
Adaptive streaming applications : analysis and implementation models
Zhai, J.T.

Citation
Zhai, J. T. (2015, May 13). Adaptive streaming applications : analysis and implementation
models. Retrieved from https://hdl.handle.net/1887/32963
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/32963
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/32963


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/32963 holds various files of this Leiden University 
dissertation 
 
Author: Zhai, Jiali Teddy 
Title: Adaptive streaming applications : analysis and implementation models 
Issue Date: 2015-05-13 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/32963


Adaptive Streaming Applications: Analysis and
Implementation Models

Jiali Teddy Zhai





Adaptive Streaming Applications: Analysis and
Implementation Models

PROEFSCHRIFT

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof.mr. C.J.J.M. Stolker,
volgens besluit van het College voor Promoties

te verdedigen op woensdag 13 mei 2015
klokke 10:00 uur

door

Jiali Teddy Zhai
geboren in 1982



Samenstelling promotiecommissie:

Promotor: Prof. Dr. Ir. Ed F.A. Deprettere Universiteit Leiden
Co-Promotor: Dr. Todor P. Stefanov Universiteit Leiden
Overige leden: Prof. Dr.-Ing. Jügen Teich Universität Erlangen-Nürnberg

Dr. Ingo Sander KTH Kungliga Tekniska högskolan
Prof. Dr. Ir. Twan A.A. Basten Technische Universiteit Eindhoven
Prof. Dr. Joost N. Kok Universiteit Leiden
Prof. Dr. Farhad Arbab Universiteit Leiden
Prof. Dr. Harry A.G. Wijshoff Universiteit Leiden

Adaptive Streaming Applications: Analysis and Implementation Models
Jiali Teddy Zhai. -
Dissertation Universiteit Leiden. - With ref. - With summary in Dutch.

Copyright © 2015 by Jiali Teddy Zhai. All rights reserved.

This dissertation was typeset using LATEX in Linux.
Cover designed by Shanshan Yang

Printed in the Netherlands.



Contents

Table of Contents v

List of Figures ix

List of Tables xiii

1 Introduction 1
1.1 Embedded Streaming System Design . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Design Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Application Characterization . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Platform Implications . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.4 Model-based Design Methodology . . . . . . . . . . . . . . . . . 9
1.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Models-of-Computation (MoC) 21
2.1 Polyhedral Process Networks (PPN) . . . . . . . . . . . . . . . . . . . . . 21
2.2 Actor-based Data Flow MoCs . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Synchronous Data Flow (SDF) . . . . . . . . . . . . . . . . . . . . 30
2.2.2 Cyclo-Static Data Flow (CSDF) . . . . . . . . . . . . . . . . . . . 32

2.3 Hard Real Time Scheduling of Acyclic (C)SDF Graphs . . . . . . . . . 33

3 Automated Analysis Model Construction: Deriving CSDF from Equiv-
alent PPN 39
3.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



vi Contents

4 Exploiting Maximum Data-level Parallelism without Inter-processor
Communication 51
4.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Finding all Dependences in a PPN . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Computing the Number of Communication-free Partitions . . . . . . 60
4.5 Communication-free Partitioning Algorithm . . . . . . . . . . . . . . . 64
4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Exploiting Just-enough Parallelism in Hard Real-time Systems 75
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Unfolding of SDF Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4 Period Scaling under Hard Real-time Scheduling . . . . . . . . . . . . . 83
5.5 Bounding Solution Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.6 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.7 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 A New MoC for Modeling Adaptive Streaming Applications 99
6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2 Model Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.1 Parameterized Polyhedral Process Networks . . . . . . . . . . . 101
6.2.2 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Hard Real-time Scheduling of Adaptive Streaming Applications 115
7.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2 Model Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.1 Mode-Aware Data Flow (MADF) . . . . . . . . . . . . . . . . . . 118
7.2.2 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2.3 Mode Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3 Hard real-time Scheduling of MADF . . . . . . . . . . . . . . . . . . . . . 130
7.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8 Summary and Outlook 145

Bibliography 149

Samenvatting 163



Contents vii

List of Publications 169

Index 171

List of Abbreviations 173





List of Figures

1.1 Three examples of embedded streaming applications. . . . . . . . . . . 2
1.2 Block diagram of a H.264 decoder (taken from [18]). Each task is

represented by a rectangular block. . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Processing part of an MPSoC platform for mobile devices from

Nvidia (taken and simplified from [11]). . . . . . . . . . . . . . . . . . . . 8
1.4 Template of a baseband processor (taken and simplified from [103]).

All interfaces and peripheries are omitted. . . . . . . . . . . . . . . . . . . 8
1.5 X-chart: a general design process (adopted from [50]). . . . . . . . . . . 9
1.6 Comparison of dataflow MoCs for streaming applications (taken

and extended from [112]). The MoCs underlined are proposed in
this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 DaedalusRT design flow. The grey boxes highlight the contributions
of this thesis. The dashed box and lines denote the parts that are
currently not fully implemented. . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 A polyhedron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 The polyhedral representation of the execution of function read_image

in Listing 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 PPN corresponding to the SANLP in Listing 1. . . . . . . . . . . . . . . 29
2.4 An example of an image filter algorithm modeled using the SDF MoC. 30
2.5 A CSDF graph G1 of a pacemaker application (taken from [99]). . . . 33
2.6 An example of a CSDF graph and its real-time task-set representa-

tion. Since the execution of the actors repeats indefinitely, the last
execution of A2,1,A3,1,A3,2, and A3,3 in the figure is truncated and
shown in black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 CSDF graph equivalent to the PPN shown in Figure 2.3. . . . . . . . . 41
3.2 Domains of process snk in Figure 2.3. . . . . . . . . . . . . . . . . . . . . . 42



x List of Figures

3.3 Suffix tree for the sequence of process variants Ssnk. The tildes
represent the omitted part of the tree. . . . . . . . . . . . . . . . . . . . . 46

4.1 An example of a PPN and its communication-free partitions. . . . . . 54
4.2 Mapping of the PPN in Figure 4.1(a) onto 2 PEs achieving the maxi-

mum performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Performance results of mapping the initial PPN and the alternative

PPN after communication-free partitioning. . . . . . . . . . . . . . . . . 55
4.4 The PPN in Figure 4.1(a) after communication-free partitioning and

its mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 Domain of PPN process P3 in Figure 4.1(a). The input port domain

of IP3 (surrounded by the solid triangle), output port domain of
OP3 (surrounded by the dotted triangle), and dependence relation
R3 (denoted by the arrows between dots). . . . . . . . . . . . . . . . . . . 59

4.6 Finding transitive dependences of the PPN. . . . . . . . . . . . . . . . . . 61
4.7 The PPN in Figure 4.1(a) after communication-free partitioning. . . . 66
4.8 Performance results of mapping the MJPEG encoder onto (a) FPGA-

based MPSoC platforms and onto (b) a desktop multi-core platform. 70
4.9 Performance results of mapping the FM radio application onto (a)

FPGA-based MPSoC platforms and onto (b) a desktop multi-core
platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 (a) An example of an SDF graph and (b) its equivalent CSDF graph
by unfolding actor A3 by factor 3. . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 G3: Optimal alternative graph of G1 in Figure 5.1(a) with unfolding
factors f2 = 2, f3 = 4 when scheduled on 2 PEs. . . . . . . . . . . . . . . . 85

5.3 The list produced by the algorithm for G1 in Figure 5.1(a) on 2 PEs
with ρ= 0.95. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 Period ratio (lower is better). . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.5 Running time of our algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 95
5.6 An example of an individual. The first replica of A1 is allocated on

the j th PE and the f̂1th replica of A1 does not exist. . . . . . . . . . . . 96
5.7 The ratios of total execution time Ωt and total code size ΩΘ for GA

and our algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1 Comparsion between a PPN and a P3N. . . . . . . . . . . . . . . . . . . . 102
6.2 Control process and evaluation function. . . . . . . . . . . . . . . . . . . 106
6.3 Consistent execution of process P2 and P3 w.r.t. edge E3. . . . . . . . . 108
6.4 Which combinations (M ,N ) do ensure consistency of P3N? . . . . . . 108
6.5 Two alternatives of Function Check in Figure 6.2(b). . . . . . . . . . . 111



List of Figures xi

6.6 P3N of our experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.7 Performance results of PPN and P3N implementations . . . . . . . . . 113

7.1 An example of MADF graph (G1). . . . . . . . . . . . . . . . . . . . . . . . 119
7.2 Two modes of the MADF graph in Figure 7.1. . . . . . . . . . . . . . . . 123
7.3 Execution of two iterations of both modes SI1 and SI2 under self-

timed scheduling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.4 An execution of G1 in Figure 7.1 with two mode transitions under

the ST transition protocol. MCR1 at time tMCR1 denotes a transition
request from mode SI2 to SI1, and MCR2 at time tMCR2 denotes a
transition request from mode SI1 to SI2. . . . . . . . . . . . . . . . . . . . 127

7.5 An illustration of the Maximum-Overlap Offset (MOO) calculation. 128
7.6 The execution of G1 with two mode transitions under Maximum-

Overlap Offset (MOO) protocol. . . . . . . . . . . . . . . . . . . . . . . . 129
7.7 Upper bounds of earliest starting times for transition from mode SI2

to SI1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.8 Earliest starting times for transition from mode SI2 to SI1 with the

MOO protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.9 Allocation of all MADF actors in Figure 7.1 to 3 PEs. . . . . . . . . . . 136
7.10 Earliest starting times for transition SI2 to SI1 on 2 PEs shown in

Figure 7.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.11 MADF graph of Vocoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.12 Allocation of dataflow actors of Vocoder to 4 PEs. The control edges

are omitted to avoid cluttering. . . . . . . . . . . . . . . . . . . . . . . . . . 143





List of Tables

1.1 Processing requirements for video decoding (taken from [19]). . . . . 3
1.2 Processing requirements for image processing (taken from [43]). All

applications are assumed to operate at 24 FpsFrame per second. . . . . 3

2.1 Mathematical notations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Polyhedral notations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Data flow notations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Notations for HRT scheduling of CSDF MoCs. . . . . . . . . . . . . . . 34

3.1 Additional notations used in Chapter 3 besides the ones introduced
in Chapter 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Consumption/production sequences for actor snk in Figure 3.1. . . . 47
3.3 Characteristics of benchmarks and running times to derive their

corresponding CSDF graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Execution times of the phases in the DaedalusRT flow for three

streaming applications on a single MPSoC platform. . . . . . . . . . . . 48

4.1 Execution time on benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1 Additional notations used in Chapter 5 besides the ones introduced
in Chapter 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Benchmark characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3 Parameters for the genetic algorithm. . . . . . . . . . . . . . . . . . . . . . 97

7.1 Additional notations used in Chapter 7 besides the ones introduced
in Chapter 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2 Mapping relation M2 for actor A2 in Figure 7.1. . . . . . . . . . . . . . . 120
7.3 Function MC5 defined for actor A5 in Figure 7.1. . . . . . . . . . . . . . 120
7.4 Actor parameter for G1 in Figure 7.1. . . . . . . . . . . . . . . . . . . . . . 132
7.5 WCETs of all actors in Vocoder (in clk.). . . . . . . . . . . . . . . . . . . 142



xiv List of Tables

7.6 Performance results of four modes of Vocoder in the steady-state. . . 143
7.7 Performance results for all mode transitions of Vocoder. . . . . . . . . 144



Chapter 1

Introduction

EMBEDDED systems are an essential part of our lives and exist in a wide variety.
In 2010, more than 15 billion embedded systems were sold globally [5]. The

market for embedded systems was $113 billion [17]. This market has exhibited
steady growth at a compound annual growth rate of 7% for the past 5 years.

An embedded system [84] is an information processing system embedded into
devices, products or other systems, for instance mechanical or electrical systems.
Different from servers or desktop PCs, embedded systems are often application
domain specific and perform certain specific functions tightly coupled to their
environment. Such systems can be hidden inside small and simple entities such
as digital watches and traffic lights. They can be also a part of large and complex
systems, such as Mars Exploration Rover [9].

Embedded streaming systems are an important class of embedded systems, which
are specifically designed to process streaming applications. A streaming applica-
tion [59] is a software program that processes large volume of continuous data
streams in short periods of time. Typically, the same operation is performed on
large set of data items in the stream. Therefore, there is little control flow between
processing different data items. Each data item has short life time and is discarded
after being processed. This type of applications is ubiquitous in telecommunica-
tions, health-care, transportation, retail, science, security, emergency response, and
finance. This thesis focuses on those streaming applications that are commonly used
in embedded systems. Figure 1.1 shows three popular streaming applications widely
used in our daily lives on mobile phones.

1



2 Chapter 1. Introduction

(a) Navigation. (b) Gaming. (c) Video decoding.

Figure 1.1: Three examples of embedded streaming applications.

1.1 Embedded Streaming System Design

Designing embedded streaming systems is definitely a complex process. It involves
three main aspects illustrated in the Y-chart [67], namely target applications, under-
lying platforms, and used design methodologies. This thesis primarily deals with the
aspect of design methodology by proposing several novel techniques and a highly
automated design framework. The proposed design techniques are highly optimized
towards the target applications and platforms with important design requirements
in mind. Therefore, first presenting the desired requirements, target applications,
and platforms helps understand better the context and contributions of this thesis.

We first show in Section 1.1.1 that the design requirements for embedded stream-
ing systems in general are more strict than general-purpose computing systems.
The design techniques proposed in this thesis focus on an important subset of re-
quirements, namely high throughout and hard real-time guarantees. Fortunately,
properties of streaming applications can be well exploited with appropriate design
techniques, such that the design requirements are satisfied. In addition, application
properties show that modern streaming applications exhibit adaptive behavior that
has to be explicitly captured in the design methodology. This is one major topic
of this thesis. Therefore, we characterize the target applications in Section 1.1.2.
Afterwards, we discuss the state-of-the-art hardware platforms in Section 1.1.3 and
aim at understanding the architecture capabilities. Ideally, the proper design tech-
niques should exploit application properties in such a way that matches exactly the
underlying architecture capabilities. This reinforces the contributions of this thesis.
Based on the application properties and selected architecture, we given an overview
of a widely acknowledged design methodology in Section 1.1.4. The techniques
developed in this thesis significantly extend and strengthen this design methodology.
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Application Resolution Frame rate Uncompressed Compressed
bit rate bit rate

HD-DVD 1920x1080 25 607 Mbps 8-20 Mbps
HDTV 1280x720 25 607 Mbps 2-8 Mbps
DVD 720x576 25 121 Mbps 1-2 Mbps

Video conferencing 352x288 25 30 Mbps 128-1000 Kbps
Mobile video 176x144 15 9 Mbps 50-1000 Kbps

Table 1.1: Processing requirements for video decoding (taken from [19]).

Application Resolution Uncompressed Compressed
bit rate bit rate

Projection 1280x720 350 Mbps 17.5 Mbps
Electronic Cinema
Production HDTV 1920x1080 995 Mbps 140 Mbps

Projection 4096x2048 6040 Mbps 450 Mbps
Digital Cinema

Production 4096x3112 11000 Gbps 2200 Mbps
Digital Cinema

Table 1.2: Processing requirements for image processing (taken from [43]). All
applications are assumed to operate at 24 FpsFrame per second.

1.1.1 Design Requirements

Requirements referred in this section are non-functional ones, such as performance,
timing predictability, thermal aspects [60], security [69], and reliability [128]. The
functional requirements such as deadlock-free execution are implicit. This thesis
addresses the requirements of high performance and timing predictability.

Embedded streaming systems are expected to have high performance. Sometimes
high performance is used interchangeably with high throughput. System throughput
is a performance metric which denotes the average number of output data produced
by the system per time unit. In general, a system with high throughput is referred
to be fast. A Digital Video Broadcasting-Handheld (DVB-H) receiver found in
mobile devices is a typical embedded streaming system with a certain throughput
requirement. Unable to satisfy the throughput requirement results in the videos
in slow motion and greatly degrades the user experience. In the video processing
domain, the requirements of processing power has also increased drastically as
screen resolution increases. Table 1.1 shows processing requirements for different
resolutions. The state-of-the-art mobile phones, such as Samsung S4 [12], already
have screens with the HD-DVD resolution. From the 5th column in Table 1.1, it
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should be clear that designing embedded video streaming system that satisfies the HD-
DVD resolution poses a huge challenge. Image processing applications also require
high throughput. Table 1.2 shows the processing requirements of different image
processing applications used for digital and electronic cinema. The extreme high data
rates clearly exceed the processing capacity of conventional embedded streaming
systems. For the wireless communication, the requirements have significantly
evolved over generations. The 3G standard targets 2 Mbps multimedia service
including voice, video, and wireless Internet access. In contrast, it has been proposed
in the 4G standard to increase the bandwidth of 100 Mbps or even 1 Gbps.

Besides high performance requirements, many embedded streaming systems
pose hard real-time (HRT) requirements. In a HRT system [33], each application
in the system has a deadline to indicate the maximum time within which the appli-
cation must complete its execution. Missing any deadline may cause catastrophic
consequence on the system. As noted in [33], a HRT system does not necessarily
need to have high throughput requirements. Instead, the timing predictability is the
major concern of the HRT system. That is, e.g., if a video conferencing system is
guaranteed to produce a decoded video within 1 hour, this system still can be called
a HRT system. Of course, this guarantee may not be useful in practice because the
latency of producing an output is beyond being acceptable. For a realistic embedded
streaming system, HRT constraints often come together with high throughput re-
quirements. For instance, a collision avoidance system in the automotive or avionics
domain is such an example. Processing input frames must be completed within a
tight deadline. Missing the deadline will lead to catastrophic consequence for the
vehicles, for instance potential collision to obstacles. At the same time, it has been
reported in [6] that these algorithms require approximately 170 million calculations
for each frame update, with the expectation of being executed on up to 64 processors.

1.1.2 Application Characterization

Although the requirements presented in Section 1.1.1 seem strict, streaming applica-
tions often contain ample amount of parallelism which can be exploited to satisfy
the requirements. Therefore, a characterization of the application properties is
needed, which heavily influences and motivates the solutions proposed in this thesis.
In this section, streaming applications from different domains are characterized in
terms of availability of parallelism and its different forms, computation and data
communication characteristics, and adaptive behavior. The selected application
domains contain those that are commonly used in embedded system, including
video processing, wireless communication, and image processing/computer vision.
Below we start by defining different forms of parallelism.

The type of parallelism is often categorized into three forms as follows:
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Figure 1.2: Block diagram of a H.264 decoder (taken from [18]). Each task is
represented by a rectangular block.

1. Task-Level Parallelism (TLP): TLP refers to running different tasks of an
application concurrently.

2. Data-Level Parallelism (DLP): DLP refers to running the same set of operations
on multiple datum simultaneously.

3. Pipeline-Level Parallelism (PLP): PLP refers to running different iterations of
a pair of producer and consumer tasks simultaneously.

In literature, TLP is often referred as thread level parallelism [58]. For instance,
the block diagram of an H.264 decoder is depicted in Figure 1.2. Its computation
can be partitioned into several tasks shown as blocks. Some of these tasks can run
on different processors concurrently, thereby increasing the performance. DLP
can be considered as a special case of instruction level parallelism [58], which was
intensively studied in the past. The difference lies in the fact that DLP is explored
at coarser level, e.g., at the processor level, whereas instruction level parallelism
is exploited at finer level, e.g., using different functional units such as multiple
Arithmetic and Logic Unit (ALU), floating point multipliers, etc. For instance in
case of the H.264 video decoding, executing several video frames simultaneously on
different PEs results in performance gain. PLP is an important form to exploit when
parallelizing stateful computation (computation with cyclic dependencies) [54].

Video processing applications are in general good candidates for parallelization
and demonstrate inherently adaptive behavior. For instance, a H.264 decoder
contains major tasks, such as motion estimation, intra prediction, inverse discrete
cosine transform, deblocking filter, and entropy coding. The H.264 decoder operates
on data as set of Groups of Pictures (GoP). A GoP contains a set of frames. Several
slices constitute a frame. Finally, a slice consists of several marcoblocks. Parallel
scalability of H.264 video decoding is empirically studied in [85]. Large amount
of DLP is shown to exist at different levels. The authors emphasize that DLP at
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different levels must be explored and especially at frame and marcoblock levels. In
addition, the H.264 decoder also exhibits adaptive application behavior, namely
three main types of slices/frames: I, P, and B types. For instance, a typical GoP
consists of a I-P-B-B-P-B-B sequence of frames. On the one hand, processing an
I-frame is independent from other frames. On the other hand, processing a P-frame
depends on one or more previous frames, whereas processing B-frames depends on
previous and future frames.

Software-Defined Radio (SDR) [88] applications also exhibit high paralleliza-
tion opportunity and run-time adaptivity. For instance, the authors in [77] show
that a 3G protocol, namely Wideband Code Division Multiple Access (WCDMA),
demonstrates adaptive application behavior at different levels due to different op-
eration modes and states. In the active mode, all computational tasks are active to
process high rate traffic, whereas all tasks process at low rate in the control-hold
mode. In the active mode, strict HRT requirements must be guaranteed to avoid
buffer overflow, while the timing requirements are much more relaxed in the idle
mode. The authors in [77] further characterize the computational workload of the
tasks in the WCDMA protocol. Computationally intensive tasks, such as Branch
Metric Calculation and Add Compare Select, contain enormous amount of DLP and
TLP. This fact can be exploited to achieve an efficient parallel implementation. The
authors in [130] study the computational workload of major 4G tasks. The tasks,
such as Space Time Block Codes and Vertical Bell Laboratories Layered Space-time,
contain abundant amount of DLP.

Computer vision is another important target application domain of embedded
streaming systems. The applications in this domain are widely used in the fields of
automotive, robotics, medicine, etc. Disparity Map [82] is such an example applica-
tion that is used for adaptive cruise control on robotics or vehicles. It continuously
processes a pair of images taken at slightly different positions. A disparity map
is then computed in which depth information of all objects is represented. Since
image processing kernels are often used, computer vision and image processing
applications are categorized together in this thesis. In general, the applications in
this domain contain large amount of DLP and TLP [121]. Typically, the same
operations are performed repeatedly on all pixels in each image. At a higher level,
there exists a few data dependencies between images in many applications. In this
case, DLP at the image level can be also exploited. Next to DLP, different tasks of
an application can execute normally in a feedforward pipeline fashion. Thus, there
also exits a large amount of TLP and PLP to explore. In some applications, adap-
tive application behavior is an inherent part. For example, Feature Tracking [81]
aims at extracting motion information from a set of consecutively captured images.
During its execution at run-time, the features are first extracted. The number of
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extracted features and their width are expressed as parameters. The parameter values
cannot be completely determined at compile-time and their values must be updated
at run-time.

Finally, a collection of 65 real-life streaming applications is characterized in the
StreamIT benchmark suit [116], to study their impact on language and compiler de-
sign. The applications are from different domains including video/audio processing,
graphics rendering, DSP, and encryption. An important finding is that DLP should
be considered as the first class citizen for performance optimization. In another im-
portant finding, the authors emphasize that cyclic data dependencies are uncommon
in the application specifications. Around 90% of the studied benchmarks does not
have cyclic data dependencies.

1.1.3 Platform Implications

Traditionally, the solution to achieve higher performance always involves the design
of a system with higher frequency. However, as the technology node reaches below
100 nm, a single processor running at high frequency leads to extremely high power
consumption [73]. Using Multi-Processor System-on-Chip (MPSoC) platforms
partially addresses this problem by running processors at a lower frequency, which
reduces power consumption. An MPSoC [132] is a very large scale integration sys-
tem that incorporates most or all the components, including multiple programmable
Processing Elements (PE) 1, peripheries, and memories, necessary for an application.
It is widely acknowledged that MPSoC platforms are the best candidate to cope with
various increasing requirements for embedded streaming systems. This thesis fo-
cuses on two important components, namely multiple PEs and the interconnection
transferring data between them.

As the technology node further shrinks, chips with the same size of die is
capable of accommodating more PEs. Together with the increasing performance
requirements as motivated previously in Section 1.1.1, it can be expected that the
number of PEs on a single chip will continue to increase. The processing part
of an MPSoC platform for mobile devices is shown in Figure 1.3. Normally, the
platform is equipped with multi-core CPUs which handle high-level applications,
such as rendering Web pages and user interface functionalities. Next to the multi-
core CPU, the multi-core GPU contains a set of PEs, which performs 2D/3D
graphical processing. For instance, the Nvidia Tegra 4 [10] platform offers a quad-
core CPU and a 72-core GPU. In addition to CPU and GPU, there are other
programmable processors dedicated to certain class of functionalities. For example,
a dedicated processor is often used to handle wireless communication protocols. To

1The term “PE” is used interchangeably with “core” or “processor” in this thesis.
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Figure 1.3: Processing part of an MPSoC platform for mobile devices from Nvidia
(taken and simplified from [11]).
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Figure 1.4: Template of a baseband processor (taken and simplified from [103]). All
interfaces and peripheries are omitted.

be able to support multiple protocols, a programmable solution at the physical layer
has emerged. For a baseband processor using the SDR technique, its template is
illustrated in Figure 1.4. It consists of a control CPU for the processing protocol
stack and hosting OS to orchestrate computation on other parts of the platform. For
computationally intensive parts of applications, several Single Instruction Multiple
Data (SIMD) clusters are used to support different algorithms in various wireless
protocols. For instance, the Ardbeg [131] architecture has two SIMD clusters
with one PE in each cluster. A PE is mainly a SIMD core with local memory.
X-GOLD [103] is another instance of a baseband processor. It mainly differs from
Ardbeg in the number of SIMD cores and size of local memory.

In addition to the PEs on an MPSoC platform, another important architectural
element is the on-chip communication infrastructure. Network-on-Chip (NoC) [27]
as the communication paradigm has emerged to alleviate the problem of platform
scalability and its design has been one of the hottest research topics in the past decade.
Æthereal [53] and Xpipes [28] are two prominent examples of NoC developed in
academia. Æthereal provides bandwidth guarantees and thus it is more suitable
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Figure 1.5: X-chart: a general design process (adopted from [50]).

for real-time systems due to bounded communication latency. Commercial NoC
solutions [3] also have been integrated into the state-of-art MPSoCs for mobile
phones.

1.1.4 Model-based Design Methodology

The high system requirements presented in Section 1.1.1 and platform complexity
presented in Section 1.1.3 impose huge design challenges for designers to develop an
efficient system manually. The traditional design process at a low-level of abstraction
becomes very error-prone and time-consuming. It is widely recognized in the
research community that rising the level of abstraction to Electronic System Level
(ESL) [50] seems inevitable to increase the design productivity.

A complete design flow defined in [50] is shown in Figure 1.5. For the specifi-
cation layer sitting on the top, an important component is called behavioral model.
The behavioral model is specified either in certain programming language, such
as C/C++/SystemC, CAL [38], StreamIT [117], Verilog/VHDL, or graphical
representations, such as LabVIEW-G [20] and Simulink [8]. Different from general
programming, a behavioral specification used for embedded system design normally
complies with the underlying Model of Computation (MoC). A MoC [74] defines
components and communication protocols that constraint the mechanism by which
components can interact. A MoC is a formal model of how computation works.
Consequently, adopting MoCs during the design process allows automated tools
to reason about both functional and non-functional properties of an application.
In the context of this thesis, only concurrent MoCs are considered because they
are the natural way to express parallelism in streaming applications in an explicit
way. Normally, a concurrent MoC describes an application by a directed graph
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Figure 1.6: Comparison of dataflow MoCs for streaming applications (taken and
extended from [112]). The MoCs underlined are proposed in this thesis.

where nodes are application tasks representing computation and the arcs represent
communication. Consequently, MoCs greatly facilitate parallelizing compilers to
perform aggressive optimizations. Therefore, both industrial and academic design
flows extensively adopt different MoCs.

Figure 1.6 shows different MoCs widely used for modeling streaming applica-
tions. They differ in expressiveness, implementation efficiency, and compile-time
analyzability2. Figure 1.6(a) shows the expressive hierarchy of different MoCs. The
expressiveness and succinctness [112] of a MoC indicate which system can be mod-
eled and how compact the models in these MoCs are. In most of cases, an arrow
from MoC A to MoC B indicates that that a model in MoC A can be transformed
to an input-output equivalent model in MoC B. In general, the MoCs with high
expressiveness exhibit low compile-time analyzability. Similarly, the MoCs with

2Analyzability is referred as decidability in [55].
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high expressiveness generally have lower implementation efficiency. The analyz-
ability of a MoC [112] is determined by the availability of analysis and synthesis
algorithms at compile-time and the run-time need for an algorithm on a graph with
a given number of nodes and edges. The third aspect, implementation efficiency
of a MoC [112] is decided by the complexity of the run-time scheduling algorithm
problem and the (code) size of the resulting schedules. When comparing adaptive
MoCs, we also consider the incurred performance overhead during run-time re-
configuration. As shown in Figure 1.6(b), Reactive Process Network (RPN) [46],
Kahn Process Network (KPN) [64], Scenario-Aware Data Flow (SADF) [114], and
Boolean Data Flow (BDF) [32] are Turing-complete MoCs, thereby being highly
expressive. That is, this type of MoC is able to perform any computation that any
other computer is capable of. However, these MoCs do not offer many possibilities
of analysis at compile-time. At the bottom part of Figure 1.6(b), the MoCs, such
as Synchronous Data Flow (SDF) [76], Cyclo-Static Data Flow (CSDF) [30], and
Polyhedral Process Network (PPN) [125], exhibit high compile-time analyzability.
They are discussed in detail in Chapter 2. For these MoCs, various powerful analysis
and compilation/synthesis methods have been developed over the past twenty years,
e.g., to compute throughput [52, 87], buffer sizes [110], efficient static schedules
for software compilation [91, 107, 124], and hardware synthesis [63, 120]. How-
ever, these MoCs are restricted to static application behavior. Modern streaming
applications with adaptive behavior as explained in Section 1.1.2 cannot be ex-
pressed using these MoCs. To model adaptive behavior while having certain degree
of compile-time analyzability, different adaptive MoCs, such as Mode-controlled
Data Flow (MCDF) [89], Finite State Machine (FSM)-based Scenario-Aware Data
Flow (FSM-SADF) [47], Parameterized SDF (PSDF) [29], and Variable-rate Phased
Data Flow (VPDF) [129], have been proposed. For these MoCs, functional prop-
erties of the adaptive MoCs can only be partially decided at compile-time, and
run-time verification is thus needed. For SADF, it is even possible to statically
analyze functional properties at compile-time.

To take advantage of different properties of MoCs, some design flows separate
the analysis model from the implementation model. Here the implementation model
is the one that is close to the final implementation to be executed on the real MPSoC
platform, whereas the analysis model is primarily used for analyzing non-functional
properties. In this thesis, the timing property is of particular interest. For instance
in the current industrial practice, a disciplined version [70] of C is used as the
implementation model to program embedded radio applications, including code
generation for communication and/or synchronization. On the other hand, analysis
of real-time guarantees, required buffer sizes, etc., is performed on the SDF MoC,
which serves as the analysis model.
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Next to the behavioral model, the specification layer of the design flow shown
in Figure 1.5 may contain platform constraints that explicitly specify the platform
model. As explained in Section 1.1.3, that is, e.g., the type and number of PEs, the
memory type and capability, and the interconnection between PEs. In addition to
the platform constraints, other constraints can be used as input to the design flow in
this thesis, such as timing constraints. In particular, the timing constraints are the
essential property of a real-time streaming system.

With the behavior model, namely MoCs, and constraints in place, they are
transformed in a step, called synthesis or compilation (in case of software models).
This step normally determines e.g., allocation of PEs and necessary buffers if not
given before hand, spatial mapping3 of application tasks on PEs, temporal scheduling
of all tasks on a PE, etc. Obtaining an efficient solution for these problems is
certainly very challenging. In most cases, all possible combinations of PE allocation
and assignment of tasks to PEs constitute an enormous design space with different
conflicting objectives. For example, maximum throughput should be achieved while
resource usage needs to be minimized. To efficiently search the design space and find
an optimum solution, various Design Space Exploration (DSE) approaches proposed
in the literature try to find a solution that is called Pareto-optimal point in the design
space if, e.g., higher throughput cannot be achieved with fewer PEs. Currently,
existing DSE approaches search the design space using different algorithms, e.g.,
stepwise refinement in [51], heuristics in [109] and [111], evolutionary algorithms
in [100, 115], branch-and-bound in [34], and constraint programming in [139]. The
synthesis/compilation step outputs a structure model as shown in Figure 1.5. Here
the structure model is (or closer than the behavioral model to) the final, executable
implementation. It may be in the form of pin-accurate netlists or Transaction-Level
Models (TLM). As an output next to the structure model, quality numbers represent
non-functional properties, e.g,. throughput, end-to-end latency, etc.

An Incarnation: DaedalusRT Design Flow

The DaedalusRT [23] design flow is based on the initial Daedalus [96,97] framework,
which covers all three layers in Figure 1.5, namely system-level DSE, synthesis,
and prototyping of MPSoCs. DaedalusRT has been recently proposed, as the name
suggests, to address HRT requirements (see Section 1.1.1), The research work of
this thesis has been performed in the context of the DaedalusRT design flow and
an overview of DaedalusRT is shown in Figure 1.7. The grey boxes highlight the
contributions of this thesis, which are explained in details in Section 1.3.

3Task mapping is often also referred as task allocation in literature and both are used interchangeably
in this thesis.
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Figure 1.7: DaedalusRT design flow. The grey boxes highlight the contributions of
this thesis. The dashed box and lines denote the parts that are currently not fully
implemented.

The input to DaedalusRT is a streaming application specified as a sequential C
code with restrictions, called Static Affine Nested Loop Program (SANLP) [125] (see
Section 2.1). Many streaming applications are amenable to this restricted form [26].
Moreover, an early study [106] has shown that, out of 100,000 lines of loops, 53%
of them can be converted to SANLPs. In the Parallelization step, a SANLP is
automatically translated to its equivalent behavioral model, the PPN MoC using
the PNgen compiler [125]. The resulting PPN exposes certain form of parallelism,
specifically TLP of the initial SANLP. Currently, the PNgen compiler also extracts
DLP from a SANLP in a particular way using a combination of transformations [86].
The formal definition of SANLP and the PPN MoC is detailed later in Section 2.1.
Alternatively, application designers also have the flexibility to specify streaming
applications as (C)SDF graphs directly. It is sometimes more convenient to do so
using tools based on graphical interfaces. For adaptive streaming applications, they
are specified as two new MoCs proposed in this thesis. Their details can be found in
Chapter 6 and Chapter 7, respectively.

In the initial Daedalus framework, the second step, namely DSE, is realized
using the Sesame [100] tool, which takes a PPN as input and generates a Pareto-
optimal set of design points. A design point consists of a platform and mapping
specifications. For HRT streaming systems, an analysis model, the CSDF MoC, is
required. In DaedalusRT, a PPN derived from a SANLP needs to be converted to
its equivalent CSDF graph. Subsequently, the Darts tool replaces time-consuming
DSE and performs the HRT analysis [22] on the resulting CSDF graph. The main
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advantage of the HRT analysis is the fast, yet accurate determination of the minimum
number of PEs needed to schedule the CSDF graph and leveraging well-known HRT
multiprocessor scheduling algorithms. The HRT analysis on the CSDF MoC is
detailed in Section 2.3.

Finally in the third step, namely System Synthesis, the ESPAM [95, 96] tool
takes a PPN with the platform and mapping specifications, and produces an ex-
ecutable implementation on various platforms. The platform consists of several
tiles interconnected via certain communication infrastructure. On the FPGA-based
platform, each tile consists of a PE in the form of the MicroBlaze [13] softcore
from Xilinx with its local program and data memories. A communication memory
resides in each tile and it is used as data storage for communication between appli-
cation tasks mapped to different tiles. The interconnection between all tiles, the
DDR off-chip memory, and peripheries is an AXI crossbar switch [2]. In principle,
the crossbar switch can be replaced by e.g., the Æthereal [53] NoC, to provide
guaranteed communication latency. For the PEs, ARM Cortex A9 [1] cores can be
instantiated on the Xilinx Zynq [16] platform instead of the MicroBlaze softcore.
In Daedalus, a static schedule [124] is used on each PE to temporally schedule all
tasks allocated on the PE. Alternatively, a light-weight and multi-threaded OS, Xilk-
ernel [14], is built on top of a PE to perform run-time scheduling. Later, support
for the x86 platform has been added to the ESPAM backend [39]. The target is
normally desktop multi-core platform, such as Intel i7-920 processor. For the x86
platform, application tasks implemented as threads can be dynamically scheduled by
OS, such as Windows or Linux. In this case, OS either determines allocation and
temporal schedule of all threads at run-time. Alternatively, the threads are statically
bound to a PE by assigning core affinity. In the latter case, no run-time migration of
threads is required, thereby reducing performance penalty. In DaedalusRT, a RTOS,
specifically FreeRTOS [7], is chosen to run on each PE. FreeRTOS implements
fixed-priority scheduling and supports Xilinx FPGAs. The hardware and software
architecture explained here is extensively used later throughout case studies and
experiments.

1.1.5 Summary

Here, we summarize the key insights that can be drawn from the discussion in
previous sections.

From the design requirements point of view, the following are the most signifi-
cant requirements.

• Embedded streaming applications pose ever increasing throughput require-
ments.
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• Embedded streaming systems require Hard Real Time (HRT) guarantees.
Furthermore, it is not uncommon to have both HRT constraints and high
throughput requirements at the same time.

From the application characteristics point of view:

• Data Level Parallelism (DLP) and Task Level Parallelism (TLP) are the most
important forms of parallelism to exploit, which result in an efficient parallel
implementation to achieve high throughput requirements.

• Embedded streaming applications commonly exhibit adaptive behavior in
the form of parameter reconfigurations at run-time. This behavior should be
explicitly captured in the application specification.

From the architectural perspective:

• An increasing number of Processing Elements (PE) on MPSoC platform is
deployed to meet stringent performance requirements. The key question is
thus how to utilize them efficiently.

• Network-on-Chip (NoC) emerges and is expected to become the standard
communication infrastructure of an MPSoC platform in the near future. A
corresponding design methodology is desired to program applications on
NoC-based MPSoC platforms to manage communication latency.

From the design methodology perspective:

• Raising the abstraction level to ESL seems inevitable to cope with ever increas-
ing complexity. To fully leverage the benefit of ESL, highly automated tools
are needed.

• A central component of an ESL solution is the Model-of-Computation (MoC).
Various MoCs, such as (C)SDF, PPN, SADF, PSDF, and VPDF, are extensively
adopted to program and/or analyze embedded streaming applications.

1.2 Problem Statement

As motivated in Section 1.1.5, a de-facto solution to the problem of designing
complex embedded streaming systems is the adoption of an ESL methodology and
highly automated tools. In this thesis, we choose the DaedalusRT design flow as a
particular instance. We see several components missing in DaedalusRT to address
the requirements outlined in Section 1.1.5 and to efficiently exploit the proper
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application characteristics and emerging architectural features. Therefore, we address
three main problems in this thesis as described below.

We first observe that the current MoC, namely the PPN MoC, used in the
DaedalusRT design flow works well as an implementation model. It is possible to
efficiently generate code [95] automatically from the PPN MoC for task execution,
communication, and synchronization. However, analysis on the PPN MoC, such
as for timing guarantees, is rather difficult if not impossible. Both in DaedalusRT

and the current industrial practice [90], a more analyzable MoC, such as (C)SDF
MoC, is adopted. So far, this analysis model is created manually. However, creating
analysis model from an implementation model manually may introduce disparity
between both types of models. It is thus hard to guarantee correctness of the analysis
model. Based on the discussion above, we formulate the first problem addressed in
this thesis: derive automatically a CSDF graph as the analysis model from an
equivalent PPN used as the implementation model.

Generally, in the Synthesis step shown in Figure 1.5, the traditional DSE ap-
proaches like Sesame consider only different mapping and architectural alternatives.
With respect to the behavior model, only a single application specification is con-
sidered during DSE. This single application specification is normally given by the
application designer. Or, the PNgen compiler generates one instance of a PPN that
exposes TLP. However, this application specification may not be the most appro-
priate one for the considered MPSoC platform. That is, the specification may not
expose enough parallelism, particularly in the form of DLP, to satisfy the required
performance. This is because application designers mainly focus on realizing certain
application behavior, including the identification of the functionality of application
tasks and the synchronization/communication between these tasks. Moreover, the
computational capacity and communication cost of the MPSoC platform are often
not taken into account when developing a parallel application specification. In
particular, as mentioned in Section 1.1.3, the MPSoC platform is becoming more
communication-centric with NoC as the interconnection. As a consequence, over-
whelming communication between application tasks may cancel out the expected
performance improvement when the application tasks are executed concurrently.
Therefore, the second problem addressed in this thesis aims at effectively exploiting
DLP in a streaming application. The second problem consists of two sub-problems.
We formulate the first sub-problem in the context of DaedalusRT as: for an initial
PPN, investigate an approach to derive an alternative PPN that contains only
independent and load-balanced application tasks, if such an alternative PPN
exists.

On the other hand, if more parallelism is revealed than needed when selecting an
alternative application specification, it will overload the underlying MPSoC platform.
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The overwhelming parallelism leads to an inefficient task allocation. That is, the
excessive number of tasks cannot be efficiently allocated and temporally scheduled
on the available PEs. Moreover, the excessive number of tasks introduces significant
memory overhead for both code and data. When a streaming application is initially
modeled using the SDF MoC and requires to meet HRT constraints, we exploit
DLP and TLP simultaneously by actor (i.e., tasks) unfolding and transform the
initial SDF graph to its equivalent CSDF graph. Therefore, we formulate the second
sub-problem in the context of DaedalusRT as: for an initial SDF graph, derive an
alternative CSDF graph that exhibits just-enough parallelism to fully utilize
the available PEs, such that HRT constraints are met.

The third problem addressed in this thesis relates to adaptive application be-
havior as explained in Section 1.1.2. Such behavior is usually expressed by using
parameters whose values need to be reconfigured and updated at run-time. We call
such parameters dynamic parameters and their values are not known at design-time.
Models such as (C)SDF or PPN used in the DaedalusRT design flow have the lim-
itation of allowing only static parameters. The values of the static parameters are
fixed at design-time and they can not be changed at run-time. As a consequence,
the adaptive behavior is not amenable to the models such as SDF/CSDF and PPN.
Therefore, more expressive MoCs are needed. The MoCs such as BDF and KPN
shown in Figure 1.6 provide capability of modeling adaptive application behavior.
However, these general MoCs are not analyzable at design-time. Therefore, we are
interested in an adaptive MoC which is able to capture adaptive/dynamic behavior in
applications while allowing design-time analyzability to some extent. Furthermore,
if an adaptive streaming application has HRT requirements, the existing methods
lack the ability to efficiently reason about timing behavior based on the chosen
adaptive MoC. Moreover, a feasible and efficient way of implementing such an
adaptive MoC on MPSoC platforms has not been taken into consideration. There-
fore, as the third problem, we investigate new adaptive MoCs to model adaptive
streaming applications and techniques to schedule those adaptive MoCs under
HRT constraints.

1.3 Research Contributions

To address the problems outlined in Section 1.2, this thesis provides several contri-
butions highlighted using the grey boxes in Figure 1.7.

To address the first problem, we develop a step, called CSDF Derivation, in this
thesis as shown in Figure 1.7. This step primarily contains an algorithm, published
as a major part of [23], to derive the analysis MoC, i.e., the CSDF MoC, from
the implementation model, i.e., the PPN MoC. We present such an algorithm in
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Chapter 3. This algorithm is a key enabler of a highly automated design flow, namely
DaedalusRT [23], for designing embedded streaming systems with hard real-time con-
straints. The automated CSDF derivation avoids manual creation of analysis models,
thereby greatly improving the productivity of designing such complex embedded
streaming systems. Beyond the above-mentioned advantage, automated CSDF deriva-
tion can be applied together with other compilation frameworks in which CSDF is
adopted as the intermediate representation, e.g., the compilation toolchain [21] for
the
∑

C language, the MAMPS [62] design flow, and the CompSoC [57] framework.

Our second contribution consists of the two Parallelization steps shown in
Figure 1.7 addressing the second problem stated in Section 1.2. First, we propose
in Chapter 4 a parallelization approach next to the PNgen compiler for the PPN
MoC, called communication free partitioning, published in [138] and [137]. Our
approach analytically determines the maximum amount of DLP in the form of
a set of communication-free partitions from a given PPN specification. When
mapping theses partitions onto different PEs, the communication between PEs
is completely eliminated. This parallelization approach is thus highly relevant
to emerging NoC-based MPSoC platforms as mentioned in Section 1.1.3, where
communication latency may play a significant role on the total execution time
of an application. Our approach also can be applied to applications with cyclic
dependences, which are traditionally considered as performance bottleneck and hard
to parallelize. Second, we propose in Chapter 5 a Parallelization step for the SDF
MoC, published in [135], to exploit just-enough parallelism by task unfolding
that fully utilizes the underlying MPSoC platforms, while meeting hard real-time
constraints. More specifically, our solution determines simultaneously which SDF
actors (i.e., tasks) to unfold by what factor, and the allocation of unfolded actors
onto PEs. We show that the solution space of the problem is bounded and derive
its upper bounds. We then propose an efficient algorithm to find a solution to the
problem, while the obtained solution meets a pre-defined quality.

To address the third problem in Section 1.2, we introduce in Chapter 6 and
Chapter 7 two new MoCs, Parameterized Polyhedral Process Networks (P3N),
published in [136], and Mode-Aware Data Flow (MADF), for modeling adaptive
streaming applications. We further define the operational semantics of both MoCs,
which allows flexible update of parameter values at run-time. In addition, we propose
a consistency check approach for P3N, which is applied at both, compile-time and
run-time. Based on the P3N semantics, we devise a compile-time approach to extract
relations between parameters if they are dependent. This leads to a consistent param-
eterization of the P3N MoC and moreover, it simplifies the run-time consistency
check. The simplification reduces the run-time overhead. Subsequently, we extend
the capability of the hard real-time scheduling framework used in DaedalusRT
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for CSDF to handle MADF. We propose a novel protocol that allows efficient mode
transitions, i.e., parameter reconfiguration. As a result, the transition protocol
enables us to show an efficient analysis technique to reason about guaranteed timing
behavior, particularly during mode transitions.

All contributions mentioned above are implemented either in Daedalus or in
DaedalusRT. Furthermore, both Daedalus and DaedalusRT are publicly available [4]
for further research. A detailed user manual [24] including an installation guideline
and step-by-step tutorial is also available for the benefit of the research community.

1.4 Thesis Organization

The remaining part of this thesis is organized in a self-contained way. That is,
every chapter starts with more elaborated introduction and scope of work. More
importantly, each chapter has its own related work.

In Chapter 2, we first introduce different MoCs considered in this thesis, partic-
ularly (C)SDF and PPN, to better understand our research contributions in later
chapters.

In Chapter 3, we present the algorithm to derive the CSDF MoC from its
equivalent PPN MoC. The benefit of the proposed algorithm is demonstrated in the
context of the DaedalusRT real-time extension.

In Chapter 4, we present the analytical approach to determine the number of
communication-free partitions of a PPN. Subsequently, we present the procedure to
transform the initial PPN to an alternative PPN that has only set of communication-
free partitions, if possible.

In Chapter 5, we present the approach to simultaneously unfold an acyclic SDF
graph to its functionally equivalent CSDF graph and allocate all unfolded actors
onto PEs, such that HRT constraints are met.

In Chapter 6, we introduce a new adaptive MoC, called Parameterized Polyhedral
Process Networks (P3N) and its operational semantics. Subsequently, we show how
consistency check can be performed for P3N at compile-time and run-time.

In Chapter 7, we present the hard real-time scheduling approach for another
adaptive MoC, which we propose and call Mode-Aware Data Flow (MADF). The
approach contains a novel protocol to change scenarios. Based on the protocol,
we derive an efficient analysis to reason about timing guarantees, not only within
individual scenarios, but also during scenario transitions.

Finally, we conclude this thesis with a summary and some suggestions for future
work.
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Chapter 2

Models-of-Computation (MoC)

THIS chapter is dedicated to different Models of Computation (MoC) that serve as
the application specification. In particular, we focus on a process-based MoC,

namely Polyhedral Process Networks (PPN), in Section 2.1, and two actor-based
MoCs, SDF and CSDF in Sections 2.2.1 and 2.2.2, respectively. The PPN MoC is
used as the implementation model in DaedalusRT and it is the input to the solutions
proposed in Chapters 3 and 4. The SDF MoC is the input to the solution proposed
in Chapter 5. The CSDF MoC is used to perform HRT analysis. In Section 2.3, an
overview of the HRT analysis is given to better understand the solutions proposed in
Chapters 5 and 7. Throughout this thesis, we use the set of mathematical notations
listed in Table 2.1.

Both PPN and (C)SDF MoCs are specified as a graph consisting of vertices
and edges. Normally, all vertices denote concurrently executing computation tasks.
For (C)SDF, the vertices are called actors, whereas the vertices in a PPN are called
processes. The edges denote FIFOs for data communication between actors/processes.
It is possible to compute a safe FIFO size [110, 125] for each edge that guarantees
the absence of deadlock in the graph.

2.1 Polyhedral Process Networks (PPN)

An important advantage of adopting the PPN MoC in DaedalusRT is that it can
be automatically derived from an input-output equivalent sequential specification
with certain restrictions using the PNgen [125] compiler. Thus, the error-prone
process of deriving a concurrent model manually can be avoided. Moreover, the
ESPAM [96] tool is able to generate final parallel implementation for the PPN
MoC in an automated way. Consequently, design productivity can be significantly
improved. In the following sub-sections, we first explain the polytope model, which

21
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Notation Meaning
N the set of natural numbers excluding zero
Q the set of rational numbers
Z the set of integer numbers
x̌ lower bound (minimum) of values x
x̂ upper bound (maximum) of values x
lcm least common multiple
dxe smallest integer that is greater than or equal to x
bxc greatest integer that is smaller than or equal to x
|X | cardinality of a set X
~x vector x

Table 2.1: Mathematical notations.

we use as the formal representation of the PPN MoC and the P3N MoC developed
in Chapter 6. It is followed by an explanation of the sequential specification with
restrictions in detail. Then, we introduce the PPN MoC based on the polytope
model derived from the sequential specification.

Polytope Model

The Polytope model [42] is often used in the compiler domain to represent loop nests,
which perfectly match the behavior of streaming applications. The polytope model
allows powerful transformation techniques that are used to explore and exploit
parallelism in Chapters 3 and 4. It also serves as the foundation of the analysis
presented in Chapter 6. This section presents an overview of the polytope model to
make this thesis self-contained. A more detailed treatment of the polytope model can
be found in [26]. The mathematical background can be found in popular textbooks,
such as [105]. Throughout this thesis, the notations related to the polytope mode
are listed in Table 2.2.

We start with some fundamental definitions. Assuming a vector ~y ∈ Rn and
a constant α, H = {~x | ~x · ~yT ≥ α} is called a closed half-space. Then, we define a
polyhedron as follows:

Definition 2.1.1 (Polyhedron). A polyhedron D is the intersection of a set of
finitely many closed half-space, i.e.,

D = {~x ∈Qd | A~x ≥~c}, (2.1)

where A∈Zm×d is a constant matrix and c ∈Zm is a constant vector.
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D a polyhedron

D(~p) a parametric polyhedron

D̄ a polytope

D̄(~p) a parametric polytope

|D̄| cardinality of polytope

R dependence relation

ranR range of a dependence relation

domR domain of a dependence relation

Table 2.2: Polyhedral notations.
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Figure 2.1: A polyhedron.

Definition 2.1.2 (Polytope). A polytope D̄ is a bounded polyhedron.

Consider for instance a polyhedron defined as follows:

D =
(
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= {(w, i , j ) ∈Q3 | w ≥ 0∧ 1≤ i ≤ 10∧ 1≤ j ≤ 3}. (2.2)

The polyhedron is illustrated in Figure 2.1 using grey boxes. We can see that the
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polyhedron is unbounded along w-dimension. If we consider any w equal to a
constant c , we obtain a polytope D̄w as:

D̄ =
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= {(w, i , j ) ∈Q3 | w = c ∧ 1≤ i ≤ 10∧ 1≤ j ≤ 3}.

We can see that the initial D in Equation (2.2) is now bounded on the w dimension.
More specifically, D̄ can be considered as a "plane" spread along i and j axes shown
in Figure 2.1.

In Chapter 6, we use the concept of parametric polyhedron to represent adaptive
streaming applications.

Definition 2.1.3 (Parametric Polyhedron). A parametric polyhedron D(~p) is a
polyhedron D affinely depending on a parameter vector ~p ∈Qn , i.e.,

D(~p) = {~x ∈Qd | A ·~x ≥ B ·~p +~b}, (2.3)

where ~p is bounded by a polytope D̄~p = {~p ∈ Qn | C · ~p ≥ ~h}. A, B , and C are

constant integer matrices. ~b and~h are constant vectors.

Similarly, we have the notion of parametric polytope, which is a bounded
parametric polyhedron.

Consider two parameters m and n that are bounded by a polytope

D̄(m,n) = {(m, n) ∈Q2 | 0≤ m ≤ 100∧ 0≤ n ≤ 100}. (2.4)

We can have a parametric polyhedron defined as follows:

D(m, n) = {(w, i , j ) ∈Q3 | w > 0∧ 1≤ i ≤ 2m ∧ 1≤ j ≤ n− 2i}.

A parametric polytope can be

D̄1(m, n) = {(w, i , j ) ∈Q3 | w = 1∧ 1≤ i ≤ 2m ∧ 1≤ j ≤ n− 2i}. (2.5)

In this thesis, we are also interested in the number of integer points in a set
D̄(~p)∩Zd , called cardinality and denoted by |D̄(~p)|. For a set D̄∩Zd , its cardinal-
ity |D̄| can be obtained as a constant, whereas |D̄(~p)| is expressed as a piecewise
quasi-polynomial. A piecewise quasi-polynomial consists of one or more quasi-
polynomials.
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Definition 2.1.4 (Quasi-polynomial). A quasi-polynomial q(x) in the integer vari-
ables x is a polynomial expression in greatest integer parts of affine expressions in
the variables.

Definition 2.1.5 (Piecewise Quasi-polynomial). A piecewise quasi-polynomial q(~x),
with ~x ∈ Zd consists of one or more quasi-polynomials. Each quasi-polynomial
qi (~x) is defined only for a disjoint piece D̄i (~x) of a parametric polytope D̄(~x). Each
D̄i (~x) is also called a chamber Ci . For a given point ~x ∈ D̄(~x), the piecewise quasi-
polynomial evaluates to

q(~x) =
¨

qi (~x) if x ∈ D̄i (~x)
0 otherwise.

(2.6)

Consider the parametric polytope D̄1(m, n) in Equation (2.5) with parameters m
and n bounded by the polytope in Equation (2.4). For the number of integer points
in the set D̄1(m, n)∩∩Z3, |D̄1(m, n)| can be obtained as a piecewise quasi-polynomial
as follows:

¨

−2m− 4m2+ 2mn if (m, n) ∈C 1
− 1

4 n+ 1
4 n2− 1

2 · {0,1}n if (m, n) ∈C 2

where {0,1}n is called a periodic number with period 2. C 1 and C 2 are called
chambers given as

C 1= {(m, n) ∈Z2 | 2+ 4m ≤ n ∧ 1≤ m ≤ 100∧ 0≤ n ≤ 100},
C 2= {(m, n) ∈Z2 | n ≤ 1+ 4m ∧ 3≤ n ≤ 100∧ 0≤ m ≤ 100}.

Often when we use the polytope mode to represent execution of a program, we
need the definition of a lexicographic order.

Definition 2.1.6 (Lexicographic order). Given that two vectors ~a,~b ∈ Zn are ele-
ments of a polyhedron. ~a ≺ ~b denotes that ~a is lexicographically smaller than ~b ,
if

n
∨

i=1

�

ai < bi ∧
i−1
∧

j=1

a j = b j
�

For instance, given ~a = (w, i , j ) = (0,1,3) and ~b = (w, i , j ) = (0,2,1), we have
~a ≺ ~b .

When using the polytope model to represent loop nests, we often need to deal
with dependence relations to express data dependencies.



26 Chapter 2. Models-of-Computation (MoC)

Definition 2.1.7 (Dependence Relation [122]). A dependence relation R, also called
a basic polyhedral map, is defined as

R= {~x1→ ~x2 ∈Z
d1 ×Zd2 | ~x1 ∈D1 ∧~x2 ∈D2 ∧~x2 =A~x1+~c}, (2.7)

where A is an integer matrix and ~c is a constant vector. The polyhedron D1 is the
domain of dependence relation R, denoted by domR. The polyhedron D2 is the
range of dependence relation R, denoted by ranR.

For instance, we have a dependence relation

R={(w1, i1, j 1)→ (w2, i2, j 2) ∈Z3×Z3

| (w1, i1, j 1) ∈D1 ∧ (w2, i2, j 2) ∈D2 ∧ i2= i1− 1∧ j 2= j 1+ 1∧w1= w2},

where

domR=D1 = {(w1, i1, j 1) ∈Z3 | w1≥ 0∧ 1≤ i1≤ 7∧ 0≤ j 1≤ 7− i1}

and

ranR=D2 = {(w2, i2, j 2) ∈Z3 | w2≥ 0∧ 0≤ i2≤ 6∧ 1≤ j 2≤ 8− i2}.

Static Affine Nested Loop Programs (SANLP)

The sequential application specifications considered in this thesis are in the form of
Static Affine Nested Loop Programs (SANLP).

A SANLP consists of several primitive functions. A function is considered as
a primitive in this thesis. This means that no explicit parallelization is performed
within the function. In general, parallelism within functions can be explored at finer
level, e.g., by vectorization [98]. A function serves mainly as the computational part
of an application task. Note that there is no restriction on the structure within a
function. That means that a function may contain an arbitrary structure of code.

However, restrictions do exist at the level of SANLP, in which functions are
called and executed. We summarize the key restrictions of SANLPs as follows.

Definition 2.1.8 (Static Affine Nested Loop Program (SANLP) [41]). A static affine
nested loop program contains a set of functions, each of which is enclosed by one
or more loops and if -statements. The loops and if -statements have the following
restrictions:

• loops have a constant step size;
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• loop bounds are affine expressions of the enclosing loop iterators, static param-
eters, and constants. Static parameters are those whose value cannot change at
run-time;

• if -statements have affine conditions in terms of the loop iterators, static
parameters, and constants;

• index expressions of array references are affine constructs of the enclosing
loop iterators, static parameters, and constants;

• the data flow between functions in the loop is explicit, which prohibits that
two functions communicate through shared variables invisible at the SANLP
level.

An example of a SANLP is shown in Listing 1. Although it is represented
using the C syntax, in principle SANLP can be expressed in other forms, such as
Matlab [66] or Fortran [101]. Four functions read_image, fiter1, filter2,
and write_image only exchange data through indexed arrays img and ref_img.
Executing the loop body once is called an iteration. For function read_image, the
polyhedral representation of its execution is given in Equation (2.2) and illustrated
in Figure 2.2. The black dots denote individual iterations. According to Defini-
tion 2.1.6, iteration ~a = (w, i , j ) = (0,1,3) is executed before ~b = (w, i , j ) = (0,2,1),
denoted as ~a ≺ ~b .

PPN

A Polyhedral Process Networks (PPN) [125] is defined as a graph G = (P ,E),
where P is the set of processes and E is the set of edges. The PPN MoC is a special

while(1){
for (i = 1; i <= 10; i++){ // Width

for (j = 1; j <= 3; j++){ // Height
read_image(&img[i][j], &ref_img[i][j]);

if (j <= 2)
img[i][j] = filter1(img[i][j]);

else
img[i][j] = filter2(img[i][j]);

write_image(img[i][j], ref_img[i][j]);
} } }

Listing 1: An example of a SANLP
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case of the Kahn Process Networks (KPN) [64]MoC. That is, PPN processes are
synchronized through FIFOs, i.e., any process is blocked when attempting to read
from an empty FIFO or write to a full FIFO. In the definition of the KPN MoC, no
restriction is imposed on the structure of the KPN processes. In contrast, a PPN
process has a particular structure due to the fact that it is automatically derived from
a SANLP using the PNgen [125] compiler.

Each function in a SANLP corresponds to a separate process in the derived PPN.
If two functions access the same data array through their input/output arguments,
they may thus have data dependencies, which is determined by Array Dataflow
Analysis (ADA) [41].

The execution of a PPN process is specified using affine nested for-loops, called
domain. Formally, a domain D is defined as a polyhedron following Definition 2.1.1,
i.e., D = {~I ∈ Zd | A · ~I ≥ ~b}, where A ∈ Zm×d , ~b ∈ Zd , ~I is an iteration vector,
and d indicates the nested-loop depth. At each iteration ~I during the execution
of a PPN process P , namely ~I ∈ DP , P first reads data from input ports (IP) in
the input port domain DIP if ~I ∈ DIP. Then the process executes the process
function (computation) and subsequently writes results to output ports (OP) in the
output port domain DOP if ~I ∈DOP. The order of executing different iterations in a
process domain is specified by a lexicographic order according to Definition 2.1.6 on
page 25. The set of iterations, at which a PPN process writes data to the environment,
are called sink iterations, denoted by Dsnk. Furthermore, a dependence relation RE
in Definition 2.1.7 on page 26 is defined for each edge E in a PPN. For an edge E ,
RE is specified as RE = {~I → ~J ∈ Zd1×Zd2 | ~I ∈ DIP ∧~J ∈ DOP ∧~J = B · ~I +~c}. It
indicates that data produced at iteration ~J ∈DOP is consumed at iteration ~I ∈DIP if
output port OP is connected to input port IP via edge E .

Consider the sequential C program given in Listing 1. The equivalent PPN that
can be derived using the PNgen [125] compiler is shown in Figure 2.3. For the
behavior of process snk, its process domain is given as

Dsnk = {(w, i , j ) ∈Z3 | w > 0∧ 1≤ i ≤ 10∧ 1≤ j ≤ 3}. (2.8)

Reading data tokens from input port IP1 to initialize function argument in1 of
function write_image is represented as input port domain

DIP1
= {(w, i , j ) ∈Z3 | w > 0∧ 1≤ i ≤ 10∧ 1≤ j ≤ 2}.

For edge E5, the dependence relation RE5
is expressed as

RE5
={(w1, i1, j 1)→ (w2, i2, j 2) ∈Z3×Z3

| (w1, i1, j 1) ∈DIP3
∧ (w2, i2, j 2) ∈DOP3

∧w1= w2∧ i1= i2 j 1= j 2},
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Figure 2.2: The polyhedral representation of the execution of function
read_image in Listing 1.

Process src

while(1) {

for(i=1;i<=10;i++) {

for(j=1;j<=3;j++) {

src(&out1,&out2);

if(j<=2)

WRITE(&out1,OP1);

else

WRITE(&out1,OP2);

WRITE(&out2,OP3);

} } }

OP1

OP2

OP3

Process �lter1

while(1) {

READ(&in1, IP1);

out1 = filter1(in1);

WRITE(&out1,OP1);

}

IP1

OP1

Process �lter2

while(1) {

READ(&in1, IP1);

out1 = filter2(in1);

WRITE(&out1,OP1);

}

IP1

OP1

Process snk

while(1) {

for(i=1;i<=10;i++) {

for(j=1;j<=3;j++) {

if(j<=2)

READ(&in1,IP1);

else

READ(&in1,IP2);

READ(&in2,IP3);

write_image(in1,in2);

} } }

IP1

IP2

IP3

E1 E2

E3 E4

E5

Figure 2.3: PPN corresponding to the SANLP in Listing 1.

where DOP3
=DIP3

=Dsnk.

2.2 Actor-based Data Flow MoCs

In this section, we give some important definitions concerning the SDF and CSDF
MoCs. The related notations are listed in Table 2.3.
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2.2.1 Synchronous Data Flow (SDF)

A Synchronous Data Flow (SDF) [75] graph G is defined as G = (A,E), where A
is the set of actors and E is the set of edges. For each actor Ai ∈ A, an execution
is called firing. It produces/consumes a constant number of data tokens to/from
edges, denoted by prd ∈N+ and cns ∈N+, respectively. As a special case, the MoC
is called Homogeneous Synchronous Data Flow (HSDF) if prd = cns = 1 for all
production/consumption rates and all actors. To be eligible to fire, each incoming
edge E j of an actor must contain at least cns j tokens. In this thesis, we assume that
auto-concurrent firing of actors are implicitly excluded. We also assume that all cns j
tokens are consumed at the beginning of a firing of an actor. At the end of the firing,
all prdk tokens are produced to each outgoing edge Ek . A token transfered through
edges here refers to an atomic data object which can be either an integer or a complex
data structure. Tokens are transfered in FIFO fashion. Let us consider for instance
the image filter algorithm illustrated in Figure 2.4(a). Its corresponding SDF graph is
shown in Figure 2.4(b). At the beginning of the firing, actor filter consumes 3× 3= 9
pixels from edge E1 and produces 1 pixel to edge E2 at the end of the firing.

One important advantage of the SDF MoC is that its functional properties, e.g.,
consistency and deadlock-free, can be verified at compile-time. Considering streaming
applications which typically execute in a non-terminating fashion, both properties
are important to ensure that a given SDF graph can execute indefinitely without
causing unbounded token accumulation in FIFOs (buffer overflow), or deadlock.
To verify consistency of an SDF graph, a balance equation [75] can be established as
follows:

ΓG · ~qG =~0, (2.9)

(a) filter operating on
a 3 × 3 sliding win-
dow on the image
from left to right
and from top to bot-
tom.

src filter display
1 9 1 1

E1 E2

(b) An SDF graph G. FIFOs are not illustrated to
avoid clutter.

Figure 2.4: An example of an image filter algorithm modeled using the SDF MoC.
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Ai actor
Ei edge in data flow graph
prd production rate
cns consumption rate
PRD production sequence
CNS consumption sequence

Table 2.3: Data flow notations.

where ΓG is called topology matrix and ~qG is called repetition vector. ΓG is defined
as:

ΓG =











Γ1,1 . . . Γ1,|A|
... Γ j ,i

...
Γ|E |,1 . . . Γ|E |,|A|











(2.10)

with:

Γ j ,i =







prd j if actor Ai produces to edge E j
−cns j if actor Ai consumes from edge E j
0 otherwise.

(2.11)

In [75], it is shown that a connected SDF graph is consistent iff rank(ΓG) = |A| − 1,
which ensures ΓG has a 1-dimensional null space. That is, Equation (2.9) has a
non-trivial solution for ~qG . To execute an SDF graph indefinitely with a periodic
schedule without unbounded token accumulation, the consistency property is a
necessary condition. Consider the SDF graph shown in Figure 2.4(b), its topology
matrix ΓG is given by

ΓG =
�

1 −9 0
0 1 −1

�

Therefore, its repetition vector can be obtained as

~qG = [qsrc, qfilter, qdisplay]

= [9,1,1].

A consistent SDF graph may still deadlock due to insufficient amount of initial
tokens. A SDF graph is said to be deadlocked if none of the actors is eligible to fire at
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certain point in time. To detect such a scenario, a periodic admissible schedule [75]
can be constructed. If such a schedule does not exist, the SDF graph will deadlock
during its execution. Finally, a consistent and deadlock-free SDF graph is said to be
live. Only live SDF graphs are considered in this thesis.

2.2.2 Cyclo-Static Data Flow (CSDF)

A Cyclo-Static Data Flow (CSDF) [30] graph is similarly defined as G = (A,E),
where A is the set of actors and E is the set of edges. CSDF generalizes the SDF
MoC by introducing periodically changing token consumption and production
rates, called production/consumption sequence, denoted by PRD ∈Nφ and CNS ∈Nφ,
respectively. The production/consumption sequences consist of φ phases. For the
xthe firing of an actor Ai , it consumes CNS j [((x − 1) mod φi ) + 1] tokens from
each incoming edge E j and produces PRDk[((x − 1) mod φi )+ 1] tokens to each

outgoing edge Ek . PRDk and CNS j are defined as PRDk = [prdk
1 , . . . ,prdk

φ] and

CNS j = [cns j
1, . . . , cns j

φ
], respectively. The length of the production/consumption

sequence may vary between CSDF actors. Note that auto-concurrent firing of CSDF
actors are implicitly excluded as well.

Similar to the SDF MoC, the consistency of the CSDF MoC is also an important
property. For a CSDF graph G = (A,E), the balance equation [30] is established as
follows:

ΓG ·~rG =~0, (2.12)

with

Γ j ,i =







∑k=φi
k=1

prd j
k

if actor Ai produces to edge E j

−
∑k=φi

k=1
cns j

k
if actor Ai consumes from edge E j

0 otherwise.

(2.13)

Assuming n = |A|, the repetition vector ~qG = [q1, . . . , qi , . . . , qn] is then given by

~qG =Q ·~rG with Q =Zn×n and Qj,i =
�

φi if j = i
0 otherwise.

(2.14)

φi is the length of consumption/production sequences of actor Ai . Again, only
consistent and deadlock-free, namely live, CSDF graphs are considered in this thesis.

Consider the CSDF graph G1 in Figure 2.5. The topology matrix of G1 is given
by

ΓG1
=







1 −40 0 0
0 1 0 −1
0 0 1 −66






,
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Figure 2.5: A CSDF graph G1 of a pacemaker application (taken from [99]).

and Q in Equation (2.14) is given by

Q =











1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 66











.

Thus, we can obtain

~qG = [q1, q2, q3, q4]
= [40,1,66,66].

2.3 Hard Real Time Scheduling of Acyclic (C)SDF Graphs

To find a schedule for CSDF graphs where certain performance constraints are
guaranteed, periodic schedules are considered to be a common approach. We shall
distinguish the periodic schedules considered here from the one defined in [30, 75].
The periodic schedule considered in this thesis emphasizes on the fact that the sched-
ule of each actor firing repeats in a strictly periodical way (see Definition 2.3.1). The
authors in [22, 31] have developed efficient techniques that can derive such Strictly
Periodic Schedules (SPS) in polynomial time. Note that the periodic scheduling of
the CSDF MoC can be also applied to the SDF MoC, since the CSDF MoC is the
superset of the SDF MoC. In particular, the SPS framework for an acyclic CSDF
graph developed in [22] is implemented in the DaedalusRT design flow and thus it
is considered in this thesis. To ease the discussion of the SPS concept, we use the
notations listed in Table 2.4.

Definition 2.3.1 (Strictly Periodic Schedule (SPS) ). A schedule of a CSDF graph
G = (A,E) is said to be strictly periodic iff

∀Ai ∈A and x ∈N+ : si (x) = Si +(x − 1)Ti , (2.15)
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where si (x) ∈ N+ denotes the xth release time of actor Ai , Si ∈ N is the earliest
starting time of Ai , and Ti ∈ N+ denotes the interval between two consecutive
firings of Ai , called period.

Essentially, the actors of a CSDF graph under SPS are considered as a set of
independent, real-time tasks with implicit deadlines [35]. Therefore, such a real-time
task corresponding to a CSDF actor is associated with two parameters, namely
period T and earliest starting time S, where the deadline of the task is equal to its
period (i.e., implicit deadline).

The main advantage of SPS is that a variety of well-known HRT scheduling
algorithms, such as Earliest Deadline First (EDF) [80] or Rate Monotonic (RM) [80],
can be applied to temporally schedule CSDF actors allocated on a PE. Meanwhile,
temporal isolation of different applications, i.e., different CSDF graphs, that share a
single MPSoC platform can be achieved. Moreover, the required platform including
the number of PEs and buffer sizes needed to schedule the CSDF graph can be
determined in polynomial time.

Under SPS, a firing of a CSDF actor must finish before its deadline which is
equal to its period. If the sink actor of a CSDF graph Asnk produces prd tokens per
firing and has a period Tsnk, the SPS thus guarantees a throughput prd

Tsnk
for the CSDF

graph. To compute the period of each actor, the following definition is needed first.

Definition 2.3.2 (Workload of an Actor). The workload of a CSDF actor Ai ∈A
per graph iteration, denoted by Wi , is given by Wi = qi Ci , where qi is the repetition
entry of Ai and Ci is the Worst Case Execution Time (WCET) of Ai .

Accordingly, the maximum workload per graph iteration, denoted by ŴG , is defined
as ŴG =maxAi∈A(qi Ci ). The minimum period Ťi [22] of an actor Ai under SPS
can be computed in linear time as

Ťi =
lcm(~qG)

qi

&

ŴG

lcm(~qG)

'

, (2.16)

Ci Worst-case execution time of an actor Ai
Ti guaranteed period of an actor Ai
Hi iteration period of an actor Ai
ui utilization of an actor Ai
m number of PEs

Table 2.4: Notations for HRT scheduling of CSDF MoCs.
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where lcm(~qG) is the least common multiple of all repetition entries qi ∈ ~qG , and
Ci is the WCET of firing a CSDF actor Ai . The minimum period of the sink actor
for a CSDF graph determines the maximum throughout that this graph can achieve.
To sustain a strictly periodic execution with the period derived by Equation (2.16),
the earliest starting time Si ∈N [22] of an actor Ai can be obtained as

Si =

(

0 if prec(Ai ) = ;
maxAk∈prec(Ai )

(Sk→i ) otherwise,
(2.17)

where prec(Ai ) represents the set of predecessor actors of Ai and Sk→i is given by

Sk→i = min
t∈[0,Sk+H ]

{t : Prd
[Sk ,max{Sk ,t}+d )

(Ak , E j )≥

Cns
[t ,max{Sk ,t}+d]

(Ai , E j ), ∀d ∈ [0, H ], d ∈N}, (2.18)

where H is defined as an iteration period obtained by H = qi Ti .
Prd[Sk ,max{Sk ,t}+d )(Ak , E j ) denotes the total number of tokens produced by actor Ak
to edge E j during the time interval [Sk ,max{Sk , t}+ d ) and
Cns[t ,max{Sk ,t}+d](Ai , E j ) denotes the total number of tokens consumed by actor
Ai from edge E j during the time interval [t ,max{Sk , t}+ d]. In addition, edge E j
connects actors Ak and Ai .

Let us consider the example of the acyclic CSDF graph G2 in Figure 2.6(a).
WCET Ci of each actor is given below the actor name Ai . We can first compute the
repetition vector of G2 in Figure 2.6(a) according to Equation (2.14) on page 32 as:

~qG2
= [q1,1, q2,1, q3,1, q3,2, q3,3, q4,1, q5,1]

= [3,3,2,2,2,3,3]

Under SPS, the period of each actor can be obtained using Equation (2.16) as:

~̌
TG2
= [Ť1,1, Ť2,1, Ť3,1, Ť3,2, Ť3,3, Ť4,1, Ť5,1]

= [8,8,12,12,12,8,8] (2.19)

The periodic task-set representation of G2 is illustrated in Figure 2.6(b). The x-axis
represents time. The upper arrows indicate the earliest starting times of individual
actors and the grey bars denote WCETs of actor firings. For the sake of discussion,
Figure 2.6(b) only illustrates up to time unit 58 on the x-axis and the last firings of
actors A2,1,A3,1,A3,2 and A3,3 are truncated. We can see in Figure 2.6(b) that, after
the earliest starting time of each actor, the actor is scheduled in a strictly periodic
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(a) A CSDF graph G2. A1,1 and A5,1 are considered as the source and sink actors,
respectively.
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(b) Periodic task-set representation of G2.

Figure 2.6: An example of a CSDF graph and its real-time task-set representa-
tion. Since the execution of the actors repeats indefinitely, the last execution of
A2,1,A3,1,A3,2, and A3,3 in the figure is truncated and shown in black.

way. For instance, actor A5,1 has the earliest starting time S5,1 = 48. After that, each

firing of A5,1 occurs every Ť5,1 = 8 time units. Given that A5,1 has no outgoing edges
and thus it is the sink actor of G2. Therefore, the maximum throughput of G2 is 1

8 .
Once periods and earliest starting times of all actors in an acyclic CSDF are

derived, the next step is to determine the number of required PEs to schedule the
actors and to guarantee that the deadlines (equal to derived periods) of actors are
met. To this end, the SPS framework leverages extensively the results from the HRT
scheduling theory. Here we only give a brief overview of the HRT scheduling theory
that is relevant to this thesis. For the complete treatment of the HRT scheduling
topic, please refer to [33]. First, the notion of utilization needs to be introduced. Let
G = (A,E) be a CSDF graph, the period of a CSDF actor Ai ∈A be Ti , and WCET
of Ai be Ci . The utilization of Ai , denoted by ui , can be computed as

ui =
Ci

Ti
, ∀Ai ∈A. (2.20)
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For instance, using the EDF scheduling algorithm, a set of n actors is schedulable on
a PE if the following equation is satisfied [80]:

n
∑

i=1

ui ≤ 1. (2.21)

If migration of CSDF actors across PEs is allowed at run-time (global scheduling),
the number of required PEs M (G) for a CSDF graph G can be simply computed as

M (G) =
�

∑

Ai∈A
ui

�

. (2.22)

In case that no migration of CSDF actors is allowed at run-time (partitioned schedul-
ing), determining the number of required PEs is thus equivalent to the bin-packing
problem and can be solved by either exact or approximate allocation algorithms.
An example of an exact allocation algorithm is proposed in [83], which returns an
optimal allocation of actors. One disadvantage of using an exact algorithm is its high
computational complexity. Therefore, to have a trade-off between optimality of the
allocation and computational complexity, an approximate allocation algorithm such
as the First-Fit Decreasing (FFD) algorithm [61] can be considered. Let MFFD(G)
denote the number of PEs needed for a CSDF graph G under FFD and MOPT(G)
denote the number of PEs needed for G using an exact allocation algorithm. It is
proven in [134] that the following inequality holds:

MFFD(G)≤
11

9
MOPT(G)+ 1. (2.23)

Once allocation of a CSDF graph is determined, the schedule on each PE itself can
be built either off-line for efficiency, or on-line for flexibility according to the system
requirements.

Let us consider CSDF graph G2 in Figure 2.6(a). Given
~̌
TG2

in Equation (2.19),
we obtain

M (G2) = d
1

8
+

8

8
+

12

12
+

12

12
+

12

12
+

2

8
+

1

8
e= 5. (2.24)

That is, 5 PEs are required to schedule G2 using the EDF algorithm and to achieve
the maximum throughput of 1

8 .



38 Chapter 2. Models-of-Computation (MoC)



Chapter 3

Automated Analysis Model
Construction: Deriving CSDF from
Equivalent PPN

Mohamed A. Bamakhrama, Jiali Teddy Zhai, Hristo Nikolov, Todor Stefanov, “A
Methodology for Automated Design of Hard-Real-Time Embedded Streaming Systems”, In
Proceedings of the Conference on Design, Automation and Test in Europe (DATE’12), pp.
941–946, Dresden, Germany, March 12-16, 2012.

IN this chapter, we present an approach to convert a PPN to its input-output
equivalent CSDF graph. As discussed previously, a wide range of powerful

analysis techniques exist for the CSDF MoC, whereas it is easier to generate code
for the PPN MoC. Considering the DaedalusRT design flow shown in Figure 1.7 on
page 13, deriving PPNs from SANLPs can be done in the PNgen compiler [125].
The code generation for the PPN MoC has been addressed in the ESPAM [96] tool.

Notation Meaning
α an input/output argument for a PPN function
S a sequence
Φ a set of input/output ports associated with a process variant
v a process variant

Table 3.1: Additional notations used in Chapter 3 besides the ones introduced in
Chapter 2.

39
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Hard real-time scheduling of acyclic CSDF graphs has been proposed in [22]. To
have a fully automated design flow for designing hard real-time streaming systems,
automated derivation of the CSDF MoC is the only missing step. From a high-level
point of view, the contribution of this chapter enables to derive the equivalent CSDF
graph from any SANLP.

It has been shown in [37] that a PPN without parameters is equivalent to a
CSDF graph where the production/consumption sequences consist only of 0s and
1s. A ’0’ indicates that a token is not produced/consumed, whereas a ’1’ indicates
that a token is produced/consumed. This chapter focues on the algorithm to derive
the input-output equivalent CSDF graph from a PPN. Then, we demonstrate the
applicability of the algorithm on a set of benchmarks in terms of time complexity.
Finally, in the context of the DaedalusRT design flow, we show that it is fast to derive
CSDF graphs for three real-life streaming applications. Consequently, derivation of
CSDF graphs enables to design multiple streaming applications on a single MPSoC
platform in a short amount of time.

In addition to the notations introduced in Chapter 2, extra notations used in this
chapter are summarized in Table 3.1.

3.1 The Algorithm

The procedure to derive a CSDF graph from its equivalent PPN is depicted in
Algorithm 1. It consists of two main steps, namely 1) topology derivation and
2) consumption/production sequence derivation for input/output ports of each
CSDF actor. Deriving the topology of the CSDF graph is straightforward. That
is, the nodes, input/output ports, and edges in the CSDF graph have one-to-one
correspondence to those in the PPN. Recall the SANLP described in Listing 1 on
page 27 and its equivalent PPN shown in Figure 2.3. The derived CSDF graph is
shown in Figure 3.1. It can be seen that the topology of the derived CSDF graph
is the same as that of the PPN shown in Figure 2.3. Below, we focus on the second
step which derives the consumption/production sequences for an input/output port
of a CSDF actor.

The second step consists of three sub-steps. In the first sub-step (see line 3 in
Algorithm 1), for each CSDF actor, we find the access pattern of the corresponding
PPN process to its input/output ports. A more general MoC, Stream-based Func-
tions [68], captures the regular access pattern of a function to its input/output ports
using function variant. In this thesis, we introduce the notion of process variant,
which captures the consumption/production behavior of the process.

Definition 3.1.1 (Process Variant). A process variant v of a PPN process is defined
by a tuple (Dv ,Φ), where Dv is the variant domain with Dv ⊆DP , and Φ is a set of
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src snk

filter1

filter2

IP3: [ 1 1 1 ]

IP1: [ 1 1 0 ]

IP2: [ 0 0 1 ]

OP1: [ 1 ]IP1: [ 1 ]

OP1: [ 1 ]IP1: [ 1 ]

OP3: [ 1 1 1 ]

OP1: [ 1 1 0 ]

OP2: [ 0 0 1 ]

Figure 3.1: CSDF graph equivalent to the PPN shown in Figure 2.3.

Algorithm 1: Procedure to derive the CSDF MoC
Input: A PPN
Result: The equivalent CSDF graph
Derive the topology of the CSDF graph;1

foreach CSDF actor in the CSDF graph do2

Derive process variants (see Definition 3.1.1) for its corresponding PPN3

process ;
Derive a repetitive pattern of process variants ;4

foreach input/output port of the CSDF actor do5

foreach process variant in the derived pattern do6

Generate consumption/production sequence ;7

input/output ports.

For example, consider process snk shown in Figure 2.3 on page 29. One of the
process variants is (Dv ,{IP1, IP3}), where

Dv = {(w, i , j ) ∈Z3 | w ≥ 0∧ 1≤ i ≤ 10∧ 1≤ j ≤ 2}.

According to Definition 3.1.1, for all iterations in domain Dv during the execution
of process snk, this process always reads data from input ports IP1 and IP3.

The infinite repetitive execution of a PPN process is initially represented by a
polyhedron. (e.g., see Dsnk in Equation (2.8)). Therefore, we project out dimension
w which denotes the while-loop from all the domains because it is irrelevant for
the subsequent steps. As a result, the execution of a PPN process is represented by a
polytope. Algorithm 2 is devised to derive the process variants for each PPN process.
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Figure 3.2: Domains of process snk in Figure 2.3.

Standard integer set operations are applied to the process domains. The basic idea is
that, each port domain bound to a process function argument is intersected with all
other port domains. The intersected domain and the difference between two port
domains are then added to the set of process variants. In this way, all process variants
are iteratively derived.

Consider process snk in Figure 2.3 on page 29. Its process function snk(in1,
in2) has two arguments represented as a set R= {in1,in2}, which is the input
to Algorithm 2. The port domains bound to in1 are DIP1

and DIP2
, while the port

domain bound to in2 is DIP3
. These port domains are illustrated in Figure 3.2(a),

surrounded by bold lines. Following the procedure described in Algorithm 2, we
start with projecting out dimension w in the port domains, which yields:

in1 : D ′IP1
= {(i , j ) ∈Z2 | 1≤ i ≤ 10∧ 1≤ j ≤ 2},

D ′IP2
= {(i , j ) ∈Z2 | 1≤ i ≤ 10∧ j = 3},

in2 : D ′IP3
= {(i , j ) ∈Z2 | 1≤ i ≤ 10∧ 1≤ j ≤ 3}.
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Algorithm 2 produces the set of process variants V = {v1, v2}, where

v1 = (Dv1
,{IP1, IP3}),

Dv1
=D ′IP1

∩D ′IP3
= {(i , j ) ∈Z2 | 1≤ i ≤ 10∧ 1≤ j ≤ 2},

v2 = (Dv2
,{IP2, IP3}),

Dv2
=D ′IP2

∩D ′IP3
= {(i , j ) ∈Z2 | 1≤ i ≤ 10∧ j = 3}.

Process variant domains Dv1
and Dv2

are also illustrated in Figure 3.2(b). Process snk

reads data from input ports IP1 and IP3 in variant domain Dv1
, whereas it reads data

from input ports IP2 and IP3 in variant domain Dv2
.

In the second sub-step, (see line 4 in Algorithm 1), we find a one-dimensional,
repetitive pattern of the process variants derived in the first sub-step. To find the
repetitive pattern, we first project out dimension w in the process domain DP to
obtain domain D ′P . For a PPN process P , we build a sequence SD ′P

of the iterations
I ∈ D ′P according to their lexicographic order (see Definition 2.1.6 on page 25) as
follows:

SD ′P
= [I1, . . . , Ii , I j , . . . , I|D ′P |],

where
Ii ≺ I j , ∀1< i < j < |D ′P |.

Next, we replace each iteration in sequence SD ′P
with the process variant to which

the iteration belongs. For a PPN process P , the sequence of process variants SP is
given by

SP = [v1, . . . , vi , . . . , v|D ′P |] and Ii ∈ vi , ∀1< i < |D ′P |.

For example, for process snk in Figure 2.3 and Dsnk given in Equation (2.8) on page 28,
the process domain after projecting out the w dimension is given as

D ′snk = {(i , j ) ∈Z2 | 1≤ i ≤ 10∧ 1≤ j ≤ 3}. (3.1)

The sequence of the iterations in process domain D ′snk is

SD ′snk
= [(1,1), (1,2), (1,3), (2,1), ..., (10,3)].

The lexicographic order of iterations in the sequence is represented using the arrows
in Figure 3.2(b). The corresponding sequence of the process variants of process snk is

Ssnk = [v1, v1, v2, v1, v1, v2, v1, v1, v2, v1, v1, v2, v1, v1, v2,
v1, v1, v2, v1, v1, v2, v1, v1, v2, v1, v1, v2, v1, v1, v2]. (3.2)
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Algorithm 2: Procedure to derive process variants of a process
Input: R: the set of process function arguments
Result: V : a set of process variants
V←;;1

foreach α ∈R do2

foreach Dport bound to α do3

y← (Dport,{port});4

if V = ; then5

V←{y};6

else7

X ← V ;8

foreach V ∈ V do9

Dintersect← v.Dport ∩ y.Dport;10

if Dintersect 6= ; then11

xintersect← (Dintersect,{v.ports} ∪ {y.ports});12

xdiff1← (v.Dport− y.Dport,{v.ports});13

xdiff2← (y.Dport− v.Dport,{y.ports});14

X ←X ∪{xintersect};15

if xdiff1.Dport 6= ; then16

X ←X ∪{xdiff1};17

if xdiff2.Dport 6= ; then18

X ←X ∪{xdiff2};19

else20

X ←X ∪{y};21

V←X ;22

foreach v ∈ V do23

if |IP ∈ v.ports| 6= |αin ∈R| then24

V← V \ v;25

Essentially, the length of the derived sequence is equal to the cardinality of
process domain D ′P of a PPN process P , i.e., |D ′P |. Since |D ′P | can be very large,
the derived sequence might be very long. Thus, we express the sequence using the
shortest repetitive pattern that covers the whole sequence. This shortest repetitive
pattern can be found efficiently using a data structure called suffix tree [119]. In a
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suffix tree, the root node is defined as the node with only outgoing edges and the leaf
nodes are defined as the nodes with only incoming edges. The remaining nodes are
called internal. A suffix tree has the following properties:

• A suffix tree for a sequence S of characters can be built in O(|S|) time [119].

• Each edge in the suffix tree is labeled with a non-empty subsequence starting
from character S[i] to character S[ j ], where 1≤ i ≤ j ≤ |S|.

• No two edges out of a node in the tree can have labels beginning with the
same character. That is, the starting character of the label is different for all
outgoing edges of a node in the suffix tree.

• A subsequence obtained by concatenating all subsequences found on the
path from the root node to any internal node i occurs k times in the whole
sequence, where k is the number of leaf nodes that node i has.

• The suffix tree is padded with a terminal symbol $.

Once a suffix tree is constructed for the sequence of process variants SP according
to the algorithm presented in [119], our problem can be formulated as: search the
tree for the shortest repetitive pattern that covers the whole sequence SP , i.e., a
subsequence of SP . Our problem can be solved based on finding the longest repeated
substring in a given string, which can be solved in linear time. In our problem, we
first pre-process the constructed suffix-tree to count the number of leaf nodes for
each internal node. Among all outgoing edges of the root node, only the branch that
has the same starting process variant as SP is selected to explore. Then, a Breadth
First Search (BFS) procedure is used, because shorter subsequences found at the levels
closer to the root node are more likely to be the solution of our problem. For every
path starting from the root to any internal node, the BFS procedure concatenates the
labels on the edges. This concatenation results in a subsequence Ssub which occurs k
times in the original sequence SP . Finally, we select the subsequence Ssub with the
largest occurrence k that satisfies

|Ssub| × k = |SP |. (3.3)

Similar to the longest repeated substring problem, our problem also has the linear
time complexity.

Recall that the sequence of process variants Ssnk for process snk is given in
Equation (3.2). The corresponding suffix tree is constructed and illustrated in
Figure 3.3. The shadow node denotes the root node and the solid nodes denote the
leaf nodes. The others are internal nodes. It can be seen that every edge is labeled
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Figure 3.3: Suffix tree for the sequence of process variants Ssnk. The tildes represent
the omitted part of the tree.

with a subsequence of process variants that occurs in the whole sequence Ssnk. In the
pre-processing, computing for instance the number of leaf nodes for node 1 results
in 20 (shown in the bracket in node 1). It means, the subsequence v1 occurs in Ssnk
20 times. In the beginning of BFS, only the edge connecting the root node to node 1
is selected to explore, because process variant v1 labeled on the edge is the same as
the first process variant in sequence Ssnk. In the next step, node 2 is selected and v1 is
concatenated with v1v2 labeled on the edge connecting node 1 and node 2. It yields

Ssub = [v1, v1, v2].
|Ssub| × 10= 30,

|Ssnk|= 30.

Ssub is shown in Figure 3.3 surrounded by a dashed line. At this step, the procedure
terminates because the criteria, namely Equation (3.3), is satisfied.

In the last sub-step (see lines 5-7 in Algorithm 1), a consumption/production
sequence is generated for each port of a CSDF actor. This is done by building a
table in which each row corresponds to an input/output port, and each column
corresponds to a process variant in the repetitive pattern derived in the second
sub-step. If the input/output port is in the set of ports of the process variant, then its
entry in the table is 1. Otherwise, its entry is 0. Each row in the resulting table repre-
sents a consumption/production sequence for the corresponding input/output port.
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Repetitive pattern
v1 v1 v2

Input/output ports
IP1 1 1 0
IP2 0 0 1
IP3 1 1 1

Table 3.2: Consumption/production sequences for actor snk in Figure 3.1.

Considering process snk, the consumption/production sequences of CSDF actor snk
are generated as shown in Table 3.2. It can be seen that the consumption/production
rates sequences for the ports are the same as the ones shown in Figure 3.1.

3.2 Experimental Results

We present in this section the experimental results of automated deriving CSDF
graphs for some real-life applications specified as SANLPs (see Definition 2.1.8 on
page 26). The main focus here is to demonstrate the applicability of our approach in
terms of time-complexity. Then, we further demonstrate the application of auto-
mated CSDF derivation in the context of our DaedalusRT framework for designing
hard real-time streaming systems.

We took two applications, Filterbank and FMRadio, with original C code
available from the StreamIT benchmark suit [54] and several reasonably complex1

benchmarks from Polybench [101]. The characteristics of all benchmarks are shown
in columns 2-4 in Table 3.3. For example, the Filterbank benchmark contains
367 lines of code in the SANLP. This excludes the code for each function in the
SANLP. We believe that it is reasonably complex to express high-level behavior for
most of real-life applications. Different benchmarks also vary in complexity of the
access pattern to data arrays. For example, the ADI benchmark has very complex
access pattern. Complex access pattern potentially increases the length of derived
production/consumption sequences for input/output ports of CSDF actors. Our
algorithm presented in this chapter was coded in C++ and integrated in PNtools as
part of DaedalusRT shown in Figure 1.7 on page 13. All experiments were conducted
on an Intel Core 2 Duo T9600 CPU running at 2.80 GHz with 4GB memory in
Linux Kubuntu 10.4.

The last column in Table 3.3 shows the running time needed to derive the
corresponding CSDF graph for each benchmark. We can see that our algorithm is
able to derive CSDF graphs in short amount of time. Note that the running time

1Other benchmarks either have simpler and less data dependencies or less number of tasks than the
ones we selected.
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Table 3.3: Characteristics of benchmarks and running times to derive their corre-
sponding CSDF graphs.

Benchmarks No. of actors No. of channels Lines of code Running time
(in SANLP) (sec.)

Filterbank 69 89 367 1.60
FMRadio 28 39 195 0.66

ADI1 28 167 209 7.26
FDTD2 17 71 144 0.89
Gauss3 11 26 75 7.82

Gram-Schmidt 9 20 48 1.85
Regularity detector 8 11 54 2.86
1 ADI: Alternating direction implicit solver
2 FDTD: 2D finite difference time domain kernel
3 Gauss: 2D gauss blur filter for image processing

Table 3.4: Execution times of the phases in the DaedalusRT flow for three streaming
applications on a single MPSoC platform.

Phase Time Automation (Yes/No)
Parallelization 0.48 sec. Yes
WCET analysis 1 day No

Deriving the CSDF graphs 5 sec. Yes
Deriving the platform/mapping 0.03 sec. Yes

System synthesis 2.16 sec. Yes
Total ∼ 1 day -

Total (excl. WCET analysis) ∼ 7.67 sec. -

here includes the time starting from SANLPs to CSDF graphs. In addition, the time
to derive the implementation model, i.e., PPNs, using the PNgen compiler is also
included. In this way, we can see clearly the benefits of starting from a SANLP and
resulting in its equivalent CSDF graph. As mentioned previously, our approach can
be readily integrated into, e.g., the

∑

C toolchain [21], to greatly speedup application
development process.

In the second experiment, we took three streaming applications specified in
SANLPs, an edge-detection filter (Sobel) from the image processing domain, the
Motion JPEG (M-JPEG) video encoder from the video processing domain, and the
M-JPEG video decoder. Using the DaedalusRT framework, we generated a functional
implementation that can be synthesized in Xilinx Platform Studio 13.2 targeting
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Xilinx Virtex-6 FPGA ML605 evaluation kit [15]. Table 3.4 shows the running
time of each design phase in the DaedalusRT design flow. We observe that, if the
CSDF graphs of the three applications were derived manually by hand, it would
take several days. Instead, using the solution presented in this chapter, deriving these
three CSDF graphs takes 5 seconds. Thus, the automated CSDF derivation is one of
the key enablers for a fully automated and fast design flow.
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Chapter 4

Exploiting Maximum Data-level
Parallelism without Inter-processor
Communication

Jiali Teddy Zhai, Hristo Nikolov, and Todor Stefanov, “Mapping of Streaming Applications
considering Alternative Application Specifications”, in ACM Transactions on Embedded
Computing Systems (TECS), vol. 12, Issue 1s, Article 34, March 2013.
Jiali Teddy Zhai, Hristo Nikolov, Todor Stefanov, “Mapping Streaming Applications
considering Alternative Application Specifications (Extended Abstract)”, In Proceedings of the
10th IEEE Symposium on Embedded System for Real-Time Multimedia (ESTIMedia’12), Tampere,
Finland, October 11-12, 2012.

AS explained in Section 1.1.4, during the synthesis step of a model-based design
methodology, all possible combinations of Processing Element (PE) allocation

and assignment of application tasks to PEs constitute an enormous design space. To
efficiently search the design space and find an optimum mapping solution, existing
DSE approaches search the design space using different algorithms, e.g., stepwise
refinement in [51], heuristics in [109] and [111], evolutionary algorithms in [100,
115], branch-and-bound in [34], and constraint programming in [139]. These DSE
approaches consider only a single application specification given by application
designers.

As mentioned in Section 1.2, an application specification given by application
designers often does not take into account the underlying computation and com-
munication capability of an MPSoC. Indeed, the authors in [71] showed that, for a
set of representative streaming benchmarks, the theoretical speedup of mapping the
initial parallel application specifications, given by the application designer, can only

51
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reach up to a limited number.
The discussion above indicates that alternative application specifications may

be needed for efficient mapping of an application. In this thesis, we consider an
alternative application specification as a different description of the same application
behavior using the same MoC. For the same application behavior, there exists a
large number of alternative specifications. Among them, the considered application
specification should be the one that best matches the underlying MPSoC platform.
Ideally, the best application specification, if it exists, to be mapped onto n PEs is the
one that consists of n independent and load-balanced tasks. Then, without complex
DSE, mapping these n tasks onto n PEs will always result in n times speedup. In this
case, all PEs are equally loaded and 100% utilized without the need to synchronize
and communicate data with each other.

In this chapter, we study the problem of whether an alternative PPN exists for
an initial PPN, which consists of only independent and load-balanced processes.
Specifically, we divide the problem into two stages. In the first stage, we analyti-
cally identify independent execution of PPN processes, called communication-free
partitions. If they exist, the initial PPN is automatically transformed to a set of
communication-free partitions, i.e., an alternative PPN. In the second stage, given n
PEs, the application mapping problem is considered as grouping the set of obtained
communication-free partitions to balance the application workloads across all PEs,
such that the resulting performance (i.e., throughput) is maximized. To achieve the
load-balancing, any existing DSE algorithm can be leveraged. As a result, mapping
an application using this alternative PPN leads to better performance than mapping
the initial PPN.

Scope of Work

In this chapter, we consider streaming applications which can be modeled using the
PPN MoC. We assume that there are only one source and sink processes respectively
and they are orders of magnitude faster than the remaining processes that perform
computation. The source and sink processes represent environment and are thus not
partitioned. Furthermore, the achievable performance of a PPN is not constrained
by the buffer size required for each communication edge. It is possible to compute
a buffer size for each PPN edge using the PNgen compiler such that larger buffer
sizes do not increase the performance. We statically allocate a FIFO buffer for each
PPN edge on target platforms. The target platforms considered in this chapter are
homogeneous MPSoCs consisting of programmable PEs interconnected via any
type of communication infrastructure. After communication-free partitioning, we
assume that one partition completely fits onto one PE, in terms of program and data
memory usage.
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4.1 Motivating Example

To demonstrate the importance and usefulness of considering alternative application
specifications, let us consider an example application modeled using the PPN MoC
shown in Figure 4.1(a). This example is used throughout this chapter as a running
example. The PPN represents a common topology of a parallel application speci-
fication and consists of three PPN processes P1, P2, and P3 communicating data
via FIFO edges. Note that P3 has cyclic data dependences through edge E3. The
behavior of each PPN process is given as C code above the corresponding process.
Besides the PPN processes expressing the application behavior, the processes src and
snk represent the environment which provides input data and collects results. Their
execution is expressed by two domains, namely Dsrc = DIP and Dsnk = DOP = D3.
For instance, Dsnk is given as

Dsnk = {(i3, j 3) ∈Z2 | 0≤ i3≤ 7∧ 0≤ j 3≤ 7− i3}. (4.1)

Suppose that processes src and snk are much faster than the PPN processes and the
PPN is to be mapped onto the platform shown in Figure 4.2. The workloads of
functions F1, F2, and F3 in Figure 4.1(a) on the PEs are 6, 100, and 30 time units,
respectively. Communication latency via the interconnection structure is assumed
to be 5 time units and communication latency through local memory is considered
as negligible. Naturally, the maximum performance of mapping the initial PPN can
be achieved if each PPN process is mapped onto a separate PE, namely 3 PEs in this
example. In case that more than 3 PEs are available, the existing DSE approaches are
incapable of exploring the mapping possibilities that utilize all PEs. Thus, further
performance improvements of the system are not explored. In fact, considering
only the initial PPN shown in Figure 4.1(a), only 2 PEs are required to achieve the
maximum performance if we perform DSE to obtain pareto-optimal mappings of
processes. That is, processes P1 and P2 are pipelined and mapped onto PE1, while
process P3 is mapped onto PE2 as shown in Figure 4.2. Figure 4.3 shows the achieved
speedup of pareto-optimal mappings of the initial PPN (denoted as Initial).

However, more parallelism is exposed and higher performance can be achieved,
if the initial PPN is transformed to a set of communication-free partitions. A
communication-free partition corresponds to a subset execution of PPN processes
to produce an output of the PPN, without the need to communicate data with other
partitions. To illustrate communication-free partitions, the execution of each PPN
process in Figure 4.1(a) is visualized in Figure 4.1(b). The dots represent individual
iterations of the PPN processes. For example, one iteration of P3 comprises one
execution of its loop body (lines 3 - 10 of P3 in Figure 4.1(a)). The arrows between
iterations denote data dependences. For this example, the initial PPN can be trans-
formed to 8 communication-free partitions denoted as Parti. 0 - 7 in Figure 4.1(b)
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P1 P2 P3

for(i1=0;i1<=7;i1++)
{

 READ(&in,IP);

 F1(in,&out);

 WRITE(out,OP1);
} 

1 for(i3=0;i3<=7;i3++){
2  for(j3=0;j3<=7-i3;j3++){
3   if(i3==0)
4    READ(&in,IP2);

5   if(i3>=1)
6    READ(&in,IP3);

7   F3(in,&out);

8   WRITE(&out,OP);
9   if(j3>=1&&i3<=6)
10   WRITE(out3,OP3);
}} 

OP1

PPN Process P1 PPN Process P2

PPN Process P3

for(i2=0;i2<=7;i2++)
{

  READ(&in,IP1);

  F2(in,&out);

  WRITE(out,OP2);
}

IP OPsrc snk
IP1

E1 E2

E3

OP2 IP2

IP3 OP3

(a) The PPN and behavior of each process shown using C code.
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(b) Process domains of all PPN processes and 8 communication-free partitions.

Figure 4.1: An example of a PPN and its communication-free partitions.

(each partition is surrounded by a dashed box). One can see in Figure 4.1(b) that no
arrows (data dependences) exist across the partitions. Each partition contains a subset
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P1 P2 P3

PE1

Interconnection

Mem. Mem.

PE2

E1 E2

E3

Figure 4.2: Mapping of the PPN in Figure 4.1(a) onto 2 PEs achieving the maximum
performance.
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Figure 4.3: Performance results of mapping the initial PPN and the alternative PPN
after communication-free partitioning.

execution of PPN processes P1, P2, and P3 in Figure 4.1(a). After communication-
free partitioning, the initial PPN in Figure 4.1(a) is transformed to the alternative
PPN shown in Figure 4.4(a). The only communication between PEs occurs when
input data is demultiplexed from process src to all partitions and output produced
by the partitions is multiplexed to process snk. For example, this can be seen with
the help of Figure 4.1(b). In the initial PPN, process src sends the input data to P1
at its iterations from (0) to (7) due to a dependence relation (see Definition 2.1.7
on page 26). In the alternative PPN, with the same dependence relation, process
src sends the input data at iteration (0) of P1 to partition Parti. 0, the input data at
iteration (1) of P1 to partition Parti. 1, and so on. Analogously, in the alternative
PPN, process snk collects the output data produced at iteration (0,0) of P3 from



56 Chapter 4. Exploiting Maximum Data-level Parallelism without Inter-processor Communication

Parti. 0

Parti. 7

src Parti. 3 snk

...

...

...

...
...

(a) The alternative PPN.

PE1

Interconnection

Mem. Mem.

PE2 PE3

Parti. 0

Parti. 7

Parti. 1

Parti. 6

Parti. 2

Parti. 5

Parti. 3

Parti. 4

Mem.

PE4

Mem.

(b) Mapping of the alternative PPN onto 4 PEs (the data source
and sink as well as all edges connected to both of them are omitted
for succinctness).

Figure 4.4: The PPN in Figure 4.1(a) after communication-free partitioning and its
mapping.

partition Parti. 0, the output data produced at iterations (0,1) and (1,2) of P3 from
partition Parti. 1, and so on. With a given dependence relation in the initial PPN,
the correct demultiplexing and multiplexing in the alternative PPN from the data
source to all partitions and from all partitions to the data sink are automatically
generated by our approach. Except the communication between the partitions and
the data source/sink, mapping the obtained partitions onto PEs will only result in
local communication whose cost can be neglected on any platform. For instance,
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in case of 4 PEs available, mapping the derived alternative PPN in Figure 4.4(a) is
shown in Figure 4.4(b).

Figure 4.3 also shows the achieved speedup of pareto-optimal mappings of the
alternative PPN in Figure 4.4(a) (denoted as Alternative). Compared to mapping the
initial PPN, mapping the alternative PPN constantly leads to a better performance.
Moreover, the alternative PPN allows us to utilize up to 8 PEs, thereby achieving
even higher speedup, which is not possible by considering only the initial PPN.
Figure 4.3 shows that, for the alternative PPN, a linear speedup is observed up to 5
PEs. This is because the grouping of the 8 communication-free partitions can balance
the workloads across up to 5 PEs. For instance, 4 groups with 2 partitions each
shown in Figure 4.4(b) have the same workload, i.e., the total number of iterations
(dots) in all such 4 groups is equal. The speedup of mapping the derived alternative
PPN onto 6 to 8 PEs saturates due to unbalanced workloads. From this motivating
example, we can see the necessity and usefulness of considering alternative applica-
tion specifications, particularly the one containing only communication-free and
load-balanced partitions.

4.2 Related Work

An alternative application specification modeled as a SDF graph is considered
in [133]. To exploit better parallelism in the SDF graph, all actors in the initial
SDF graph are converted to their equivalent Homogeneous SDF actors (all produc-
tion/consumption rates equal to 1). The conversion may lead to an exponential
increase in the size of the graph. Therefore, the authors propose a heuristic based on
an evolutionary algorithm to find a mapping and a schedule for the resulting Homo-
geneous SDF graph. Compared to [133], we consider a more expressive MoC than
SDF, i.e., the PPN MoC. Also, instead of completely unfolding all PPN processes
(equal to unfolding actors in [133]), we operate on a compact representation which
avoids the explosion in the size of the graph. Moreover, this compact representation
also allows us to analytically determine the maximum amount of DLP, i.e., the
maximal number of communication-free partitions.

Similar to [133], SDF is also used as the underlying MoC in [54]. Each SDF actor
is furthermore restricted to have only one input and one output port. Based on this
assumption, stateless actors (the actors without cyclic dependences) in the SDF graph
are first fused into compound actors. Then, those compound actors are duplicated by
inserting splitters and joiners to distribute data and collect results. Conceptually, this
method also aims at extracting DLP without communication between the compound
actors. Compared to [54], the PPN MoC considered in this chapter is more general
with an arbitrary number of input and output ports of PPN processes. The problem
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addressed in this chapter is thus more difficult as simple fusion-duplication is not
applicable to PPN processes. Also, stateful actors (see for instance process P3 in
Figure 4.1(a)) cannot be fused and duplicated in [54]. Instead, software pipelining
techniques are applied to the stateful actors. Software pipelining brings performance
improvement assuming that communication latency between different PEs, on
which different pipeline stages are assigned, could be completely overlapped by
computation. However, we believe that the communication latency may not be
hidden and completely overlapped by computation, especially considering emerging
MPSoC platforms interconnected via NoCs as motivated in Section 1.1.3. In contrast,
our approach tries to extract maximum DLP even for the PPN processes with cyclic
data dependences while completely avoiding communication between PEs. This
parallelization strategy may fit better future MPSoC platforms with increasingly
larger communication latency.

The PPN MoC is used in [86]. The authors suggest that a perfect alternative
application specification can be achieved by first partitioning PPN processes and
then merging some PPN processes into a compound one. However, a procedure
of partitioning and merging PPN processes is not discussed. In this chapter, we
propose a systematic procedure to partition and merge PPN processes in a PPN.

In [78], affine partitioning is used in the Brook language to map streaming
applications. Similar to the affine partitioning, our communication-free partitioning
also aims at obtaining coarse-grained PPN processes. In contrast, our partitioning
strategy is able to completely eliminate communication, which might not be possible
in some cases using affine partitioning.

4.3 Finding all Dependences in a PPN

For streaming applications, input data is read from the data source (i.e., environment),
subsequently processed by PPN processes at their iterations during the execution,
and finally written to the data sink. Recall that a PPN produces output to the
environment, represented as a sink process whose domain is denoted as Dsnk. The
output produced at an iteration ~I ∈ Dsnk directly or indirectly depends on several
iterations of PPN processes. If two dependent iterations mapped onto different PEs,
inter-PE communication will take place. To find out communication-free partitions
in a PPN, we need to solve the problem of finding all “direct” and “indirect” data
dependences in a PPN.

The direct dependences result immediately from the dependence relations as
defined in Definition 2.1.7 on page 26. For example, Figure 4.5 illustrates the process
domain D3 of process P3 in Figure 4.1(a). Dependence relation R3 = {(1,2)→ (0,3)}
in Figure 4.5 (the bold arrow) expresses a direct dependence. In contrast, iteration
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Figure 4.5: Domain of PPN process P3 in Figure 4.1(a). The input port domain of
IP3 (surrounded by the solid triangle), output port domain of OP3 (surrounded by
the dotted triangle), and dependence relation R3 (denoted by the arrows between
dots).

(2,1) indirectly depends on iteration (0,3) through iteration (1,2). In this chapter,
we formulate the problem of finding all direct and indirect data dependences by
computing transitive closure [65, 102], denoted by R+, of affine dependence relation
R. It is formally defined as:

~I → ~J ∈ R+⇔ (~I → ~J ) ∈ R∨∃~K s.t. (~I → ~K) ∈ R∧ (~K→ ~J ) ∈ R+. (4.2)

From Equation (4.2), we can see that “direct” and “indirect” dependences are uni-
formly expressed as transitive closure of dependence relations. Thus, we use the
term transitive dependences to denote both types of dependences. Note that transitive
closure of a set of affine relations is not an affine form in general. An under-
approximated and closed affine form is computed in [65]. In contrast, we con-
sider an affine over-approximation in case of non-affine closed form. First, the
over-approximation guarantees that a valid schedule always can be found for each
communication-free partition, but at the cost of potentially fewer communication-
free partitions. Second, existing powerful code generation methods [25] for affine
dependence relations still can be leveraged.

Now, finding all transitive dependences in a PPN is translated to computing
transitive closure of all dependence relations. Therefore, we first take a union Rdeps
of all dependence relations in a PPN as:

Rdeps =
⋃

∀Ei∈E

Ri ,
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where E is the set of edges in the PPN. Subsequently, we can compute the transitive
closure of the union Rdeps. In this chapter, we use the isl [123] library to compute the
transitive closure of affine dependence relations in a potentially over-approximated
closed form. For the PPN in Figure 4.1(a), computing the union of all dependence
relations yields:

Rdeps =R1 ∪R2 ∪R3.

Then, by computing the transitive closure of Rdeps, we obtain:

R+
deps
=Rdeps ∪R+13 ∪R+23 ∪R+33,

where R+13, R+23, and R+33 are transitive dependence relations, represented as follows:

R+13 ={(i3, j 3)→ (i1) | 0≤ i3≤ i1∧ i1≤ 7∧ i1= i3+ j 3}, (4.3a)

R+23 ={(i3, j 3)→ (i2) | 0≤ i3≤ i2∧ i2≤ 7∧ i2= i3+ j 3}, (4.3b)

R+33 ={(i3, j 3)→ (i3′, j 3′) | 1≤ i3≤ 7∧ 0≤ j 3≤ 7− i3∧ 0≤ i3′ ≤ 6

∧ 0≤ i3′ ≤ i3+ j 3− 1∧ j 3′ = i3+ j 3− i3′}. (4.3c)

After computing the transitive closure of all dependence relations in the PPN in
Figure 4.1(a), 3 extra edges E13, E23, and E33 corresponding to the transitive depen-
dence relations are added in the PPN as shown in Figure 4.6(a). For the execution of
the PPN (domains of PPN processes P1, P2, and P3) shown in Figure 4.1(b), a set of
transitive dependences is illustrated as dashed arrows in Figure 4.6(b). For instance,
R+33 = {(3,0)→ (0,3)}, shown as the bold and dashed arrow, indicates that iteration
(3,0) of PPN process P3 transitively depends on iteration (0,3) of itself.

4.4 Computing the Number of Communication-free Partitions

As explained in Section 4.3, we derive all dependent iterations that generate an
output at any iteration ~I ∈ Dsnk. Based on this information, in this section, we
compute the number of communication-free partitions that can be derived from a
given PPN.

Essentially, we need to find a set of iterations in domain Dsnk that are independent
from each other. Each of these iterations identifies a distinct communication-free
partition (see the dashed boxes in Figure 4.1(b)). Consider the PPN in Figure 4.1(a)
and its execution illustrated in Figure 4.1(b). As explained in Section 4.1, Dsnk =D3
(see the triangular part in Figure 4.1(b) denoted as D3). Our goal is to find the 8
iterations marked by circles in Figure 4.1(b). It can be seen that they are independent
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P1 P2 P3

E3

E1 E2

E13

E33E23

(a) Transitive dependences of the PPN in Fig-
ure 4.1(a).
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(b) The set of transitive dependences for communication-free partition
Parti. 3 in Figure 4.1(b).

Figure 4.6: Finding transitive dependences of the PPN.

of each other and they identify the 8 communication-free partitions. Therefore, the
number of these iterations determines the number of communication-free partitions.

In general, to find the set of iterations mentioned above, we first state the
following lemma:

Lemma 4.4.1. For a PPN, any transitive dependence relation

R+i = {~I → ~J | ~I ∈DIP ∧~J ∈DOP}

is a total and surjective affine relation, which maps iterations ~I in input port domain
DIP to iterations ~J in output port domain DOP.
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Proof. Totality of a transitive dependence relation R+E holds because of the following
property of the PPN MoC. For streaming applications operating on infinite input
streams, we are only interested in consistent and deadlock-free PPNs1. Therefore,
if an iteration in an input domain (~I ∈ DIP) is unmapped, it means that the PPN
will deadlock at this iteration during execution of the PPN. At the same time, R+E
is also surjective, because several iterations in an input domain can be mapped to
the same iteration in an output domain. This can be seen from the definition of the
transitive closure of affine relations in Equation (4.2). If there exists ~I → ~K ∈ R and
~K→ ~J ∈ R, both iterations ~I and ~K are mapped to iteration ~J in R+. �

For instance, transitive relation R+23 in Figure 4.6(b) denotes that iterations
(0,3), (1,2), (2,1), and (3,0) of P3 are mapped to iteration (3) of P2. That is, R+23

maps the iterations ~I ∈DIP2
∪DIP3

to the iterations ~J ∈DOP2
shown in Figure 4.1(a).

In addition to Lemma 4.4.1, we introduce a definition, called independent sink
domain, denoted by D ind

snk
.

Definition 4.4.1 (Independent Sink Domain). The independent sink domain D ind
snk

for a PPN is a subset of the process domain of the sink process Dsnk, namely
D ind

snk
⊆ Dsnk. The following condition holds for any two iterations (~I ,~J ) ∈ D ind

snk
,

where ~I 6= ~J :
¬∃(~I ,~J ) ∈D ind

snk : ~I → ~J ∈ R+. (4.4)

D ind
snk

is given by

D ind
snk =

{~I ∈Zd | ∃R+ : ~I → ~J ∈ R+ ∧ ~I ∈Dsnk ∧~J ∈Dsnk ∧ ~I ∈ (domR+− ranR+)}
(4.5a)

⋃

{~I ∈Zd | ∀R+ : ~I → ~J ∈ R+ ∧ ~I ∈Dsnk ∧~J /∈Dsnk ∧ ~I ∈ domR+}, (4.5b)

where domR+ is the domain of transitive relation R+ and ranR+ is the range of
transitive relation R+.

The condition in Equation (4.4) states that the iterations in D ind
snk

are not transi-
tively dependent on each other.

Based on Lemma 4.4.1 and Definition 4.4.1, we can have the following theorem.

1The PPNs with these two properties are called live.
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Theorem 4.4.1. For any PPN, the number of communication-free partitions is equal
to |D ind

snk
|.

Proof. For an iteration ~I ∈Dsnk, it satisfies one of two mutually exclusive conditions.
That is, the iteration either transitively depends on other iterations ~J ∈ Dsnk, or
does not transitively depend on any iteration ~J ∈ Dsnk. The former condition is
stated as ~I → ~J ∈ R+ ∧~J ∈ Dsnk in Equation (4.5a), whereas the latter condition is
expressed as ~I → ~J ∈ R+ ∧~J /∈Dsnk (Equation (4.5b)). For the former condition, the
surjective property of a transitive dependence R+ stated in Lemma 4.4.1 indicates
that multiple iterations ~I ∈ domR+ ⊂ Dsnk may depend on the same ~J ∈ ranR+ ⊂
Dsnk. We thus need to find out distinct iterations ~I ∈ domR+, which are not mapped
from any other iterations ~I ∈ Dsnk. It is essentially equivalent to computing the
lexicographically maximal iteration ~I if ~I → ~J ∈ R+. Such iterations ~I can be
found by domR+ − ranR+. On the other hand, if an iteration ~I ∈ Dsnk does not
transitively depend on any other iteration ~J ∈Dsnk, where ~I 6= ~J , all these iterations
are independent. This means all such iterations can definitely find independent
communication-free partitions. Finally all those iterations in domain D ind

snk
⊆ Dsnk

can be computed by taking the union as given in Equations (4.5a) and (4.5b). �

Consider the PPN in Figure 4.1(a). The sink iterations are described by the
domain of process snk, Dsnk as given in Equation (4.1). Upon computing transitive
closure R+

deps
of all dependence relations presented in Section 4.3, there are three tran-

sitive dependence relations on Dsnk, namely R+13, R+23, and R+33. Among them, R+33

satisfies the condition ~I → ~J ∈ R+ ∧ ~I ∈Dsnk ∧~J ∈Dsnk as stated in Equation (4.5a).
The domain and range of R+33 thus are:

domR+33 = {(i3, j 3) ∈Z2 | 1≤ i3≤ 7∧ 0≤ j 3≤ 7− i3},
ranR+33 = {(i3, j 3) ∈Z2 | 0≤ i3≤ 7∧ 1≤ j 3≤ 7− i3}.

Then, domR+33− ranR+33 in accordance with Equation (4.5a) yields:

D ind1
snk
= {(i3, j 3) ∈Z2 | 1≤ i3≤ 7∧ j 3= 0}. (4.6)

Furthermore, we compute those iterations that satisfy the second condition in
Equation (4.5b) , namely they do not depend on any other iterations in domain Dsnk.
That is:

D ind2
snk = {(i3, j 3) | i3= 0∧ j 3= 0}. (4.7)
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Finally, D ind
snk

can be computed by taking the union of D ind1
snk

obtained in Equa-
tion (4.6) and D ind2

snk
obtained in Equation (4.7):

D ind
snk

=D ind1
snk
∪D ind2

snk
= {(i3, i3) ∈Z2 | 0≤ i3≤ 7∧ j 3= 0}.

(4.8)

In general, D ind
snk

computed in accordance with Equation (4.5) is a union of
domains represented by polytopes. Then, computing the number of communication-
free partitions is equal to counting the number of integer points in the union of
polytopes, denoted by |D ind

snk
|. The counting problem can be efficiently solved in

polynomial time using the barvinok [127] library. Finally, for the PPN shown in
Figure 4.1(a) and D ind

snk
obtained in Equation (4.8), counting the number of integer

points in D ind
snk

yields |D ind
snk
|= 8. This confirms the same number of communication-

free partitions, namely 8 as shown in Figure 4.1(b). Also, D ind
snk

corresponds to the
iterations marked by circles show in both Figures 4.1(b) and 4.6(b).

4.5 Communication-free Partitioning Algorithm

If the number of communication-free partitions computed in Section 4.4 is greater
than 1, we can transform the initial PPN to a set of communication-free partitions.
We first show an example of constructing one of the communication-free partitions
for the PPN in Figure 4.1(a). Subsequently, we present the general partitioning
algorithm.

An Illustrative Example

Consider the PPN in Figure 4.1(a) and its execution illustrated in Figure 4.1(b). Let
us for example construct communication-free partition Parti. 3 in Figure 4.1(b). In
the partitioning algorithm for this example, our goal is to partition the domains
of the PPN processes and obtain all iterations surrounded by the dashed box for
Parti. 3. These iterations are transitively dependent on the iteration that identifies
Parti. 3. In this case, Parti. 3 is identified by iteration (i3, j 3) = (3,0) ∈ D ind

snk
of process P3 as computed in Equation (4.8). All transitive dependence relations
R+33, R+23, and R+13 to iteration (3,0) are computed in Equations (4.3a) to (4.3c) and
illustrated in Figure 4.6(b). In the first step of the partitioning algorithm for Parti. 3,
we instantiate process P33 (see Figure 4.7) of PPN process P3 through R+33. Process
P33 performs the same computational function as the original PPN process P3 does.
The only difference is that process P33 only executes in a subdomain D33 of the
original domain D3. For Parti. 3, besides that iteration (3,0) belongs to domain D33
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of process P33, P33 contains also iterations (2,1), (1,2), and (0,3) of P3, on which
iteration (3,0) depends, as shown in Figure 4.6(b). These iterations can be derived
by “substituting” iteration (3,0) in R+33 (see Equation (4.3c)), denoted as R+33((3,0)):

R+33((3,0)) = {(i3′, j 3′) | (3,0)→ (i3′, j 3′) ∈ R+33}
= {(i3′, j 3′) | 0≤ i3′ ≤ 2∧ j 3′ = 3− i3′}. (4.9)

Then, domain D33 for Parti. 3 can be obtained by taking a union of iteration (3,0)
with the ones computed in Equation (4.9):

D33 = (3,0)∪R+33((3,0))
= {(i3′, j 3′) | 0≤ i3′ ≤ 3∧ j 3′ = 3− i3′}. (4.10)

Second, a process P23 (see Figure 4.7) of PPN process P2 is instantiated due to R+23
for Parti. 3. Domain D23 contains iteration (3) of P2 as shown Figure 4.6(b). It can
be derived by “substituting” domain D33, obtained in Equation (4.10), in R+23 (see
Equation (4.3b)), denoted as R+23(D33):

D22 = R+23(D33) = {( j 2) | (i3, j 3)→ ( j 2) ∈ R+23 ∧ (i3, j 3) ∈D33}
= {(i2) ∈Z | i2= 3}. (4.11)

Finally, we need to instantiate a process P13 (see Figure 4.7) with domain D13 due
to R+13. Domain D11 corresponds to iteration (3) in domain DP1 as shown in Fig-
ure 4.6(b). Analogous to obtaining domain D23, domain D13 can be obtained by
“substituting” domain D33 in R+13 (see Equation (4.3a)):

D13 = R+13(D33) = {(i1) ∈Z | i1= 3}.

Once all processes for Parti 3 are instantiated, next we instantiate edges for the
new processes. Basically, if an edge in the initial PPN is incident with the new
process, a new edge is instantiated. For Parti. 3, edge E3 in the initial PPN is incident
with the new process P33. Then, a new edge E33 is instantiated with the associated
input port domain DIP33

, output port domain DOP33
, and dependence relation R33:

DIP33
= DIP3

∩D33
= {(i3, j 3) | 1≤ i3≤ 3∧ j 3= 3− i3},

DOP33
= DOP3

∩D33
= {(i3′, j 3′) | 0≤ i3′ ≤ 2∧ j 3′ = 3− i3′},

R33 = {(i3, j 3)→ (i3′, j 3′) | (i3, j 3) ∈DIP33
∧ (i3′, j 3′) ∈DOP33

∧i3′ = i3− 1∧ j 3′ = j 3+ 1}.

(4.12)
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Figure 4.7: The PPN in Figure 4.1(a) after communication-free partitioning.

Two other edges E13, E23 can be instantiated in a similar way, due to edges E1, E2
in the initial PPN. In this way, communication-free partition Parti. 3 shown in
Figure 4.1(b) is constructed and illustrated by the solid box in Figure 4.7. In the
next step, we merge all process instances P33, P23, and P13 into a single compound
process Parti. 3 as shown in Figure 4.4(a). We generate a static schedule, similar to the
one proposed in [124], that executes all dependent iterations of the new processes as
close as possible.

General Partitioning Algorithm

In general, to instantiate new processes and edges, we devise Algorithm 3. The input
to Algorithm 3 is a PPN with all transitive dependences (E+) computed in Section 4.3
and D ind

snk
⊆Dsnk obtained in Theorem 4.4.1. Every sink iteration ~K ∈D ind

snk
is used

to identify a distinct communication-free partition. The output of Algorithm 3 is
|D ind

snk
| communication-free partitions. The core part of the algorithm is presented

below.
Algorithm 3 starts partitioning a PPN from the sink process, namely partition-

ing Psnk into |D ind
snk
| number of processes Psnk_inst. For each iteration ~K ∈D ind

snk
of the

sink process, we instantiate a new process Psnk_inst. The loop iterates over all PPN
processes to instantiate all processes in all communication-free partitions. Basically,
for a particular partition, we construct the domain for each new process through
all transitive dependence relations R+E on iteration ~K . First, we construct domain

DPsnk_inst
. If this iteration ~K transitively depends on other iterations in domain Dsnk,
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Algorithm 3: Communication-free partitioning procedure

Input: A PPN= (P ,E), E+, and D ind
snk

obtained in Theorem 4.4.1.
Result: A PPN′ = (P ′,E ′).
P ′←;, E ′←; ;1

Get sink process Psnk, Dsnk_inst←; ;2

foreach ~K ∈D ind
snk

do3

Psnk_inst← Psnk ;4

foreach Edge E+ ∈ E+ incident with Psnk do5

Get R+E associated with edge E+ ;6

if ~K /∈ domR+E then7

continue;8

if ranR+E ⊆Dsnk then /* ~K depends on other iterations9

in Dsnk */

DPsnk_inst
←DPsnk_inst

∪ ~K ∪R+E (
~K) ;10

else /* ~K depends on another process P */11

DPsnk_inst
←DPsnk_inst

∪ ~K ;12

Get process P ∈P incident with edge E+;13

Pinst← P ;14

DPinst
← R+E (Dsnk_inst) ;15

P ′←P ′ ∪ Pinst ;16

P ′←P ′ ∪ Psnk_inst ;17

foreach Pinst ∈P ′ do18

Einst← instantiateChannels(Pinst, E) ;19

E ′← E ′ ∪ Einst;20

then domain DPsnk_inst
contains also all iterations in Dsnk that iteration ~K depends

on. All such iterations can be computed by slicing a transitive dependence R+ using
iteration ~K , denoted as R+(~K). It is formally defined as:

R+(~K) = {~J | ~I → ~J ∈ R+ ∧ ~I = ~K},

where ~K is a constant vector (see an example in Equation (4.9)). Therefore, in this
case, we can obtain DPsnk_inst

in Algorithm 3. In contrast, if the iteration ~K does

not depend on any other iteration in Dsnk, then DPsnk_inst
is simply equal to ~K . Also,
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Algorithm 4: Procedure instantiateChannels
Input: A process instance Pinst and a set edges E .
Result: A set of edges Einst incident with process instance Pinst.
Get DPinst

of Pinst;1

foreach Channel E ∈ E incident with Pinst do2

Get DIP and DOP associated with edge E ;3

Einst← E ;4

if DIP ∩DPinst
6= ; and DOP ∩DPinst

6= ; then /* a self-edge */5

DIP_inst←Dinst ∩DIP , domREinst
←DIP_inst;6

DOP_inst←Dinst ∩DOP, ranREinst
←DOP_inst ;7

Einst← Einst ∪ Einst ;8

else if DIP ∩DPinst
6= ; and DOP ∩DPinst

= ; then /* an incoming9

edge */
DIP_inst←Dinst ∩DIP, domREinst

←DIP_inst ;10

Einst← Einst ∪ Einst ;11

else if DIP ∩DPinst
= ; and DOP ∩DPinst

6= ; then /* an outgoing12

edge */
DOP_inst←Dinst ∩DOP, ranREinst

←DOP_inst ;13

in this case, ~K transitively depends on another PPN process P through transitive
dependence relation R+E , where P 6= Psnk. Therefore, we need to instantiate a process
instance Pinst for process P . Domain DPinst

can be computed by applying domain
DPsnk_inst

to dependence relation R+E , denoted as R+E (DPsnk_inst
). R+E (DPsnk_inst

) is given
as:

R+E (DPsnk_inst
) = {~J | ~I → ~J ∈ R+E ∧ ~I ∈DPsnk_inst

}.

An example of the applying operation can be seen in Equation (4.11). Finally, all
process instances in the same communication-free partitions can be instantiated.

Once all processes for each communication-free partition are instantiated, as
the next step, we need to instantiate edges for all processes in Algorithm 3. The
procedure of instantiating all edges for a process instance is depicted in Algorithm 4.
As input, it takes a process Pinst with constructed domain Dinst and all edges E in
the initial PPN. The algorithm outputs a set of edges Einst incident with process
instance Pinst. In Algorithm 4, if both the input port and output port of a edge E are
incident with Pinst, a new self-edge Einst is instantiated with the corresponding input
and output port domains. An example of instantiating self-edge E33 for new process
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P33 can be seen in Equation (4.12). If only the input port or output port of an edge
E is incident with Pinst, it represents a dependence relation from/to another process
instance in the same communication-free partition. In other words, it is either an
incoming or outgoing edge of process instance Pinst. In this case, we instantiate only
one edge with its corresponding input and output port domains. Therefore, using
Algorithm 4, we can instantiate all edges incident with a new process Pinst.

4.6 Experimental Results

In this section, we present the performance results obtained by applying our ap-
proach explained previously and prototyping two real-life streaming applications on
two different platforms. Then, we present a set of experiments to evaluate the time
complexity of our approach.

We selected two different platforms, a Xilinx ML605 board equipped with a
Virtex 6 FPGA (referred as FPGA platform hereinafter) and a desktop multi-core
platform containing an Intel i7-920 processor running at 2.66GHz with 4 cores and
4GB system memory (referred as desktop platform hereinafter). For the FPGA
platform, the generated MPSoCs consist of up to 8 MicroBlaze (MB) soft-cores
interconnected via Xilinx’ Fast Simplex Link FIFOs. All MBs run at 100Mhz
with their own 64KB program memory and 64KB data memory. On the desktop
platform, a main thread was used to measure the performance and to spawn up to
8 threads, due to hyper-threading. The inter-core data communication cost on the
desktop platform is much higher than that on the FPGA platform. Therefore, the
performance gain introduced using our approach was evaluated on the platforms
with different computation/communication characteristics. We implemented the
partitioning algorithm presented in Section 4.5 in PNtool as part of the DaedalusRT

design flow shown in Figure 1.7 on page 13. We conducted all experiments using
the ESPAM [96] tool, the Xilinx Platform Studio 13.2, and Microsoft Visual Studio
2008. All generated programs were compiled using compilers mb-g++4.6.2 and
g++4.52 on the selected platforms respectively, with optimization level -O2.

Case Studies

We considered two real-life applications modeled using the PPN MoC, namely a
Motion-JPEG (MJPEG) encoder used in [34] and the FM radio application taken
from the StreamIT benchmark suite [54]. The MJPEG encoder encodes frames of
size 128× 128 pixels. For the FM radio application, we took the provided sequen-
tial C implementation to generate the initial PPN with the following parameters:
decimation rate 4, tap size 64, and 10 equalization bands. To optimally balance the
workloads across a particular number of PEs, we exhaustively mapped all possible
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Figure 4.8: Performance results of mapping the MJPEG encoder onto (a) FPGA-
based MPSoC platforms and onto (b) a desktop multi-core platform.

groupings of the obtained communication-free partitions on both platforms. As a
reference, we also implemented the initial PPNs of both applications on the selected
platforms by performing maximal load-balancing and optimal pipelining, such that
the best possible mapping was found for a given number of MBs or threads. The
metric used to evaluate the performance results is the relative speedup compared to
the 1-MB or 1-thread system implementation.

The performance results of mapping the MJPEG encoder are plotted in Fig-
ure 4.8(a) for the FPGA platform and in Figure 4.8(b) for the desktop platform. As
expected, the implementation on the desktop platform results in less speedup than
the one obtained on the FPGA platform for the same number of MBs or threads in
use. This is because of the shared memory architecture and very costly inter-thread
communication on the desktop platform. Also, the initial PPN mapped onto the
desktop platform using 1 thread is already highly optimized by the compiler. For
the mapping of the initial PPN (denoted as Initial), the initial PPN does not have
enough processes to utilize more than 5 MBs or threads. It can be seen that up to
1.91X speedup for the FPGA platforms and 1.64X speedup for the desktop platform
are achieved. The main reason is that the workloads of processes in the initial
PPN are not well-balanced, as the Discrete Cosine Transform (DCT) dominates the
total execution time of the MJPEG encoder. Although all PPN processes are fully
pipelined, the speedup is limited by the longest pipeline stage, the DCT process. For
the desktop platform, the pipelining leads to less benefits compared to the FPGA
platform because the communication between threads mapped onto different cores
cannot be completely overlapped by computation.

Compared to the mapping of the initial PPN for the MJPEG encoder, our
approach (denoted as Alternative in Figure 4.8(a) and 4.8(b)) leads to better per-



4.6. Experimental Results 71

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Sp
p

e
d

u
p

 

Number of MicroBlazes (MB) 

Initial

Alternative

(a)

0,5

1

1,5

2

2,5

3

3,5

1 2 3 4 5 6 7 8

Sp
p

e
d

u
p

 

Number of Threads 

Initial

Alternative

(b)

Figure 4.9: Performance results of mapping the FM radio application onto (a) FPGA-
based MPSoC platforms and onto (b) a desktop multi-core platform.

formance. Our approach outperforms the mapping of the initial PPN by 5% to
87.05% on 2 to 5 MBs. As shown in Figure 4.8(a) for the FPGA platform, the
speedup increases linearly for the mapping of the alternative PPN onto 1 to 4 MBs
(3.45X speedup on 4 MBs). In case of 5 to 7 MBs, the speedup increases only slightly
(3.6X to 4.09X speedup on 5 to 7 MBs). We found that unbalanced workloads and
the single data sink become bottlenecks for these cases. As the number of MBs
increases, a slightly unbalanced grouping of communication-free partitions has large
impact on the performance. As a consequence, the single data sink is constantly
blocking on the group of partitions with the heaviest workload. Of course, modern
architectures may have multiple I/O ports, namely multiple data sinks. For instance,
the authors in [54] observe 18.4% performance improvement on the 16-core RAW
architecture with 16 data sinks compared to the one with the single data sink. In
the best case, our approach results in 6.14X speedup on 8 MBs, when the grouping
of the obtained partitions balances the workload across 8 MBs. For the results on
the desktop platform shown in Figure 4.8(b), the mapping of the alternative PPN
outperforms the mapping of the initial PPN by 5.5% to 61.97% using 2 to 5 threads.
Moreover, the effect of unbalanced grouping of communication-free partitions is
amortized by the higher communication cost compared to the FPGA platform.
In the best case, 2.97X speedup is achieved using 7 threads. When 8 threads are
used, the main thread, mentioned earlier, introduces extra overhead. Therefore, the
8-thread implementation performs 3.68% worse than the 7-thread implementation.

For the FM radio application, the workloads of PPN processes in the initial PPN
are overall not balanced. The low pass and high pass filters in the equalizer dominate
the total execution time of the application. Moreover, the communication between
PPN processes is performed at more fine-grained level compared to the MJPEG
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encoder, i.e., at each iteration, one audio sample is flowed through all PPN processes
instead of one macroblock as in the MJPEG encoder. The obtained speedup of
mapping the initial PPN (denoted as Initial) is plotted in Figure 4.9(a) for the FPGA
platform and in Figure 4.9(b) for the desktop platform. In the best case on the FPGA
platform, by pipelining all processes in the initial PPN and offloading the high pass
filter (or low pass filter) in the equalizer to a separate MB, 1.99X speedup is achieved
on 2 MBs. On the desktop platform shown in Figure 4.9(b), the best mapping of
the initial PPN is found using 5 threads occupying 4 cores, i.e., 1.27X speedup. In
case of 6 and 7 threads, the implementation slows down compared to the 1-thread
implementation. The fine-grained communication and the little workloads of some
threads (e.g., the Demodulation and the Amplify processes in the Equalizer) fully
expose the communication/synchronization overhead which dominates the total
execution time.

After communication-free partitioning, the alternative PPN of the FM radio
application exhibits ample data-level parallelism. Also, the fine-grained communi-
cation between MBs or threads in the initial PPN is completely eliminated, except
the communication from the data source and to the data sink. For the results on
the FPGA platform shown in Figure 4.9(a) (denoted as Alternative), the obtained
speedup by mapping the alternative PPN outperforms mapping the initial PPN by
32.05% to 97.74% on 3 to 7 MBs. Compared to the 4-MB implementation, the map-
ping of the alternative PPN onto 5 to 7 MBs does not result in further improvements.
This is because, as the number of MBs increases, the workloads of the obtained
communication-free partitions cannot be evenly distributed. This fact combined
with the relatively cheaper inter-MB communication on the FPGA platform, shows
that our communication-free partitioning does not bring too much benefits on 5
to 7 MBs. Once the workload is balanced, 7.83X speedup is achieved on 8 MBs.
On the desktop platform, our approach (denoted as Alternative in Figure 4.9(b))
outperforms the mapping of the initial PPN by 39.79% to 489.27% using 2 to 7
threads. In the best case, speedup 3.46X is observed using 7 threads. The 8-thread
implementation performs 1.51% worse compared to the 7-thread one due to the
overhead introduced by the main thread similar to the MJPEG case study.

Time Complexity of our Approach

To quantify the time complexity of our approach, we conducted experiments on
a set of real-life benchmarks from Polybench [101]. Other benchmarks are less
complex than the benchmarks listed in Table 4.1 in terms of their characteristics.
The characteristics of each benchmark are given in columns 2 to 4 in Table 4.1. The
benchmarks differ in the of number of PPN processes (denoted by |P |) and edges
(denoted by |E |) in the initial PPNs, as well as dimensions of data arrays accessed in
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Table 4.1: Execution time on benchmarks.
Benchmark |P | |E | Array dimensions Execution time (sec.)

ADI1 12 67 3 2.644
Gram-schmidt 8 19 2 0.924

FDTD2 9 27 2 0.604
Correlation 12 20 2 0.076
Reg-detect3 8 11 3 0.068
Dynprog4 8 12 3 0.064

Gauss5 11 18 2 0.044
Covariance 8 11 2 0.032

1 ADI: Alternating direction implicit solver
2 FDTD: 2D finite difference time domain kernel
3 Reg-detect: Regularity detection
4 Dynprog: Dynamic programming (2D)
5 Gauss: 2D gauss blur filter for image processing

PPN processes. For instance, the ADI solver in Table 4.1 operates on 3 dimensional
data arrays. In practice, it can be seen that, from the last column in Table 4.1, our
approach takes less than 3 seconds to derive all communication-free partitions for
the considered benchmarks. This shows that our approach is very fast even for
relatively large PPNs such as the PPN of the ADI benchmark.
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Chapter 5

Exploiting Just-enough Parallelism in
Hard Real-time Systems

Jiali Teddy Zhai, Mohamed A. Bamakhrama, Todor Stefanov, “Exploiting Just-enough
Parallelism when Mapping Streaming Applications in Hard Real-time Systems”, In the
Proceedings of the 50th IEEE/ACM Design Automation Conference (DAC’13), pp. 170:1–170:8,
Austin, TX, USA, June 2 - 6, 2013.

AS we have seen in Chapter 4, the initial application specification, often in
the form of a graph, may be transformed to an alternative one that exposes

more parallelism while preserving the same application behavior. To this end, task
unfolding is an effective technique to generate such alternative graphs. Basically,
task unfolding replicates the functionality of a task by a certain number of times,
referred as unfolding factor. Then, replicas of tasks concurrently process different
data, thereby exploring also data-level parallelism next to the task-level parallelism.
For data flow MoCs, such as SDF, the unfolding has been extensively applied
in [40, 54, 56, 71].

In the context of DaedalusRT, unfolding individual actors in an initial SDF
graph by different unfolding factors results in a large number of possible alternative
CSDF graphs. To transform the initial SDF graph to an alternative CSDF one by
unfolding, the main problem is to determine a proper unfolding factor for each
task. This problem is challenging because platform constraints must be considered
during unfolding. The platform constraints can be the number of available PEs and
temporal scheduling of actors on the PEs. In Chapter 4 and other literature [40,133],
an unfolding factor1 is determined for each task in such a way that the obtained

1Our communication-free partitioning presented in Chapter 4 on PPN processes can be considered

75
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alternative graph exposes the maximum DLP without considering the platform
constraints. However, unfolding a task too many times reveals more parallelism than
the processing capability of the execution platform. The overwhelming parallelism
leads to an inefficient mapping of replicas of tasks. That is, the excessive number
of replicas cannot be efficiently allocated and temporally scheduled on the available
PEs. Moreover, the excessive number of replicas introduces significant memory
overhead for both code and data. On the other hand in [54, 71, 113], the authors
assume that the unfolding factor of a task cannot exceed the number of available
PEs on the execution platform. This assumption, however, restricts the amount of
revealed parallelism because a proper unfolding factor is not necessarily less than
or equal to the number of available PEs. As a consequence, the aforementioned
assumption might lead to under-utilized PEs. From the discussion above, we can see
that exploiting excessive or insufficient parallelism may result in sub-optimal system
utilization and performance. Therefore, in this chapter, we address the problem
of determining a proper unfolding factor of each SDF actor in a given initial SDF
graph, such that the obtained alternative CSDF graph exposes just-enough parallelism
to fully utilize the available PEs. This is achieved by considering the platform
constraints when determining the unfolding factors.

Scope of Work

In this chapter, we assume that a given SDF graph is acyclic. Note that this assump-
tion is not directly related to our approach in this chapter. Rather, it is merely a
restriction of the adopted hard real-time scheduling framework (see Section 2.3 on
page 33). Such assumption covers a large set of applications as it has been empirically
shown in [116] that around 90% of streaming applications can be modeled as acyclic
SDF graphs. Once a cycle exists in an SDF graph, one can always fuse all actors in
the cycle into a single stateful actor. A stateful actor is the one whose next execution
depends on the current execution. As a consequence, our approach does not unfold
stateful actors. Furthermore, the data source and sink actors, which represent the
external environment, are not unfolded. The target platform assumed in this work
is a homogeneous programmable MPSoC with distributed memory. The intercon-
nection structure between PEs must provide guaranteed communication latency,
e.g., Æthereal network-on-chip [53].

as a special case of unfolding.
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5.1 Related Work

The approach in [113] is closely related to our work, although the considered
problem is relaxed, i.e., without considering timing constraints, compared to our
problem. A genetic algorithm based heuristic is proposed to determine the unfolding
factor of an actor and allocation of all replicas. The unfolding factor of an actor
cannot exceed the number of PEs, which might result in sub-optimal solutions as we
show later in Section 5.5. Moreover, we show in the experiments that our approach
outperforms significantly the genetic algorithm based heuristic in terms of running
time.

In [71], an Integer Linear Programming (ILP) formulation gives exact solutions
to minimize makespan on any PE while simultaneously unfolding actors in an SDF
graph and allocating them to PEs. In the ILP formulation, an unfolding factor
of an actor cannot exceed the number of available PEs. This assumption might
lead to sub-optimal system performance as discussed previously. Moreover, it has
been shown in [40] that the ILP formulation is even intractable for benchmarks
with medium graph size. For instance, it takes around 70 hours to solve the ILP
formulation for the FFT benchmark with 26 actors on 4 PEs (see Table 2 in [40]).
In practice, real-life applications have been shown to contain up to 2868 actors [116].
Therefore, it is clear that the ILP-based approach suffers from severe scalability
issues. In contrast, our proposed algorithm solves the combined problem within a
reasonable amount of time as demonstrated later in Section 5.7.

To address the scalability issue of [71], the authors in [40] propose to decompose
the actor unfolding and allocation problem into two problems and solve them
separately. The separation of the two problems often leads to inferior performance,
as both problems are strongly related. In contrast, our proposed algorithm is capable
of solving the two problems simultaneously. Moreover, our algorithm takes into
account timing constraints, while the work in [40] does not.

In the context of synthesizing an SDF graph using dedicated hardware, the
authors in [56] also determine which actors to unfold and by what factor. The
addressed problem is easier than ours because there is no need to consider allocation
of actors after unfolding in case of hardware synthesis.

In [72], a synchronous programming model is used for the application speci-
fication under hard real-time scheduling. The term “synchronous” in this context
refers to the fact that a master thread can fork a job into several parallel execution
segments and they join upon completion. These parallel execution segments are, to
some extent, similar to unfolded actors in our case. There is also no need to consider
allocation of parallel segments at compile-time because migration at run-time is
allowed targeting MPSoC platforms with shared memory. In contrast, we solve
the problem of allocating actors at compile-time. Recall that we consider MPSoC
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platforms with distributed memory. On such platforms, migration of actors at
run-time introduces non-negligible overhead.

5.2 Unfolding of SDF Graphs

Before the problem formulation, we first present an unfolding algorithm for SDF
graphs. This will help better understand the problems stated in Section 5.3.

The unfolding operation on an SDF graph used in this thesis is conceptually
similar to the one used in [40,54,56,71], in which two special constructs splitter and
joiner are employed for the unfolded actors. Given a vector ~f ∈ Nn of unfolding
factors, where fi denotes the unfolding factor for actor Ai , the unfolding operation
replaces Ai by fi replicas of itself. Then, instead of inserting a splitter and joiner
before and after the fi replicas of Ai , we transform the initial SDF graph to a
functionally equivalent CSDF graph. To ensure the functional equivalence, the
production and consumption rates of an SDF actor are modified accordingly to
the production and consumption sequences in the resulting CSDF graph. This
modification results in a different repetition vector of the obtained CSDF graph to
ensure its consistency.

The algorithm for performing the unfolding of actors in SDF graphs is given in
Algorithm 5. The algorithm accepts as inputs an SDF graph G and a vector ~f of
unfolding factors. The algorithm produces as an output a CSDF graph G′, where
Ai , f denotes the f th replica of Ai with repetition qi , f given by

qi , f =
qi · lcm( ~f )

fi
, (5.1)

where qi is the repetition of actor Ai in the initial SDF graph and lcm( ~f ) denotes the
least common multiple of fi ∈ ~f . It follows that the repetition vector of G′, denoted

by ~q ′ ∈ Nn′ where n′ =
∑

Ai∈A fi , is given by ~q ′ = [q1,1, · · · , q1, f1
, · · · , qn, fn

]T and

n = |A|. After obtaining ~q ′ using Equation 5.1, production/consumption sequences
of each CSDF actor are generated accordingly.

Let us consider an SDF graph G1 is shown in Figure 5.1(a). The actors A1
and A5 are the data source and sink actors, respectively. G1 has five actors and a
repetition vector ~q = [1,1,2,1,1]T . The WCET of each actor is shown below its
name, e.g., C3 = 12 for actor A3. Suppose that a vector of unfolding factors is given
as ~f = [1,1,3,1,1] for G1 in Figure 5.1(a). Algorithm 5 outputs a CSDF graph G2
shown in Figure 5.1(b) with three replicas A3,1, A3,2 and A3,3 for actor A3 in G1. The



5.2. Unfolding of SDF Graphs 79

Algorithm 5: Unfolding an SDF graph.

Input: An SDF graph G = (A,E) and a vector ~f of unfolding factors.
Result: The equivalent CSDF graph G′ = {A′,E ′}
A′ = ;,E ′ = ; ;1

foreach Ai ∈A do2

Add fi ∈ ~f replicas of Ai to A′ ;3

Set repetition entry qi ,i i =
qi ·lcm( ~f )

fi
,∀i i ∈ [1, fi] ;4

foreach E ∈ E do5

Get source actor Ai and sink actor Aj of edge E ;6

Get production rate prd(E) and consumption rate cns(E) ;7

lcm_pc= lcm(prd(E), cns(E)) ;8

if f j is dividable by fi then OP= f j/ fi ; IP= 1;9

else if fi is dividable by f j then IP= fi/ f j ;OP= 1;10

else IP= fi/ f j ;OP= 1;11

for i i = 1 to fi do12

Add OP output ports to Ai ,i i ;13

for k = 1 to OP do14

Initialize a production sequence Pi ,i i of length qi ,i i to 0;15

Pi ,i i[p] = prd(E),∀p ∈ [(k − 1) lcm_pc
prd(E) + 1, k lcm_pc

prd(E) ] ;16

if f j is dividable by fi then j j = (i i − 1)OP+ k ;17

else if fi is dividable by f j then j j = i i/IP ;18

else j j = k ;19

Initialize a consumption sequence C j , j j of length q j , j j to 0;20

C j , j j [c] = cns(E),∀c ∈ [(i i − 1) lcm_pc
cns(E) + 1, i i lcm_pc

cns(E) ] ;21

Create a new channel E ′ connecting replica Ai ,i i to replica Aj , j j ;22

Add channel E ′ to E ′ ;23

Compact the production and consumption sequences of each actor in A′;24

unfolding results in a repetition vector of G2 as:

~q ′G2
= [q1,1, q2,1, q3,1, q3,2, q3,3, q4,1, q5,1]

T

= [3,3,2,2,2,3,3]T

For example, SDF actor A4 executes only once (q4 = 1) in G1 per graph iteration,
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(a) G1
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[8, 8, 8]
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[0, 0, 2]

(b) G2

Figure 5.1: (a) An example of an SDF graph and (b) its equivalent CSDF graph by
unfolding actor A3 by factor 3.

while executing three times (q4,1 = 3) in G2 per graph iteration. Three consumption
sequences of actor A4,1 in G2 behave similar to a joiner, with which A4,1 collects data
tokens from the three replicas A3,1, A3,2 and A3,3. Analogous to a splitter, actor A2,1
with three production sequences distributes tokens to the three replicas.

5.3 Problem Formulation

First of all, recall the notations used for (C)SDF MoCs in Table 2.3 on page 31 and
the notations used for HRT scheduling of (C)SDF MoCs in Table 2.4. In addition,
we introduce some extra notations in Table 5.1 used in this chapter to facilitate the
following discussion. Let Ti be the actual period of actor Ai ∈A of a CSDF graph
G = (A,E). Ti can be obtained as Ti = cŤi , where Ťi is computed in Equation (2.16)
on page 34 and c is called scaling factor (see Section 5.4). Now, we formally define
our problem as follows:

Problem 5.3.1. Given an SDF graph G, where the actors are scheduled as strictly
periodic tasks, and m available PEs. Suppose that each actor Ai in G is to be unfolded
by an unfolding factor fi ∈N+. Find, for each actor Ai , the minimum value of fi and
the allocation of each replica Ai ,d , where 1≤ d ≤ fi , such that the period of the sink
actor Tsnk (see definition of Tsnk on page 34) in the unfolded graph is minimized.

If Problem 5.3.1 is considered as primal, its dual problem can be stated as follows:
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Problem 5.3.2. Given an SDF graph G, where the actors are scheduled as strictly
periodic tasks, and m available PEs. Suppose that each actor Ai in G is to be unfolded
by an unfolding factor fi . Find, for each actor Ai , the minimum value of fi and the
allocation of each replica Ai ,d , where 1≤ d ≤ fi , such that the total utilization

UG’ =
∑

Ai ,d∈A′

Ci ,d

Ti ,d

of the unfolded graph G′ on m PEs is maximized, where Ti ,d is the actual period of
replica Ai ,d .

It can be seen that Problems 5.3.1 and 5.3.2 are not trivial. In general, for a given
SDF graph, the number of possible alternative graphs that can be generated using
unfolding grows exponentially as the number of actors increases. Furthermore, for
each alternative graph, we have to perform allocation of unfolded actors which is by
itself an NP-hard problem.

Lemma 5.3.1. Problems 5.3.1 and 5.3.2 are equivalent.

Proof. The lemma is proven by showing that a solution to Problem 5.3.1 is also a
solution to Problem 5.3.2 (case I) and vice versa (case II).
Case I:

Let G′ be the unfolded graph of G. Suppose that ~f is the solution to Prob-
lem 5.3.1. This means that Tsnk is minimized. The period Ti , f of a replica Ai , f in G′

based on Equation (2.16) on page 34 can be written as

Ti , f = c · Ťi , f =
c · lcm(~q ′)

qi , f

� ŴG′

lcm(~q ′)

�

, (5.2)

Notation Meaning
c scaling factor for periods of all actors in a (C)SDF graph and c ∈Z+
fi unfolding factor for actor Ai
Ω ratio
ρ quality factor ρ ∈ (0,1]
θi code size of a (C)SDF actor Ai
Θ total code size of a (C)SDF graph, Θ=

∑

Ai∈Aθi

Table 5.1: Additional notations used in Chapter 5 besides the ones introduced in
Chapter 2.
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where c is the scaling factor. Thus, for the sink actor, it is

Tsnk · qsnk = c · lcm(~q ′)
� ŴG′

lcm(~q ′)

�

, (5.3)

where c · lcm(~q ′)
�

ŴG′/ lcm(~q ′)
�

is constant. Therefore, from Equations 5.2 and 5.3,
it holds

Tsnk · qsnk = Ti , f · qi , f ,∀Ai , f . (5.4)

Subsequently, Equation 5.4 can be re-written as

Ti , f =
Tsnk · qsnk

qi , f
. (5.5)

Due to the devised unfolding algorithm (see Algorithm 5), we have qi ,1 = qi ,d (see
Equation (5.1)), where 1 ≤ d ≤ f . Therefore, βi = qsnk/qi , f is constant. It then
follows

Ti , f =βi Tsnk (5.6)

It follows from Equation 5.6 that when Tsnk is minimized, then Ti , f is minimized.
Recall that the maximum total utilization ÛG′ is given by

ÛG′ =
∑

Ai , f ∈A

Ci , f

Ti , f
(5.7)

Since Ti , f is minimized for all the actors, it follows that ÛG′ is maximized. Therefore,
~f is also the solution to Problem 5.3.2.
Case II:

Suppose that ~f is the solution to Problem 5.3.2. This means that ÛG′ is max-
imized. Using Equation 5.4, we can replace each Ti , f in Equation 5.7 by Tsnk·qsnk

qi , f
,

which results in:

ÛG′ =
C1,1 · q1,1

Tsnk · qsnk
+ · · ·+

C2,1 · q2,1

Tsnk · qsnk
+ · · ·+

Csnk

Tsnk
(5.8)

The WCET Ci , f and repetition qi , f of each replica is constant. Therefore, Equa-
tion 5.8 can be re-written as:

ÛG′ =
α1,1

Tsnk
+ · · ·+

α2,1

Tsnk
+ · · ·+

αsnk

Tsnk
(5.9)

where αi , f = Ci , f · qi , f /qsnk. Since ÛG′ is maximized, it follows that Tsnk is mini-

mized. Therefore, ~f is also a solution to Problem 5.3.1. �
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5.4 Period Scaling under Hard Real-time Scheduling

As given in Equation (2.16) on page 34, a (C)SDF graph under SPS can achieve
the minimum period (inverse of maximum throughput) Ťi for each actor Ai . This
maximum performance also requires the largest number of PEs. If the maximum
performance is not necessary, the actually desired period Ti of Ai can be obtained
by scaling up Ťi by a scaling factor c ∈Z+ as Ti = cŤi . Using a scaling factor c , we
can have a trade-off between processing resources and guaranteed performance as
shown in the following proposition:

Proposition 5.4.1. Let G be a CSDF graph that is schedulable using a scheduling
algorithm SA and an allocation algorithm AA on m̌ PEs, when the minimum period of
each actor Ai is equal to Ťi . G is schedulable using the same SA and AA on

� m̌
c

�

PEs,
when the period of each actor Ai is scaled by c.

Proof. Let USA be the utilization bound of a scheduling algorithm SA. If G is schedu-
lable on m̌ PEs using SA and any AA, then this means that the total utilization of
the actors on each PE j , where 1≤ j ≤ m̌, is UPE j

∈ (0, USA]. If we scale the periods

of the actors in G by c , then this means that UPE j
∈ (0, USA

c ]. Therefore, it is possible
to combine the actors in every c PEs into 1 PE. Hence, the number of PEs needed
after scaling the periods is

� m̌
c

�

. �

Considering G2 in Figure 5.1(b), we have computed in Equation (2.24) on page 37

that it can be scheduled on 5 PEs while achieving
~̌
TG2

. Therefore, it can be scheduled

on d 5
2e= 3 PEs achieving a period T5,1 = 2× Ť5,1 = 16, i.e., throughput 1

16 by scaling
all minimum periods by c = 2.

Now, suppose that AA is an approximate allocation algorithm with an approxi-
mation ratio RAA. Then, we can have the following proposition:

Proposition 5.4.2. Let G be a CSDF graph that is schedulable using a scheduling
algorithm SA and any exact allocation algorithm on m̌ PEs, when the period of each
actor Ai is equal to cŤi . G is schedulable using SA and any approximate allocation
algorithm AA, with approximation ratio RAA, on m̌ PEs, when the period of each actor
Ai is equal to cRAAŤi .

5.5 Bounding Solution Space

In order to solve Problems 5.3.1 and 5.3.2 defined in Section 5.3, it is first necessary
to show that the solution space of the problems is bounded, i.e., the values of the
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unfolding factors fi must be bounded by finite integers. Bounding the solution space
ensures that the algorithm devised in Section 5.6 terminates. Now, we define the
upper bound on unfolding factors as follows:

Definition 5.5.1 (Upper bounds of Unfolding Factors). Let G be an SDF graph,
where the actors in G are under SPS shown in Section 2.3, and assume that the
number of PEs is unlimited. Suppose that every actor Ai in G is to be unfolded by
a factor fi resulting in a CSDF graph G′, for which Ťi , f is the minimum period of

each replica Ai , f and Ci , f =Ci is its WCET. The upper bound on fi , denoted by f̂i ,
is the minimum value which results in utilization

Ci , f

Ťi , f

= 1.0

for each replica Ai , f in G′.

In other words, unfolding an SDF graph G by a vector of unfolding factors
~̂f = [ f̂1, · · · , f̂n] results in a graph G′ with utilization UG′ = n′, where n′ is the
number of actors in the unfolded graph. Hence, unfolding any actor Ai by an
unfolding factor f ∗i > f̂i cannot result in any increase in the total utilization of the
unfolded graph. Moreover, the unfolded graph achieves the maximum achievable
throughput since the sink actor fully utilizes the PE on which it executes. Therefore,
~̂
f bounds the solution space that has an impact on the total utilization of the
unfolded graph.

Determining the upper bound
~̂f , however, is not trivial. One common assump-

tion, e.g., in [54] and [71], is to set
~̂f = [m, m, · · · , m], where m is the number of

PEs. In this section, we show, using an example, that this assumption may limit the
solution space. As a consequence, the limited solution space might not contain the
optimal solution to Problems 5.3.1 and 5.3.2.

Let us consider G1 in Figure 5.1(a) and suppose that 2 PEs are available. The
optimal alternative graph of G1 is G3, shown in Figure 5.2, when the vector of
unfolding factors is ~f = [1,2,4,1,1]. First, the repetition vector of G3 can be
computed according to Equation (5.1) as

~qG3
= [q1,1, q2,1, q2,2, q3,1, q3,2, q3,3, q3,4, q4,1, q5,1]

= [4,2,2,2,2,2,2,4,4].
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Figure 5.2: G3: Optimal alternative graph of G1 in Figure 5.1(a) with unfolding
factors f2 = 2, f3 = 4 when scheduled on 2 PEs.

It follows that ŴG3
= q3,1×C3,1 = 2× 12 and lcm(~qG3

) = 4. Solving Equation (2.16)
on page 34 yields the minimum period of the sink actor A5,1 as

Ťsnk =
4

4
· d

24

4
e= 6.

To achieve Ťsnk = 6, it requires 6 PEs. Then, we can scale all periods of the actors
in G3 by c = 3, which yields a period Tsnk = 3Ťsnk = 18. According to Proposi-
tion 5.4.1, the graph G3 is schedulable on d 6

3e= 2 PEs. After scaling the periods of
all actors, the total utilization UG3

of G3 on 2 PEs is UG3
= 2.0. Since Lemma 5.3.1

states that the maximum utilization corresponds to the minimum period that a
CSDF graph can achieve, no shorter period can be achieved for G3. Thus, G3 is the
optimal alternative graph of G1 for 2 PEs with an unfolding factor f3 = 4, which
is greater than the number of PEs available. Therefore, this example shows that

the optimal solution is beyond
~̂
f = [2,2,2,2,2], which defines the solution space

if we set
~̂f = [m, m, m, m, m]. Hence, we conclude that the upper bound on an

unfolding factor is not necessarily equal to the number of PEs.
Now, we derive the upper bound on the unfolding factor for each actor in the

initial SDF graph by stating the following theorem:

Theorem 5.5.1. Given an SDF graph G under SPS, suppose that each actor Ai is to
be unfolded by a factor fi . The upper bound on fi according to Definition 5.5.1 can be
computed as follows:

f̂i =
lcm{x1, x2, · · · , xn}

xi
, (5.10)



86 Chapter 5. Exploiting Just-enough Parallelism in Hard Real-time Systems

where

xi =
lcm{W1,W2, · · · ,Wn}

Wi
. (5.11)

Wi is the workload of actor Ai given in Definition 2.3.2 on page 34.

Proof. Suppose that G′ is the CSDF graph obtained by unfolding each actor Ai in
the initial SDF graph G by f̂i . From Definition 5.5.1, it follows that every replica
Ai , f in G′ has Ťi , f =Ci , f =Ci . Therefore, we can re-write Equation 2.16 on page 34
as:

Ci =
lcm(~q ′)

qi , f

� ŴG′

lcm(~q ′)

�

(5.12)

where qi , f is the repetition of Ai , f in G′. Equation 5.12 can be re-written as:

qi , f Ci = lcm(~q ′)
� ŴG′

lcm(~q ′)

�

(5.13)

Since lcm(~q ′)dŴG′/ lcm(~q ′)e is constant, then we re-write Equation 5.13 as:

q1,1C1 = q1,2C1 = ...= q1, f1
C1 = ...= qn, fn

Cn (5.14)

Now, we can write qi , f = xi · qi , where qi is the repetition of Ai in the initial SDF
graph and xi is an integer factor. That is:

x1q1C1 = x2q2C2 = · · ·= xn qnCn (5.15)

Equation 5.15 can be re-written as:

x1W1 = x2W2 = · · ·= xnWn (5.16)

where Wi is the workload of actor Ai according to Definition 2.3.2 on page 34. The
minimum solution to Equation 5.16 is:

xi =
lcm{W1,W2, · · · ,Wn}

Wi
(5.17)

Since qi , f = xi qi and the graph is unfolded by
~̂f , we can substitute this in Equa-

tion 5.1 to get:

xi qi =
qi lcm( ~̂f )

f̂i

(5.18)



5.6. The Algorithm 87

which can be re-written as:

xi f̂i = lcm( ~̂f ) (5.19)

Since lcm( ~̂f ) is constant, Equation 5.19 can be re-written as:

x1 f̂1 = x2 f̂2 = · · ·= xn f̂n (5.20)

The minimum solution to Equation 5.20 is:

f̂i =
lcm{x1, x2, · · · , xn}

xi
(5.21)

�

Now, we give an example on how to compute
~̂f . For G1 in Figure 5.1(a), we

first compute lcm{W1,W2,W3,W4,W5}= 24. Then, ~x containing the values of xi is
given by

~x = [x1, x2, x3, x4, x5]

= [
24

1
,
24

8
,
24

24
,
24

2
,
24

1
]

= [24,3,1,12,24].

Finally we obtain lcm(~x) = 24, and

~̂
f = [ f1, f2, f3, f4, f5]

= [
24

24
,
24

3
,
24

12
,
24

12
,
24

24
]

= [1,8,24,2,1].

5.6 The Algorithm

Based on the upper bounds on unfolding factors, we devise, in this section, an
efficient algorithm to solve Problems 5.3.1 and 5.3.2 under a given number of PEs.

The algorithm accepts as an input the following:

1. the initial SDF graph G;

2. the number of available PEs m;
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3. the vector containing the upper bounds on the unfolding factors
~̂f computed

using Equation 5.10;

4. a pre-specified quality factor ρ ∈ (0,1], which is used to terminate the algo-
rithm. ρ= 1 indicates the highest quality that m PEs must be fully utilized
when allocating the resulting graph to the m PEs.

The outputs of the algorithm are:

1. a vector of unfolding factors that is the solution to Problems 5.3.1 and 5.3.2;

2. the allocation of the unfolded SDF graph on m PEs;

3. the minimum achievable period of the sink actor in the unfolded SDF graph
on m PEs which is the objective of Problem 5.3.1;

4. the maximum utilization of the unfolded SDF graph on m PEs which is the
objective of Problem 5.3.2.

The algorithm builds, incrementally during its execution, a list of nodes in
which each node represents a possible vector of unfolding factors ~f . Initially, the
list contains only a single node which corresponds to the given initial SDF graph
with a vector of unfolding factors ~f =~1. Then, we compute the minimum period of
the sink actor Tsnk in the initial SDF graph G, when G is allocated on m PEs, and
its total utilization UG . Both values initialize a tuple (Tbest, Ubest) which holds the
period and total utilization of the current best solution. During the execution of
the algorithm, new nodes are created and added to the list, where a node represents
an alternative CSDF graph G′ of the initial graph G with a vector ~f of unfolding
factors. Each entry fi ∈ ~f ranges from 1 up to f̂i derived in Equation (5.10).

A newly created node inherits from its previous node a copy of the unfolding
factors vector ~fprev used by the previous node to generate the unfolded graph G′prev.
After that, we search in G′prev for the bottleneck actor, denoted by Ab , f , which is the

one with the maximum workload ŴG as defined in Definition 2.3.2 on page 34. If
multiple actors have the same maximum workload, then the one with the smallest
code size is selected. Next, we increment by one the entry fb in the inherited
unfolding factors vector ~fprev, thereby, obtaining ~fcurr. Then, we unfold the initial

graph G by the factors in ~fcurr which results in a CSDF graph G′curr. The next step is
to evaluate the unfolded graph G′curr when it is allocated on m PEs. The procedure for
evaluating G′curr is explained in details later. The result of the evaluation procedure
is the minimum period of the sink actor Tsnk in G′curr, when G′curr is allocated on m
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PEs, and the total utilization of the graph Ucurr. If the obtained Ucurr is higher than
Ubest corresponding to the current best solution (i.e., Tsnk smaller than Tbest), then
Tbest and Ubest are updated with Tsnk and Ucurr, respectively. Otherwise, Tbest and
Ubest remain unchanged.

The creation of new nodes is terminated when one of the following conditions
is met:

1. The total utilization UG′ of the CSDF graph at the current node satisfies
UG′ ≥ ρm, where ρ ∈ (0,1] is the quality factor given as an input to the
algorithm.

2. The unfolding factor fi of an actor Ai exceeds either its upper bound f̂i if Ai
is stateless, or 1 if Ai is stateful or a data source/sink actor. Recall that stateful
actors together with the data source and sink actors cannot be unfolded.

After the creation of new nodes is terminated, we select the first node in the list
that has a minimum sink period and a total graph utilization equal to Tbest and Ubest,
respectively. The selected node contains the solution to Problems 5.3.1 and 5.3.2.

Evaluating Unfolded Graphs

As explained previously, at each node, the initial SDF graph G is unfolded to produce
a CSDF graph G′ = (A′,E ′). Then, we compute two values for G′, i.e.,

1. the minimum sink actor period Tsnk when G′ is allocated on m PEs;

2. its total utilization UG′ .

In this section, we explain in detail how these two values are computed. Recall from
Section 5.4 that Tsnk can be scaled by a scaling factor c given by Tsnk = cŤsnk, and
UG′ can be computed as follows:

UG′ =
∑

Ai , f ∈A′

Ci , f

c · Ťi , f

. (5.22)

Recall also that the objective of Problem 5.3.2 is to maximize the utilization. There-
fore, we need to find a value of scaling factor c , such that all actors Ai , f ∈ G′ are
schedulable on m PEs and UG′ is maximized. To do so, we first bound the search
range for c by deriving its lower and upper bounds. Using any allocation algorithm,
we have from Proposition 5.4.1 a lower bound on c , denoted by č , as follows:

č =
� 1

m

∑

Ai , f ∈A′

Ci , f

Ťi , f

�

. (5.23)
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Algorithm 6: The procedure for evaluating an unfolded graph.
Input: A CSDF graph G′, number of available PEs m, and the period and

total utilization corresponding to the current best solution Tbest and
Ubest.

Result: alloc which is an m-partition describing the allocation of the actors in
G′ onto m PEs

Compute č using Equation 5.23 and ĉ using Equation 5.24 ;1

for s = č to ĉ do2

Compute the period Ti , f of each actor Ai , f as Ti , f = cŤi , f ;3

if Tsnk ≥ Tbest then4

return ; ;5

Compute the utilization UG′ using Equation 5.22;6

Find an m′-partition of the actors in G′, denoted by alloc, using the FFD7

algorithm and assuming the EDF scheduling algorithm;
if m′ ≤ m then8

Ubest =UG′ , Tbest = Tsnk;9

return alloc ;10

That is, for any AA, the scaling factor c cannot be less than č . From Proposition 5.4.2,
we compute, using the approximation ratio of the First-Fit Decreasing (FFD) alloca-
tion algorithm given in Equation (2.23) on page 37, the upper bound on the scaling
factor c , denoted by ĉ , as follows:

ĉ =
� 11

9m

∑

Ai , f ∈A′

Ci , f

Ťi , f

�

+ 1. (5.24)

Once the lower and upper bounds of c are found using Equation (5.23) and Equa-
tion (5.24), respectively, we perform a linear search to seek the smallest c , such that
CSDF graph G′ is schedulable on m PEs. Specifically, we check if an m-partition
of all actors in G′ exists, assuming the EDF scheduling algorithm and the FFD allo-
cation algorithm explained in Section 2.3. The complete procedure for evaluating
the unfolded graphs is depicted in Algorithm 6. If the period resulting from a given
scaling factor c is greater than Tbest, then Algorithm 6 terminates immediately to
speed-up the search.
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0

1

2

3

4

~f = [1, 1, 1, 1, 1], č = 1, ĉ = 1,
UG1 = 1.5, Tsnk = 24,

(Tbest, Ubest) = (Tsnk, UG1) = (24, 1.5)
Bottleneck: A3

~f = [1, 1, 2, 1, 1], č = 2, ĉ = 2,
UG′ = 1.5, Tsnk = 24, (Tbest, Ubest) = (24, 1.5)

Bottleneck: A3,1

~f = [1, 1, 3, 1, 1], č = 3, ĉ = 3,
UG′ = 1.5, Tsnk = 24, (Tbest, Ubest) = (24, 1.5)

Bottleneck: A2,1

~f = [1, 2, 3, 1, 1], č = 3, ĉ = 3,
UG′ = 1.5, Tsnk = 24, (Tbest, Ubest) = (24, 1.5)

Bottleneck: A3,1

~f = [1, 2, 4, 1, 1], č = 3, ĉ = 4
UG′ = 2.0, Tsnk = 18,

(Tbest, Ubest) = (Tsnk, UG′) = (18, 2.0)

Figure 5.3: The list produced by the algorithm for G1 in Figure 5.1(a) on 2 PEs with
ρ= 0.95.

Example

Now, we illustrate our algorithm using graph G1 in Figure 5.1(a) and schedule the
resulting graph G′ on 2 PEs (i.e., m = 2) with the EDF algorithm. Suppose that
ρ = 0.95, i.e., the algorithm terminates when UG′ ≥ 0.95× 2 = 1.9. The whole
list produced by the algorithm is illustrated in Figure 5.3. The numbers inside the
nodes correspond to the sequence in which the nodes are created. The algorithm
starts with the initial G1 in node 0 and computes the scaling factors č and ĉ which
result in UG1

= 1.5 and period Tsnk = 24. At this point, Ubest is initialized to 1.5
and Tbest to 24. Node 1 inherits from node 0 a vector of unfolding factors equal
to [1,1,1,1,1]. After that, we search in G′prev =G1 for the bottleneck actor which
is A3. Next, we increment f3 in the inherited vector of unfolding factors at node
1 resulting in ~f = [1,1,2,1,1]. Then, G′ is generated and Algorithm 6 is invoked.
Since Ubest cannot be improved, the algorithm continues by creating node 2. At node
2, a new bottleneck actor A2,1 is introduced. Therefore, at node 3, the unfolding
factor f2 is incremented by 1. Then, the algorithm continues to node 4, at which
one termination criterion is met, namely UG′ ≥ 1.9. As a result, ~f = [1,2,4,1,1] is
the solution with Tbest = 18 and Ubest = 2.0.
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5.7 Experimental Evaluation

In this section, we present the results of evaluating our algorithm presented in
Section 5.6 using a set of real-life streaming applications. We evaluate the algorithm
by performing two experiments. In the first experiment, we run our algorithm on
the applications and report the following:

1. the performance gain resulting from mapping the SDF graph unfolded using
the unfolding factors obtained from our algorithm, compared to mapping the
initial SDF graph without unfolding;

2. the total time needed to execute our algorithm.

In the second experiment, we compare our proposed algorithm with one of the
state-of-the-art search meta-heuristics because Problems 5.3.1 and 5.3.2 in general can
be readily formulated and solved by these meta-heuristics, such as genetic algorithms,
simulated annealing, etc. However, meta-heuristics normally require parameter
tuning to achieve a good solution. In this work, we select a particular meta-heuristic,
namely Genetic Algorithms (GA) for two reasons:

1. they have been applied by several researchers to solve similar problems (e.g.,
[113]);

2. several researchers have reported the optimal parameter settings for GA in the
context of our problem (e.g., [118]).

In particular, we compare our proposed algorithm with the one based on the NSGA-
II genetic algorithm [36]. Specifically, we compare two metrics:

1. the total execution time needed by each algorithm to find a solution;

2. the total code size of the returned solution.

We conducted all experiments on 11 real-life streaming applications from the
StreamIt benchmarks suite [54]. The exact characteristics of the benchmarks are
outlined in Table 5.2. Overall, the number of actors in the benchmarks varies
from 8 to 120. The WCET of each actor was profiled on the RAW achitecture.
The benchmarks include two applications with stateful actors, namely MPEG2 and
Vocoder. Both our algorithm and the meta-heuristic were developed in the Phrt tool
as part of DaedalusRT shown in Figure 1.7 on page 13. For the NSGA-II GA, we
used the implementation from the DEAP [44] framework. All experiments were
performed on an Intel Core 2 Duo T9600 CPU running at 2.80 GHz with Linux
Kubuntu 10.4.
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Table 5.2: Benchmark characteristics.
Benchmark Num. of Actors Num. of Edges Has Stateful Actors?

DCT 8 7 No
FFT 17 16 No

Filterbank 85 99 No
TDE 29 28 No
DES 53 60 No

Serpent 120 128 No
Bitonic 40 46 No
MPEG2 23 26 Yes
Vocoder 114 147 Yes
FMRadio 43 53 No
Channel 55 70 No

Evaluating the Proposed Algorithm

First, we present the performance gain resulting from mapping the unfolded SDF
graph, compared to mapping the initial SDF graph without unfolding. We do so
by running the algorithm on the benchmarks and mapping each application on a
number of PEs that varies from 2 up to 128 PEs. We evaluate the trade-off between
the performance gain and total execution time by setting different quality factors
ρ ∈ {0.8,0.85,0.9,0.95}. To measure the performance gain, we compute, for each
benchmark, the ratio between the sink actor period resulting from mapping the
unfolded SDF graph, and the period resulting from mapping the initial SDF. This
ratio is denoted by Ω and is given by

Ω=
Tsnk of G′

Tsnk of G
,

where G′ is the unfolded graph, and G is the initial SDF graph. A lower value of Ω
indicates a shorter sink actor period in the unfolded graph, and therefore, a higher
throughput. In Figure 5.4, each vertical line shows the variations in Ω for all the
benchmarks. The marker at the middle of each vertical line represents the Geometric
Mean (GM) of Ω, while the upper and lower ends of the line represent the maximum
and minimum values ofΩ, respectively. It can be seen that mapping the unfolded SDF
graphs of the benchmarks achieves significant performance improvement compared
to mapping the initial SDF graphs of the benchmarks. As the number of PEs
increases, the unfolded SDF graphs utilize the PEs much better than the initial SDF
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Figure 5.4: Period ratio (lower is better).

graphs. For example, on 64 and 128 PEs, mapping the unfolded SDF graphs with
quality factor ρ= 0.95 achieves a GM of Ω equal to 0.2 and 0.1, respectively. The
DCT benchmark benefits significantly from the algorithm and achieves a GM of
Ω equal to 0.021 and 0.042 on 128 and 64 PEs, respectively. Even when a small
number of PEs is available, the unfolded SDF graphs still achieve, with quality factor
ρ= 0.95, a GM of Ω equal to 0.92 and 0.85 on 2 and 4 PEs, respectively.

During the experiment, we also find that the unfolding factor of an actor, ob-
tained using our algorithm, is not necessarily equal to the number of PEs. For
example, the obtained unfolded SDF graph of the Vocoder benchmark, when mapped
onto 8 PEs, requires the RectangularToPolar actor in the initial SDF graph to be un-
folded by a factor of 20. This confirms our statement in Section 5.5. With our
provable upper bound, our algorithm results in 4% period reduction for this bench-
mark compared to other approaches, in which the RectangularToPolar actor is only
unfolded with factor 8.

We also evaluate the total execution time of our algorithm, denoted by tours,
when it is invoked on the benchmarks. Figure 5.5 shows the total execution time of
our algorithm in seconds for all the benchmarks. For all benchmarks, our algorithm
takes a GM of 6.07 seconds for 128 PEs with utilization ratio ρ= 0.95. The Serpent
benchmark (the largest graph size with 120 actors) takes the longest running time
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Figure 5.5: Running time of our algorithm.

(78.90 seconds), while the DCT benchmarks takes the shortest running time (1.09
seconds). As the quality factor ρ is decreased from 0.95 to 0.9, the GM of the
running time drops to 2.49 seconds for 128 PEs. These results show clearly that our
algorithm results, within a reasonable amount of time, in a large performance gain.

Comparison with Genetic Algorithm

To compare our algorithm with the GA-based heuristic, we perform the following
steps. First, we run the GA to map each benchmark onto 64 PEs. It outputs an
achievable period T and total utilization UGA. Then, we run our algorithm to map
the same benchmark onto 64 PEs with a termination criterion UG′ ≥ UGA. This
criterion ensures a fair comparison since our algorithm runs till it finds the same or
better solution in terms of the sink actor period and total utilization compared to
the best solution found by the GA-based heuristic. Then, we compare two metrics:

1. the total execution time of each algorithm;

2. the total code size Θ resulting from the unfolding factors returned by each
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A1,1 ... A1, f̂1
... An,1 ... An, f̂n

j ... 0 ... 1 ... 2

Figure 5.6: An example of an individual. The first replica of A1 is allocated on the
j th PE and the f̂1th replica of A1 does not exist.

algorithm. The total code size is computed as

Θ=
∑

Ai , f ∈A′
θi , f

where θi , f is the code size for actor Ai , f .

For the GA-based heuristic, each individual (also known as a chromosome)
encodes a particular unfolding vector ~f of the initial SDF graph and the allocation
of the replicas on m PEs. The structure of an individual is visualized in Figure 5.6.
Basically, in an individual, each SDF actor Ai in the initial graph has f̂i cells as
derived in Equation 5.10, indicating that Ai may have up to f̂i replicas. Each cell
may have a value varying from 0 up to m. A value of 0 denotes that the replica does
not exist, while a value of 1 up to m denotes the PE on which the replica is allocated.
Then, we formulate Problem 5.3.1 as a multi-objective optimization problem with
two objectives. The first objective is to minimize the sink actor period, and the
second one is to minimize the total code size of the unfolded graph. During the
search, we use the evaluation function shown in Algorithm 7. The GA outputs a set
of Pareto points, for which we select the one with the shortest achievable period.
In order to control the GA, we use the parameters reported in [118], because the
target application domain and used platforms are similar to ours. The values of these
parameters are given in Table 5.3.

Figure 5.7 shows two ratios. The first ratio (shown in white bars) is the total
execution time ratio given by

Ωt =
tGA

tours
,

where tGA is the total time needed by the GA, and tours is the total time needed by
our algorithm. The second ratio in Figure 5.7 (shown in black bars) is the total code
size ratio given by

ΩΘ =
ΘGA

Θours
,
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Algorithm 7: Evaluation function in the GA-based meta-heuristic
Input: An individual to be evaluated
Result: An achievable period and total code size.
Check if the given individual is valid ;1

if the individual is invalid then return (−1, −1) ;2

Build the vector of unfolding factors ~f from the individual ;3

Generate the CSDF graph G′ by unfolding G with ~f using Algorithm 5;4

Compute the minimum achievable period Ťi , f of each actor Ai , f using5

Equation (2.16) ;
Compute č according to Equation 5.23 ;6

c = č ;7

while true do8

Compute the period Ti , f of each actor Ai , f as Ti , f = cŤi , f ;9

if G′ is schedulable on m PEs then10

Compute total code size Θ=
∑

Ai , f ∈A′ θi , f ;11

Get the period Tsnk of the sink actor in G′ ;12

return ((Tsnk, Θ) ;13

else14

c = c + 1 ;15

Table 5.3: Parameters for the genetic algorithm.
Parameter Recommended value in [118]

Population size 80

Number of generations 300

Crossover rate 0.9

Mutation rate 0.05

Mating rate 0.1

where ΘGA is the total code size of the solution obtained using the GA, and Θours
is the total code size of the solution obtained using our algorithm. Our algorithm
is on average 104 times faster than the GA-based heuristic. For example, to unfold
and map the FMRadio benchmark onto 64 PEs, our algorithm takes only 3 seconds,
while the GA-based heuristic takes 2439 seconds. This means that our algorithm,
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for the FMRadio benchmark, is 813 times faster. We also see from Figure 5.7 that our
algorithm results in less total code size compared to the GA-based heuristic. These
results show clearly that our algorithm outperforms the GA-based heuristic in terms
of

1. the time needed to obtain the solution;

2. the total code size of the obtained solution.



Chapter 6

A New MoC for Modeling Adaptive
Streaming Applications

Jiali Teddy Zhai, Hristo Nikolov, Todor Stefanov, “Modeling Adaptive Streaming
Applications with Parameterized Polyhedral Process Networks”, In the Proceedings of the 48th
IEEE/ACM Design Automation Conference (DAC’11), pp. 116–121, San Diego, CA, USA, June
5-9, 2011.

THE popular parallel MoCs for streaming applications are compared in Figure 1.6
on page 10 in terms of expressiveness against compile-time analyzability. For

example, models such as SDF, CSDF, and PPN are fairly popular due to their
design-time analyzability. However, they have the limitation of allowing only static
parameters, whose values are fixed at design-time and they can not be changed at
run-time. As a consequence, adaptive streaming applications cannot be expressed
using these MoCs.

In contrast, the general MoCs shown in Figure 1.6 include BDF, SADF, KPN,
and RPN. They provide capability of modeling adaptive application behavior. How-
ever, these general models are not analyzable at design-time. Therefore, we are
interested in a model which is able to capture adaptive/dynamic behavior in appli-
cations while allowing design-time analyzability to some extent. In this context,
Parameterized SDF/CSDF (PSDF/PCSDF) and FSM-SADF models have been pro-
posed as extensions of the SDF/CSDF models. However, scenario reconfiguration in
FSM-SADF is limited to a set of pre-defined scenarios. For PSDF/PCSDF, a complex
consistency check and computing schedules have to be performed at run-time.

To overcome these issues, in this chapter we introduce a parameterized extension
of the PPN model, called Parameterized Polyhedral Process Networks (P3N). P3N

99
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improves the expressiveness of PPN, allowing to model adaptive streaming appli-
cations. Compared to the aforementioned PSDF/PCSDF and FSM-SADF models,
P3N allows more flexible parameter reconfiguration and enables efficient techniques
(less complex) for run-time consistency check by performing part of the consistency
check at design-time. In the DaedalusRT design flow, the P3N MoC is used as the
implementation model similar to the PPN MoC for static streaming applications.

6.1 Related Work

In [94], a mathematical model and semantics for reconfiguration of dataflow models
are proposed. This approach analyzes where and how parameter values can be
changed dynamically and consistently according to dependence relations between
parameters. Our P3N model provides similar semantics for reconfiguration. In
particular, for P3Ns, it is possible to extract dependence relations between dependent
parameters at design-time, which is not discussed in [94].

In PSDF/PCSDF [29], separate init and sub-init graphs are proposed to re-
configure body graphs in a hierarchical manner. In the PSDF/PCSDF models, for
every combination of parameter values, both computing a schedule and verifying
consistency need to be resolved at run-time. In contrast, our P3N model does not
require computing schedules at run-time because all processes are self-scheduled
based on the KPN semantics. Therefore, at run-time, only the consistency check has
to be performed. The consistency check is furthermore facilitated by the efficient
approach we have devised (and present further in this chapter) to extract relations
between dependent parameters at design-time.

In SADF [114] and FSM-SADF [47], detector actors are introduced to parame-
terize the SDF model. All valid scenarios must be pre-defined at design-time. Each
scenario consists of a set of valid parameter combination that determines a scenario
of SADF. This guarantees the consistency of SADF in individual scenarios, there-
fore, no run-time consistency check is required. In a scenario, the SADF model
behaves the same ways as the SDF model. Therefore, an SADF graph can be seen
as a set of SDF graphs. In the initial FSM-SADF definition, all the production and
consumption rates of the dataflow edges are constant within a graph iteration of a
scenario. Recently in [49], an extension, called weak consistency, has been made to
FSM-SADF. A weakly-consistent FSM-SADF graph allows scenario changes within
a graph iteration of a scenario. For P3N, no prior knowledge of valid parameter
combinations is assumed, as the run-time consistency check (see Section 6.3) will
guarantee consistency of the P3N model. We consider that this flexibility is desired
compared to FSM-SADF. Once a P3N model is reconfigured, it behaves as a PPN
model. Therefore, a P3N can be seen as a set of PPNs. Production and consumption
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patterns in the P3N model thus may still vary during the execution of a particular
parameter configuration1.

For all parameterized models discussed above, the performance penalty due to re-
configuration of parameters at run-time has never been evaluated when these models
are executed on MPSoC platforms. This can be an important factor in determining
the metric of implementation efficiency (see Figure 1.6(b)) while comparing two
adaptive models. In contrast, in this chapter we study the performance penalty
introduced by the run-time consistency check and the reconfiguration of our P3Ns
on real MPSoC implementations.

6.2 Model Definition

Consider the example of a P3N given in Figure 6.1(c) and a non-parameterized PPN
in Figure 6.1(a). Although the dataflow topology of the P3N is the same as the
PPN, processes P2 and P3 are parameterized by two parameters M and N which
values are updated by the environment at run-time using process Ctrl and edges E7,
E8, E9. PPN process P3 is shown in Figure 6.1(b) and P3N Process P3 is shown in
Figure 6.1(d). We use this example throughout the chapter. Below, we formally
define the P3N model.

6.2.1 Parameterized Polyhedral Process Networks

Definition 6.2.1 (Parameterized Polyhedral Process Network). A Parameterized
Polyhedral Process Network (P3N) is defined by a graph G = (P , Pctrl,E), where

• P = {P1, ..., P|P |} is a set of dataflow processes,

• Pctrl is the control process,

• E = {E1, ..., E|E |} is a set of edges, which are FIFOs.

For the P3N shown in Figure 6.1(c), P = {P1, P2, P3} is the set of dataflow
processes. Process Ctrl is the control process Pctrl. E = {E1, E2, E3, E4, E7, E8, E9} is
the set of edges, which are FIFOs.

Definition 6.2.2 (Dataflow Process). A dataflow process P is described by a tuple
(IP , OP , FP , DP ), where

• IP = {IP1, ..., IP|IP |} is a set of input ports,

• OP = {OP1, ..., OP|OP |} is a set of output ports,

1This is called a process cycle in Definition 6.2.8 and it is equivalent to a scenario in the SADF model.
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(a) A PPN.

 for( i=0; i<=10; i++) {
   for( j=0; j<=8; j++ ){
     if( i <= 5 && j >=4 ) 
       READ( in1, IP1 );
     else 

       READ( in1, IP2 );
     READ( in2, IP3 );     

     out = F3( in1, in2 );
     

     WRITE( out, OP5 );
     WRITE( out, OP6 );
 } } 

IP1

IP2

IP3

OP5
OP6

(b) PPN process P3.
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IP7

(c) A P3N.

1 while(1){
2   READ( M , IP8 )
3   READ( N , IP9 )
4   for(i=0; i<=M; i++ ) {   
5     for(j=0; j<=N-2*i; j++){
6       if(  i  <= N ) 
7         READ( in1, IP1 );
8       else 

9         READ( in1, IP2 );
10      READ( in2, IP3 );
     

11     out = F3( in1, in2 );
     

12       WRITE( out, OP5 );
13       WRITE( out, OP6 );
 } } }

IP8

IP9

IP1

IP2

IP3

E1

E2
E3

E8

E9

OP5

OP6

(d) P3N process P3.

Figure 6.1: Comparsion between a PPN and a P3N.

• FP is the process function defined by a tuple (MP ,ARGin,ARGout), where
ARGin and ARGout are sets of variables and MP : ARGin→ ARGout is a map-
ping relation,

• DP is the process domain defined by a parametric polyhedron (see Defini-
tion 2.1.3 on page 24).

In Figure 6.1(d), dataflow process P3 has input ports IP3
= {IP1, IP2, IP3, IP8, IP9}

and output ports OP3
= {OP5,OP6}. Process function F3 = (F3,{in1,in2},out)

maps variables in1 and in2 to variable out with process function F3. Assume that
the range of parameters M and N is bounded by the polytope (see Definition 2.1.2
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on page 23) D̄(M ,N ) as

D̄(M ,N ) = {(M ,N ) ∈Z2 | 0≤M ≤ 100∧ 0≤N ≤ 100},

then the process domain of P3 is represented as a parametric polyhedron

DP3
(M ,N ) = {(w, i , j ) ∈Z3 | w > 0∧ 0≤ i ≤M ∧ 0≤ j ≤N − 2i}.

Definition 6.2.3 (Input Port). An input port IP of process P is described by a tuple
(V , DIP), where

• V is a variable which:

– binds the port to process function FP if V ∈ARGin;

– binds the port to process domain DP or other port domains DIP, DOP if
V ∈ ~p, where ~p is the parameter vector defined in Definition 2.1.3 on
page 24,

• DIP is the input port domain defined by a parametric polyhedron, where
DIP ⊆DP .

Definition 6.2.4 (Output Port). An output port OP of process P is described by a
tuple (V , DOP)

• V is a variable which binds the port to process function FP if V ∈ARGout,

• DOP is the output port domain defined by a parametric polyhedron, where
DOP ⊆DP .

In Figure 6.1(d), input port IP1 of process P3 is defined as IP1 = (in1, DIP1
),

where

DIP1
(M ,N ) = {(w, i , j ) ∈Z3 | w > 0∧ 0≤ i ≤M ∧ i ≤N ∧ 0≤ j ≤N − 2i}.

Similarly, output port OP5 is defined as OP5 = (out, DOP5
), where OP5 is bound to

variable out and DOP5
(M ,N ) =D3(M ,N ).

Definition 6.2.5 (Control Process). A control process Pctrl is described by a tuple
(Ictrl, Fctrl,Octrl, Dctrl), where

• Ictrl = {(⊥, p1, DIP), ..., (⊥, pm , DIP)} is a set of input ports.

• Fctrl is the process function defined by a tuple (Eval, {~p, ~pold}, ~pnew), where
~p, ~pold and ~pnew are parameter vectors. Eval : (~p,~pold)→ ~pnew is the specific
mapping relation discussed in Sections 6.2.2 and 6.3.
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• Octrl = (V , DOP), ..., (V , DOP) is a set of output ports, where V ∈ ~pnew.

• Dctrl is the process domain, where Dctrl =DIP =DOP = {w ∈Z | w > 0}.

Control process Ctrl of the P3N shown in Figure 6.1(c), is given in Figure 6.2(a).
Its structure and behavior are discussed in Section 6.2.2 in detail.

Definition 6.2.6 (Edge). An edge E ∈ E is defined by a tuple
�

(Pi ,OPk ), (P j , IPl )
�

where

• Pi is the process that writes data to edge E through output port OPk .

• P j is the process that reads data from edge E through input port IPl .

In P3Ns, the process domain and port domains are formally defined as parametric
polyhedrons (see Definition 2.1.3 on page 24), which allows for mathmatical analysis
and manipulation. The polyhedral representation of P3N can be easily converted to
sequential nested-loop programs [25] and vice versa [126]. Thus, for the sake of
clarity, we present processes in the form of sequential programs in the examples of
this chapter.

6.2.2 Operational Semantics

The processes in our P3N MoC execute autonomously and communicate via FIFOs
obeying the KPN semantics, which is similar to the PPN MoC. In this section, we
formally define our additional, specific operational semantics of the P3N MoC that
makes it different from the PPN MoC.

Definition 6.2.7 (Process Iteration). A process iteration of process P is a point
(w, x1, ..., xd ) ∈DP , where the following operations are performed sequentially:

1. reading one token from each IP if (w, x1, ..., xd ) ∈DIP.

2. executing process function FP .

3. writing one token to each OP if (w, x1, ..., xd ) ∈DOP.

In process P3 shown in Figure 6.1(d), a process iteration (lines 6-13) consists of
reading one token for variable in1 from either input port IP1 or IP2, one token for
variable in2 from input port IP3, executing process function F3, and writing one
token for variable out to output ports OP5 and OP6.
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Definition 6.2.8 (Process Cycle). The ith process cycle CYCP (i , ~pi ) ∈ DP of a
process P is a set of lexicographically ordered process iterations. It is expressed as a
polytope

CYCP (i , ~pi ) = {(w, x1, ..., xd ) ∈Z
d+1 | A · (w, x1, ..., xd )

T ≥ B · ~pi + b ∧w = i},

where i ∈Z+ and ~pi ∈ D̄P
~p
⊆ D̄~p .

Definition 6.2.9 (Process Execution). Process execution EXP is a sequence of pro-
cess cycles denoted by

CYCP (1,~p1)←CYCP (2,~p2)← ...←CYCP (i ,~pi ),

where i →∞ and ~pi ∈ D̄P
~p

.

Overall, every process in a P3N executes on indefinite number of process cycles
in accordance with Definition 6.2.9. For instance, CYCP3

(2, (7,8)) denotes the
second process cycle that corresponds to the execution of the nested for-loops (lines
4-13) when (M ,N ) = (7,8) during the execution of process P3 given in Figure 6.1(d).

In the P3N model, parameters in dataflow processes can change values during the
execution, i.e., ~pi 6= ~pi+1. Thus, it is necessary to define the operational semantics
related to changing of parameter values. Similar to quiescent points in [94], we also
define the points at which changing the value of ~p is permitted.

Definition 6.2.10 (Quiescent Point of a Dataflow Process). A point

QP (i , ~pi ) ∈CYCP (i , ~pi )

of dataflow process P is a quiescent point if CYCP (i , ~pi ) ∈ EXP and it satisfies

¬(∃(w, x1, ..., xd ) ∈CYCP (i , ~pi ) : (w, x1, ..., xd )≺QP (i , ~pi ))

According to Definition 6.2.10, dataflow processes can change parameter values
at the first process iteration of any process cycle during the execution. For instance,
process P3 given in Figure 6.1(d) updates parameters (lines 2-3) before executing
the nested for-loops in every process cycle. Generally, updating parameters at each
quiescent point is initiated by reading from edges which are connected to the control
process.

The control process plays an important role in the P3N’s operational semantics.
It reads parameter values from the environment and propagates only valid parameter
values to the dataflow processes. Valid parameter values lead to consistent execution
of P3Ns (see Section 6.3). The validity of the parameter values is evaluated by
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1  M_new = M_init
2  N_new = N_init    
    while(1){

3    READ_PARM( M, IP10 );
4    READ_PARM( N, IP11 );

5    [M_new, N_new]=

        Eval(M, N, M_new, N_new);

6    WRITE_PARM( M_new, OP7 );
7    WRITE_PARM( M_new, OP8 ); 
8    WRITE_PARM( N_new, OP9 );
    } 

IP10

IP11

OP7

OP9

OP8 E8
E9

E7

(a) Control process Ctrl in Figure 6.1(c).

 [ M_new, N_new ] 

 Eval(M, N, M_old, N_old){
   
   // checking parameters  

   par_ok = Check(M, N);

   if( par_ok ){
     return (M, N);
   else {
     return(M_old, N_old);
 } }

(b) Function Eval.

Figure 6.2: Control process and evaluation function.

process function Eval defined in Definition 6.2.5. The control process sends the
latest parameter combination that has been evaluated as valid, which means that
P3Ns always respond to changes of the environment as fast as possible. Also, the
dataflow processes need to read the parameter values in the correct order. Therefore,
to keep the same order of parameter values for all dataflow processes, the control
process writes to the control edges, e.g., edges E7, E8 and E9 in Figure 6.1(c), only
when all control edges have at least one buffer space available. Here the control edges
are implemented as non-bloking-write FIFOs. In case that any of these FIFOs is full,
the incoming parameter combination is discarded and the control process continue
to read the next parameter combination from the environment. Furthermore, the
depth of the FIFOs of the control edges determines how many process cycles of the
dataflow processes are allowed to overlap.

Let us consider the P3N shown in Figure 6.1(c). The behavior of the control
process is given in Figure 6.2(a). Process Ctrl starts with at least one valid parameter
combination (lines 1-2) and then reads parameters from the environment (lines
3-4) repetitively. For every incoming parameter combination, the process function
Eval (line 5) checks whether the combination of parameter values is valid. The
implementation of function Eval is given in Figure 6.2(b). In Section 6.3, we
present details about the implementation of function Check. If the combination is
valid, then function Eval returns the current parameter values (M, N). Otherwise,
the last valid parameters combination (propagated through M_new, N_new in this
example) is returned. After the evaluation of the parameter combination, process
Ctrl writes the parameter values to output ports (lines 6-8) when all edges E7, E8, and
E9 have at least one buffer space available.
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6.3 Consistency

As defined in Section 6.2, P3Ns operate on input streams with infinite length. Thus,
the P3Ns, we are interested in, must be able to execute without deadlocks and only
using FIFOs with finite capacity. This kind of P3Ns is considered to be consistent.
In this section, we first define the consistency condition of the P3N model and then
present an approach to preserve the consistent execution of P3Ns at run-time.

Definition 6.3.1 (Consistency of a P3N). A P3N is consistent if

∀E = ((Pi ,OPk ), (P j , IPl ))

and k→∞, it satisfies
|DCYC

OPk
|= |DCYC

IPl
|,

where
DCYC

OP =CYCPi
(c ,~ps )∩DOPk

,

DCYC
IP =CYCP j

(c ,~pt )∩DIPl
,

CYCPi
(c , ~ps ) ∈ EXPi

, and CYCP j
(c , ~pt ) ∈ EXP j

.

Consider edge E3 connecting processes P2 and P3 of the P3N given in Fig-
ure 6.1(c). The execution of processes P2 and P3 is illustrated in Fig. 6.3. The
access of both processes to edge E3 is depicted in Figure 6.4. Definition 6.3.1 re-
quires that, for each corresponding process cycle of both processes CYCP2

(i , Mi ) and
CYCP3

(i , Mi ,Ni ), the number of tokens |DCYC
OP3
(M )| produced by process P2 to edge

E3 must be equal to the number of tokens |DCYC
IP3
(M ,N )| consumed by process P3

from edge E3.
It is not trivial to preserve the consistent execution of a P3N as defined in

Definition 6.3.1. First of all, at each quiescent point QP during the execution of a
process, the incoming parameter values ~ps and ~pt are unknown at design-time, which
may result in different |DCYC

OPk
| and |DCYC

IPl
| at run-time for any edge E connecting

dataflow processes. Therefore, whether a P3N can be executed consistently with a
given parameter combination, has to be checked at run-time. Secondly, computing
|DCYC

OPk
| and |DCYC

IPl
| is challenging as well. Below, we demonstrate the difficulties

associated with checking the consistency using edge E3 given in Figure 6.4 as an
example. One question that naturally arises is which combinations of (M ,N ) ensure
the consistency condition as defined by Definition 6.3.1. For instance, if (M ,N ) =
(7,8), P2 produces 25 tokens to E3 and P3 consumes 25 tokens from the same edge
after one corresponding process cycle of both processes. It can be verified that P2
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CYC P3 (1, M1, N1)

CYC P3 (i, Mi, Ni )

P2 P3

...

...

CYC P2 (1, M1)

CYC P2 (i, Mi)

E3

E3

Q P2 (i, Mi)

Q P2 (1, M1)

Q P3 (i, Mi, Ni)

Q P3 (1, M1, N1)

...

...

OP3 IP3

E3

Figure 6.3: Consistent execution of process P2 and P3 w.r.t. edge E3.

 while(1){
   READ(M, IP7); 

   for(i=0; i<=3*M+3; i++)
     …

     WRITE( out, OP3 );
 } }

P2
P3

 while(1){
   READ(M, IP8);
   READ(N, IP9); 

   for(i=0; i<=M; i++)
     for(j=0; j<=N-2*i; j++)
       ...     

       READ( in2, IP3 );    
       ...
 } } }

  

E3

OP3 IP3

Figure 6.4: Which combinations (M ,N ) do ensure consistency of P3N?

produces 13 tokens to E3 while P3 requires 20 tokens from it if (M ,N ) = (3,7) in
a corresponding process cycle. Thereby, in order to complete one execution cycle
of P3 in this case, it will read data from E3 which will be produced during the next
execution cycle of P2. Evidently this leads to an incorrect execution of the P3N.
From this example, we can clearly see that the incoming values of (M ,N ) must
satisfy certain relation to ensure the consistent execution of the P3N.

Although the consistency of a P3N has to be checked at run-time, still some
analysis can be done at design-time. First, from Definition 6.3.1, we can see that both
DCYC

OP and DCYC
IP are parametric polytopes. We can check the condition |DCYC

OP | =
|DCYC

IP | by comparing the number of integer points in both parametric polytopes
DCYC

OP and DCYC
IP . This is thus equivalent to computing cardinality of both DCYC

OP
and DCYC

IP . In this work, we use the Barvinok library [127] to compute cardinality
of a parametric polytope. The Barvinok library can solve the problem in polynomial
time. In general, the number of integer points inside a parametric polytope is defined
as a list of (quasi-)polynomials (see Definition 2.1.4 on page 25). A quasi-polynomial
is a polynomial with periodic numbers as coefficients. For instance, considering
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input port IP3 shown in Figure 6.4, DCYC
IP3

is given as

DCYC
IP3
(M ,N ) = {(i , j ) ∈Z2 | 0≤ i ≤M ∧ 0≤ j ≤N − 2i}.

The number of tokens |DCYC
IP3
(M ,N )| read by function READ(in2, IP3) in one

process cycle is represented as the list of polynomials found by the Barvinok library:
¨

1+N +N ·M −M 2 if (M ,N ) ∈C 1
1+ 3

4 N + 1
4 N 2+ 1

4 N − 1
4 · {0,1}n if (M ,N ) ∈C 2

(6.1)

where C 1 and C 2 are called chambers (see Definition 2.1.4 on page 25) given as

C 1= {(M ,N ) ∈Z2 | M ≤N ∧ 2M ≥ 1+N},
C 2= {(M ,N ) ∈Z2 | 2M ≤N}.

In addition, the second polynomial is a quasi-polynomial, in which {0,1}n is a
periodic coefficient with period 2. For instance, function READ(in2, IP3) reads
1+ 3

4 × 7+ 1
4 × 72 + 1

4 × 7− 1
4 × 1 = 20 tokens in one process cycle if (M ,N ) =

(3,7) ∈C 2. Below, we present the approach we have devised to extract all parameter
combinations that satisfy the consistency condition defined in Definition 6.3.1.
Algorithm 8 summarizes the analysis we performed at design-time. Recall that
the condition |DCYC

OP | = |D
CYC
IP | must be satisfied for a consistent execution of a

P3N. Thus, for each edge connecting dataflow processes, we first compute |DCYC
OP |

and |DCYC
IP |. Two lists of (quasi-)polynomials are obtained. If a P3N can execute

consistently with a certain parameter combination, individual (quasi-)polynomials
in both lists must be equal. We check the equivalence by subtracting the (quasi-
)polynomials from both lists symbolically. The symbolic subtraction can result in
zero, a non-zero constant, or (quasi-)polynomial. If the result is zero, the consistency
is always preserved for all parameters within the range of chamber Cres. At run-time,
these parameters are propagated immediately to destination dataflow processes. If a
non-zero constant is obtained, all parameters within the range of chamber Cres are
discarded at run-time, because these parameter values would break the consistency
condition of the resulting P3N. In the third case, the result is a (quasi-)polynomial
in which only some parameter combinations within the range of chamber Cres
are valid for the consistency condition. We provide two alternatives to extract all
valid parameter combinations within this range by solving the resulting equation
qres( ~p j t ) = 0. In the first alternative, the equation can be solved at design-time against
all possible parameter combinations. A table, which contains all solutions, i.e., all
valid parameter combinations, is generated and stored in function Check. At run-
time, the control process only propagates those incoming parameter combinations
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Algorithm 8: Generation of polynomials for function Check

Input: A P3N
Result: A list of (quasi-)polynomials
foreach edge E corresponding (OPPO

, IPPI
) do1

Compute |DCYC
OP | and |DCYC

IP | using the Barvinok library;2

foreach (quasi-)polynomial qOP(~p j ) in |DCYC
OP | do3

Get chamber C ;4

foreach (quasi-)polynomial qIP(~pt ) in |DCYC
IP | do5

Get chamber C ′ ;6

Compute qres( ~p j t ) = qOP(~p j )− qIP(~pt );7

Compute chamber Cres =C ∪C ′ ;8

if qres( ~p j t ) = 0 then9

Consistency is preserved for chamber Cres;10

else if qres( ~p j t ) is a non-zero constant then11

Eliminate chamber Cres;12

else13

Store (quasi-)polynomial qres( ~p j t ) with Cres ;14

that match an entry in the table. In the second alternative, function Check evaluates
qres( ~p j t ) against zero with incoming parameter values at run-time.

Let us consider the example shown in Figure 6.4 again. We apply Algorithm 8
to extract the valid parameter combinations. Besides |DCYC

IP3
(M ,N )| as given in

Equation (6.1), |DCYC
OP3
(M )|= 3M + 4 is obtained. Subtraction of the

(quasi-)polynomials in |DCYC
OP2
(M )| and |DCYC

IP2
(M ,N )| yields two qres(M ,N ):

¨

(1+N +N ·M −M 2)− (3M + 4) = 0 if (M ,N ) ∈C 1
(1+ 3

4 N + 1
4 N 2+ 1

4 N − 1
4 · {0,1}n)− (3M + 4) = 0 if (M ,N ) ∈C 2

(6.2)

where chambers C 1 and C 2 are equal to the chambers in Equation (6.1). Clearly
this corresponds to the third case in Algorithm 8 (see line 14). The structure of
the two alternatives of function Check is given in Figures 6.5(a) and 6.5(b). The
solutions to Equation (6.2) stored in table tab is shown in Figure 6.5(a), whereas
evaluating Equation (6.2) directly against zero at run-time is depicted in Figure 6.5(b).
In this example, if the range of the parameters is 0 ≤ M ,N ≤ 100, then there are
only 10 valid parameter combinations. In addition, if 0 ≤ M ,N ≤ 1000, the valid
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 [ par_ok ]

 Check ( M , N ) {
   tab =  [ (4, 6), 
            (7, 8),
            (15, 12),
             …  ]; 

   // found M , N in tab
   if ( found ) 
     return par_ok = true; 
   else 
     return par_ok = false;  
 }

(a) First alternative.

 [ par_ok ]

 Check ( M , N ) {
   // chamber C1
   if ( M <= N && 2M >= N+1 ) 
     res = -M^2 + N *M – 3M + N -3;
   
   // chamber C2
   if ( 2M <= N  )      
     res = N^2/4 + 3N/4 + (N%2)/2 – 3M -3;
   
   if ( res == 0) 
     return(true);
   else
     return(false);  
 }

(b) Second alternative.

Figure 6.5: Two alternatives of Function Check in Figure 6.2(b).

number of parameter combinations are 34, and if 0≤M ,N ≤ 10000, the number of
combinations increases to 114.

6.4 Experimental Results

In order to evaluate the run-time overhead introduced by the reconfiguration of our
P3N model, in this section, we present the results we have obtained by mapping a
P3N onto a Xilinx Virtex 6 FPGA platform. We have selected a synthetic P3N with
complex quasi-polynomials in order to quantify the performance penalty caused
by evaluating complex quasi-polynomials at run-time. In order to measure the
run-time reconfiguration overhead, we have also implemented the reference PPNs.
These PPNs contain only the dataflow processing of the corresponding P3N. The
experiments have been conducted using the ESPAM tool and the Xilinx Platform
Studio (XPS) 13.2 tool. The generated MPSoCs consist of several MicroBlaze (MB)
soft-core processors connected using Xilinx’ Fast Simplex Link (FSL) FIFOs. To
avoid additional execution overhead, in these experiments, every process has been
mapped onto a separate MB processor.

The P3N we consider is depicted in Fig. 6.6. It is formed by the processes in
Figure 6.4 and one additional process P4. Figure 6.6 also shows the representation
of processes P3 and P4 in order to show the domains DCYC

OP5
(M ,N ) and DCYC

IP5
(N )

of ports OP5 and IP5, connected to edge E5. Consequently, applying Algorithm 8
yields the following two polynomials for edge E5:

¨

(1+N +N ·M −M 2)− (3N + 1) = 0 if (M ,N ) ∈C 1
(1+ 3

4 N + 1
4 N 2+ 1

4 N − 1
4 · {0,1}n)− (3N + 1) = 0 if (M ,N ) ∈C 2

(6.3)
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ctrl

P2 P3

M N

E3 P4

 while(1){ 
   READ( N, IP6 );

   for(i=0; i<=3*N; i++)
     READ( in, IP5 );
     …
 } }

 while(1)
   READ( M, IP8 );
   READ( N, IP9 ); 

   for (i= 0; i<= M; i++){      
     for(j=0; j<=N–2*i; j++){
       READ( in2, IP3 );
       …
       WRITE( out, OP5 );
 } } }

E7 E6

P3

P4

E5

E8 E9

 while(1){
   READ( M, IP7 ); 

   for(i= 0; i<=3*M+3; i++)
     …
     WRITE( out, OP3 );
 } }

P2

E3

E5

E8

E9

E6

E7

Figure 6.6: P3N of our experiment

where

C 1= {(M ,N ) ∈Z2 | M ≤N ∧ 2M ≥ 1+N},
C 2= {(M ,N ) ∈Z2 | 2M ≤N}.

For edge E3, the dependence relation of parameters M and N is already given in
Equation (6.2). In a first implementation alternative, we solved Equations 6.2 and 6.3
at design-time and stored all possible parameter values that have been found in a table
into function Check of control process ctrl. In a second implementation alternative,
the polynomials in Equations 6.2 and 6.3 have been evaluated directly in function
Check at run-time. Furthermore, we have configured five different workloads of
the dataflow processes by gradually increasing the execution latency of processes
P2, P3, and P4. We have run the MPSoC implementations on an FPGA board for 10
different valid parameter combinations, i.e., process ctrl reconfigures the dataflow
processes 10 times within parameter range 0≤M ,N ≤ 100.

For the P3Ns which evaluate the polynomials at run-time (the third bar of each
configuration), we have made the following observations. First, configurations 1 and
2 show a relatively large overhead. This is because these configurations correspond
to the situation where the execution latency of processes P2, P3, and P4 is very small.
That is, the dataflow processes are very light-weight, therefore, they are mostly
blocked on reading from the control edges in order to update values of parameters
M and N . In this way, configurations 1 and 2 give a good indication about the time
needed to evaluate the polynomials. Second, if we increase the execution latency
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Figure 6.7: Performance results of PPN and P3N implementations

of the dataflow processes, then the introduced overhead is significantly reduced,
see configurations 3, 4, and 5 in Figure 6.7. In these three configurations, the
overhead is only 9%, 5%, and 4%, respectively. In addition, we have observed that
the absolute values of the overhead (in clk cycles) stay constant. This is because in
these three configurations, the dataflow completely overlaps with the evaluation of
the polynomials. We have found that the difference with the reference PPN is caused
by i) the time for the first evaluation of the polynomials at the beginning of the
P3N execution, i.e., in the beginning no overlap is possible, and ii) the time to read
the parameter values from the control edges, i.e., such reading is not present in the
reference PPNs. This is an important observation because it shows that the run-time
reconfiguration of the P3N model can be very efficient. Moreover, in most real-life
streaming applications, a process execution latency is large enough to cancel out
the overhead caused by the evaluation of the polynomials. For example, a discrete
cosine transform (used in JPEG encoders) implemented on a MB processor requires
a couple of thousand of clk cycles. Therefore, we conclude that the introduced
run-time overhead is reasonable considering the more expressive power that the
P3N model provides than other models.
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Chapter 7

Hard Real-time Scheduling of Adaptive
Streaming Applications

THE initial scheduling framework in the DaedalusRT design flow considers the
CSDF MoC as the analysis model and the PPN MoC as the implementation

model. For adaptive streaming applications, we have proposed P3N as the imple-
mentation model in Chapter 6. However, an analysis MoC for adaptive streaming
applications is still missing in DaedalusRT. More importantly, we need proper opera-
tional semantics for such a MoC that potentially allows adaptive execution of the
MoC and easy HRT analysis. In this chapter, we propose a new analysis MoC in the
DaedalusRT design flow that models adaptive streaming applications.

There already exist some adaptive MoCs in literature [89, 114, 129]. Unfor-
tunately, each of them has certain drawback that does not fulfill our needs. For
instance, we would like to explicitly have the notion of mode in an adaptive MoC. A
mode of an adaptive MoC is essentially a static MoC, e.g., the CSDF MoC, when
the values of all dynamic parameters are fixed. As a result, the existing HRT analysis
developed in DaedalusRT for the CSDF MoC can be reused. For the adaptive MoCs
shown in Figure 1.6 on page 10, parameterized CSDF and VPDF MoCs are thus
excluded from our consideration because they do not have the notion of mode. At
the same time, the expressiveness of MCDF is too restricted.

Furthermore, support for the HRT scheduling and the associated analysis is
limited in the existing MoCs, especially during mode transitions. In particular, we
wish to have a composable analysis for mode transitions. That is, the analysis of any
mode transition is independent from the mode transitions occurred in past. This
composable analysis will significantly reduce the complexity of the analysis, as the
complexity merely depends on the number of allowed transitions. This is crucial for
applications with a large number of modes and possible transitions. As a by-product

115
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Notation Meaning
c a computation
∆ transition delay
L iteration latency
p a dynamic parameter
Π a set of parameter vectors defined in Definition 7.2.1
ψ parameters used for actors defined in Definitions 7.2.4 and 7.2.5
x Maximum-Overlap Offset (MOO)

Table 7.1: Additional notations used in Chapter 7 besides the ones introduced in
Chapter 2.

of this composable analysis, the implementation efficiency of such a HRT system to
support adaptive behavior will be much higher. No complex calculation is needed at
run-time, as most of parameters (see Section 7.3) can be computed at compile-time.

Based on the discussion above, we develop a new MoC, Mode-Aware Data
Flow (MADF), in this chapter that has the advantages of SADF and VPDF. In-
spired by SADF, we characterize the adaptive application behavior with individual
modes1 (see Definition 7.2.7) and transitions (see Definition 7.2.11) between them.
Similar to VPDF, the length of production/consumption sequences for an actor
varies from one mode to another. The length is only fixed when the mode is known.
Based on the clear distinction between modes and transitions, we define operational
semantics, in particular a novel transition protocol, to avoid timing interference
between modes and transitions. As a result, our HRT analysis is simpler than the
state-of-the-art timing analysis [47]. To ease discussion, we use additional notations
listed in Table 7.1 besides the ones introduced in Chapter 2.

Scope of Work

We assume that an adaptive streaming application does not have cyclic data depen-
dences. The considered MPSoC platforms in this chapter are homogeneous, i.e.,
they may contain multiple, but the same type of programmable PEs with distributed
memories. Moreover, the platform must be predictable, which means timing guaran-
tees are provided on the response time of hardware components and OS schedulers.
The precision-timed (PRET) [79] platform is such an example. On the software side,
we assume partitioned scheduling algorithms, i.e, no migration of actors between
PEs is allowed. The considered scheduling algorithms on each PE include Fixed-
Priority Pre-emptive Scheduling (FPPS) algorithms, such as RM [80], or dynamic

1“Scenario” for SADF is equivalent to “mode” in our case.



7.1. Related Work 117

scheduling algorithms, such as EDF [80].

7.1 Related Work

For FSM-SADF [47], the authors proposed an approach to compute worst-case per-
formance among all mode transitions, assuming the self-timed transition protocol
(explained later in Section 7.2.3). Although it is an exact analysis, the approach has
inherently exponential time-complexity. Moreover, the approach leads to timing
interference between modes upon mode transitions, which makes this approach not
applicable for our problem. In contrast, our approach does not introduce interfer-
ence between modes due to the novel transition protocol proposed in Section 7.2.3.
The timing behavior of individual modes and during mode transitions can be ana-
lyzed independently. In addition, our approach considers allocation of actors on
PEs, which by itself is a harder problem than the one in [47]. In [48], the authors
proposed to model scenario transitions in a single FSM. Delays due to scenario
reconfiguration are given and explicitly modeled in the FSM. The problem addressed
in this chapter is different as we aim at deriving such a delay.

In [45], the author proposes to use a linear model to capture worst-case transition
delay and period during scenario transitions of FSM-SADF. Our Maximum-Overlap
Offset (MOO, see Section 7.2.3) transition protocol is conceptually very similar to
the linear model. However, we obtain the linear model in a different way, specifically
simplified for the adopted hard real-time scheduling framework. For instance, finding
a reference schedule is not necessary in our case, but being crucial in the tightness
of the analysis proposed in [45]. Moreover, our approach solves the problem of
changing graph structure during mode transitions, which was not studied in [45].

For VPDF [129], the analysis has been limited to computing buffer sizes under
throughput constraints so far. The execution of a VPDF graph on MPSoC platforms
under HRT constraints has not been studied. In particular, the allocation of actors
and how to switch from one mode to another one are not discussed. Moreover,
delay due to mode transitions has not been investigated. Our approach, on the other
hand, takes these important factors into account. Therefore, our analysis results are
directly reflected in a real implementation.

Mode-controlled data flow (MCDF) [89] is another adaptive MoC whose proper-
ties can be partly analyzed at compile-time. The MCDF MoC primarily focuses on
SDR applications, where different sub-graphs need to be active in different modes.
This is achieved by using switch and select actors. The author implicitly assumes
self-timed scheduling during mode transitions. Based on this assumption, a worst-
case timing analysis is developed. Similar to the case of SADF, use of the self-timed
scheduling introduces timing interference between modes. As a consequence, the



118 Chapter 7. Hard Real-time Scheduling of Adaptive Streaming Applications

analysis must take into account the sequence of mode transitions of interest. Al-
though the author provides an upper bound of timing behavior for a parameterized
sequence of mode transitions, the accuracy is still unknown. In contrast, our ap-
proach results in a timing analysis of mode transitions that is independent from
already occurred transitions. Moreover, the analysis results are directly reflected in
the final implementation. In this sense, our analysis is exact in the timing behavior
of mode transitions.

In [93], an analysis is proposed to reason about worst-case response time of
a task graph in case of mode change. However, the task graph has very limited
expressiveness and is not able to model adaptive application behavior. In this chapter,
we define a more expressive MoC that is amenable to adaptive application behavior.

In [104, 108], the authors focus on timing analysis for mode changes of real-time
tasks. The starting times of new mode tasks need to be delayed to avoid overloading
PEs. The algorithms to compute the starting times were provided. Both works are
related to ours because actors allocated on the same PE may also overload the PE
after mode transitions. In this case, the starting times of actors in the new mode
need to be delayed. In [104, 108], it was assumed that tasks are independent. The
proposed algorithms are thus not applicable to the adaptive MoCs, since the starting
times of actors in the adaptive MoCs depend on each other due to data dependencies.
Moreover, the algorithms in [104, 108] involve high computational complexity
because fixed-point equations must be solved at every step in the algorithms.

7.2 Model Definition

7.2.1 Mode-Aware Data Flow (MADF)

Definition 7.2.1 (Mode-Aware Data Flow (MADF)). A Mode-Aware Data Flow (MADF)
is a multi-graph defined by a tuple (A,Ac ,E ,Π), where

• A= {A1, . . . ,A|A|} is a set of dataflow actors;

• Ac is the control actor to determine modes and their transitions;

• E is the set of edges for data/parameter transfer;

• Π= {~p1, . . . ,~p|A|} is the set of parameter vectors, where each ~pi ∈Π is associ-
ated with a dataflow actor Ai .

Throughout this section, we use graph G1 shown in Figure 7.1 as the running
example to illustrate the definition of MADF and the hard real-time scheduling
analysis related to MADF. For G1, A = {A1,A2,A3,A4,A5} is the set of dataflow



7.2. Model Definition 119

A1 A2 A3 A5

[1[1], 1[0]]

OP1:

[p2[1]]

A4
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E55

IC5

Figure 7.1: An example of MADF graph (G1).

actors. Ac is the control actor. E = {E1, E2, E3, E4, E5, E6, E11, E22, E44, E55} is the set
of edges. For actor A5, ~p5 = [p5, p6] is the parameter vector. The input port IP1
of actor A5 has a consumption sequence [1[p5], 1[0]], which can be interpreted as
[p5, 0].

Definition 7.2.2 (Dataflow Actor). A dataflow actor Ai is described by a tuple
(Ii , ICi, Oi ,Ci , Mi ), where

• Ii = {IP1, . . . , IP|Ii |} is the set of data input ports of actor Ai ;

• ICi is the control input port that reads parameter vector ~pi for actor Ai ;

• Oi = {OP1, . . . ,OP|Oi |} is the set of data output ports of actor Ai ;

• Ci = {c1, . . . , c|C|} is the set of computations. When actor Ai fires, it performs
a computation ck ∈ Ci ;

• Mi : ~pi → {φ, C̄i} is a mapping relation, where ~pi ∈ Π, φ ∈ N+, and
C̄i ⊆ Ci is a sequence of computations [C̄i (1), . . . , C̄i (k), . . . , C̄i (φ)] with
C̄i (k) ∈ Ci , 1≤ k ≤φ.

Actor A2 in Figure 7.1 has a set of one input port I2 = {IP1}, a set of one output
port O2 = {OP1} as well as a control input port IC2. A set of computations C2 =
{c1, c2, c3} is associated with A2. The mapping relation M2 is given in Table 7.2. It
can be interpreted as follows: If p2 = 2, actor A2 repetitively performs computations
according to sequence C̄2 = [c1, c2] every time when firing A2. When p2 = 1, firing
A2 performs computation c3.
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Table 7.2: Mapping relation M2 for actor A2 in Figure 7.1.
~p2 = [p2] φ C̄2

2 2 [c1, c2]
1 1 [c3]

Table 7.3: Function MC5 defined for actor A5 in Figure 7.1.
S N2

SI1 [2,0]
SI2 [1,1]

Definition 7.2.3 (Control Actor). The control actor Ac is described by a tuple
(IC,Oc ,S,Mc ), where

• S = {SI1, . . . ,SI|S|} is a set of mode identifiers, each of which specifies a unique
mode;

• IC is the control input port which is connected to the external environment.
Mode identifiers are read through the control input port from the environ-
ment;

• Oc = {OC1, . . . ,OC|A|} is a set of control output ports. Parameter vector ~pi
is sent through OCi ∈Oc to actor Ai ;

• Mc = {MC1, . . . ,MC|A|} is a set of functions defined for each actor Ai ∈A. For

each MCi ∈Mc , MCi : S → N|~pi | is a function that takes a mode identifier
and outputs a vector of non-negative integer values.

For G1 in Figure 7.1, we have two mode identifiers S = {SI1,SI2}. At run-time,
control actor Ac reads these mode identifiers through control port IC (black dot in
Figure 7.1). For actor A5, MC5 ∈Mc is given in Table 7.3. As explained previously,
the parameter vector for actor A5 is ~p5 = [p5, p6]. Therefore, MC5 takes a mode
identifier and outputs a 2-dimensional vector as shown in the second column in
Table 7.3. For instance, mode SI1 results in a non-negative integer vector [2,0].

To further define production/consumption sequences with variable length, we
use the notation n[m] for a sequence of n elements with integer value m, i.e.,

n[m] = [
n times
︷ ︸︸ ︷

m, . . . , m]
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Definition 7.2.4 (Input Port). An input port IP of an actor is described by a tuple
(CNS, MIP), where

• CNS= [φ1[cns1], . . . ,φK[cnsK]] is the consumption sequence with φ phases,
where φ =

∑K
i=1φi is determined by the mapping relation M in Defini-

tion 7.2.2, and cns1, . . . , cnsK ∈N;

• MIP : ~pi →ψIP is a mapping relation, where ~pi ∈Π and

ψIP = {φ1, . . . ,φK , cns1, . . . , cnsK}. (7.1)

Definition 7.2.5 (Output Port). An output port OP of an actor is described by a
tuple (PRD, MOP), where

• PRD= [φ1[prd1], . . . ,φK[prdK]] is the production sequence with φ phases,
where φ =

∑K
i=1φi is determined by the mapping relation M in Defini-

tion 7.2.2, and prd1, . . . ,prdK ∈N.

• MOP : ~pi →ψOP is mapping relation, where ~pi ∈Π and

ψOP = {φ1, . . . ,φK ,prd1, . . . ,prdK}. (7.2)

The consumption/production sequence defined here is a generalization of that
for the CSDF MoC (see Section 2.2.2 on page 32). We can see that a CSDF actor has
a constant φ phases in its consumption/production sequences, whereas the length
of the phase of an MADF actor is parameterized by φ=

∑K
i=1φi . In addition, the

mapping relation MIP/MOP must be provided by the application designer. Consider
the two input ports IP1 and IP2 of actor A5 in Figure 7.1. The mapping relations
MIP1

and MIP2
are represented as follows:

MIP1
: ~p5 = [p5, p6]→ψIP1

= {φ1,φ2, cns1, cns2}= {1,1, p5, 0}, (7.3)

MIP2
: ~p5 = [p5, p6]→ψIP2

= {φ1,φ2, cns1, cns2}= {1,1,0, p6}. (7.4)

It can be seen that parameter p5 is mapped to cns1 of IP1, parameter p6 is mapped to
cns2 of IP2, and φ1 and φ2 both are constant equal to 1. Therefore, the consumption
sequence of IP1 is CNS = [1[p5], 1[0]] and the consumption sequence of IP2 is
CNS= [1[0], 1[p6]]. Similarly considering output port OP1 of actor A4, its mapping
relation MOP1

is given as:

MOP1
: ~p4 = [p4]→ψOP1

= {φ1,prd1}= {1, p4}. (7.5)

In this case, parameter p4 is mapped to prd1 and φ1 = 1. Therefore, production
sequence PRD= [1[p4]] is obtained for OP1 of A4.
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Definition 7.2.6 (Edge). An edge E ∈ E is defined by a tuple
�

(Ai ,OP), (Aj , IP)
�

,

where

• actor Ai produces a parameterized number of tokens to edge E through output
port OP;

• actor Aj consumes a parameterized number of tokens from E through input
port IP.

Considering edge E5 in Figure 7.1, it connects output port OP1 of actor A4 to
input port IP2 of actor A5.

Definition 7.2.7 (Mode of MADF). A mode SIi of MADF is a live CSDF [30]
graph, denoted as G i , obtained by setting values of Π in Definition 7.2.1 as follows:

∀k ∈Π : ~pk =MCk (SIi ), (7.6)

where function MCk is given in Definition 7.2.3.

Definition 7.2.8 (Mode of MADF Actor). An actor Ak in mode SIi , denoted by
Ai

k
, is a CSDF [30] actor obtained from Ak as follows:

~pk =MCk (SIi ). (7.7)

Figure 7.2(a) shows the CSDF graph in mode SI1 and Figure 7.2(b) shows the
CSDF graph in mode SI2. Consider function MC5 for actor A5 in Table 7.3 with
parameter vector ~p5 = [p5, p6]. For instance, mode SI1 results in ~p5 = [p5, p6] =
[2,0], where parameter values p5 = 2 and p6 = 0. Consequently, according to
mapping relations MIP1

and MIP2
given in Equations 7.3 and 7.4, cns1 = p5 = 2 can

be obtained for input port IP1 and cns2 = p6 = 0 for IP2. This determines actor A1
5

shown in Figure 7.2(a) for mode SI1.

Definition 7.2.9 (Inactive Actor). An MADF actor Ak
i is inactive in mode SIk if the

following conditions hold:

1. ∀IP ∈ Ii : CNS= [0, . . . , 0];

2. ∀OP ∈Oi : PRD= [0, . . . , 0].

Otherwise, Ak
i is called active in mode SIk .

For actor A1
4 shown in Figure 7.2(a), it has consumption and production sequence

[0]. Therefore, actor A4 is said to be inactive in mode SI1.
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(a) CSDF graph G1
1 of mode SI1.
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(b) CSDF graph G2
1 of mode SI2.

Figure 7.2: Two modes of the MADF graph in Figure 7.1.

7.2.2 Operational Semantics

During execution of a MADF graph, it can be either in a steady-state or mode
transition.

Definition 7.2.10 (Steady-state). A MADF graph is in a steady-state of a mode SIi ,
if it satisfies Equation (7.6) with the same SIi for all its actors.

Definition 7.2.11 (Mode Transition). A MADF graph is in a mode transition from
mode SIo to SIl , where o 6= l , if some actors have SIo for Equation (7.7) and the
remaining active actors have SIl for Equation (7.7).

In the steady-state of a MADF graph, all active actors execute in the same
mode. As defined previously in Definition 7.2.7 and shown in Figure 7.2(a) and
Figure 7.2(b), the steady-state of the MADF graph has the same operational semantics
as a CSDF [30] graph. We use 〈Ak

i , x〉 to denote the xth firing of actor Ai in mode
SIk . At 〈Ak

i , x〉, it executes computation

C̄i
�

(x − 1) mod φ+ 1
�

,
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where C̄i is given in Definition 7.2.2. The number of tokens consumed and produced
are specified according to Definitions 7.2.4 and 7.2.5, respectively. For instance, the
xth firing of Ak

i produces the following number of tokens through an output port
OP:

PRD
�

(x − 1) mod φ+ 1
�

.

In each mode SIk , the MADF graph is a live CSDF graph and thus has the notion
of graph iterations with a non-trivial repetition vector ~qk ∈ N|A| resulting from
Equation (2.14) on page 32. Next, we further define mode iterations.

Definition 7.2.12 (Mode Iteration). One iteration Itk of a MADF graph in mode
SIk consists of one firing of control actor Ac and qk

i ∈ ~q
k firings of each MADF

actor Ak
i .

Consider the two modes shown in Figure 7.2(a) and Figure 7.2(b). Repetition
vectors ~q1 and ~q2 are:

~q1 = [4,2,2,0,2],

~q2 = [2,1,1,1,2]. (7.8)

For any mode of a MADF graph, i.e., a live CSDF graph, under any valid
schedule, it has (eventually) periodic execution in time. This holds for CSDF graphs
under self-timed schedule [110], K-periodic schedule [31], and SPS [22]. The length
of the periodic execution, called iteration period, determines the minimum time
interval to complete one graph iteration (cf. Definition 7.2.12). The iteration period,
denoted by H k , is equal for any actor in the same mode SIk . During a periodic
execution, the starting time of each actor Ak

i , denoted by Sk
i , indicates the time

distance between the start of source actor Ak
src and the start of actor Ak

i in the same
iteration period. Based on the notion of starting times, we define iteration latency
Lk of a MADF graph in mode SIk as follows:

Lk = Sk
snk− Sk

src, (7.9)

where Sk
snk

and Sk
src are the earliest starting times of the sink and source actors,

respectively. Figure 7.3 illustrates the execution of both modes SI1 and SI2 given
in Figure 7.2 under the self-timed schedule. A rectangle denotes WCET of an
actor firing. The WCETs of all actors in both modes are given in the third row
of Table 7.4 on page 132. Now, it can be seen in Figure 7.3 that iteration period
H 1 =H 2 = 8. Based on the starting time of each actor, we obtain iteration latencies
L1 = S1

5 − S1
1 = 10− 0= 10 and L2 = S2

5 − S2
1 = 10− 0= 10 as shown in Figure 7.3.
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(a) Mode SI1 in Figure 7.2(a).
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(b) Mode SI2 in Figure 7.2(b).

Figure 7.3: Execution of two iterations of both modes SI1 and SI2 under self-timed
scheduling.

7.2.3 Mode Transition

While the operational semantics of a MADF graph in steady-state are the same
as that of a CSDF [30] graph, the transition of MADF graph from one mode to
another is the crucial part that makes it fundamentally different from CSDF. The
protocol for mode transitions has strong impact on the compile-time analyzability
and implementation efficiency. In this section, we propose a novel and efficient
protocol of mode transitions for MADF graphs.

During execution of a MADF graph, mode transitions may be triggered at run-
time by receiving a Mode Change Request (MCR) from the external environment.
We first assume that a MCR can be only accepted in the steady-state of a MADF
graph, not in an ongoing mode transition. This means that any MCR occurred
during an ongoing mode transition will be ignored. Consider a mode transition from
SIo to SIl . The transition is accomplished by the control actor reading mode identifier
SIl from its control input port (see the black dot in Figure 7.1) and writing parameter
values of ~pi to the control output port connected to each dataflow actor Al

i according
to function MCi given in Definition 7.2.3. Then, Al

i reads new parameter values
~pi from its control input port and sets the sequence of computations according
to mapping relation Mi in Definition 7.2.2. The production and consumption
sequences are obtained in accordance with MIP and MOP in Definition 7.2.4 and
Definition 7.2.5, respectively. Similar to the P3N MoC, we further define that mode
transitions are only allowed at quiescent points [94].

Definition 7.2.13 (Quiescent Point of MADF). For a transition from mode SIo to
SIl , a quiescent point of a MADF actor Ai is a firing 〈Al

i , x〉 in a mode iteration Itl
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that satisfies
¬∃〈Al

i , y〉 ∈ Itl : y < x. (7.10)

Figure 7.4 shows an execution of G1 in Figure 7.1 with two mode transitions.
For instance, the MCR at time tMCR1 = 1 denotes a transition request from mode
SI2 to SI1. The mode transition of actor A1 is only allowed at the quiescent point
(time 2 in Figure 7.4) right before the first firing in mode iteration It1 of mode SI1.

Definition 7.2.13 defines mode transitions of MADF graphs as a partially ordered
actor firings. However, it does not specify at which time instance a mode transition
actually starts. Therefore, below, we focus on the transition protocol that defines
the points in time for occurrences of mode transitions. To quantify the transition
protocol, we introduce a metric, called transition delay, to measure the responsiveness
of a protocol to a MCR.

Definition 7.2.14 (Transition Delay). For a MCR at time tMCR calling for a mode
transition from mode SIo to SIl , the transition delay ∆o→l of a MADF graph is
defined as

∆o→l = σ o→l
snk − tMCR, (7.11)

where σ o→l
snk

is the earliest starting time of the sink actor in the new mode SIl .

In Figure 7.4, we can compute the transition delay for MCR1 occurred at time
tMCR1 = 1 as∆2→1 = 18− 1= 17.

Self-timed (ST) Transition Protocol

In the existing adaptive MoCs like FSM-SADF [47], a protocol, referred here as
Self-Timed (ST) transition protocol, is adopted. The ST protocol specifies that actors
are scheduled in the self-timed manner not only in the steady-state, but also during a
mode transition. For FSM-SADF upon a MCR, a firing of a FSM-SADF actor in
the new mode can start immediately after the firing of the actor completes the old
mode iteration. The only possible delay is introduced due to availability of input
data. One reason behind the ST protocol is that the ST schedule for a (C)SDF graph
(steady-state of FSM-SADF2) leads to its highest achievable throughput. However,
the ST protocol generally introduces interference of one mode execution with
another one. The time needed to complete mode transitions also fluctuate as the
transition delay of an ongoing transition depends on the transitions occurred in the
past. We consider this as an undesired effect because mode transitions using the ST
protocol become potentially slow and unpredictable. Another consequence of the

2The steady-state of SADF is defined similarly to that of MADF. The only difference is that a
scenario of FSM-SADF is a SDF graph, whereas a mode of MADF is a CSDF graph.
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Figure 7.4: An execution of G1 in Figure 7.1 with two mode transitions under the
ST transition protocol. MCR1 at time tMCR1 denotes a transition request from mode
SI2 to SI1, and MCR2 at time tMCR2 denotes a transition request from mode SI1 to
SI2.

incurred interference between modes using the ST transition protocol is the high
time complexity of analyzing transition delays, because transition delays cannot be
analyzed independently for each mode transition. The analysis proposed in [47]
uses an approach based on state-space exploration, which has the exponential time
complexity.

Consider G1 in Figure 7.1 and an execution of G1 with the two mode transitions
illustrated in Figure 7.4. The execution is assumed under the ST schedule for both
steady-state and mode transitions of G1. After MCR1 at time tMCR1, the transition
from mode SI2 to SI1 introduces interference to execution of the new mode SI1 from
execution of the old mode SI2. The interference increases the iteration latency of
the new mode SI1 to L1 = S1

5 − S1
1 = 18− 2 = 16 from initially 10 as shown in

Figure 7.3(a) when G1 is only executed in the steady-state of mode SI1. Even worse,
the interference is further propagated to the second mode transition after MCR2
at time tMCR2. In this case, the iteration latency L2 = S2

5 − S2
1 = 42− 23 = 19 is

increased from initially 10 as shown in Figure 7.3(b) when G1 is only executed in
the steady-state of mode SI2. This example thus clearly shows the problem of the ST
protocol. That is, it introduces interference between the old and new modes due to
mode transitions, thereby increasing the iteration latency of the new mode in the
steady-state after the transition. Furthermore, the increase of iteration latency also
potentially increases transition delays as it will be shown in the next section.

Maximum-Overlap Offset (MOO) Transition Protocol

To address the problem of the ST transition protocol explained above, we introduce
in this chapter our new transition protocol, called Maximum-Overlap Offset (MOO).
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Figure 7.5: An illustration of the Maximum-Overlap Offset (MOO) calculation.

Definition 7.2.15 (Maximum-Overlap Offset (MOO)). For a MADF graph and a
transition from mode SIo to SIl , Maximum-Overlap Offset (MOO), denoted by x,
is defined as

x =

(

maxAi∈Ao∩Al (So
i − S l

i ) if maxAi∈Ao∩Al (So
i − S l

i )> 0

0 otherwise,
(7.12)

where Ao ∩Al is set of actors active in both modes SIo and SIl .

Basically, we first assume that the new mode SIl starts immediately after the
source actor Ao

src of the old mode SIo completes its last iteration Ito . All actors Al
i of

the new mode execute according to the earliest starting times S l
i and iteration period

H l in the steady-state. Under this assumption, if the execution of the new mode
overlaps with the execution of the old mode in terms of iteration periods H o and H l ,
we then need to offset the starting time of the new mode by the maximum overlap
among all actors. In this way, the execution of the new mode will have the same
iteration latency as that of the new mode in the steady-state, i.e., no interference
between the execution of both old and new modes.

Consider MCR1 at time tMCR1 shown in Figure 7.4. Obtaining MOO x is
illustrated in Figure 7.5. We first assume that the new mode SI1 starts at the time
when the source actor A2

1 completes the last iteration at time 8 (see bold, dashed
line in Figure 7.5). Actors A1

i in the new mode start as if they executed in the
steady-state of mode SI1. Then, we can see that, for actor A3, the execution of A1

3 in
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Figure 7.6: The execution of G1 with two mode transitions under Maximum-Overlap
Offset (MOO) protocol.

the new mode SI1 according to S1
3 in Figure 7.3(a) overlaps 4 time units (solid bar in

Figure 7.5) with the execution of A2
3 in the old mode SI2 in terms of iteration periods

H 2 and H 1. This is also the maximum overlap between the execution of actors in
modes SI2 and SI1. According to Definition 7.2.15, x can be obtained through the
following equations:

S2
1 − S1

1 = 0− 0,

S2
2 − S1

2 = 1− 1= 0,

S2
3 − S1

3 = 9− 5= 4,

S2
5 − S1

5 = 10− 10= 0.

Therefore, it results in an offset x =max(0,0,4,0) = 4 to the start of mode SI1 and
is shown in Figure 7.6. The starting time of the new mode SI1, namely the source
actor A1

1, must be first delayed to the time when A1
2 completes the iteration period

H 2 in the last iteration, namely time 8 as shown as the first bold line in Figure 7.6.
In addition, the MOO x = 4 must be further added to the starting time of A1

1 (the
second bold line in Figure 7.6). Figure 7.6 also shows another transition from mode
SI1 to SI2 with a MCR occurred at time tMCR2 = 23. The starting time of the source
actor A2

1 in the new mode SI2 must be first delayed to the time 28 (the thrid bold line
in Figure 7.6), namely the time when A1

1 completes the last iteration in the old mode
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SI1. To calculate the MOO x for this transition, the following equations hold:

S1
1 − S2

1 = 0− 0,

S1
2 − S2

2 = 1− 1= 0,

S1
3 − S2

3 = 5− 9=−4,

S1
5 − S2

5 = 10− 10= 0.

Thus, the equations above result in x =max(0,0,−4,0) = 0. For this transition, the
new mode SI2 starts at time 28 as shown in Figure 7.6.

The MOO protocol offers several advantages over the ST protocol. Essentially,
the MOO protocol retains the iteration latency of the MADF graph in the new
mode the same as the initial value, thereby avoiding the interference between the old
and new modes. For instance, after MCR1 and MCR2 in Figure 7.6, mode SI1 and
SI2 still have the initial iteration latency L1 = 10 and L2 = 10 as shown in Figure 7.3.
Therefore, efficiently computing the starting time of MADF actors in the new mode
becomes feasible and it plays an important role in deriving a hard-real time schedule
for the MADF actors. As a result, analysis of the worst-case transition delay is much
simpler (see Theorem 7.3.1) than that of the ST protocol, because the transition
delay does not depend on the order of the transitions occurred previously.

Concerning the transition delay, it may be the case that the MOO protocol
results in initially longer transition delay than the ST protocol does due to the offset
given in Definition 7.2.15. For MCR1 occurred at time tMCR1, the transition delay
of the MOO protocol is ∆2→1 = 22− 1= 21 as shown in Figure 7.6, whereas the
transition delay of the ST protocol is equal to ∆2→1 = 18− 1 = 17 as shown in
Figure 7.4. On the other hand, let us consider the same transition request MCR2
occurred at time tMCR2 = 23 shown in Figures 7.4 and Figure 7.6. For MCR2, the
ST protocol results in transition delay∆1→2 = 42− 23= 19 as shown in Figure 7.4.
In contrast, the transition delay for the MOO protocol is∆1→2 = 38− 23= 16 as
shown in Figure 7.6. The MOO protocol could provide shorter transition delay
than the ST protocol, thereby faster responsiveness to a mode transition.

7.3 Hard real-time Scheduling of MADF

Based on the proposed MOO protocol for mode transitions, in this section, we
propose a HRT scheduling framework for MADF. We further show an analysis
technique for mode transitions in MADF to reason about transition delays, such
that timing constraints can be guaranteed. The HRT scheduling framework for
acyclic MADF graphs is an extension of the SPS [22] framework initially developed
for acyclic CSDF graphs.
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As explained in Section 2.3, the key concept of the SPS framework is to derive a
periodic taskset representation for a CSDF graph. Since the steady-state of a mode
can be considered as a CSDF graph according to Definitions 7.2.7 and 7.2.10, it is
thus straightforward to represent the steady-state of a MADF graph as a periodic
taskset and schedule the resulting taskset using any well-known HRT scheduling
algorithm. Using the SPS framework, we can derive the two main parameters for
each MADF actor in mode SIk , namely the period (T k

i in Equation (2.16) on page 34)
and the earliest starting time (Sk

i in Equation (2.17) on page 35). Under SPS, the
iteration period in mode SIk is obtained as H k = qk

i T k
i , ∃Ak

i ∈A. Below, we focus
on determining the earliest starting time of each actor in the new mode upon a
transition. From the earliest starting time, we can reason about the transition delay
to quantify the responsiveness of a transition.

Upon a MCR, a MADF graph can safely switch to the new mode if all of its actors
have completed their last iteration in the old mode. In this case, the firings of MADF
actors in the new mode do not overlap with the firings of actors in the old mode.
This is called synchronous protocol [104] in real-time systems with mode change.
One of its advantages is the simplicity, i.e., the synchronous protocol does not
require any schedulability test at both compile-time and run-time. However, other
protocols lead to earlier starting times than the synchronous protocol. Therefore,
the synchronous protocol sets an upper bound on the earliest starting time for each
MADF actor in the new mode.

Lemma 7.3.1. For a MADF graph G under SPS and a MCR from mode SIo to SIl at
time tMCR, the earliest starting time of actor Al

i , σ̂ o→l
i , is upper bounded by

σ̂ o→l
i = F o

src+ So
snk+ S l

i , (7.13)

where F o
src indicates the time when the source actor Ao

src completes its last iteration Ito of
the old mode SIo and is given by

F o
src = t o

S +
� tMCR− t o

S

H o

�

H o . (7.14)

t o
S is the starting time of mode SIo and H o is the iteration period of mode SIo .

Proof. As explained previously for a transition from mode SIo to SIl , the upper
bound of the earliest starting time for each actor Al

i is computed in such a way that
no firings of actors Ao

i and Al
i occur simultaneously. This means, the start of an actor

Al
i must be later than all actors Ao

i have completed the last iteration Ito of the old
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Table 7.4: Actor parameter for G1 in Figure 7.1.
Mode SI1 SI2

Actor A1
1 A1

2 A1
3 A1

5 A2
1 A2

2 A2
3 A2

4 A2
5

WCET 1 4 1 1 1 8 1 3 1
period (Ti ) 2 4 4 4 4 8 8 8 4

starting time (Si ) 0 2 6 14 0 4 12 8 20
utilization (ui )

1
2 1 1

4
1
4

1
4 1 1

8
3
8

1
4

mode SIo . Given that mode SIo starts at time t o
S , the completion time of all actors

Ao
i in the last iteration Ito can be thus computed as

F o
snk = t o

S +
� tMCR− t o

S

H o

�

H o + So
snk+H o . (7.15)

where F o
snk

is the time when the old mode SIo completes the last iteration Ito . It
is assumed that the sink actor Ao

snk
is the last actor to complete the iteration, i.e.,

∀Ao
i ∈A, So

i ≤ So
snk

. Given Equation (7.14), Equation (7.15) can be rewritten as

F o
snk = t o

S +
� tMCR− t o

S

H o

�

H o + So
snk = F o

src+ So
snk.

Now, starting the source actor Al
src at any time later than F o

snk
is valid without

introducing simultaneous execution of actors Ao
i and Al

i . Therefore, the earliest
starting time of source actor Al

src is σ̂ o→l
src = F o

snk
. For any actor Al

i ∈ A \Al
src, its

earliest starting times must satisfy Equation (2.17) on page 35 imposed by the SPS
framework. That is, the earliest starting starting time σ̂ o→l

i of actor Al
i can be

obtained by adding S l
i to σ̂ o→l

src . �

Let us consider the actor parameters given in Table 7.4 for G1 in Figure 7.1.
The third row shows the WCET for each actor in modes SI1 and SI2. Based on
WCETs, the period (fourth row in Table 7.4) and the earliest starting time (fifth row
in Table 7.4) for each actor in the steady-state of both modes are obtained according
to Equations 2.16 and 2.17, respectively. Given ~q2 in Equation (7.8), we can also
compute iteration period H 2 = q2

1 T 2
1 = 2×4= 8. Now consider the mode transition

from mode SI2 to SI1 shown in Figure 7.7. Assume that the MCR occurs at time
tMCR = 13 and mode SI2 starts at time t 2

S = 8. The completion time of the last
iteration It2 is equal to the completion time of the sink actor A2

5 computed as

F 2
snk = t 2

S +
� tMCR− t 2

S

H 2

�

H 2+ S2
5 = 8+

�13− 8

8

�

8+ 20= 36.
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Figure 7.7: Upper bounds of earliest starting times for transition from mode SI2 to
SI1.

In Figure 7.7, F 2
snk

corresponds to the earliest starting time of the source actor A1
1

(bold dashed line). Finally, we can compute the earliest starting time for each actor
in the new mode SI1 by adding S1

i . Considering for instance the sink actor A1
5 in

the new mode with S1
5 = 14, the upper bound of its earliest starting time can be

obtained as
σ̂2→1

5 = F 2
src+ S2

5 + S1
5 = F 2

snk+ S1
5 = 36+ 14= 50.

We can thus compute the transition delay (cf. Definition 7.2.14) as

∆̂2→1 = σ̂2→1
5 − tMCR = 50− 13= 37.

Although the upper bound of the earliest starting times is easy to obtain for
MADF actors in the new mode, it does not provide a responsive mode transition.
Therefore, here we aim at deriving a lower bound of the earliest starting times with
the proposed MOO protocol.

Lemma 7.3.2. For a MADF graph under SPS and a MCR from mode SIo to SIl at time
tMCR, the earliest starting time of actor Al

i using the MOO protocol is lower bounded by
σ̌ o→l

i given as
σ̌ o→l

i = F o
src+ x + S l

i , (7.16)

where F o
src is given in Equation (7.14) and x is given in Equation (7.12).

Proof. Under the MOO protocol, the start of actor Al
i must be later than the time

when Ao
i , if any, completes its last iteration in the old mode SIo . We assume that the

source actor Al
src is the first actor to start in the new mode SIl , i.e., ∀Al

i ∈A, S l
i ≥ S l

src.
Thus, the starting time of the source actor Al

src is at least equal to the completion
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Figure 7.8: Earliest starting times for transition from mode SI2 to SI1 with the MOO
protocol.

time of the last iteration of Ao
src, denoted by F o

src. Given F o
src in Equation (7.14), it

thus holds σ̌ o→l
src ≥ F o

src Then, the offset x because of the MOO protocol given in
Equation (7.12) must be taken into account. Consequently, the earliest starting
time of Al

src is lower bounded by σ̌ o→l
src = F o

src+ x. For any actor Al
i ∈A \Al

src, its
earliest starting times must satisfy Equation (2.17) on page 35 imposed by the SPS
framework. Hence, the earliest starting time σ̌ o→l

i of actor Al
i can be obtained by

adding S l
i to σ̌ o→l

src . �

Let us consider again the transition from mode SI2 to SI1. With the MOO
protocol, the mode transition is illustrated in Figure 7.8. Upon the MCR at time
tMCR = 13 and t 2

S = 8, source actor A2
1 completes its last iteration It2 in the old mode

SI2 at the time (cf. Equation (7.14)) given as

F 2
src = F 2

1 = t 2
S +
� tMCR− t 2

S

H 2

�

H 2 = 8+
�13− 8

8

�

8= 16

This is the earliest possible time at which mode transition is allowed. For MOO, x
can be computed according to Equation (7.12). Therefore, the following equations
hold:

S2
1 − S1

1 = 0− 0,

S2
2 − S1

2 = 4− 2= 2,

S2
3 − S1

3 = 12− 6= 6,

S2
5 − S1

5 = 20− 14= 6.
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It thus yields x = max(0,2,6,6) = 6, i.e., an offset x = 6 is added to F 2
src. It can

be seen in Figure 7.8 that the source actor A1
1 starts at time F 2

src+ x = 16+ 6= 22.
Finally, the earliest starting times of actors in mode SI1 can be determined by adding
S1

i . Considering for instance A1
5 in the new mode, the lower bound of its earliest

starting time can be obtained as:

σ̌2→1
5 = F 2

src+ x + S1
5 = 16+ 6+ 14= 36.

Now, the transition delay (cf. Definition 7.2.14) can be obtained as

∆̌2→1 = σ̌2→1
5 − tMCR = 36− 13= 23.

Scheduling Analysis under a Fixed Allocation of Actors

During a mode transition of a MADF graph according to the MOO protocol,
actors execute simultaneously in the old and new modes. The derived starting
time in Lemma 7.3.2 for each actor is only the lower bound because the allocation
of actors on PEs is not taken into account yet. That means, the derived starting
times according to Lemma 7.3.2 can be only achieved during mode transitions when
each actor is allocated to a separate PE. In a practical system where multiple actors
are allocated to the same PE, the PE may be potentially overloaded during mode
transitions. To avoid overloading PEs, the earliest starting times of actors may be
further delayed.

Lemma 7.3.3. For a MADF graph under SPS, a MCR from mode SIo to SIl , and an
m-partition of all actors Ψ= {Ψ1, . . . ,Ψm}, where m is the number of PEs, the earliest
starting time of an actor Al

i without overloading the underlying PE is given by

σ o→l
i = F o

src+δ
o→l + S l

i , (7.17)

where F o
src is computed by Equation (7.14) and δo→l is obtained as

δo→l = min
t∈[x,So

snk]
{t : Uj (k)≤UB, ∀k ∈ [t , So

snk]∧∀Ψ j ∈Ψ}. (7.18)

UB denotes the utilization bound of the scheduling algorithm used to schedule actors on
each PE. Ψ j contains the set of actors allocated to PE j . Uj (k) is the total utilization of
PE j at time k demanded by both mode SIo and SIl actors, and is given by

Uj (k) =
∑

Ao
d∈Ψ j

�

uo
d − h(k − So

d ) · u
o
d

�

︸ ︷︷ ︸

U o
j (k)

+
∑

Al
d∈Ψ j

�

h(k − S l
d − t ) · u l

d

�

︸ ︷︷ ︸

U l
j (k)

, (7.19)
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Figure 7.9: Allocation of all MADF actors in Figure 7.1 to 3 PEs.

Ao
d
∈Ψ j is an actor active in the old mode SIo and allocated to PE j . Al

d
∈Ψ j is an actor

active in the new mode SIl and allocated to PE j . h(t ) is the Heaviside step function.

Proof. Lemma 7.3.2 shows the lower bound of the earliest starting time for actor
Al

i in the new mode SIl . However, starting Al
i at time σ̌ o→l

i may overload PE j , i.e.,
the resulting total utilization of PE j , denoted by Uj (σ̌

o→l
i ), exceeds UB. Therefore,

in this case, the earliest starting time σ o→l
i must be delayed by δo→l such that

Uj (σ
o→l
i )≤UB holds. From Equation (7.17) and Equation (7.16), we can see that

δo→l is lower bounded by x which corresponds to the MOO protocol. In addition,
δo→l is upper bounded by So

snk
if we consider Equation (7.17) and Equation (7.13)

on page 131.
δo→l of interest is the minimum time t in the bounded interval [x, So

snk
] that

satisfies two conditions.
Condition 1: for each PE j , the total utilization cannot exceed UB at time t , i.e.,

Uj (t ) ≤ UB. The total utilization Uj (t ) in Equation (7.19) consists of two parts,
namely U o

j (t ) and U l
j (t ). U o

j (t ) denotes the PE capacity occupied by the actors in

mode SIo that are not completed yet. Additional PE capacity U l
j (t ) is demanded by

the already released actors in the new mode SIl .
Condition 2: We need to check all time instants k > t in the interval [t , So

snk
],

such that Uj (k)≤UB, to guarantee that each PE j is not overloaded during the mode
transition. �

Figure 7.9 shows all actors of G1 in Figure 7.1 allocated to 3 PEs and let us
assume that the actors allocated to each PE are scheduled using the EDF algorithm.
The utilization bound of EDF is given as UB= 1 [80]. Given this allocation and the
transition from mode SI2 to SI1 shown in Figure 7.8, the lower bound of the earliest
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Figure 7.10: Earliest starting times for transition SI2 to SI1 on 2 PEs shown in
Figure 7.9.

starting time σ̌2→1
1 = 22 for actor A1

1 cannot be achieved. At time 22, only actor A2
1

has completed the last iteration It2 on PE1. Starting the new mode SI1 at time 22
corresponds to δ2→1 = x = 6. The total utilization of PE1 demanded by the actors
in the old mode SI2 at time 22, i.e., U 2

1 (6), can be computed as follows:

U 2
1 (6) =

∑

A2
d∈Ψ1

u2
d − h(6− S2

d ) · u
2
d , d ∈ {1,3,4,5}

= u2
1 − h(6) · u2

1 + u2
3 − h(−6) · u2

3 + u2
4 − h(−2) · u2

4 + u2
5 − h(−14) · u2

5

= 0+ u2
3 + u2

4 + u2
5 =

1

8
+

3

8
+

1

4
=

3

4

Enabling A1
1 in the new mode SI1 at time 22 would yield

U1(6) =U 2
1 (6)+ u1

1 =
3

4
+

1

2
>UB= 1,

thereby leading to being unschedulable on PE1. In this case, the earliest times of all
actors in mode SI1 must be delayed by δ2→1 = 8 to time 24 as shown in Figure 7.10.
At time 24, the total utilization demanded by mode SI2 actors is

U 2
1 (8) =

∑

A2
d∈Ψ1

u2
d − h(8− S2

d ) · u
2
d , d ∈ {1,3,4,5}

= u2
1 − h(8) · u2

1 + u2
3 − h(−4) · u2

3 + u2
4 − h(0) · u2

4 + u2
5 − h(−12) · u2

5

= 0+ u2
3 + 0+ u2

5 =
1

8
+

1

4
=

3

8
.
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Now, enabling A1
1 in the new mode at time 24 results in the total utilization of PE1

as

U1(8) =U 2
1 (8)+ u1

1 =
3

8
+

1

2
< 1.

Next, assuming that the new mode SI1 starts at time 24, we need to check that the
remaining actors in the new mode SI1, namely A1

3 and A1
5, can start with S1

3 and S1
5

respectively without overloading PE1. For instance, enabling A1
3 at time 24 results in

starting time σ2→1
3 = 24+ S1

3 = 24+ 6= 30. At time 30, the total utilization of PE1
can be obtained according to Equation (7.19) as follows:

U 2
1 (8+ 6) =

∑

A2
d∈Ψ1

u2
d − h(14− S2

d ) · u
2
d , d ∈ {1,3,4,5}

= u2
1 − h(14) · u2

1 + u2
3 − h(2) · u2

3 + u2
4 − h(6) · u2

4 + u2
5 − h(−6) · u2

5

= 0+ 0+ 0+ u2
5 =

1

4
,

U 1
1 (8+ 6) =

∑

A1
d∈Ψ1

�

h(14− S1
d − 8) · u1

d

�

, d ∈ {1,3,5}

= h(6)u1
1 + h(0)u1

3 + h(−8)u1
5

=
1

2
+

1

4
=

3

4
,

U1(8+ 6) =U 2
1 (8+ 6)+U 1

1 (8+ 6) = 1=UB.

Hence, actors A2
5, A1

1, and A1
3 are schedulable on PE1 using EDF. Similarly, starting

A1
5 at time σ2→1

5 = 24+ S1
5 = 38 still keeps the resulting set of actors schedulable on

PE1.
Using Lemma 7.3.3, we can quantify the maximum and minimum transition

delays for any transition from mode SIo to SIl .

Theorem 7.3.1. For a MADF graph under SPS, a fixed allocation of all MADF actors
Ψ= {Ψ1, . . . ,Ψm} to m PEs, and a MCR from mode SIo to SIl , the minimum transition
delay is given by

∆o→l
min = δ

o→l + S l
snk (7.20)

and the maximum transition delay is given by

∆o→l
max = δ

o→l + S l
snk+H o , (7.21)

where δo→l is computed by Lemma 7.3.3, S l
snk

is the starting time of the sink actor in
the new mode SIl , and H o is the iteration period of the old mode SIo .
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Proof. For a MCR from mode SIo to SIl , the transition delay ∆o→l of a MADF
graph is given in Definition 7.2.14 as ∆o→l = σ o→l

snk
− tMCR, where the earliest

starting time of the sink actor is calculated as σ o→l
snk
= F o

src+δ
o→l +S l

snk
according to

Lemma 7.3.3. Therefore,∆o→l can be rewritten as∆o→l = F o
src+δ

o→l+S l
snk
− tMCR.

Essentially,∆o→l is composed of three parts. In the first part, the MOO transition
protocol together with a fixed allocation of the MADF actors determine δo→l . The
second part S l

snk
results from the SPS framework. These two parts thus can be

determined at compile-time. The third part F o
src− tMCR depends on when the MCR

occurs, namely at tMCR, which can only be determined at run-time. In the following,
we distinguish two cases for tMCR:

Case 1: Assume that the MCR occurs at the end of an iteration of the source actor
in the old mode SIo , i.e., tMCR = F o

src. Then, the source actor shall be only delayed by
δo→l to start in the new mode SIl according to Lemma 7.3.3, thereby guaranteeing
the fastest possible start of the new mode SIl . As a consequence, it results in the
minimum possible transition delay. Therefore, substituting tMCR = F o

src, we obtain

∆o→l
min = F o

src+δ
o→l + S l

snk− F o
src = δ

o→l + S l
snk.

Case 2: Assume that the MCR occurs at the beginning of an iteration of the
source actor in the old mode SIo , i.e., tMCR = F o

src −H o . Then, the source actor
cannot start in the new mode before it completes the whole iteration in the old
mode SIo followed by the delay δo→l according to Lemma 7.3.3. Therefore, the
maximum transition delay is computed as follows:

∆o→l
max = F o

src+δ
o→l + S l

snk− (F
o
src−H o) = δo→l + S l

snk+H o .

�

It can be seen from Theorem 7.3.1 that the maximum and minimum transition
delays solely depend on the allocation of MADF actors and the old and new modes
in question, irrespective of the previously occurred transitions. The old and new
modes determine H o and S l

snk
, respectively, while the allocation of MADF actors

determines the value of δo→l . Here, the offset x due to our MOO protocol is
captured in δo→l and can be considered as performance overhead if x 6= 0. The
other parts, namely H o and S l

snk
, in the maximum and minimum transition delays

cannot be avoided as they will be present in any transition protocol.

7.4 Case Study

In this section, we present a case study of using the proposed MADF MoC and
the developed HRT scheduling explained in Section 7.3. With the case study, we
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show that the MADF MoC is able to capture different application modes and the
transitions between them. Then, the main focus of the case study is to analyze
the transition delays and to demonstrate the effectiveness of the proposed MOO
transition protocol.

We consider a real-life adaptive application from the StreamIT benchmark
suit [54], called Vocoder, which implements a phase voice encoder and performs
pitch transposition of recorded sounds from male to female. We modeled Vocoder
with a MADF graph with 4 modes, which capture different workloads. The MADF
graph of Vocoder is shown in Figure 7.11. Depending on the desired quality of audio
encoding and various performance requirements, users may switch between four
different modes of Vocoder at run-time. The four modes S = {SI8,SI16,SI32,SI64}
specify different lengths of the Discrete Fourier Transform (DFT), denoted by
dl ∈ {8,16,32,64}. Mode SI8 (dl= 8) requires the least amount of computation at the
cost of the worst voice encoding quality among all DFT lengths. Mode SI64 (dl= 64)
produces the best quality of voice encoding among all modes, but is computationally
intensive. The other two modes SI16 and SI32 explore the trade-off between the
quality of the encoding and computational workload. A transition from one mode
to any other one is possible, thereby resulting in totally 12 possible transitions. At
run-time, reconfiguration of the parameter dl is triggered by the environment, e.g.,
the user in this case. Subsequently, control actor Ac propagates dl to the dataflow
actors shown in Figure 7.11 through the dashed-lined edges.

We measured the WCETs of all dataflow actors in Figure 7.11 in the four modes
on an ARM Cortex-A9 [1] PE. All dataflow actors were compiled using the compiler
arm-xilinx-eabi-gcc 4.7.2 with the vectorization option. The WCETs of
all actors in all four modes are given in Table 7.5. It is worth to note that in mode
SI8, actors Spec2Env and male2female exhibit exceptionally high WCETs. It is because
parameter dl represents the size of the inner-most loop in the computation of actors
Spec2Env and male2female. Small dl (in this case dl = 8) leads to the fact that the
inner-most loop cannot be vectorized by the compiler. In the other modes from SI16

to SI64, larger sizes of the inner-most loop (dl equal to 16, 32, and 64, respectively)
lead to full vectorization of the computation of actors Spec2Env and male2female.
Therefore, in these three modes, the WCETs of actors Spec2Env and male2female
are even smaller than the ones in mode SI8. The dataflow actors of Vocoder are
allocated to 4 PEs as shown in Figure 7.12. This allocation guarantees that the
shortest periods (maximum throughput) in the steady-states of all modes can be
achieved.

Table 7.6 shows the performance results for the four modes in their steady-state
under SPS. For instance, the second column at the first row in Table 7.6 indicates
that it is guaranteed for sink actor WriteWave to produce 256 samples per 917,451
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Figure 7.11: MADF graph of Vocoder.
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Table 7.5: WCETs of all actors in Vocoder (in clk.).
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clock cycles in mode SI8. This is the “worst-case” performance among all four
modes because the Spec2Env actor exhibits exceptionally high workload (cf. WCETs
in Table 7.5 and Definition 2.3.2 on page 34) in mode SI8. Consequently, actor
Spec2Env becomes the “bottleneck” actor, so that mode SI8 cannot be scheduled with
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Figure 7.12: Allocation of dataflow actors of Vocoder to 4 PEs. The control edges
are omitted to avoid cluttering.

Table 7.6: Performance results of four modes of Vocoder in the steady-state.
Mode Period (T in clk.) Total utilization (U ) Iteration latency (L)

SI8 917,504 1.24 7,339,608
SI16 148,864 2.36 1,191,436
SI32 178,176 3.19 1,425,448
SI64 300,288 3.4 2,402,550

higher throughput (shorter period). Nevertheless, all mode SI8 actors as a whole
require a total utilization of only 1.24 (see the third column in Table 7.6) which is
the least among all modes. From Table 7.6, we can see that MADF together with
the SPS framework brings another advantage of efficiently utilizing PE resources.
For example, in case that Vocoder is switched to a mode with lower utilization,
idle capacity of PEs can be efficiently utilized by admitting other applications at
run-time without introducing interference to the currently running Vocoder.

Now, we focus on the performance results of the MOO protocol, namely
transition delays, for all possible transitions between the four modes of Vocoder.
Table 7.7 shows both the minimum and maximum transition delays in accordance
with Theorem 7.3.1 for all transitions. We can see in the second column of Table 7.7
that, in the best case, the transition delays for 6 out of 12 transitions remain the
same as the iteration latencies of the new modes. This can be seen as x = 0 shown
in the fourth column. In these 6 transitions, the proposed MOO protocol does not
introduce any extra delay. In the 6 remaining transitions, as expected, the MOO
protocol introduces offset x > 0 to the transitions from an old mode with a longer
iteration latency to a new mode with a shorter iteration latency. For instance, the
largest x (in bold shown in Table 7.7) happens in case of a transition from mode SI8

with the longest iteration latency (see the fourth column in Table 7.6) to mode SI16
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Table 7.7: Performance results for all mode transitions of Vocoder.
Transition ∆o→l

min (in clk.) ∆o→l
max (in clk.) x (in clk.) δo→l (in clk.)

(SIo to SIl )

SI8→ SI64 3,636,815 4,554,266 1,234,264 1,234,264
SI8→ SI32 2,903,988 3,821,439 1,478,540 1,478,540
SI8→ SI16 2,728,479 3,645,930 1,537,043 1,537,043
SI16→ SI64 2,402,550 2,551,480 0 0
SI16→ SI32 1,425,448 1,574,378 0 0
SI16→ SI8 7,339,608 7,488,538 0 0
SI32→ SI64 2,402,550 2,580,731 0 0
SI32→ SI16 1,425,448 1,603,629 234,012 234,012
SI32→ SI8 7,339,608 7,517,789 0 0
SI64→ SI32 2,402,550 2,702,869 977,102 977,102
SI64→ SI16 2,402,550 2,702,869 1,211,114 1,211,114
SI64→ SI8 7,339,608 7,639,927 0 0

with the shortest iteration latency. To quantify x, we compute the percentage of x
compared to both minimum and maximum transition delays as

Ωmin =
x

∆o→l
min

× 100%, Ωmax =
x

∆o→l
max

× 100%.

Ωmin varies from the worst-case 56% to the best case 16% with an average of 41%,
whereas Ωmax varies from the worst-case 44% to the best case 14% with an average
of 33%. Therefore, the increase of the transition delays due to the MOO protocol is
reasonable for this real-life application.

Next, we consider the effect of the actor allocation shown in Figure 7.12 on the
earliest starting times of actors in the new mode upon a transition (cf. Lemma 7.3.3).
In this particular example, we find out that no extra delay is incurred to any actor in
all transitions due to the fixed actor allocation. This can be seen from the fourth and
fifth columns in Table 7.7, where δo→l = x.



Chapter 8

Summary and Outlook

MODERN streaming applications exhibit increasingly adaptive behavior and
required more complex computation. At the same time, high performance

requirements and tight hard real-time guarantees must be satisfied. Driven by the
advance of the semiconductor technology, MPSoC platforms will continue to have
more computational capabilities to meet these demands. This situation asks for a
correspondingly advanced design methodology to cope with the design complexity.
Adoption of a model-based ESL design methodology seems to be an inevitable
solution to increase the design productivity and handle the complexity. In this
thesis, we have proposed several novel techniques to enhance a model-based ESL
design methodology. In particular, we have adopted a specific instance of such design
methodology, namely the DaedalusRT design flow, for designing high performance,
hard real-time, and adaptive streaming systems. Below, we provide a summary of
this thesis.

In Chapter 3, we have presented an algorithm to derive a CSDF graph as the
analysis model from an input-output equivalent PPN. Automated derivation of
the CSDF MoC allows for the subsequent step of HRT analysis in DaedalusRT.
Therefore, it is a key enabler of the fully automated DaedalusRT design flow. In
addition, our approach can be considered as an enhancement to the PNgen [125]
compiler, which derives an equivalent PPN from a SANLP. Now, all design flows that
accept the CSDF MoC as application specification will benefit from our approach
because it relieves designers from manual specification of the CSDF MoC, which in
some case may not be trivial to do it manually.

In Chapter 4, we have shown that the mapping of streaming applications con-
sidering a single initial application specification cannot fully utilize the processing
power of MPSoC platforms. Using the PPN MoC as the application specification,
we have presented an analytical framework to determine the maximum DLP, i.e.,

145
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the maximum number of communication-free partitions. Subsequently, we have
proposed an approach to transform an initial PPN to a set of communication-free
partitions, if it exists. The experimental results on FPGA-based MPSoCs and desk-
top multi-core platforms showed that our approach leads to significantly better
performance than the approaches, in which alternative application specifications are
not taken into account.

In Chapter 5, we have addressed the problem of exploiting just-enough paral-
lelism when mapping a streaming application modeled using the SDF MoC in hard
real-time systems. Exploiting just-enough parallelism is achieved by simultaneously
unfolding and allocating the SDF actors onto an MPSoC platform, while considering
the number of available PEs and hard real-time scheduling of actors on the PEs.
We showed that the solution space to our problem is bounded and subsequently
derived its upper bound. We devised an efficient algorithm to solve the problem and
evaluated the algorithm on a set of real-life applications. The experiments showed
that our algorithm results in a system specification with large performance gain. We
also compared our algorithm with one of the state-of-the-art meta-heuristics, i.e.,
NSGA-II genetic algorithm, and showed that our algorithm is on average 100 times
faster than the GA, while achieving the same quality of the solution.

In Chapter 6, we have introduced the Parameterized Polyhedral Process Network
(P3N) MoC that is able to capture adaptive/dynamic application behavior. Such
behavior is usually expressed by parameters which values are updated at run-time.
We have proposed a design-time approach to enable consistent execution of the
P3N MoC at run-time. The P3N MoC is used as the implementation model for
adaptive streaming applications in the DaedalusRT design flow. Therefore, we have
evaluated the possible run-time overhead caused by the parameterization of the
P3N model by designing and executing MPSoCs on an FPGA-based platform. The
obtained results have shown that the parameterization we proposed is efficient in
terms of the execution overhead introduced by the implementation of the process
networks.

In Chapter 7, we have introduced the Mode-Aware Data Flow (MADF) MoC for
adaptive streaming applications and its operational semantics. An adaptive streaming
application is characterized by individual scenarios and scenario transitions. As
an important part of the operational semantics, we proposed a novel protocol for
scenario transitions. The main advantage of this transition protocol is that it does
not introduce any timing interference between scenarios upon transitions. Based on
the transition protocol, we have extended the initial HRT scheduling in DaedalusRT

for the MADF MoC. Furthermore, we have presented a HRT analysis on best-case
and worst-case transition delays. Finally, we have conducted a case study using a
real-life adaptive streaming application. The results have shown reasonable increase
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of transition delay due to our proposed transition protocol.
Although the techniques proposed in this thesis have significantly enhanced our

model-based ESL design methodology, some interesting open research problems still
exist that are highly related to the work presented in this thesis. Below, we outline
some important ones.

Trade-off Exploration between Communication and Load-balancing

The communication-free partitioning developed in Chapter 4 only considers one
special alternative application specification, i.e., no communication between PEs
when all communication-free partitions are mapped on them. However, this comes
at a cost: the workload on PEs may not be perfectly balanced any more. It is thus
worthwhile considering other alternative application specifications as well, in which
certain degree of communication between partitions is allowed while workload
can be better distributed among partitions. The degree of communication between
partitions depends on the computation and communication capabilities of target
architectures. We can only have an optimum mapping when all these factors are
taken into account in a design space. Clearly, even a larger design space will ask for
more efficient DSE algorithms.

Equivalence between the Analysis MoC and the Implementation MoC for Adaptive
Applications

It should not be too difficult to derive the P3N MoC developed in Chapter 6 from a
sequential specification based on the initial work in [92]. It is, however, important
to show that, for any P3N, we can find an input-output equivalent MADF graph.
Only in this case, we can achieve a complete design flow for adaptive streaming
applications as the DaedalusRT design flow for the static streaming applications.

Optimization of Mode Transitions Considering Mapping

The HRT scheduling framework developed in Chapter 7 for the MADF MoC
does not yet consider the effect of resource allocation and actor mapping. This
immediately brings up an important problem: given a MADF graph and a fixed
platform, e.g., m PEs, find a mapping of actors onto m PEs, such that transition
delays are minimized while HRT constraints are met.
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Samenvatting

Veel systemen bevatten een of meer ingebedde elektronische subsystemen die onont-
beerlijk onmisbaar zijn voor een goed functioneren van het systeem als geheel. Een
voorbeeld van een ingebed systeem is (de implementatie/realisatie) een ’functie’ die
een onbegrensde ingangsstroom van data (tokens) transformeert tot een onbegrensde
uitgangsstroom van data (tokens). Denk aan audio en video coders en decoders, of
aan netwerkknopen. Bij datastroom toepassingen van dit type kan als voorwaarde
gesteld worden dat de tokens in de uitgangsstroom elkaar zo snel mogelijk opvolgen,
dit wil zeggen dat de doorvoer maximaal is. Een andere, vaak opgelegde, voorwaarde
kan zijn dat tokens in de uitgangsstroom strikt binnen een bepaalde tijd beschikbaar
komen. Aan beide voorwaarden kan vaak slechts worden voldaan als de implemen-
tatie/realisatie van de onderliggende ’functie’ zelf een netwerk van actoren is, dit
wil zeggen een MPSoC (Multi-Processor System-on-Chip). Deze toepassingen kun-
nen bovendien adaptief zijn waardoor (her)configuratie van het ingebedde systeem
mogelijk moet zijn om te kunnen schakelen tussen ‘modes‘.

Dit proefschrift specificeert en beschrijft een extensie van het ontwerp raamwerk,
DaedalusRT, dat bestaat uit een verzameling ontwerp/implementatie/realisatie mo-
dules waarmee datastroom toepassingen vrijwel geheel automatisch kunnen worden
geimplementeerd/gerealiseerd als MPSoC systemen. Met de voorgestelde extensie
wordt de verzameling van mogelijke datastroom toepassingen uitgebreid met dyna-
mische toepassingen. DaedalusRT maakt gebruik van twee datastroom modellen:
een model voor de analyse, en een model voor de MPSoC implementatie. Met het
analysemodel kan het gedrag in de tijd van het ingebedde systeem formeel worden
bestudeerd. Met het implementatiemodel kan de efficiëntie van de code generatie
voor de actoren, de communicatie tussen actoren, en de synchronisatie van actoren
in de uiteindelijke realisatie nauwkeurig geschat worden. Het proefschrift breidt
het ontwerp raamwerk DaedalusRT uit met een analysemodel en een implementatie
model voor adaptieve datastroomtoepassingen. Het voorgestelde analysemodel is een
mode-bewust datastroommodel. Dit wil zeggen dat het model het tijdsgedrag van
een aantal modes, en de mogelijke transities tussen modes adequaat weergeeft. Met
de voorgestelde transitieprotocol kan een activeringsschema voor de actoren opge-



steld worden dat voldoet aan hard real-time van de MPSoC realisatie/implementatie.
Het implementatiemodel is een parametrisch hyper-polygon process netwerk model
(P3N) dat instant (her)configuratie van parameters verifieerbaar correct uitvoert.
Metingen aan de door het raamwerk DaedalusRT afgeleverde MPSoC P3N implemen-
tatie/realisatie van adaptieve datastroom applicaties bevestigt dat de (her)configuratie
van parameters een te verwaarlozen invloed heeft op de prestatie van de MPSoC
realisatie.
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