. On the one hand, processing an
I-frame is independent from other frames. On the other hand, processing a P-frame
depends on one or more previous frames, whereas processing B-frames depends on
previous and future frames.

Software-Defined Radio (SDR) [88] applications also exhibit high paralleliza-
tion opportunity and run-time adaptivity. For instance, the authors in [77] show
that a 3G protocol, namely Wideband Code Division Multiple Access (WCDMA),
demonstrates adaptive application behavior at different levels due to different op-
eration modes and states. In the active mode, all computational tasks are active to
process high rate traffic, whereas all tasks process at low rate in the control-hold
mode. In the active mode, strict HRT requirements must be guaranteed to avoid
buffer overflow, while the timing requirements are much more relaxed in the idle
mode. The authors in [77] further characterize the computational workload of the
tasks in the WCDMA protocol. Computationally intensive tasks, such as Branch
Metric Calculation and Add Compare Select, contain enormous amount of DLP and
TLP. This fact can be exploited to achieve an efficient parallel implementation. The
authors in [130] study the computational workload of major 4G tasks. The tasks,
such as Space Time Block Codes and Vertical Bell Laboratories Layered Space-time,
contain abundant amount of DLP.

Computer vision is another important target application domain of embedded
streaming systems. The applications in this domain are widely used in the fields of
automotive, robotics, medicine, etc. Disparity Map [82] is such an example applica-
tion that is used for adaptive cruise control on robotics or vehicles. It continuously
processes a pair of images taken at slightly different positions. A disparity map
is then computed in which depth information of all objects is represented. Since
image processing kernels are often used, computer vision and image processing
applications are categorized together in this thesis. In general, the applications in
this domain contain large amount of DLP and TLP [121]. Typically, the same
operations are performed repeatedly on all pixels in each image. At a higher level,
there exists a few data dependencies between images in many applications. In this
case, DLP at the image level can be also exploited. Next to DLP, different tasks of
an application can execute normally in a feedforward pipeline fashion. Thus, there
also exits a large amount of TLP and PLP to explore. In some applications, adap-
tive application behavior is an inherent part. For example, Feature Tracking [81]
alms at extracting motion information from a set of consecutively captured images.
During its execution at run-time, the features are first extracted. The number of

1.1. Embedded Streaming System Design 7

extracted features and their width are expressed as parameters. The parameter values
cannot be completely determined at compile-time and their values must be updated
at run-time.

Finally, a collection of 65 real-life streaming applications is characterized in the
StreamIT benchmark suit [116], to study their impact on language and compiler de-
sign. The applications are from different domains including video/audio processing,
graphics rendering, DSP, and encryption. An important finding is that DLP should
be considered as the first class citizen for performance optimization. In another im-
portant finding, the authors emphasize that cyclic data dependencies are uncommon
in the application specifications. Around 90% of the studied benchmarks does not
have cyclic data dependencies.

1.1.3 Platform Implications

Traditionally, the solution to achieve higher performance always involves the design
of a system with higher frequency. However, as the technology node reaches below
100 nm, a single processor running at high frequency leads to extremely high power
consumption [73]. Using Multi-Processor System-on-Chip (MPSoC) platforms
partially addresses this problem by running processors at a lower frequency, which
reduces power consumption. An MPSoC [132] is a very large scale integration sys-
tem that incorporates most or all the components, including multiple programmable
Processing Elements (PE) !, peripheries, and memories, necessary for an application.
It is widely acknowledged that MPSoC platforms are the best candidate to cope with
various increasing requirements for embedded streaming systems. This thesis fo-
cuses on two important components, namely multiple PEs and the interconnection
transferring data between them.

As the technology node further shrinks, chips with the same size of die is
capable of accommodating more PEs. Together with the increasing performance
requirements as motivated previously in Section 1.1.1, it can be expected that the
number of PEs on a single chip will continue to increase. The processing part
of an MPSoC platform for mobile devices is shown in Figure 1.3. Normally, the
platform is equipped with multi-core CPUs which handle high-level applications,
such as rendering Web pages and user interface functionalities. Next to the multi-
core CPU, the multi-core GPU contains a set of PEs, which performs 2D/3D
graphical processing. For instance, the Nvidia Tegra 4 [10] platform offers a quad-
core CPU and a 72-core GPU. In addition to CPU and GPU, there are other
programmable processors dedicated to certain class of functionalities. For example,
a dedicated processor is often used to handle wireless communication protocols. To

"The term “PE” is used interchangeably with “core” or “processor” in this thesis.

8 Chapter 1. Introduction

P
(Quti-core cPU) (____GPU___) oo

[On-chip communication infrastructure]

D) iceo (Audio Processor) [Image Processor]
Processor

Figure 1.3: Processing part of an MPSoC platform for mobile devices from Nvidia
(taken and simplified from [11])

SIMD I SIMD I
(Control CPU) % Cluster

()

Accelerator
[E (Shared Memory)

Figure 1.4: Template of a baseband processor (taken and simplified from [103]). All
interfaces and peripheries are omitted.

be able to support multiple protocols, a programmable solution at the physical layer
has emerged. For a baseband processor using the SDR technique, its template is
illustrated in Figure 1.4. It consists of a control CPU for the processing protocol
stack and hosting OS to orchestrate computation on other parts of the platform. For
computationally intensive parts of applications, several Single Instruction Multiple
Data (SIMD) clusters are used to support different algorithms in various wireless
protocols. For instance, the Ardbeg [131] architecture has two SIMD clusters
with one PE in each cluster. A PE is mainly a SIMD core with local memory.
X-GOLD [103] is another instance of a baseband processor. It mainly differs from
Ardbeg in the number of SIMD cores and size of local memory.

In addition to the PEs on an MPSoC platform, another important architectural
element is the on-chip communication infrastructure. Network-on-Chip (NoC) [27]
as the communication paradigm has emerged to alleviate the problem of platform
scalability and its design has been one of the hottest research topics in the past decade.
Zthereal [53] and Xpipes [28] are two prominent examples of NoC developed in
academia. Athereal provides bandwidth guarantees and thus it is more suitable

1.1. Embedded Streaming System Design 9

Synthesis/
Compilation

Quality

Implementation

Figure 1.5: X-chart: a general design process (adopted from [50]).

for real-time systems due to bounded communication latency. Commercial NoC
solutions [3] also have been integrated into the state-of-art MPSoCs for mobile
phones.

1.1.4 Model-based Desigh Methodology

The high system requirements presented in Section 1.1.1 and platform complexity
presented in Section 1.1.3 impose huge design challenges for designers to develop an
efficient system manually. The traditional design process at a low-level of abstraction
becomes very error-prone and time-consuming. It is widely recognized in the
research community that rising the level of abstraction to Electronic System Level
(ESL) [50] seems inevitable to increase the design productivity.

A complete design flow defined in [50] is shown in Figure 1.5. For the specifi-
cation layer sitting on the top, an important component is called behavioral model.
The behavioral model is specified either in certain programming language, such
as C/C++/SystemC, CAL [38], StreamIT [117], Verilog/VHDL, or graphical
representations, such as LabVIEW-G [20] and Simulink [8]. Different from general
programming, a behavioral specification used for embedded system design normally
complies with the underlying Model of Computation (MoC). A MoC [74] defines
components and communication protocols that constraint the mechanism by which
components can interact. A MoC is a formal model of how computation works.
Consequently, adopting MoCs during the design process allows automated tools
to reason about both functional and non-functional properties of an application.
In the context of this thesis, only concurrent MoCs are considered because they
are the natural way to express parallelism in streaming applications in an explicit
way. Normally, a concurrent MoC describes an application by a directed graph

10 Chapter 1. Introduction

Expressiveness Implementation

and succinctness efficiency analyzability

RPN

KPN

|
|

SADF
BDF
MADF

PN
VPDF
FSM-SADF

PSDF
PPN

CSDF
CG
SDF

HSDF

(a) Expressive hierarchy of MoCs. (b) Three aspects when comparing MoCs.
The MoCs considered in this thesis
are highlighted by the boxes.

Figure 1.6: Comparison of dataflow MoCs for streaming applications (taken and
extended from [112]). The MoCs underlined are proposed in this thesis.

where nodes are application tasks representing computation and the arcs represent
communication. Consequently, MoCs greatly facilitate parallelizing compilers to
perform aggressive optimizations. Therefore, both industrial and academic design
flows extensively adopt different MoCs.

Figure 1.6 shows different MoCs widely used for modeling streaming applica-
tions. They differ in expressiveness, implementation efficiency, and compile-time
analyzability*. Figure 1.6(a) shows the expressive hierarchy of different MoCs. The
expressiveness and succinctness [112] of a MoC indicate which system can be mod-
eled and how compact the models in these MoCs are. In most of cases, an arrow
from MoC A to MoC B indicates that that a model in MoC A can be transformed
to an input-output equivalent model in MoC B. In general, the MoCs with high
expressiveness exhibit low compile-time analyzability. Similarly, the MoCs with

2 Analyzability is referred as decidability in [55].

1.1. Embedded Streaming System Design 11

high expressiveness generally have lower implementation efficiency. The analyz-
ability of a MoC [112] is determined by the availability of analysis and synthesis
algorithms at compile-time and the run-time need for an algorithm on a graph with
a given number of nodes and edges. The third aspect, implementation efficiency
of aMoC [112] is decided by the complexity of the run-time scheduling algorithm
problem and the (code) size of the resulting schedules. When comparing adaptive
MoCs, we also consider the incurred performance overhead during run-time re-
configuration. As shown in Figure 1.6(b), Reactive Process Network (RPN) [46],
Kahn Process Network (KPN) [64], Scenario-Aware Data Flow (SADF) [114], and
Boolean Data Flow (BDF) [32] are Turing-complete MoCs, thereby being highly
expressive. That is, this type of MoC is able to perform any computation that any
other computer is capable of. However, these MoCs do not offer many possibilities
of analysis at compile-time. At the bottom part of Figure 1.6(b), the MoCs, such
as Synchronous Data Flow (SDF) [76], Cyclo-Static Data Flow (CSDF) [30], and
Polyhedral Process Network (PPN) [125], exhibit high compile-time analyzability.
They are discussed in detail in Chapter 2. For these MoCs, various powerful analysis
and compilation/synthesis methods have been developed over the past twenty years,
e.g., to compute throughput [52,87], buffer sizes [110], efficient static schedules
for software compilation [91, 107, 124], and hardware synthesis [63, 120]. How-
ever, these MoCs are restricted to static application behavior. Modern streaming
applications with adaptive behavior as explained in Section 1.1.2 cannot be ex-
pressed using these MoCs. To model adaptive behavior while having certain degree
of compile-time analyzability, different adaptive MoCs, such as Mode-controlled
Data Flow (MCDF) [89], Finite State Machine (FSM)-based Scenario-Aware Data
Flow (FSM-SADF) [47], Parameterized SDF (PSDF) [29], and Variable-rate Phased
Data Flow (VPDF) [129], have been proposed. For these MoCs, functional prop-
erties of the adaptive MoCs can only be partially decided at compile-time, and
run-time verification is thus needed. For SADF, it is even possible to statically
analyze functional properties at compile-time.

To take advantage of different properties of MoCs, some design flows separate
the analysis model from the implementation model. Here the implementation model
is the one that is close to the final implementation to be executed on the real MPSoC
platform, whereas the analysis model is primarily used for analyzing non-functional
properties. In this thesis, the timing property is of particular interest. For instance
in the current industrial practice, a disciplined version [70] of C is used as the
implementation model to program embedded radio applications, including code
generation for communication and/or synchronization. On the other hand, analysis
of real-time guarantees, required buffer sizes, etc., is performed on the SDF MoC,
which serves as the analysis model.

12 Chapter 1. Introduction

Next to the behavioral model, the specification layer of the design flow shown
in Figure 1.5 may contain platform constraints that explicitly specify the platform
model. As explained in Section 1.1.3, that is, e.g., the type and number of PEs, the
memory type and capability, and the interconnection between PEs. In addition to
the platform constraints, other constraints can be used as input to the design flow in
this thesis, such as timing constraints. In particular, the timing constraints are the
essential property of a real-time streaming system.

With the behavior model, namely MoCs, and constraints in place, they are
transformed in a step, called synthesis or compilation (in case of software models).
This step normally determines e.g., allocation of PEs and necessary buffers if not
given before hand, spatial mapping® of application tasks on PEs, temporal scheduling
of all tasks on a PE, etc. Obtaining an efficient solution for these problems is
certainly very challenging. In most cases, all possible combinations of PE allocation
and assignment of tasks to PEs constitute an enormous design space with different
conflicting objectives. For example, maximum throughput should be achieved while
resource usage needs to be minimized. To efficiently search the design space and find
an optimum solution, various Design Space Exploration (DSE) approaches proposed
in the literature try to find a solution that is called Pareto-optimal point in the design
space if, e.g., higher throughput cannot be achieved with fewer PEs. Currently,
existing DSE approaches search the design space using different algorithms, e.g.,
stepwise refinement in [51], heuristics in [109] and [111], evolutionary algorithms
in [100, 115], branch-and-bound in [34], and constraint programming in [139]. The
synthesis/compilation step outputs a structure model as shown in Figure 1.5. Here
the structure model is (or closer than the behavioral model to) the final, executable
implementation. It may be in the form of pin-accurate netlists or Transaction-Level
Models (TLM). As an output next to the structure model, guality numbers represent
non-functional properties, e.g,. throughput, end-to-end latency, etc.

An Incarnation: Daedalus®T Design Flow

The Daedalus®™ [23] design flow is based on the initial Daedalus [96,97] framework,
which covers all three layers in Figure 1.5, namely system-level DSE, synthesis,
and prototyping of MPSoCs. DaedalusR™ has been recently proposed, as the name
suggests, to address HRT requirements (see Section 1.1.1), The research work of
this thesis has been performed in the context of the Daedalus®T design flow and
an overview of Daedalus®T is shown in Figure 1.7. The grey boxes highlight the
contributions of this thesis, which are explained in details in Section 1.3.

?Task mapping is often also referred as task allocation in literature and both are used interchangeably
in this thesis.

1.1. Embedded Streaming System Design 13

Adaptive Model:
P3N

Adaptive Streaming

Behavioral Model:
SDF
User Input Parallelization: Adaptive Model: | |
(e.g., scheduler) Phrt MADF
Streaming | Application:
Application SANLP

— CSDF Derivation: Analysis Model: HRT Analysis:
Parallelization ' PNtools CSDF Darts.
ey P |
Y

Behavigrpall\‘Model: DSE- Mapping Platform
Sesame Spec.

Spec.
! !
(System Synthesis: ESPAM)
! ! !
‘ ARM l ‘ X86 l ‘ FPGA l

Figure 1.7: Daedalus®T design flow. The grey boxes highlight the contributions of
this thesis. The dashed box and lines denote the parts that are currently not fully
implemented.

The input to Daedalus®” is a streaming application specified as a sequential C
code with restrictions, called Static Affine Nested Loop Program (SANLP) [125] (see
Section 2.1). Many streaming applications are amenable to this restricted form [26].
Moreover, an early study [106] has shown that, out of 100,000 lines of loops, 53%
of them can be converted to SANLPs. In the Parallelization step, a SANLP is
automatically translated to its equivalent behavioral model, the PPN MoC using
the PNgen compiler [125]. The resulting PPN exposes certain form of parallelism,
specifically TLP of the initial SANLP. Currently, the PNgen compiler also extracts
DLP from a SANLP in a particular way using a combination of transformations [86].
The formal definition of SANLP and the PPN MoC is detailed later in Section 2.1.
Alternatively, application designers also have the flexibility to specify streaming
applications as (C)SDF graphs directly. It is sometimes more convenient to do so
using tools based on graphical interfaces. For adaptive streaming applications, they
are specified as two new MoCs proposed in this thesis. Their details can be found in
Chapter 6 and Chapter 7, respectively.

In the initial Daedalus framework, the second step, namely DSE, is realized
using the Sesame [100] tool, which takes a PPN as input and generates a Pareto-
optimal set of design points. A design point consists of a platform and mapping
specifications. For HRT streaming systems, an analysis model, the CSDF MoC, is
required. In Daedalus®T, a PPN derived from a SANLP needs to be converted to
its equivalent CSDF graph. Subsequently, the Darts tool replaces time-consuming
DSE and performs the HRT analysis [22] on the resulting CSDF graph. The main

14 Chapter 1. Introduction

advantage of the HRT analysis is the fast, yet accurate determination of the minimum
number of PEs needed to schedule the CSDF graph and leveraging well-known HRT
multiprocessor scheduling algorithms. The HRT analysis on the CSDF MoC is
detailed in Section 2.3.

Finally in the third step, namely System Synthesis, the ESPAM [95, 96] tool
takes a PPN with the platform and mapping specifications, and produces an ex-
ecutable implementation on various platforms. The platform consists of several
tiles interconnected via certain communication infrastructure. On the FPGA-based
platform, each tile consists of a PE in the form of the MicroBlaze [13] softcore
from Xilinx with its local program and data memories. A communication memory
resides in each tile and it is used as data storage for communication between appli-
cation tasks mapped to different tiles. The interconnection between all tiles, the
DDR off-chip memory, and peripheries is an AXI crossbar switch [2]. In principle,
the crossbar switch can be replaced by e.g., the Athereal [53] NoC, to provide
guaranteed communication latency. For the PEs, ARM Cortex A9 [1] cores can be
instantiated on the Xilinx Zynq [16] platform instead of the MicroBlaze softcore.
In Daedalus, a static schedule [124] is used on each PE to temporally schedule all
tasks allocated on the PE. Alternatively, a light-weight and multi-threaded OS, Xilk-
ernel [14], is built on top of a PE to perform run-time scheduling. Later, support
for the x86 platform has been added to the ESPAM backend [39]. The target is
normally desktop multi-core platform, such as Intel i7-920 processor. For the x86
platform, application tasks implemented as threads can be dynamically scheduled by
OS, such as Windows or Linux. In this case, OS either determines allocation and
temporal schedule of all threads at run-time. Alternatively, the threads are statically
bound to a PE by assigning core affinity. In the latter case, no run-time migration of
threads is required, thereby reducing performance penalty. In Daedalus®T, a RTOS,
specifically FreeRTOS [7], is chosen to run on each PE. FreeRTOS implements
fixed-priority scheduling and supports Xilinx FPGAs. The hardware and software
architecture explained here is extensively used later throughout case studies and
experiments.

1.1.5 Summary

Here, we summarize the key insights that can be drawn from the discussion in
previous sections.

From the design requirements point of view, the following are the most signifi-
cant requirements.

* Embedded streaming applications pose ever increasing throughput require-
ments.

1.2. Problem Statement 15

* Embedded streaming systems require Hard Real Time (HRT) guarantees.
Furthermore, it is not uncommon to have both HRT constraints and high
throughput requirements at the same time.

From the application characteristics point of view:

¢ Data Level Parallelism (DLP) and Task Level Parallelism (TLP) are the most
important forms of parallelism to exploit, which result in an efficient parallel
implementation to achieve high throughput requirements.

* Embedded streaming applications commonly exhibit adaptive behavior in
the form of parameter reconfigurations at run-time. This behavior should be
explicitly captured in the application specification.

From the architectural perspective:

® An increasing number of Processing Elements (PE) on MPSoC platform is
deployed to meet stringent performance requirements. The key question is
thus how to utilize them efficiently.

® Network-on-Chip (NoC) emerges and is expected to become the standard
communication infrastructure of an MPSoC platform in the near future. A
corresponding design methodology is desired to program applications on
NoC-based MPSoC platforms to manage communication latency.

From the design methodology perspective:

* Raising the abstraction level to ESL seems inevitable to cope with ever increas-
ing complexity. To fully leverage the benefit of ESL, highly automated tools
are needed.

® A central component of an ESL solution is the Model-of-Computation (MoC).
Various MoCs, such as (C)SDF, PPN, SADF, PSDF, and VPDF, are extensively
adopted to program and/or analyze embedded streaming applications.

1.2 Problem Statement

As motivated in Section 1.1.5, a de-facto solution to the problem of designing
complex embedded streaming systems is the adoption of an ESL methodology and
highly automated tools. In this thesis, we choose the Daedalus®T design flow as a
particular instance. We see several components missing in Daedalus®! to address
the requirements outlined in Section 1.1.5 and to efficiently exploit the proper

16 Chapter 1. Introduction

application characteristics and emerging architectural features. Therefore, we address
three main problems in this thesis as described below.

We first observe that the current MoC, namely the PPN MoC, used in the
Daedalus®T design flow works well as an implementation model. It is possible to
efficiently generate code [95] automatically from the PPN MoC for task execution,
communication, and synchronization. However, analysis on the PPN MoC, such
as for timing guarantees, is rather difficult if not impossible. Both in DaedalusR”
and the current industrial practice [90], a more analyzable MoC, such as (C)SDF
MoC, is adopted. So far, this analysis model is created manually. However, creating
analysis model from an implementation model manually may introduce disparity
between both types of models. It is thus hard to guarantee correctness of the analysis
model. Based on the discussion above, we formulate the first problem addressed in
this thesis: derive automatically a CSDF graph as the analysis model from an
equivalent PPN used as the implementation model.

Generally, in the Synthesis step shown in Figure 1.5, the traditional DSE ap-
proaches like Sesame consider only different mapping and architectural alternatives.
With respect to the behavior model, only a single application specification is con-
sidered during DSE. This single application specification is normally given by the
application designer. Or, the PNgen compiler generates one instance of a PPN that
exposes TLP. However, this application specification may not be the most appro-
priate one for the considered MPSoC platform. That is, the specification may not
expose enough parallelism, particularly in the form of DLP, to satisfy the required
performance. This is because application designers mainly focus on realizing certain
application behavior, including the identification of the functionality of application
tasks and the synchronization/communication between these tasks. Moreover, the
computational capacity and communication cost of the MPSoC platform are often
not taken into account when developing a parallel application specification. In
particular, as mentioned in Section 1.1.3, the MPSoC platform is becoming more
communication-centric with NoC as the interconnection. As a consequence, over-
whelming communication between application tasks may cancel out the expected
performance improvement when the application tasks are executed concurrently.
Therefore, the second problem addressed in this thesis aims at effectively exploiting
DLP in a streaming application. The second problem consists of two sub-problems.
We formulate the first sub-problem in the context of Daedalus®T as: for an initial
PPN, investigate an approach to derive an alternative PPN that contains only
independent and load-balanced application tasks, if such an alternative PPN
exists.

On the other hand, if more parallelism is revealed than needed when selecting an
alternative application specification, it will overload the underlying MPSoC platform.

1.3. Research Contributions 17

The overwhelming parallelism leads to an inefficient task allocation. That is, the
excessive number of tasks cannot be efficiently allocated and temporally scheduled
on the available PEs. Moreover, the excessive number of tasks introduces significant
memory overhead for both code and data. When a streaming application is initially
modeled using the SDF MoC and requires to meet HRT constraints, we exploit
DLP and TLP simultaneously by actor (i.e., tasks) unfolding and transform the
initial SDF graph to its equivalent CSDF graph. Therefore, we formulate the second
sub-problem in the context of DaedalusRT as: for an initial SDF graph, derive an
alternative CSDF graph that exhibits just-enough parallelism to fully utilize
the available PEs, such that HRT constraints are met.

The third problem addressed in this thesis relates to adaptive application be-
havior as explained in Section 1.1.2. Such behavior is usually expressed by using
parameters whose values need to be reconfigured and updated at run-time. We call
such parameters dynamic parameters and their values are not known at design-time.
Models such as (C)SDF or PPN used in the Daedalus®T design flow have the lim-
itation of allowing only static parameters. The values of the static parameters are
fixed at design-time and they can not be changed at run-time. As a consequence,
the adaptive behavior is not amenable to the models such as SDF/CSDF and PPN.
Therefore, more expressive MoCs are needed. The MoCs such as BDF and KPN
shown in Figure 1.6 provide capability of modeling adaptive application behavior.
However, these general MoCs are not analyzable at design-time. Therefore, we are
interested in an adaptive MoC which is able to capture adaptive/dynamic behavior in
applications while allowing design-time analyzability to some extent. Furthermore,
if an adaptive streaming application has HRT requirements, the existing methods
lack the ability to efficiently reason about timing behavior based on the chosen
adaptive MoC. Moreover, a feasible and efficient way of implementing such an
adaptive MoC on MPSoC platforms has not been taken into consideration. There-
fore, as the third problem, we investigate new adaptive MoCs to model adaptive
streaming applications and techniques to schedule those adaptive MoCs under
HRT constraints.

1.3 Research Contributions

To address the problems outlined in Section 1.2, this thesis provides several contri-
butions highlighted using the grey boxes in Figure 1.7.

To address the first problem, we develop a step, called CSDF Derivation, in this
thesis as shown in Figure 1.7. This step primarily contains an algorithm, published
as a major part of [23], to derive the analysis MoC, i.e., the CSDF MoC, from
the implementation model, i.e., the PPN MoC. We present such an algorithm in

18 Chapter 1. Introduction

Chapter 3. This algorithm is a key enabler of a highly automated design flow, namely
Daedalus®™ [23], for designing embedded streaming systems with hard real-time con-
straints. The automated CSDF derivation avoids manual creation of analysis models,
thereby greatly improving the productivity of designing such complex embedded
streaming systems. Beyond the above-mentioned advantage, automated CSDF deriva-
tion can be applied together with other compilation frameworks in which CSDF is
adopted as the intermediate representation, e.g., the compilation toolchain [21] for
the > C language, the MAMPS [62] design flow, and the CompSoC [57] framework.

Our second contribution consists of the two Parallelization steps shown in
Figure 1.7 addressing the second problem stated in Section 1.2. First, we propose
in Chapter 4 a parallelization approach next to the PNgen compiler for the PPN
MoC, called communication free partitioning, published in [138] and [137]. Our
approach analytically determines the maximum amount of DLP in the form of
a set of communication-free partitions from a given PPN specification. When
mapping theses partitions onto different PEs, the communication between PEs
is completely eliminated. This parallelization approach is thus highly relevant
to emerging NoC-based MPSoC platforms as mentioned in Section 1.1.3, where
communication latency may play a significant role on the total execution time
of an application. Our approach also can be applied to applications with cyclic
dependences, which are traditionally considered as performance bottleneck and hard
to parallelize. Second, we propose in Chapter 5 a Parallelization step for the SDF
MoC, published in [135], to exploit just-enough parallelism by task unfolding
that fully utilizes the underlying MPSoC platforms, while meeting hard real-time
constraints. More specifically, our solution determines simultaneously which SDF
actors (i.e., tasks) to unfold by what factor, and the allocation of unfolded actors
onto PEs. We show that the solution space of the problem is bounded and derive
its upper bounds. We then propose an efficient algorithm to find a solution to the
problem, while the obtained solution meets a pre-defined quality.

To address the third problem in Section 1.2, we introduce in Chapter 6 and
Chapter 7 two new MoCs, Parameterized Polyhedral Process Networks (P°N),
published in [136], and Mode-Aware Data Flow (MADF), for modeling adaptive
streaming applications. We further define the operational semantics of both MoCs,
which allows flexible update of parameter values at run-time. In addition, we propose
a consistency check approach for PN, which is applied at both, compile-time and
run-time. Based on the P>N semantics, we devise a compile-time approach to extract
relations between parameters if they are dependent. This leads to a consistent param-
eterization of the P> N MoC and moreover, it simplifies the run-time consistency
check. The simplification reduces the run-time overhead. Subsequently, we extend
the capability of the hard real-time scheduling framework used in DaedalusR”

1.4. Thesis Organization 19

for CSDF to handle MADF. We propose a novel protocol that allows efficient mode
transitions, i.e., parameter reconfiguration. As a result, the transition protocol
enables us to show an efficient analysis technique to reason about guaranteed timing
behavior, particularly during mode transitions.

All contributions mentioned above are implemented either in Daedalus or in
DaedalusR”. Furthermore, both Daedalus and DaedalusR™ are publicly available [4]
for further research. A detailed user manual [24] including an installation guideline
and step-by-step tutorial is also available for the benefit of the research community.

1.4 Thesis Organization

The remaining part of this thesis is organized in a self-contained way. That is,
every chapter starts with more elaborated introduction and scope of work. More
importantly, each chapter has its own related work.

In Chapter 2, we first introduce ditferent MoCs considered in this thesis, partic-
ularly (C)SDF and PPN, to better understand our research contributions in later
chapters.

In Chapter 3, we present the algorithm to derive the CSDF MoC from its
equivalent PPN MoC. The benefit of the proposed algorithm is demonstrated in the
context of the Daedalus®" real-time extension.

In Chapter 4, we present the analytical approach to determine the number of
communication-free partitions of a PPN. Subsequently, we present the procedure to
transform the initial PPN to an alternative PPN that has only set of communication-
free partitions, if possible.

In Chapter 5, we present the approach to simultaneously unfold an acyclic SDF
graph to its functionally equivalent CSDF graph and allocate all unfolded actors
onto PEs, such that HRT constraints are met.

In Chapter 6, we introduce a new adaptive MoC, called Parameterized Polyhedral
Process Networks (P’N) and its operational semantics. Subsequently, we show how
consistency check can be performed for P°N at compile-time and run-time.

In Chapter 7, we present the hard real-time scheduling approach for another
adaptive MoC, which we propose and call Mode-Aware Data Flow (MADF). The
approach contains a novel protocol to change scenarios. Based on the protocol,
we derive an efficient analysis to reason about timing guarantees, not only within
individual scenarios, but also during scenario transitions.

Finally, we conclude this thesis with a summary and some suggestions for future
work.

20

Chapter 1. Introduction

