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Combined longitudinal and transverse noise enhancement in lasers
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Using a semiclassical approach we derive a general expression for the quantum-limited linewidth of a
single-mode laser. We include both nonuniform properties of the laser medium and localized losses at mirrors
and apertures. For such systems the transverse modes are known to be nonorthogonal, giving rise to an
enhancement of the laser noise. The transverse factor varies, in general, along the propagation direction. The
combination of transverse and longitudinal noise enhancement is far from trivial. In particular, we show that
for an aperture in the cavity, the transverse excess noise factor is the geometric mean of the factors pertaining
to the two regions in which the aperture divides the caVyiB1050-294{8)06112-5

PACS numbd(s): 42.60.Da, 42.50.Lc

I. INTRODUCTION [4—6]. It has been shown that even for stable laser resonators
large excess noise is possible when apertures give rise to
Spontaneous emission is the fundamental noise source large diffraction lossef7—9].
lasers. In the ideal case of small output coupling, negligible In a similar fashion, a noise-enhancement factor arises
internal losses, and uniform field intensity, the Schawlow-when the noise field from spontaneous emission acquires a
Townes(ST) limit holds, and the laser linewidth is given by varying amplitude during propagation through the laser cav-
ity during a round trip, due to the combined action of gain
ﬁwrtz) and losg10-12. In the absence of gain saturation, the cor-
2Pyt (1.1 responding enhancement factor can likewise be expressed in
terms of the overlap of nonorthogonal longitudinal modes
Here, P, is the laser output power ard, is the decay rate [13]. For a uniform medium, the longitudinal factor|[i$4]
of the laser cavity1]. In the presence of nonuniform loss or

Awsr=

gain, the propagation operator describing the field traversing 552
the laser cavity is nonunitary. This generally destroys the L= (\/R_l+ \/R—Z)(l RiR) (1.3
orthogonality of the laser modes. This nonorthogonality ba- VR1R2IN(R;Ry)

sically arises from loss-induced mode coupling. It can be

demonstrated2] that this leads to an enhancement ofwith R, and R, the intensity reflectivities of the two end
spontaneous-emission noise in the lasing mode. A first dismirrors. Theories describing the effect of axially inhomoge-
cussion of the effect was given by Peterm48hin the spe-  neous media on the laser linewidth have been developed by
cial case of gain-guided semiconductor lasers. The nonunkeyeral group$10,15,16. The excess noise factor has been
form gain profile is equivalent to an imaginary potential in stydied experimentally, both for longitudinfl7,15 and

the Schrdinger equation. It causes the transverse modeSyansverse nonorthogonalifg8—20.

Un(p), to obey a modified orthogonality condition  The combination of transverse and longitudinal contribu-
JdpUpUum= 6ny in terms of a scalar product without a com- tions to the enhancement of spontaneous-emission noise has
plex conjugate.[Throughout this paper, we denote @s also received some attention. When the field distribution is
=(X,y) the transverse coordinates of a light field propagatthe product of a transverse and a longitudinal distribution,
ing in thez direction] The excess noise factérarises when the noise enhancement is well described by the product
expanding the spontaneous-emission field in the set of modeg K, [10]. When the laser waveguide and the gain are uni-
which are nonorthogonal in the usual sense. When the lasingrm in the longitudinal direction, a generalized expression

mode isu,(p), this factor is[3] for the enhancement factor in terms of three-dimensional
5 overlap integrals of the field distribution has been justified
dou* [21,22. For the case that the gain and loss coefficients vary
pU(p)Un(p) e L :
_ in this direction, an expression for the enhancement factor

K

2 1.2 has been derived in terms of integrals involving the position-

=
f dpui(p) dependent material coefficier{ta3].

In the present paper we discuss the effect of longitudinal
The property of nonorthogonality of the transverse modes isind transverse inhomogeneities on the excess noise factor. In
not restricted to gain-guided semiconductor lasers. In genparticular, the effect of optical elements such as apertures is
eral, the sefu,(p)} will be nonorthogonal in the presence of considered. We allow for apertures inside the resonator,
nonuniform gain or losses in the transverse direction, thusvhich may divide the laser medium in two parts with a dif-
leading to an enhancement in the ndi&¢ Large transverse ferent transverse excess noise factor. We take advantage of
nonorthogonalities, for example, can arise from spillover athe close analogy between the propagation of light beams
the end mirrors of a laser, such as occurs in unstable cavitieand the evolution of a wave packet in quantum mechanics.
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LA w
oL L J,E_=—IH E_,—Esgr(w)&E_,. (2.5
0 L A _ ) _
HereH is an effective Hamilton operator, defined by
- 1, k w’e
R, R, R, HEH——ﬂapEH"‘E 1_W E_ .. (2.6)
R 0 N =2 ) In Eqg. (2.5 we used the notatiosy=e+3wd,e for the
group refractive index at the field frequency. Notice that the
group velocity is given bngrZC\/g/sgr. For simplicity we
FIG. 1. Cavity and equivalent lens guide. will assumee 4 and the group velocity to be real. Thea)
value of w andk can be selected such thelt/ w is equal to
Il. PARAXIAL WAVE EQUATION some average of the real refractive index of the medium. In

the steady state, whergE_, =0, the wave equatiofR.5) is

We describe the laser cavity as a resonator filled with ggentical in form to the time-dependent Sctirger equa-
medium with a dielectric constamt(w,r) that depends on tion. The propagation coordinateplays the role of time, and
both frequency and position. It is convenient to describe thehe transverse coordinate mimics position. A large dielectric
oscillating field in a standing-wave resonator as a travelingonstant serves as a potential well. Since we alidw) to
wave in the corresponding unfolded periodic lens guidepe complex, the effective potential is also complex in gen-
when each of the end mirrors with finite reflectivigyis  eral. A positive imaginary part represents losses, and gain
replaced by a lens with transmittivitR [24,2,29. In this  corresponds to a negative imaginary parts¢f»). Index or
way, a standing-wave cavity with lengthis replaced by a gain guiding can be expressed by thedependence of.
lens guide with period P as sketched in Fig. 1. Here we The time derivative in Eq(2.5) ensures that a localized wave
have assumed that the cavity contains no reflecting opticglacket propagates at the group velocity.
elements in between the end mirrors. The case of a traveling In the same way, a beam propagating in the negative
wave in a ring laser can be described by the same modelirection can be described by substituting
system, where R is the round-trip distance.

Starting from Maxwell’s equation E(r,t)=Re eE_(r,t)e ket et (2.7)

ﬁx(ﬁxé)=—u0535, (2.1 into Maxwell's equation. This leads to the paraxial wave
equation

we make the paraxial approximation by substituting for a
light beam propagating in the positizedirection . ®
d,E_=iH E<_+ngr(w)(9tE<_. (2.8
E(r,t)=ReeE_(r,t)e'kz-«t), (2.2 ¢’k

o . - . The effect of optical elements, such as mirrors, lenses,
Polarization effects are ignored by assuménig be uniform.  ang apertures, can be described by a multiplicative factor

The amplitudeE _, is_ supposed to vary slowly as a function , (5). Whenz, is a position just to the right argl_ is to the
of z andt, so that its second derivative can be neglectedjeft of the element’s position, we can write

Hence we may write

= => > > 2 EH(Z+1P):X(p)EH(Z—np),
VX (VXE)=Reee'** “V(k’E_ - 2ikd,E_ ~J5E_,). 2.9

(2.3 E_(z-,p)=x(p)E_(z4,p).

When the dielectric constant varies little over the band- £qr 4 nonabsorbing lens, or a perfectly reflecting mirror, the
width of the light field, thenth time derivative of the dis- factor y has absolute value 1, so that it only applies a phase

placement can be expressed as factor to the beam. A hard-edged aperture is modeled simply
R .- by setting y=1 for a transverse coordinate within the
diD=goRe e[ (—iw)"e(w)E_(1) opening andy=0 outside it.

For convenience we represent the transverse field distri-
bution E_,(p,z) or E_(p,z) as a state vector, which we
(2.4  denote asE_,(2)) or |[E._(2)), just as in quantum mechan-
ics. The fields may be viewed as the wave functions in co-
This generalizes the result derived by Milonni in the case ordinate representation, so thgt,(z,p)=(p|E_(z)) and
=1 [26]. Substituting Eqs(2.3) and(2.4) for n=2 into Eq.  E. (z,p) =(p|E._(2)). Then the propagation of a light beam
(2.1) gives the paraxial wave equation for a light beam trav-can be expressed in terms of propagation operg®tg). In
eling to the right down the effective lens guide. We find  the steady state, the wave equati¢a$) and(2.8) read

+(—i )n_1(910(&)”8(w))(?tE*)(t)]ei(kZ_wt)_
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d . In coordinate representation, these operators give the propa-
d_z| E_(2)=-iH(2)|E_(2)), gation kernels for propagation to the left or to the right, with
2.10 the relation
d N R
5/ E-@)=iH@IE_(2), K_(22,p2;21,p1) =(p2|O_(22,21)| p1)

= 0._(z,z
where thez dependence of the Hamiltonian arises from the (Pe]O(z1.22) p2)
variation ofe in the propagation direction. The transforma- =K_(21,p1,2Z2,p2)- (2.17

tion of the state vectors across an optical element can like- . ) )
wise be expressed as a linear operator. Obviously, in thElere we assumed that the optical elements and the dielectric

presence of absorption this operator is not unitary, and whefonstant are independent of the propagation direction. This
it blocks the light completely outside the opening, the operafelation, for example, would not be satisfied in the presence
tor is not invertible: knowledge dE_(z.)) is not sufficient ~ of Doppler broadening in a lens guide with a flowing gain
to reconstructE_, (z_)). medium. A

When the transverse field patteEn.(z;,p), or equiva- Relation (2.16 between the propagation operatdDs,
lently the state vectdiE _(z;)), is known for a given value andO. determines the biorthogonality relation between the
of z;, the field pattern for all values,>z, follows from the  eigenmodes propagating in the two directions, as will be-
evolution equatior{2.10, combined with the transformation come clear in the subsequent section. To conclude the
operators across all optical elements betweeandz,. The  present section, we point out that the overlap of the trans-
relation can be expressed in terms of a linear propagatiogerse field patterns corresponding to the light be&msand
operatorO_(z,,2;), so that E_ is independent of the longitudinal coordinateBy using

the wave equation&.10, one readily checks that

[E_(22))=0_.(2,21)[E_(21)). (2.19 4
Likewise, propagation to the left can be written as d_z<EH(Z)|EH(Z)>:O’ (2.18
|E_(21))=0_(21,2,)|E_(22)). (2.12  which implies that the integrafdpE. (z,p)E_(z,p) is in-

dependent ofz. This relation is valid under quite general
Then the operator®_, andO__ obey the propagation opera- conditions for counterpropagating beams through media and
tions optical elements with arbitrary transverse inhomogeneity.
When the lens-guide model is used to represent a
. . . standing-wave cavity with length, a light wave at position
750..(22,21)= —iH(Z22)0_(2,21), z traveling to the right is physically identical to a wave at

e 2.13 position A —z traveling to the left. This implies that
d . R R ' A R
§7.0-(21,22)=1H(2)0_(21,2,) O .(22,2)=0_(2L-2,2L~2;), z,>27;. (2.19
1

In the case of a ring laser, beams propagating in opposite
in between optical elements, and their transformation over agjrections are physically different.
optical element is determined by the opera,iorln the in-
finitesimal transformation across an optical element, this . TRANSVERSE EIGENMODES
gives Since the lens guide models a periodic structure, two
A "n_ / ointsz andz+ 2L that are separated by a period are physi-
(plO_(z+,2-)]p")=82p—p")Xx(p) Eally equivalent. It is therefgre natur)alll tg considerplight
=<p|©H(Z, z)|p). (214  waves that are self-reproducing after propagation over one
period. These are the transverse eigenmodes of the laser cav-
The boundary conditions aréﬂ(zl,zl)=f=(5%(zz,zg), ity [2]. When we arbitrarily select a ref_erence plar_1e at the
with 1 the unit operator. propagation coordinate= z,, the round-trip propagation op-

. . A erators over one period starting from this reference plane are
In the presence of absorption or gain, the Hamiltortan

is not Hermitian, and eac® is not unitary. On the other 0. 0=0_(z+2L,z), O._=0._(z9,29+2L).
hand, since the non-Hermiticity of the Hamiltonian results (3.0
only from the complex effective potential, it is easy to verify

that Fi=FT, where the transpose operaféf is defined by From Eqg.(2.16 it follows that these two operators are each

other's transpose, so thaD._ ,=0" ;. The transverse
(plAT(2)|p"Y=(p|A(2)|p")*=(p'|A(2)|p). (2.15  e€igenmodes of the system propagating to the right are the
right-hand eigenmodes (fﬂﬁo, defined by the eigenvalue
For the propagation operators, this gives the relation relation

0. (21,2,)=[0_.(z5,29)]". (2.16 O, glup)y=vnlup), (3.2
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and the corresponding transverse eigenmode propagating to A z dependence can be included in the definition of the
the left obeys the analogous relation eigenmodes in a natural way, by allowing propagation from
A the reference plang,. This gives
OH,O|fn>:')’n|fn>- (3.3

It will become clear in a moment that the set of eigenvalues
v, is the same for both operators. Since these operators are

not unitary, one cannot expect that the eigenvectors are oBtrictly speaking, this defingsin(z)) for z=z, and|f,(z))
thogonal, or that the eigenvalues are unitary. In generakgy z<z,. However, provided that the eigenvalyg is non-
these operators have left-hand eigenvectors with the samgro, the extension to overlapping domainsza trivial,
eigenvalues, obeying the equalities e.g., by settindf,(z+2L))=|f.(2))/y,. Then each mode
R R |un(2)) and|f,(2)) corresponds to a self-reproducing field
(nlO_ 0=(vnlYn, (GnlO_o=(Gnl7n- (34  pattern propagating down the lens guide in the rightward or
) ) ) ) leftward direction. From Eq(2.18 it follows that the bior-
A left eigenvector is orthogonal to a right eigenvector at &hogonality is conserved during propagation, so that
different eigenvalue, and normalization can be chosen so th‘?tdpfn(z,p)un/(z,p) =5, for all values ofz. When the lens
thg left and right eigenmodes obey the biorthonormality coNyuide represents a standing-wave cavity, the equivalence of
dition the two propagation directions allows us to choose the modes
such that

lun(2))=0_(z.20)|un), [fa(2))=0_(z,29)|fn).
(3.1

<Un|un’>: Onn s <gn|fn’>: Onn' - (3.5

N A un(2))=|f(2L—2)). 31
Moreover, since, o= Ol,o, the complex conjugate of the [un(2)) =17l 2 (319

left eigenvector|v,) of O ., is the right eigenvector of For later convenience we introduce a measure of nonor-
O_, and vice versa, so that one can assume that thogonality of the transverse modes, in the form

fa(p)=vn(p),  Gn(p)=Un(p). (3.6 Qu(2)= (Un(2)|un(2)XT(2)|T4(2))
" [(FA (D) un(2)?

(3.12
Apart from any degeneracies, the sets of modes can reason-
ably be assumed to be complete, so that one can formall

write ¥ fact, with the normalization we have chosen in E85)

the denominator is unity for af, but for clarity we use here
a notation that is independent of normalization. In view of
1= Ju)wal =2 [fa)anl, (3.7  Schwarz’s inequality, this facta@, cannot be smaller than
1. In the case considered by Siegnjah Q,, coincides with
the transverse excess noise factor. As we shall discuss in this
O 022 un) Yn(vnl, paper, this is no longer true for laser media that are nonuni-
' form in the transverse direction, or in the presence of aper-
(3.8 tures in the cavity. Moreover, in that case, the fa€@grcan
Oh,o:E |fn>7n<9n|22 o) yalur]. \éz[;yarivcl)tr?vtviefilr?ggt]g;?mal positiorz. From the propagation

These relations are the formal expressions of Siegman’s w2

statement2] that the adjoint eigenmodes, which we call —<un(z)|un(z)>=——j dp|un(z,p)|?Im &,

|f.), are eigenmodes of the propagation operator in the re- dz c’k

versed direction. The biorthogonality relatiof®5) can also (3.13

be expressed as d 2
SN2 =2 [ doltatzp)Pm .
c°k

f dpfn(P)un’(P):<f;|un’>:5nn'- (3.9
This demonstrates that the quanti®}, as defined in Eq.

The eigenmodes introduced by Siegnidhare defined as  (3.12 does not vary witz as long as Ine is independent of
the eigenvectors of the propagation operator for the leng. On the other hand, when Imis transversely inhomoge-
guide without the amplifying medium, so that the nonunitar-neous,Q, generally depends on By a similar argument,
ity is due to losses only, and the eigenvalygshave norm  one notices that the factor &, will be different on opposite
smaller than 1. As a slight generalization, we include lineasides of an aperture, when the fractional power loss of the
gain in the definition of the propagation operators. When thénodeu,, across the aperture is different from the fractional
gain depends on the transverse coordingté will modify ~ loss of the counterpropagating mofie=v;, .
the transverse field distribution in an essential way. During The significance of the factd®, for noise enhancement
loss action the gain will adapt itself so as to compensate foean be understood in a simple way. A noise signal is repre-
the losses. This gain clamping will leave the transverse fieléented by a stochastic fie|gh), traveling to the right. Ex-
distribution unchanged only when this additional nonlinearpanding the stochastic signal in the eigenmpgdg gives the
gain is transversely uniform. expression
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D)= |un)(vnlp)- (3.14 U(N)=(pluo(2))e" 43

The noise contribution to the laser light then arises from the
Assuming that the noise is transversely uniform, the enprojection of the spontaneous-emission polarizatidl)
semble average of the projection [g} is proportional to the  onto this mode. The corresponding 3D adjoint mode can be
unit operator so that constructed from the leftward-propagating mode

|p){p| =B, (3.19 F(r)=(plfo(r))e 2. (4.9

with B a constant measuring the strength of the noise sourc@&ven though we attach no index to these modes, it will be
This is equivalent to the identitp(p)p*(p')=Bdé(p—p’).  obvious that they are a single member of a generally com-
When a laser is operating in a single mdade), the other plete set of 3D modes, each one composed of a transverse
modes are suppressed, and only the contribytigiv,/p)  eigenmode and a wave numblkr The setU(r) is bior-
survives in the expansiai.14). This shows that the noise i {honormal to the set of modeé(F) that are defined as the

the mode]u,) alone has the strength complex conjugate of the leftward-propagating mdde).
Specifically, from Eqs(3.5 and(3.6) it follows that

<p|vn><un|un><vn|p>:BQn- (3.1

This noise strength is relevant in the case of a laser operating f drE(rU(r)=2L, 4.5
in the mode|u,,) alone. The noise contribution in a single

normalized modef¢)) out of an orthonormal basis would |\ integration overextends over one period 2

simply be ) . : >
When the laser is operating in the single madig), we
(o|p){(p|p)=B. (3.17 can express the field as
This shows that the facta®, gives the noise enhancement E_(r,ve*=au(r), (4.6)

due to the mode nonorthogonality. _ _ _ _
The special case of a system that is homogeneous in théhere the mode amplitudg(t) is a stochastic quantity as a

propagation direction is described by a Hamiltoriathat is result of spontaneous emission. Here we use the fact that

independent of. This situation describes pure index or gain contributions from the noise to all modes but the lasing one
. . A A , are suppressed during propagation. The evolution equation
guiding. Then the eigenmodes ©f , ; andO_ j are just the

_ N SRS . for Eq. (4.6 is thus given by the projection of E4.2) on
eigenmodes ofH, which implies that|u)=[fn)=[v7) (). Using the propagation equatid@.10 for the mode

=1gy)- This is the case originally considered by Petermann, (7)) gives for the time derivative of the mode amplitude
[3]. The nonorthogonality facta®,, then coincides with Pe-

termann’s excess noise factdr.2). N .

- fdrF(r)Pﬁ(r)e'kz

IV. SPONTANEOUS-EMISSION NOISE dta(t)=2—80 R R R =p_(1). (4.7
JdrF(r)sgr(w,r)U(r)

Noise induced by spontaneous emission can be modeled

as a stochastl_c dlpqle polanzatlcﬁj(.r,t), which must be The stochastic terr®_, in the equation fop_, (t) models the

added to the dielectric displacemdntn Eq. (2.1). The con-  fiyctuations in the electric field due to spontaneous emission

tribution of P propagating to the right with the right polar- events. Since the spontaneous-emission events that are mod-

ization e can be expressed by substituting eled byP_, can be assumed to be uncorrelated in time and
space, we may write

P(r,t)—Reee'®z=Vp_(rt), (4.1 ~ . .
(P*.(r" t")P_(r,t))y=B&(r' —r)s(t' —t),
with P_(rt) slowly varying in space and time. Substitution A (4.8
in Maxwell's equation(2.1) leads to a modified version of (P_(r,t))=0,

Eqg. (2.5 in the form
just as for a Langevin force. The value of the functBris
iw2ug 5 given by[2]
2k 7

. ®
J,E_=—IH E_,—Cz—ksgr(a))ﬁtE_,'f'

(4.2) B(r)= 8fieqc

b(r), (4.9

w

We consider the situation of a laser operating in a single .
transverse modgio(2)). The gain will have adapted itself to Where the position-dependent factor
the losses in the system, such that the eigenvajuleas the N
absolute value 1, and the wavelength will be such that b(r)= Z_gn (4.10
|un(2))exp(kz) is exactly periodical. This defines a 3D mode No—N;y
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contains the intensity gain coefficiegt the refractive index ing over the fluctuations, the right-hand side of E4.17)
n, and the occupation numbeg andN, of the lower and contains the time derivative of E¢4.15. We find

upper state of the lasing transition. This expression also fol-
lows from the fluctuation-dissipation theorefi28]. The
Langevin properties oP _, give the identity

(p*(t)p(t"))=Ads(t—t"), (4.1)  where

dW="Pyain— f dr(v-S), (4.19

where oo )
Pgain= — T<a*a>J drUu*U Ime(w) (4.20

) deF*(F)B(F)F(F)

A:<i) 5. (4.12 is the net internal power gain. A net loss would make this
2&0 U drE(F) el w,N)U(F) term negative. Equatiofd.19 gives the energy balance of
o the field in the laser cavity.
. Obviously, d;W),,as expressed by E(4.16) can also be
From Eq.(4.7) we then find written asf R, with R the spontaneous-emission rate into
di(a*a)=A. 4.13 the lasing mode. A similar result fd® has been obtained in
a different fashion by Champagne and McCalfftly. (20) of
The spontaneous-emission induced laser linewidth can bef.[23]] for the special case of a semiconductor laser with
expressed afl] inhomogeneous material coefficients. Our derivation allows
for the presence of optical elements such as lenses and aper-
1 tures anywhere in the cavity. Moreover, we indicated explic-
Aw= 53 (AW)sp. (414 ity how the mode and its adjoint should be determined in
that case, and what approximations have been made.

Here we neglect the effect of the instantaneous change in the

field intensity due to spontaneous emission on the phase, V. UNIFORM MATERIAL PROPERTIES

which means that we assume Henry'$actor to be equal to )

0 [29]. For a field characterized by E.6), the total field A. Fully homogeneous material

energy in the mode is given by the expresdiaf] First, we specialize the general resu#.16) for the

spontaneous-emission power to the case in which the prop-
erties of the medium are homogeneous in the field region.
Localized losses can occur at the end mirrors and at apertures
_ . ) that may be positioned anywhere inside the cavity. Then the
wh'ere the integration extends over one full period of the lengonstant values df ande, can be taken out of the integrals
guide. The rate of change of the eneidyby spontaneous in Eq.(4.16). After substituting Eq(4.10 and using the fact

emission is therefore determined By{a*a), which is given thatcn/ey, equals the group velocity,,, we find
in Eq. (4.13. After substitution of the expressiaa.12), this

€0 * ET 727 g g
W= 7<a a)f dru*(nuU(r)eglw,r),  (4.19

gives 2
(dtW)Sp: ﬁwgv grmK, (51)
| aibler? [ areqluf o |
(A W) = Froc . _ 4.16 where the excess noise factris expressed in terms of the
- z-dependent transverse modes as
f dregFU
2L 2L
This also determines the linewidtd.14). jo dz(f(z)|f(z)>fo dz(u(2)|u(2))
Expression(4.15 for thE energy also follows by consid- K= ST 5 . (5.2
E{;ng the Poynting vecta®=EXH, which obeys the iden- fo dz{(f*(z)|u(z))
~V.S=E.9D+H-4B. (4.17  The termgu in expressior(5.1) represents the relative gain

per unit time, which has to be equal to the relative power loss
Expressions for the time derivatives can be obtained fronin the steady state. This gives

Eq. (2.4) for n=1 and a corresponding expression B
[30]. We consider a nonmagnetic material, so that the mag- gugr="Po/W, (5.3

netic permeability isuy. Furthermore, we assume that ) ) .
with P, the total power loss. SincBy/W is commonly de-

- . s fined as the cavity decay ratE,, the intuitive result
f drege(w)E =f dr puoH (4.18 (dW)g=hwly is recovered in the special case whéte
=1 and the inversion is complete. In this case @&ql4) for
for the mode field. This identity is easily justified for modes the linewidth reproduces the Schawlow-Townes expression
with negligible losses. After volume integration and averag-(1.1). We now proceed to evaluakein a few specific cases.
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B. Apertures at mirrors 1

Next, we consider the situation in which the apertures are ‘ ‘
located exclusively at the output mirrors. The effective inten-
sity reflectivities of the apertured mirrors are denotedRas
(at z=L) andR; (at z=2L, which is equivalent t@=0).

When the apertures block part of the lasing mode, these re-

flectivities are smaller than those of the mirror surfaces, and

R; andR, depend on the mode. The gain compensates for

the losses at the mirrors and for possiblg .homogeneous inter- z= 0 7z -7 L
nal losses, expressed by the loss coefficienso that 0 0

eZLaRlezly (5.4) FIG. 2 Equivalent lens guide corresponding to standing-wave
cavity with one aperture.

with a=g— « the difference in gain and loss. Hence, the

cavity loss rate is divided in two regions with different values of the nonor-

thogonality factorQ. These are related by

1%
To=0vg= Kvg— z—irIanRz. (5.5 0 _A1Q 59
=7 NI .
Az

In order to evaluate the excess noise fa¢%®), we express ) ) ) )

the zdepending integrands in terms of their values at theVhere region | containg=0 and region Il containg=L.
reference plang=07, just to the right of mirror 2. We The behavior of the longitudinal field |ntenS|t|e._$(z)|u(z)>
substitute and(f(z)|f(2)) as a function ot is fully determined by the

intensity factorsA; andA, across the apertures aRj and
(u(2)|u(2)y=e**u(0™)|u(0™)), R, at the mirrors, combined with the exponential behavior

(5.6) ~exp(*az) in between. Using Eq(5.9), the excess noise

(f(2)|f(2))=e"*%f(07)|f(0T)) for O<z<L can be expressed as a product of the faQan one of the

regions times an integral expression overzidependence of

and the longitudinal field intensities. In this wai can be fac-
(U(2)|u(z)) =Ry (u(0*)|u(0™)), tagizne:l Lgr?nt.ransverse contributiégnand an effective longi

1 (5.7 As an example, we consider the case that appreciable

(f(2)|f(2))=e"“*—(f(0")|f(0")) for L<z<2L. losses occur only at the apertures, so tRatR,=1 and
Ry exp(—2al)=AA,. In this case, Eq5.2) for the factorK can

Moreover,(f*|u) is independent of, as argued in Sec. Il be written as

After these substitutions, the integration owecan be di- K=0%lol-%/tk 51
rectly performed, with the result Q I L (5.10

K=K-K, . 5.9 Wih
HereK is given by Eq.(1.3 andKr is equal to the nonor- K. = 1 [AZOIL 1 A
thogonality measur® as defined in Eq(3.12), at the posi- Sn At VA, A,
tionz=0". In fact, in the present casgis independent of. )
Equation(5.8) demonstrates that the excess noise factor fac- 17| 1 AL
torizes into a transverse and a longitudinal part. The trans- +TA; m_ A_2 (5.13

verse part is sensitive to the phase and amplitude pattern of

the mode and the adjoint mode. The longitudinal faétpis  |n Eq. (5.10), the termK, can be viewed as an effective
not affected by the phase, and it is determined exclusively bypngitudinal excess noise factor, in whigq andA, appear
the |nten5|t_|es Qf the modp and the adjoint mode as a functiop, 5 symmetric way. The two facto, andQ,, contribute to
of the longitudinal coordinate. the effective transverse noise fac(@f‘)/L ﬁ_ZOIL, in accor-
dance with the size of the two regions.
It is natural to compar&, as given in Eq(5.11) to the
When an aperture is placed somewhere in the cavity, theorresponding longitudinal factdK, non, for a lens guide
field in the lens-guide picture passes the aperture twice duwith two homogeneous absorbers locatedzgtand 2.
ing one period, once a@,=0 and once az=2L—z,. The  —Zy, with intensity transmittivitiesA; andA,. In both lo-
situation is sketched in Fig. 2. The loss over one apertureations, the transmittivity is the same for the mode and its
depends on the transverse intensity profile of the mode. Fadjoint. In Fig. 3 the ratid /K nomis plotted as a function
the right-traveling eigenmode) we call the effective inten- of zy/L and In@;/A,). For realistic values, this ratio deviates
sity transmission factorA; atz, andA, at 2L —z,. For the  only slightly from 1. Notice that the longitudinal field inten-
adjoint mode|f) (which travels to the leftthese factors are sity (u(z)|u(z)) of the mode is the same in these two cases,
A, at z, andA; at 2L—z,. As a result, the period[2is  whereas the factoréf(z)|f(z)) for the adjoint modes are

C. Apertures in cavity
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K1/K1 hom \‘\\\\t‘ aperture is located at a mirror. Thé&can be written a¥
10 P "Qg}}}}%&\g}&&% 3N =Q,K_, whereK, coincides_with Eq(1.3), with R;=1 and
101} A R, A LS R,=A;A,. A second special case occurs wheg=L/2.
TSN IR et ,,,,”1111,,I,"O‘Q‘\‘\\‘\\\\\\\\ L . .
R N R Then Eq.(5.1)) is identical to Eq.(1.3) for K, with R; re-
1 “““‘““t“‘{{& S ff";’;”” ,;:,':,0,0s“\\
44 L2

%
% {XXSRE

RN sesostes; LERAEKN

\::‘\\\‘\\\\\“\\\‘\:‘s’:::,::,z,,l’ THTHREIL

placed byA; . Forzy=L/2, the transverse excess noise factor
RAREEIRE
\‘:sw‘":o,':/l,,llZz:t:::g:‘\“

s Kt equalsyQiQ. . . .

orsitsss This situation demonstrates that in a standing-wave cavity
with a single aperture, the two regions between the mirrors
separated by the aperture generally have different values of
the nonorthogonality measur@, and thereby of the trans-
verse excess noise factor. On the other hand, in a ring laser,
where the period R spans one cycle of the ring, at least two

FIG. 3. RatioK, /K| n.m between longitudinal noise factors for apertures are needed to create two separate regions with dif-

cavity with aperture and equivalent lens guide with homogeneous$erentQ values.
absorbers, as a function of position and transmittivity ratjo;

=zy/L, &=In(A;/Ay). The total loss factor is taken a&;A, D. Transversely homogeneous material properties

=0.09.

-2

When the properties of the laser medium are inhomoge-
neous, it is no longer possible to extract an unambigous ex-
different. This shows that for two different situations with cess noise factoK from Eq. (4.16 as we did in Eq(5.1).
the same longitudinal mode structure, the adjoint modes ardlowever, when the material properties vary only with the
not necessarily the same. longitudinal coordinate, a factorization of the noise term in

The longitudinal noise factof5.11) reduces to the stan- a transverse and a longitudinal contribution is still possible.
dard expressiofil.3) in two special cases. Whemy=L, the  Equation(4.16 then gives

fde(Z)<f(Z)|f(Z)>fdZSgr(Z)<U(Z)|U(Z)>

(diW)gp=rrwC > . (5.12
U dze g (2)(f*(2)|u(2))
|
The z-dependent intensity of the mode can be expressed in 1
terms of a periodic functiois, defined by (f(2)|f(2))= @(f(0+)|f(0+)> for zel,
(U(2)[u(2))=G(z){u(0")|u(0™)). (5.13 A1
:A_G_<f(0+)|f(0+)> for zell.
When the apertures are located only at the mirrors, the cor- 2 G(2)
responding relation for the adjoint mode reads (5.16
1 When the gain medium is located exclusively in region I, the
— + + ’
{(t@f(2)= G( )<f(O IF0™)) (5.14 first integral in the numerator of E¢5.12) only extends over

o o this part of the period R. In this case, the resu{.15 still
and the quantityQ is independent of the longitudinal coor- holds, withQ replaced byQ, . The transverse excess noise is
dinatez. Then Eq.(5.12 gives then determined by the value of the quani@yin the gain

region.

szb(z)/G(z)JdZSgr(z)G(z)
> . VI. CONCLUSION
[ dzegio

(dtW)sp: fiwcQ

We derived a general expression for the linewidth of a

(5.15 single-mode laser induced by spontaneous emission. We al-

low for localized losses both at mirrors and at apertures, and
In this expression the nonorthogonality factrstill plays  for nonuniform properties of the laser medium. Spontaneous
the role of a transverse excess noise factor. emission is modeled as a classical fluctuating dipole polar-

A single aperture in the cavity at the positiap divides  ization. The key result is given by E¢4.16), which repre-

the period into two regions with possibly different values of sents the spontaneous-emission power into the lasing mode.
Q, andQ,, just as in the case of a fully homogeneous me-This determines the linewidtt#.14). The three-dimensional
dium. Moreover, when the functio&(z) is still defined by adjoint modeF is explicitly specified for any given laser
Eq. (5.13, one easily checks that modeU.
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A result with a structure similar to Eq4.16 has been when in a standing-wave laser, apertures are positioned at
obtained in Ref[23] for semiconductor lasers with axially one or both mirrors. However, when an aperture divides the
varying material properties. Our treatment allows for aper-cavity into two regions, the value of the transverse enhance-
tures either at the mirrors or inside the cavity, which can givement factorQ is usually different in these regions. The total
rise to unstable cavities, and strong noise enhancement. iibise enhancement can then be written as the product of a
has been shown before that for homogeneous medium propengitudinal factor and an effective transverse factor. When
erties the nonorthogonality of the transverse modes gives righe laser medium is uniform, this separation is given in Eqg.
to enhancement of laser noi$8,2]. This enhancement is (5.10. When the aperture is located in the middle of the
given by the quantity3.12), which is a measure of the non- cavity, the transverse excess noise factor is just the geometric
orthogonality of the transverse modes. For transversely inhanean of the factor§ pertaining to the two regions. When
mogeneous material properties, and in the presence of apehe gain occurs in one region only, the same factorized ex-
tures, this quantityQ can depend on the longitudinal pression(5.15 remains valid, with the transverse factQr
coordinatez, which makes the combination of transverse andtaken in the gain region.
longitudinal noise enhancement a delicate problem.

When the material properties are uniform in the transverse
direction, the laser noise factorizes into a transverse enhance-
ment factor, given byQ, and a longitudinal factor, which This work is part of the research program of the Stichting
involves integrals over the-dependent beam intensity only. voor Fundamenteel Onderzoek der MatéRF©M), which is
This factorization, expressed in E€5.15, remains true supported by the NWO.
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