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We report experimental results on mixed-state generation by multiple scattering of polarization-entangled
photon pairs created from parametric down-conversion. By using a large variety of scattering optical systems
we have experimentally obtained entangled mixed states that lie upon and below the Werner curve in the linear
entropy-tangle plane. We have also introduced a simple phenomenological model built on the analogy between
classical polarization optics and quantum maps. Theoretical predictions from such a model are in full agree-

ment with our experimental findings.
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I. INTRODUCTION

The study of spatial, temporal, and polarization correla-
tions of light scattered by inhomogeneous and turbid media
has a history of more than a century [1]. Due to the high
complexity of scattering media only single-scattering prop-
erties are known at a microscopic level [2]. Conversely, for
multiple-scattering processes the emphasis is mainly on mac-
roscopic theoretical descriptions of the correlation phenom-
ena [3]. In most examples of the latter [4-7] the intensity
correlations of the interference pattern generated by
multiple-scattered light are explained in terms of classical
wave coherence. On the other hand, the recent availability of
reliable single-photon sources has triggered interest in quan-
tum correlations of multiple-scattered light [8]. Generally
speaking, quantum correlations of scattered photons depend
on the quantum state of the light illuminating the sample. In
Ref. [8], spatial quantum correlations of scattered light were
analyzed for Fock, coherent, and thermal input states.

In this paper we present experimental results on quantum
polarization correlations of scattered photon pairs. In particu-
lar, we study the effect of scattering devices acting on a
single photon belonging to a polarization-entangled pair. The
photon pairs are initially generated by spontaneous paramet-
ric down-conversion (SPDC). The initial entanglement of the
input photon pairs will in general be degraded by multiple
scattering. This can be understood by noting that the scatter-
ing process distributes the initial correlations of the twin
photons over the many spatial modes excited along the
propagation in the medium. In the case of spatially inhomo-
geneous media the polarization degrees of freedom are
coupled to the spatial degrees of freedom generating
polarization-dependent speckle patterns. If the spatial corre-
lations of such patterns are averaged out by multimode de-
tection, the polarization state of the scattered photon is re-
duced to a mixture, and the resulting polarization
entanglement of the photon pairs is degraded with respect to
the initial one. A related theoretical background was elabo-
rated in [9,10].

We emphasize that the present work does not aim at de-
scribing the use of entangled photons for the characterization
of different scattering media. Rather, it highlights the use of
different optical properties of scattering media for entangled
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mixed-state generation. Specifically, we show that the cou-
pling between polarization and spatial degrees of freedom by
scattering can be used for entangled mixed-state engineering.
The idea of generating mixed entangled states by coupling
polarization and spatial degrees of freedom is not novel [19],
but here we realize this coupling by scattering processes. We
believe our implementation is of interest, since it relaxes
experimental constraints compared to previous linear optics
approaches that achieved similar results [18,19].

This paper is structured as follows. In Sec. II we report
our experiments on light scattering with entangled photons.
First, we present our experimental setup and briefly describe
the many different optical systems that we used as scatterers.
Next, we show our experimental results. The notions of gen-
eralized Werner and sub-Werner states are introduced to il-
lustrate these results. In Sec. III we introduce a simple phe-
nomenological model for photon scattering that fully
reproduces our experimental findings. Finally, in Sec. IV we
draw our conclusions.

II. EXPERIMENTS ON LIGHT SCATTERING
WITH ENTANGLED PHOTONS

A. Experimental setup

Our experimental setup is shown in Fig. 1. A krypton-ion
laser at 413.1 nm pumps a I-mm-thick 8-BaB,0O, (BBO)
crystal, where polarization-entangled photon pairs at wave-
length 826.2 nm are created by SPDC in a degenerate type-II
phase-matching configuration [11]. Single-mode fibers
(SMFs) are used as spatial filters to assure that each photon
of the initial SPDC pair travels in a single transverse mode.
Spurious birefringence along the fibers is compensated by
suitably oriented polarization controllers (PCs). The total re-
tardation introduced by the fibers and walk-off effects at the
BBO crystal are compensated by compensating crystals
(CCs; 0.5-mm-thick BBO crystals) and half-wave plates
(N/2), in both signal and idler paths. In this way the initial
two-photon state is prepared in the polarization singlet state
|p)=(|HV)—|VH))/\2, where H and V are labels for the
horizontal and vertical polarizations of the two photons, re-
spectively. The experimentally prepared initial singlet state
po® has a fidelity [12] with the theoretical singlet state
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Scattering
device

FIG. 1. (Color online) Experimental scheme: After singlet
preparation, the idler photon propagates through the scattering sys-
tem 7,. The polarization state of the scattered photon pairs is then
reconstructed via a quantum tomographic procedure (see text for
details).

ps=l Xt of F(py,pS*™)~98%. In the second part of the
experimental setup the idler photon passes though the scat-
tering device 7, before being collimated by a photographic
objective (PO) with focal distance f=5 cm. The third and
last part of the experimental setup consists of two tomogra-
phic analyzers (one per photon), each made of a quarter-
wave plate (\/4) followed by a linear polarizer (P). Such
analyzers permit a full tomographic reconstruction, via a
maximum-likelihood technique [13], of the two-photon state.
Additionally, interference filters (IFs) put in front of each
detector (AN=5 nm) provide for bandwidth selection. Detec-
tors D, and Dy are “bucket” detectors, that is, they do not
distinguish which spatial mode a photon comes from; thus
each photon is detected in a mode-insensitive way.

B. Scattering devices

All the scattering optical systems that we used were lo-
cated in the path of only one of the photons of the entangled-
pair (the idler one), as shown in Fig. 1. For this reason, we
refer to such systems as local scatterers. Such scatterers can
be grouped in three general categories according to the opti-
cal properties of the media of which they are made [14].

Type I. Purely depolarizing media, or diffusers. Such me-
dia do not affect directly the polarization state of the imping-
ing light but change the spatial distribution of the impinging
electromagnetic field.

Type II. Birefringent media, or retarders. These media in-
troduce a polarization-dependent delay between different
components of the electromagnetic field.

Type IllI. Dichroic media, or diattenuators. Such media
introduce polarization-dependent losses for the different
components of the electromagnetic field.

Type-I scattering systems produce an isotropic spread in
the momentum of the impinging photons. Examples of such
scattering devices are spherical-particle suspensions (such as
milk or polymer microspheres), polymer and glass multi-
mode fibers, and surface diffusers. Type-II scattering systems
are made of birefringent media, which introduce an optical
axis that breaks polarization isotropy. Birefringence can be
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classified as “material birefringence” when it is an intrinsic
property of the bulk medium (for example, a birefringent
wave plate), and as “topological birefringence” when it is
induced by a special geometry of the system that generates
polarization anisotropy, an example of a system with topo-
logical birefringence is an array of cylindrical particles. Fi-
nally, type-III scattering systems are made of dichroic media
that produce polarization-dependent photon absorbtion. Ex-
amples of such devices are commonly used polarizers. A
systematic characterization of all the scattering devices that
we used was given in Ref. [14].

C. Experimental results in the tangle
versus linear entropy plane

The degree of entanglement and the degree of mixedness
of the scattered photon pairs can be quantified by the tangle
(T), namely, the concurrence squared [15], and the linear
entropy (S;) [16]. These quantities were calculated from the
4 X4 polarization two-photon density matrix p, by using
T(p)=(max{0, "\, - VA,— \3— VN, })2, where A\, =\, =)\,
=)\, =0 are the eigenvalues of p(o, ® 0,)p (0, ® 0,), where
0'2=[?})i], and SL(p)=§[1—Tr(p2)]. Figures 2(a) and 2(b)
show experimental data reported on the linear entropy-tangle
plane. The position of each experimental point in such plane
has been calculated from a tomographically reconstructed
[13] two-photon density matrix p®*P'. The uniform gray area
corresponds to nonphysical states [17]. The dashed curve
that bounds the physically admissible region from above is
generated by the so-called maximally entangled mixed
states (MEMSs) [18,19]. The lower continuous curve is
produced by the Werner states [20] of the form py
=pp,+[(1-p)/4]l, (0=p=1), where I, is the 4 X 4 identity
matrix. Figure 2(a) shows experimental data generated by
isotropic scatterers (type I). Specifically, our type-I scatterers
consisted of the following categories. (i) Suspensions of milk
and microspheres in distilled water, where the sample dilu-
tion was varied to obtain different points; (ii) multimode
glass and polymer fibers, where the tuning parameter ex-
ploited to obtain different points was the length of the fiber
(cut-back method); (iii) surface diffusers, where the full
width scattering angle was used as tuning parameter. It
should be noted that suspensions of milk and microspheres
are dynamic media, where Brownian motion of the micropar-
ticles induces temporal fluctuations within the detection in-
tegration time [14].

In Fig. 2(a), the experimental point at the top left corner
(near T=1, S; =0) is generated by the unscattered initial sin-
glet state. The net effect of scattering systems with increas-
ing thickness is to shift the initial datum toward the bottom
right corner (T=0, S;=1), which corresponds to a fully
mixed state.

Figure 2(b) displays experimental data generated by bire-
fringent scattering systems (type II). As an example of a
system with “material birefringence” we used a pair of
wedge depolarizers in cascade [21]. Different experimental
points were obtained by varying the relative angle between
the optical axis of the two wedges [22]. The systems with
“topological birefringence” we considered consisted of two
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FIG. 2. Experimental data in the linear entropy-tangle (S;—7)
plane. The gray area corresponds to unphysical density matrices.
Dashed upper curve: Maximally entangled mixed states; continuous
lower curve: Werner states. (a) Polarization-isotropic scatterers
(type I). (b) Birefringent scatterers (type II).

different devices. (i) The first one was a bundle of parallel
optical fibers [23]. Translational invariance along the fiber
axes restricts the direction of the wave vectors of the scat-
tered photons in a plane orthogonal to the common axis of
the fibers. (ii) The second device was a stack of parallel
microscope slides (with uncontrolled air layers in between).
This optical system is depolarizing because it amplifies any
initial spread in the wave vector of the impinging photon.
This photon enters via a single-mode fiber (numerical aper-
ture 0.12) from one side of the stack and travels in a plane
parallel to the slides.

In Fig. 3, experimental data generated by dichroic scatter-
ing systems (type III) are shown. We used (i) surface diffus-
ers followed by a stack of microscope slides at the Brewster
angle and (ii) commercially available polaroid sheets with
manually added surface roughness on its front surface to pro-
vide for wave-vector spread. All data thus obtained fall be-
low the Werner curve, generating what we called sub-Werner
states, namely, states with a lower value of tangle (7) than a
Werner state, for a given value of the linear entropy (S;).

In summary, Figs. 2(a) and 2(b) show that all data gener-
ated by type-I and -II scattering systems fall on the Werner
curve, within the experimental error; while data generated by
scattering samples type III, which are presented in Fig. 3, lie
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FIG. 3. Experimental data generated by dichroic scattering sys-
tems (type III).

below the Werner curve. In Sec. III we shall present a simple
theoretical interpretation for such results.

D. Error estimate

In order to estimate the errors in our measured data, we
numerically generated 16 Monte Carlo sets N; (i=1,...,16)
of 10% simulated photon counts, corresponding to each of the
16 actual coincidence count measurements {n{*"'}
(i=1,...,16) required by tomographic analysis to recon-
struct a single two-photon density matrix. Each set N; had a
Gaussian distribution centered around the mean value
w=n{", with standard deviation o;= \J’ﬁ. The sets N;
where created by using the “NormalDistribution” built-in
function of the program MATHEMATICA 5.2. Once we gener-
ated the 16 Monte Carlo sets N;, we reconstructed the corre-
sponding 10° density matrices using a maximum-likelihood
estimation protocol, to assure that they could represent
physical states. Finally, from this ensemble of matrices we
calculated the average tangle 7 and linear entropy S7'.The
error bars were estimated as the absolute distance between
the mean quantities (av) and the measured ones (expt): oy
=T =T, o5, =|S;™'~S7'|. It should be noted that this
procedure produces an overestimation of the experimental
errors. In the cases where part of the overestimated error bars
fell into the unphysical region, the length of such bars was
limited to the border of the physically allowed density ma-
trices.

E. Generalized Werner states

Close inspection of the reconstructed density matrices
generated by type-II scattering systems revealed that in some
cases the measured states represented a generalized form of
Werner states. These are equivalent to the original Werner
states py, with respect to their values of 7 and §;, but the
form of their density matrices is different. Werner states py
of two qubits were originally defined [20] as such states
which are U®U invariant: py=U® Upy,U'® U'. Here
U® U is any symmetric separable unitary transformation act-
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ing on the two qubits. The generalized Werner states pgy we
experimentally generated, can be obtained from py, by apply-
ing a local unitary operation V acting upon only one of the
two qubits: pgy=V®IpyV' ® I, where I= [(1, ?] and

e+ Bleog y/2
e a=Pin /2

— " 2(@Blsin y/2

V)= I (@Bos 42

(1)

where a, B, y can be identified with the three Euler angles
characterizing an ordinary rotation in R® [24,25]. These gen-
eralized Werner states have the same values of 7 and S; as
the original py, (since a local unitary transformation does not
affect either the degree of entanglement or the degree of
purity) but are no longer invariant under unitary transforma-
tions of the form U® U. By using Eq. (1), we calculated the
average maximal fidelity of the measured states pgy with the

theor

target generalized Werner states pgy (p,a,B,y). We found

F(pSht plheor) ~ 96%, revealing that our data are well fitted
by this four-parameter class of generalized Werner states.

III. THE PHENOMENOLOGICAL MODEL

In Ref. [27], a theoretical study of the analogies between
classical linear optics and quantum maps was given. Within
this theoretical framework it is possible to build a simple
phenomenological model capable of explaining all our ex-
perimental results. To this end let us consider the experimen-
tal setup represented in Fig. 1. The linear optical scattering
element 7, inserted across path A can be classically repre-
sented by some Mueller matrix M [2] which describes its
polarization-dependent interaction with a classical beam of
light. However, 7, can also be represented by a linear, com-
pletely positive, local quantum map &:p— E[p], which de-
scribes the interaction of the scattering element with a two-
photon light beam encoding a pair of polarization qubits.
These qubits are, in turn, represented by a 4 X 4 density ma-
trix p. Since 7, interacts with only one of the two photons,
the map & is said to be local and it can be written as £=&,
®Z, where &, is the single-qubit (or single-photon) quantum
map representing 7, and 7 is the single-qubit identity map.

It can be shown that the classical Mueller matrix M and
the single-qubit quantum map &£, are univocally related. Spe-
cifically, if with M we denote the complex-valued Mueller
matrix written in the standard basis, then the following de-
composition holds:

3
M=2\T,0T,, (2)
u=0

where {T,} is a set of four 2X2 Jones matrices [2], each
representing a nondepolarizing linear optical element in clas-
sical polarization optics, and {\ ,} are the four non-negative
eigenvalues of the “dynamical” matrix H associated to M.
Given Eq. (2), it is possible to show that the two-qubit quan-
tum map & can be written as
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FIG. 4. Numerical simulation for our phenomenological model.
(a) Isotropic and birefringent scattering; (b) dichroic scattering.

3
pe=Elplx 2\, T, ® IpT| @ 1, (3)
=0

where the proportionality symbol on the right-hand side of
Eq. (3) accounts for a possible renormalization to ensure
Tr(pg)=1. Such renormalization becomes necessary when 7
presents polarization-dependent losses (i.e., dichroism). We
anticipate that when such renormalization is necessary the
map is considered non-trace-preserving. We shall briefly dis-
cuss this issue in the conclusion.

With these ingredients, a phenomenological polarization-
scattering model can be built as follows. First we use the
polar decomposition [26] to write an arbitrary Mueller ma-
trix M=MyMzMp, where M,, Mp, and M, represent a
purely depolarizing element, a birefringent (or retarder) ele-
ment, and a dichroic (or diattenuator) element, respectively.
Specific analytical expressions for M, M, and M, can be
found in the literature [21]. Second, we use Eq. (2) to find
the quantum maps corresponding to M,, M, and M, and,
by using such maps, we calculate the scattered two-photon
state pg. In our experimental realizations we used isotropic
scatterers M ;g=M, with isotropic depolarization factor 0
=A<, birefringent scattering media Mg, described in
terms of the product of a purely birefringent medium My
and an isotropic depolarizer M, i.e., Mpg=MpM,, and,
finally, dichroic scattering media M pg= M pM,, which are
in turn described by a product of a purely dichroic medium
Mp and a purely depolarizing medium M. It should be
noted that these product decompositions are not unique.
Other decompositions with different orders are possible but
the elements of each matrix might change, since the matrices
My, Mp, and M, do not commute.

Filling in the above expressions with random numbers
selected from suitably chosen ranges, we simulated all scat-
tering processes occurring in our experiments. Figure 4
shows a numerical simulation of the scattered states in the
tangle vs linear entropy plane, obtained with the singlet two-
photon state as input state. Figure 4(a) corresponds to isotro-
pic and birefringent scatterers, and Fig. 4(b) to dichroic scat-
terers. The qualitative agreement between this model and the
experimental results shown in Figs. 2 and 3 is manifest.

IV. CONCLUSIONS

In summary, we have presented experimental results on
entanglement properties of scattered photon pairs for three
varieties of optical scattering systems. In this way we were
able to generate two distinct types of two-photon mixed
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states; namely, Werner-like and sub-Werner-like states.
Moreover, we have introduced a simple phenomenological
model based on the analogy between classical polarization
optics and quantum mechanics of qubits, which fully repro-
duces our experimental findings. In the case of sub-Werner
states, the phenomenological model represents a non-trace-
preserving quantum map. This description might be consid-
ered controversial since a non-trace-preserving local map can
in principle lead to violation of causality when it describes
the evolution of a composite system made of two spatially
separate subsystems [28]. However, we argue that our mea-
sured states do not violate the no-signaling condition as they
are postselected by the coincidence measurement, a proce-
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dure that involves classical communication between the two
detectors. Finally, we expect it to be possible to create states
above the Werner curve (in particular MEMSs) [18,19], by
postselective detection when acting on a single photon [28].
Work along this line is in progress in our group.
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