

Adaptive streaming applications : analysis and implementation models Zhai, J.T.

Citation

Zhai, J. T. (2015, May 13). Adaptive streaming applications : analysis and implementation models. Retrieved from https://hdl.handle.net/1887/32963

Version:	Not Applicable (or Unknown)
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/32963

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/32963</u> holds various files of this Leiden University dissertation

Author: Zhai, Jiali Teddy Title: Adaptive streaming applications : analysis and implementation models Issue Date: 2015-05-13

Adaptive Streaming Applications: Analysis and Implementation Models

Jiali Teddy Zhai

Adaptive Streaming Applications: Analysis and Implementation Models

PROEFSCHRIFT

ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof.mr. C.J.J.M. Stolker, volgens besluit van het College voor Promoties te verdedigen op woensdag 13 mei 2015 klokke 10:00 uur

door

Jiali Teddy Zhai geboren in 1982

Samenstelling promotiecommissie:

Promotor:	Prof. Dr. Ir. Ed F.A. Deprettere	Universiteit Leiden
Co-Promotor:	Dr. Todor P. Stefanov	Universiteit Leiden
Overige leden:	Prof. DrIng. Jügen Teich	Universität Erlangen-Nürnberg
	Dr. Ingo Sander	KTH Kungliga Tekniska högskolan
	Prof. Dr. Ir. Twan A.A. Basten	Technische Universiteit Eindhoven
	Prof. Dr. Joost N. Kok	Universiteit Leiden
	Prof. Dr. Farhad Arbab	Universiteit Leiden
	Prof. Dr. Harry A.G. Wijshoff	Universiteit Leiden

Adaptive Streaming Applications: Analysis and Implementation Models Jiali Teddy Zhai. -Dissertation Universiteit Leiden. - With ref. - With summary in Dutch.

Copyright © 2015 by Jiali Teddy Zhai. All rights reserved.

This dissertation was typeset using LATEX in Linux. Cover designed by Shanshan Yang

Printed in the Netherlands.

Contents

Ta	ble o	Contents	v
Li	st of]	Figures	ix
Li	st of '	lables	xiii
1	Intr	oduction	1
	1.1	Embedded Streaming System Design	2
		1.1.1 Design Requirements	3
		1.1.2 Application Characterization	4
		1.1.3 Platform Implications	7
		1.1.4 Model-based Design Methodology	9
		1.1.5 Summary	14
	1.2	Problem Statement	15
	1.3	Research Contributions	17
	1.4	Thesis Organization	19
2	Moo	lels-of-Computation (MoC)	21
	2.1	Polyhedral Process Networks (PPN)	21
	2.2	Actor-based Data Flow MoCs	29
		2.2.1 Synchronous Data Flow (SDF)	30
		2.2.2 Cyclo-Static Data Flow (CSDF)	32
	2.3	Hard Real Time Scheduling of Acyclic (C)SDF Graphs	33
3	Aut	omated Analysis Model Construction: Deriving CSDF from Equiv-	J.
	alen	t PPN	39
	3.1	The Algorithm	40
	3.2	Experimental Results	47

4	Exp	loiting Maximum Data-level Parallelism without Inter-processor	•
	Con	nmunication	51
	4.1	Motivating Example	53
	4.2	Related Work	57
	4.3	Finding all Dependences in a PPN	58
	4.4	Computing the Number of Communication-free Partitions	60
	4.5	Communication-free Partitioning Algorithm	64
	4.6	Experimental Results	69
5	Exp	loiting Just-enough Parallelism in Hard Real-time Systems	75
	5.1	Related Work	77
	5.2	Unfolding of SDF Graphs	78
	5.3	Problem Formulation	80
	5.4	Period Scaling under Hard Real-time Scheduling	83
	5.5	Bounding Solution Space	83
	5.6	The Algorithm	87
	5.7	Experimental Evaluation	92
6	A N	lew MoC for Modeling Adaptive Streaming Applications	99
	6.1	Related Work	100
	6.2	Model Definition	101
		6.2.1 Parameterized Polyhedral Process Networks	101
		6.2.2 Operational Semantics	104
	6.3	Consistency	107
	6.4	Experimental Results	111
7	Har	d Real-time Scheduling of Adaptive Streaming Applications	115
	7.1	Related Work	117
	7.2	Model Definition	118
		7.2.1 Mode-Aware Data Flow (MADF)	118
		7.2.2 Operational Semantics	123
		7.2.3 Mode Transition	125
	7.3	Hard real-time Scheduling of MADF	130
	7.4	Case Study	139
8	Sun	nmary and Outlook	145
Bi	bliog	raphy	149
Sa	menv	vatting	163

List of Publications	169
Index	171
List of Abbreviations	173

List of Figures

1.1	Three examples of embedded streaming applications.	2
1.2	Block diagram of a H.264 decoder (taken from [18]). Each task is	
	represented by a rectangular block.	5
1.3	Processing part of an MPSoC platform for mobile devices from Nvidia (taken and simplified from [11])	8
1.4	Template of a baseband processor (taken and simplified from [103]).	Q
15	V shouth a sequent design process (a dented from [50])	0
1.5 1.6	Comparison of dataflow MoCs for streaming applications (taken and extended from [112]). The MoCs underlined are proposed in	7
1.7	this thesis	10
	currently not fully implemented	13
2.1	A polyhedron	23
2.2	The polyhedral representation of the execution of function read_imag	e
	in Listing 1	29
2.3	PPN corresponding to the SANLP in Listing 1	29
2.4	An example of an image filter algorithm modeled using the SDF MoC.	30
2.5	A CSDF graph G_1 of a pacemaker application (taken from [99])	33
2.6	An example of a CSDF graph and its real-time task-set representa- tion. Since the execution of the actors repeats indefinitely, the last execution of $A_{2,1}, A_{3,1}, A_{3,2}$, and $A_{3,3}$ in the figure is truncated and	
	shown in black	36
3.1	CSDF graph equivalent to the PPN shown in Figure 2.3	41
3.2	Domains of process snk in Figure 2.3.	42

3.3	Suffix tree for the sequence of process variants S_{snk} . The tildes represent the omitted part of the tree.	46
4.1 4.2	An example of a PPN and its communication-free partitions Mapping of the PPN in Figure 4.1(a) onto 2 PEs achieving the maxi-	54
13	mum performance.	55
т.)	PPN after communication-free partitioning.	55
4.4	its mapping	56
4.5	Domain of PPN process P_3 in Figure 4.1(a). The input port domain of IP_3 (surrounded by the solid triangle), output port domain of OP	
	OP_3 (surrounded by the dotted triangle), and dependence relation R_1 (denoted by the arrows between dots)	59
46	Finding transitive dependences of the PPN	61
4.7	The PPN in Figure 4.1(a) after communication-free partitioning	66
4.8	Performance results of mapping the MIPEG encoder onto (a) FPGA-	
	based MPSoC platforms and onto (b) a desktop multi-core platform.	70
4.9	Performance results of mapping the FM radio application onto (a)	
	FPGA-based MPSoC platforms and onto (b) a desktop multi-core	
	platform	71
5.1	(a) An example of an SDF graph and (b) its equivalent CSDF graph	
	by unfolding actor A_3 by factor 3	80
5.2	G_3 : Optimal alternative graph of G_1 in Figure 5.1(a) with unfolding	
	factors $f_2 = 2, f_3 = 4$ when scheduled on 2 PEs	85
5.3	The list produced by the algorithm for G_1 in Figure 5.1(a) on 2 PEs	
	with $\rho = 0.95$.	91
5.4	Period ratio (lower is better).	94
5.5 5.6	An example of an individual. The first replice of A is allocated on	95
5.6	An example of an individual. The first replica of A_1 is anocated on the <i>i</i> th DE and the \hat{f} th mellion of A_1 does not exist	07
57	The ratios of total execution time Ω_1 and total code size Ω_2 for GA_1	96
5.7	and our algorithm. \dots	98
6.1	Comparsion between a PPN and a P ³ N.	102
6.2	Control process and evaluation function.	106
6.3	Consistent execution of process P_2 and P_3 w.r.t. edge E_3	108
6.4	Which combinations (M, N) do ensure consistency of P ³ N?	108
6.5	Two alternatives of Function Check in Figure 6.2(b)	111

6.6	P^3N of our experiment
6.7	Performance results of PPN and P ³ N implementations 113
7.1	An example of MADF graph (G_1)
7.2	Two modes of the MADF graph in Figure 7.1
7.3	Execution of two iterations of both modes SI^1 and SI^2 under self-
	timed scheduling
7.4	An execution of G_1 in Figure 7.1 with two mode transitions under
	the ST transition protocol. MCR1 at time t_{MCP1} denotes a transition
	request from mode SI^2 to SI^1 , and MCR2 at time t_{MCR2} denotes a
	transition request from mode SI^1 to SI^2
7.5	An illustration of the Maximum-Overlap Offset (MOO) calculation, 128
7.6	The execution of G_4 with two mode transitions under Maximum-
,	Overlap Offset (MOO) protocol
7.7	Upper bounds of earliest starting times for transition from mode SI^2
	to SI^1 133
78	Farliest starting times for transition from mode SI^2 to SI^1 with the
/.0	MOO protocol
79	Allocation of all MADE actors in Figure 7.1 to 3 PEc.
7.10	Farliest starting times for transition SI^2 to SI^1 on 2 DEs shown in
/.10	Earnest starting times for transition <i>Si</i> to <i>Si</i> on 2 FES shown in
7 1 1	rigure 7.9
/.11	MADF graph of Vocoder
/.12	Allocation of dataflow actors of Vocoder to 4 PEs. The control edges
	are omitted to avoid cluttering

List of Tables

1.1	Processing requirements for video decoding (taken from [19]) 3
1.2	Processing requirements for image processing (taken from [43]). All applications are assumed to operate at 24 EpsFrame per second
	applications are assumed to operate at 24 1 psi fame per second
2.1	Mathematical notations 22
2.2	Polyhedral notations 23
2.3	Data flow notations
2.4	Notations for HRT scheduling of CSDF MoCs 34
3.1	Additional notations used in Chapter 3 besides the ones introduced
	in Chapter 2
3.2	Consumption/production sequences for actor snk in Figure 3.1 47
3.3	Characteristics of benchmarks and running times to derive their
	corresponding CSDF graphs
3.4	Execution times of the phases in the Daedalus ^{R1} flow for three
	streaming applications on a single MPSoC platform
4.1	Execution time on benchmarks 73
5.1	Additional notations used in Chapter 5 besides the ones introduced
	in Chapter 2
5.2	Benchmark characteristics
5.3	Parameters for the genetic algorithm
7.1	Additional notations used in Chapter 7 besides the ones introduced
	in Chapter 2
7.2	Mapping relation M_2 for actor A_2 in Figure 7.1
7.3	Function MC_5 defined for actor A_5 in Figure 7.1
7.4	Actor parameter for G_1 in Figure 7.1
7.5	WCETs of all actors in Vocoder (in clk.).

7.6	Performance results of four modes of Vocoder in the steady-state.	143
7.7	Performance results for all mode transitions of Vocoder	144