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Abstract The present paper is a continuation of the authors work “EURANDOM Report
2007-048”. The object of interest is a two-dimensional model of a directed copolymer, con-
sisting of a random concatenation of hydrophobic and hydrophilic monomers, immersed
in an emulsion, consisting of large blocks of oil and water arranged in a percolation-type
fashion. The copolymer interacts with the emulsion through an interaction Hamiltonian that
favors matches and disfavors mismatches between the monomers and the solvents, in such
a way that the interaction with the oil is stronger than with the water.

The model has two regimes, supercritical and subcritical, depending on whether the oil
blocks percolate or not. In our work “EURANDOM Report 2007-048” we focussed on
the supercritical regime and obtained a complete description of the phase diagram, which
consists of two phases separated by a single critical curve. In the present paper we focus on
the subcritical regime and show that the phase diagram consists of four phases separated by
three critical curves meeting in two tricritical points.

Keywords Random copolymer · Random emulsion · Localization · Delocalization · Phase
transition · Percolation · Large deviations

1 Introduction and Main Results

1.1 Background

In the present paper we consider a two-dimensional model of a random copolymer in a
random emulsion (see Fig. 1) that was introduced by den Hollander and Whittington [4].
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Fig. 1 An undirected copolymer
in an emulsion

The copolymer is a concatenation of hydrophobic and hydrophilic monomers, arranged
randomly with density 1

2 each. The emulsion is a collection of droplets of oil and water,
arranged randomly with density p, respectively, 1 −p, where p ∈ (0,1). The configurations
of the copolymer are directed self-avoiding paths on the square lattice. The emulsion acts as
a percolation-type medium, consisting of large square blocks of oil and water, with which
the copolymer interacts. Without loss of generality we will assume that the interaction with
the oil is stronger than with the water.

In the literature most work is dedicated to a model where the solvents are separated
by a single flat infinite interface, for which the behavior of the copolymer is the result of an
energy-entropy competition. Indeed, the copolymer prefers to match monomers and solvents
as much as possible, thereby lowering its energy, but in order to do so it must stay close to
the interface, thereby lowering its entropy. For an overview, we refer the reader to the theses
by Caravenna [1] and Pétrélis [7], and to the monograph by Giacomin [2].

With a random interface as considered here, the energy-entropy competition remains
relevant on the microscopic scale of single droplets. However, it is supplemented with the
copolymer having to choose a macroscopic strategy for the frequency at which it visits the
oil and the water droplets. For this reason, a percolation phenomenon arises, depending
on whether the oil droplets percolate or not. Consequently, we must distinguish between a
supercritical regime p ≥ pc and a subcritical regime p < pc , with pc the critical probability
for directed bond percolation on the square lattice.

As was proven in den Hollander and Whittington [4], in the supercritical regime the
copolymer undergoes a phase transition between full delocalization into the infinite cluster
of oil and partial localization near the boundary of this cluster. In [6] it was shown that the
critical curve separating the two phases is strictly monotone in the interaction parameters,
the phase transition is of second order, and the free energy is infinitely differentiable off the
critical curve.

The present paper is dedicated to the subcritical regime, which turns out to be consider-
ably more complicated. Since the oil droplets do not percolate, even in the delocalized phase
the copolymer puts a positive fraction of its monomers in the water. Therefore, some parts
of the copolymer will lie in the water and will not localize near the oil-water-interfaces at
the same parameter values as the other parts that lie in the oil.

We show that there are four different phases (see Fig. 2):
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Fig. 2 Typical configurations of
the copolymer in each of the four
phases

(1) If the interaction between the two monomers and the two solvents is weak, then the
copolymer is fully delocalized into the oil and into the water. This means that the copoly-
mer crosses large clusters of oil and large clusters of water, without trying to follow the
oil-water interface. This phase is denoted by D1 and was investigated in detail in [4].

(2) If the interaction strength between the hydrophobic monomers and the two solvents is
increased, then it becomes energetically favorable for the copolymer, when it wanders
around in the water, to occasionally hit small droplets of oil. This phase, which was not
noticed in [4] and which is unexpected, is denoted by D2.

(3) If, subsequently, the interaction strength between the hydrophilic monomers and the two
solvents is increased, then it becomes energetically favorable for the copolymer, before
moving into water clusters, to follow the oil-water-interface for awhile. This phase is
denoted by L1.

(4) If, finally, the interaction between the two monomers and the two solvents is strong,
then the copolymer becomes partially localized and tries to move along the oil-water
interface as much as possible. This phase is denoted by L2.

In the remainder of this section we describe the model (Sect. 1.2), recall several key facts
from [4] (Sect. 1.3), define and characterize the four phases (Sect. 1.4), and prove our main
results about the shape of the critical curves and the order of the phase transitions (Sect. 1.5).

1.2 The Model

The randomness of the copolymer is encoded by ω = (ωi)i∈N, an i.i.d. sequence of Bernoulli
trials taking values A and B with probability 1

2 each. The i-th monomer in the copolymer is
hydrophobic when ωi = A and hydrophilic when ωi = B . Partition R

2 into square blocks of
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Fig. 3 A directed self-avoiding
path crossing blocks of oil and
water diagonally. The
light-shaded blocks are oil, the
dark-shaded blocks are water.
Each block is Ln lattice spacings
wide in both directions. The path
carries hydrophobic and
hydrophilic monomers on the
lattice scale, which are not
indicated

size Ln ∈ N, i.e.,

R
2 =

⋃

x∈Z2

�Ln(x), �Ln(x) = xLn + (0,Ln]2. (1.1)

The randomness of the emulsion is encoded by � = (�x)x∈Z2 , an i.i.d. field of Bernoulli
trials taking values A or B with probability p, respectively, 1 − p, where p ∈ (0,1). The
block �Ln(x) in the emulsion is filled with oil when �x = A and filled with water when
�x = B .

Let Wn be the set of n-step directed self-avoiding paths starting at the origin and being
allowed to move upwards, downwards and to the right. The possible configurations of the
copolymer are given by a subset of Wn:

• Wn,Ln = the subset of Wn consisting of those paths that enter blocks at a corner, exit
blocks at one of the two corners diagonally opposite the one where it entered, and in
between stay confined to the two blocks that are seen upon entering (see Fig. 3).

The corner restriction imposed through the set Wn,Ln is unphysical. However, without this
restriction the model would be very hard to analyze, and would have a degree of difficulty
comparable to that of the directed polymer in random environment, for which no detailed
phase diagram has yet been derived.

Pick α,β ∈ R. For ω, � and n fixed, the Hamiltonian H
ω,�
n,Ln

(π) associated with π ∈
Wn,Ln is given by −α times the number of AA-matches plus −β times the number of
BB-matches. In order to simplify expressions that come up later, we add the constant 1

2αn,
which, by the law of large numbers for ω, amounts to rewriting the Hamiltonian as

H
ω,�
n,Ln

(π) =
n∑

i=1

(
α1 {ωi = A} − β1 {ωi = B} )

1
{
�

Ln

(πi−1,πi )
= B

}
, (1.2)

where (πi−1,πi) denotes the i-th step in the path π and �
Ln

(πi−1,πi )
denotes the label of the

block this step lies in. As shown in [4], Theorem 1.3.1, we may without loss of generality
restrict the interaction parameters to the cone

CONE = {(α,β) ∈ R
2 : α ≥ |β|}. (1.3)

A path π ∈ Wn,Ln can move across four different pairs of blocks. We use the labels
k, l ∈ {A,B} to indicate the type of the block that is diagonally crossed, respectively, the
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type of the neighboring block that is not crossed. The size Ln of the blocks in (1.1) is
assumed to satisfy the conditions

Ln → ∞ and
1

n
Ln → 0 as n → ∞, (1.4)

i.e., both the number of blocks visited by the copolymer and the time spent by the copolymer
in each pair of blocks tend to infinity. Consequently, the copolymer is self-averaging w.r.t.
both � and ω.

1.3 Free Energies and Variational Formula

In this section we recall several key facts about free energies from [4], namely, the free
energy of the copolymer near a single flat infinite interface (Sect. 1.3.1), in a pair of neigh-
boring blocks (Sect. 1.3.2), respectively, in the emulsion (Sect. 1.3.3).

1.3.1 Free Energy Near a Single Interface

Consider a copolymer in the vicinity of a single flat infinite interface. Suppose that the upper
halfplane is oil and the lower halfplane, including the interface, is water. For c ≥ b > 0 and
L ∈ N, let WcL,bL be the set of cL-step directed self-avoiding paths from (0,0) to (bL,0).
The entropy per step of these paths is

κ̂(c/b) = lim
L→∞

1

cL
log |WcL,bL|. (1.5)

On this set of paths we define the Hamiltonian

H
ω,I
cL (π) =

cL∑

i=1

(
α1{ωi = A} − β1{ωi = B})1{(πi−1,πi) ≤ 0}, (1.6)

where (πi−1,πi) ≤ 0 means that the i-th step lies in the lower halfplane (as in (1.2) we have
added the constant 1

2 αcL). The associated partition function is

Z
ω,I
cL,bL =

∑

π∈WcL,bL

exp
[−H

ω,I
cL (π)

]
. (1.7)

It was proven in [4], Lemma 2.2.1, that

lim
L→∞

1

cL
logZ

ω,I
cL,bL = φI (α,β; c/b) = φI (c/b) ω-a.s. and in mean (1.8)

for some non-random function φI : [1,∞) → R.

1.3.2 Free Energy in a Pair of Neighboring Blocks

Let DOM = {(a, b) : a ≥ 1 + b,0 ≤ b ≤ 1}. For (a, b) ∈ DOM, let WaL,bL be the set of aL-
step directed self-avoiding paths starting at (0,0), ending at (bL,L), whose vertical dis-
placement stays within (−L,L] (aL and bL are integers). The entropy per step of these
paths is

κ(a, b) = lim
L→∞

1

aL
log |WaL,bL|. (1.9)
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Fig. 4 Two neighbouring blocks
and a piece of the path. The block
that is crossed is of type k, the
block that appears as its neighbor
is of type l

Explicit formulas for κ and κ̂ are given in [4], Sect. 2.1. These formulas are non-trivial
in general, but can be used in some specific cases to perform exact computations.

For k, l ∈ {A,B}, let ψkl be the quenched free energy per step of the directed self-
avoiding path in a kl-block. Recall the Hamiltonian introduced in (1.2) and for a ≥ 2 define
(see Fig. 4)

ψkl(α,β;a) = ψkl(a)

= lim
L→∞

1

aL
log

∑

π∈WaL,L

exp
[−H

ω,�
aL,L(π)

]
ω-a.s. and in mean. (1.10)

As shown in [4], Sect. 2.2, the limit exists and is non-random. For ψAA and ψBB explicit
formulas are available, i.e.,

ψAA(α,β;a) = κ(a,1) and ψBB(α,β;a) = κ(a,1) + β − α

2
. (1.11)

For ψAB and ψBA variational formulas are available involving φI and κ . To state these let,
for a ≥ 2,

DOM(a) = {
(b, c) ∈ R

2 : 0 ≤ b ≤ 1, c ≥ b, a − c ≥ 2 − b
}
. (1.12)

Lemma 1.1 ([4], Lemma 2.2.2) For all a ≥ 2,

ψBA(a) = sup
(b,c)∈DOM(a)

cφI (c/b) + (a − c)[ 1
2 (β − α) + κ(a − c,1 − b)]

a
. (1.13)

Moreover, ψAB is given by the same expression but without the term 1
2 (β − α).
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Fig. 5 Relevant paths for ψBA

and ψκ̂
BA

Similarly, we define ψκ̂
BA to be the free energy per step of the paths in WaL,L that make

an excursion into the A-block before crossing diagonally the B-block, i.e.,

ψκ̂
BA(a) = sup

(b,c)∈DOM(a)

cκ̂(c/b) + (a − c)[ 1
2 (β − α) + κ(a − c,1 − b)]

a
. (1.14)

Since κ̂ ≤ φI , we have ψBB ≤ ψκ̂
BA ≤ ψBA, and these inequalities are strict in some cases.

The relevant paths for (1.13–1.14) are drawn in Fig. 5.

Remark 1.2

(1) As noted in [6], the strict concavity of (a, b) �→ aκ(a, b) and μ �→ μκ̂(μ) together with
the concavity of μ �→ μφI (μ) imply that both (1.13) and (1.14) have unique maximiz-
ers, which we denote by (b̄, c̄).

(2) In [6], we conjectured that μ �→ μφI (μ) is strictly concave. We will need this strict
concavity to prove the upper bound in Theorem 1.19 below. It implies that also a �→
aψBA(a) and a �→ aψAB(a) are strictly concave.

(3) Since ψAA, ψBB and ψκ̂
BA depend on α − β and a ∈ [2,∞) only, we will sometimes

write ψAA(α − β;a), ψBB(α − β;a) and ψκ̂
BA(α − β;a).

In [4], Proposition 2.4.1, conditions were given under which b̄, c̄ = 0 or �= 0. Let

G(μ,a) = κ(a,1) + a∂1κ(a,1) + a

μ
∂2κ(a,1) = 1

2

(
μ − 1

μ

)
log

(
a

a − 2

)

+ 1

μ
log[2(a − 1)], (1.15)

where ∂1, ∂2 denote the partial derivatives w.r.t. the first and second argument of κ(a, b)

in (1.9).

Lemma 1.3 For a ≥ 2,

ψAB(a) > ψAA(a) ⇐⇒ sup
μ≥1

{
φI (μ) − G(μ,a)

}
> 0,

(1.16)

ψκ̂
BA(a) > ψBB(a) ⇐⇒ sup

μ≥1

{
κ̂(μ) − 1

2
(β − α) − G(μ,a)

}
> 0.
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1.3.3 Free Energy in the Emulsion

To define the quenched free energy per step of the copolymer, we put, for given ω,� and n,

f
ω,�
n,Ln

= 1

n
logZ

ω,�
n,Ln

,

(1.17)
Z

ω,�
n,Ln

=
∑

π∈Wn,Ln

exp
[
−H

ω,�
n,Ln

(π)
]
.

As proved in [4], Theorem 1.3.1,

lim
n→∞f

ω,�
n,Ln

= f (α,β;p) ω,�-a.s. and in mean, (1.18)

where, due to (1.4), the limit is self-averaging in both ω and �. Moreover, f (α,β;p) can be
expressed in terms of a variational formula involving the four free energies per pair of blocks
defined in (1.10) and the frequencies at which the copolymer visits each of these pairs of
blocks on the coarse-grained block scale. To state this variational formula, let R(p) be the
set of 2×2 matrices (ρkl)k,l∈{A,B} describing the set of possible limiting frequencies at which
kl-blocks are visited (see [4], Sect. 1.3). Let A be the set of 2×2 matrices (akl)k,l∈{A,B} such
that akl ≥ 2 for all k, l ∈ {A,B}, describing the times spent by the copolymer in the kl-blocks
on time scale Ln. For (ρkl) ∈ R(p) and (akl) ∈ A, we set

V
(
(ρkl), (akl)

) =
∑

kl ρklaklψkl(akl)∑
kl ρklakl

. (1.19)

Theorem 1.4 ([4], Theorem 1.3.1) For all (α,β) ∈ R
2 and p ∈ (0,1),

f (α,β;p) = sup
(ρkl )∈R(p)

sup
(akl )∈A

V
(
(ρkl), (akl)

)
. (1.20)

The reason why the behavior of the copolymer changes drastically at p = pc comes
from the structure of R(p) (see Fig. 8). For p ≥ pc , the set R(p) contains matrices (ρkl)

satisfying ρA = ρAA + ρAB = 1, i.e., the copolymer can spend all its time inside the infinite
cluster of A-blocks. For p < pc , however, R(p) does not contain such matrices, and this
causes that the copolymer has to cross B-blocks with a positive frequency. In the present
paper we focus on the case p < pc .

1.4 Characterization of the Four Phases

The four phases are characterized in Sects. 1.4.1–1.4.4. This will involve four free energies

fD1 ≤ fD2 ≤ fL1 ≤ fL2 = f, (1.21)

with the inequalities becoming strict successively. We will see that the phase diagram looks
like Fig. 6. Furthermore, we will see that the typical path behavior in the four phases looks
like Fig. 7.
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Fig. 6 Sketch of the phase
diagram for p < pc

Fig. 7 Behavior of the
copolymer inside the four block
pairs containing oil and water for
each of the four phases

1.4.1 The D1-Phase: A-Delocalization and B-Delocalization

A first region in which the free energy is analytic has been exhibited in [4]. This region
corresponds to full delocalization into the A-blocks and B-blocks, i.e., when the copoly-
mer crosses an AB-block or a BA-block it does not spend appreciable time near the
AB-interface (see Fig. 7). Consequently, in D1 the free energy depends on α − β and p

only, since it can be expressed in terms of ψAA and ψBB , which are functions of α − β (see
Remark 1.2(3)).

Definition 1.5 For p < pc ,

D1 = {
(α,β) ∈ CONE : f (α,β;p) = fD1(α − β;p)

}
(1.22)
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Fig. 8 Sketch of p �→ ρ∗(p)

with

fD1(α − β;p) = sup
x≥2,y≥2

ρ∗(p)xψAA(x) + [1 − ρ∗(p)]yψBB(y)

ρ∗(p)x + [1 − ρ∗(p)]y , (1.23)

where ρ∗(p) is the maximal frequency at which the A-blocks can be crossed, defined by
(see Fig. 8)

ρ∗(p) = max
(ρkl )∈R(p)

[ρAA + ρAB]. (1.24)

The variational formula in (1.23) was investigated in [4], Sect. 2.5, where it was found
that the supremum is uniquely attained at (x, y) solving the equations

0 = log 2 + ρ log(x − 2) + (1 − ρ) log(y − 2),
(1.25)

0 = (α − β) + log

(
x(y − 2)

y(x − 2)

)
.

With the help of the implicit function theorem it was further proven that fD1 is analytic on
CONE.

The following criteria were derived to decide whether or not (α,β) ∈ D1. The first is a
condition in terms of block pair free energies, the second in terms of the single interface free
energy.

Proposition 1.6 ([4], Theorem 1.5.2)

D1 = {
(α,β) ∈ CONE : ψBA(α,β;y) = ψBB(α − β;y)

}
,

Dc
1 = {

(α,β) ∈ CONE : ψBA(α,β;y) > ψBB(α − β;y)
}
.

(1.26)

Corollary 1.7 ([4], Proposition 2.4.1 and Sect. 4.2.2)

D1 =
{
(α,β) ∈ CONE : sup

μ≥1

{
φI (μ) − 1

2
(β − α) − G(μ,y)

}
≤ 0

}
,

Dc
1 =

{
(α,β) ∈ CONE : sup

μ≥1

{
φI (μ) − 1

2
(β − α) − G(μ,y)

}
> 0

}
.

(1.27)

Corollary 1.7 expresses that leaving D1 is associated with a change in the optimal strategy
of the copolymer inside the BA-blocks. Namely, (α,β) ∈ Dc

1 when it is favorable for the
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copolymer to make an excursion into the neighboring A-block before it diagonally crosses
the B-block. This change comes with a non-analyticity of the free energy. A first critical
curve divides the phase space into D1 and Dc

1 (see Fig. 6; D1 = CONE\Dc
1).

1.4.2 The D2-Phase: A-Delocalization, BA-Delocalization

Starting from (α,β) ∈ D1 with β ≤ 0, we increase α until it becomes energetically advan-
tageous for the copolymer to spend some time in the A-solvent when crossing a BA-block.
It turns out that the copolymer does not localize along the BA-interface, but rather crosses
the interface to make a long excursion inside the A-block before returning to the B-block to
cross it diagonally (see Fig. 7).

Definition 1.8 For p < pc ,

D2 = {
(α,β) ∈ CONE : fD1(α − β;p) < f (α,β;p) = fD2(α − β;p)

}
(1.28)

with

fD2(α − β;p) = sup
x≥2,y≥2,z≥2

sup
ρ∈R(p)

ρAxψAA(x) + ρBAyψκ̂
BA(y) + ρBBzψBB(z)

ρAx + ρBAy + ρBBz
, (1.29)

where ρA = ρAB + ρAA.

Note that fD2 depends on α − β and p only, since ψAA, ψBB and ψκ̂
BA are functions

of α − β (see Remark 1.2(3)). Note also that, like (1.23), the variational formula in (1.29)
is explicit because we have an explicit expression for ψκ̂

BA via (1.14) and for κ̂ and κ via
the formulas that are available from [4]. This allows us to give a characterization of D2

in terms of the block pair free energies and the single interface free energy. For this we
need a result proven in Sect. 2.3, which states that, by the strict concavity of x �→ xψAA(x),
y �→ yψκ̂

BA(y) and z �→ zψBB(z), the maximizers (x, y, z) of (1.29) are unique and do not
depend on the choice of (ρkl) that achieves the maximum in (1.20).

Proposition 1.9

D2 = Dc
1 ∩ {

(α,β) ∈ CONE : ψAB(x) = ψAA(x) and ψBA(y) = ψκ̂
BA(y)

}
,

Dc
2 = D1 ∪ {

(α,β) ∈ CONE : ψAB(x) > ψAA(x) or ψBA(y) > ψκ̂
BA(y)

}
.

(1.30)

Corollary 1.10

D2 = Dc
1 ∩

{
(α,β) ∈ CONE : sup

μ≥1

{
φI (μ) − G(μ,x)

} ≤ 0 and φI (c̄/b̄) = κ̂(c̄/b̄)
}
,

(1.31)
Dc

2 = D1 ∪
{
(α,β) ∈ CONE : sup

μ≥1

{
φI (μ) − G(μ,x)

}
> 0 or φI (c̄/b̄) > κ̂(c̄/b̄)

}
,

where (b̄, c̄) are the unique maximizers of the variational formula for ψκ̂
BA(y) in (1.14).
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1.4.3 The L1-Phase: A-Delocalization, BA-Localization

Starting from (α,β) ∈ D2, we increase β and enter into a third phase denoted by L1. This
phase is characterized by a partial localization along the interface in the BA-blocks. The
difference with the phase D2 is that, in L1, the copolymer crosses the BA-blocks by first
sticking to the interface for awhile before crossing diagonally the B-block, whereas in D2

the copolymer wanders for awhile inside the A-block before crossing diagonally the B-block
(see Fig. 7). This difference appears in the variational formula, because the free energy in
the BA-block is given by ψBA in L1 instead of ψκ̂

BA in D2:

Definition 1.11 For p < pc ,

L1 = {
(α,β) ∈ CONE : fD2(α − β;p) < f (α,β;p) = fL1(α,β;p)

}
(1.32)

with

fL1(α,β;p) = sup
x≥2,y≥2,z≥2

sup
(ρkl )∈R(p)

ρAxψAA(x) + ρBAyψBA(y) + ρBBzψBB(z)

ρAz + ρBAy + ρBBz
. (1.33)

Since the strict concavity of x �→ xψBA(x) has not been proven (recall Remark 1.2(2)),
the maximizers (x, y, z) of (1.33) are not known to be unique. However, the strict concavity
of x �→ xψAA(x) and z �→ zψBB(z) ensure that at least x and z are unique.

Proposition 1.12

L1 = Dc
1 ∩ Dc

2 ∩ {
(α,β) ∈ CONE : ψAB(x) = ψAA(x)

}
,

Lc
1 = D1 ∪ D2 ∪ {

(α,β) ∈ CONE : ψAB(x) > ψAA(x)
}
.

(1.34)

Corollary 1.13

L1 = Dc
1 ∩ Dc

2 ∩
{
(α,β) ∈ CONE : sup

μ≥1
{φI (μ) − G(μ,x)} ≤ 0

}
,

Lc
1 = D1 ∪ D2 ∪

{
(α,β) ∈ CONE : sup

μ≥1
{φI (μ) − G(μ,x)} > 0

}
.

(1.35)

As asserted in Theorem 1.16 below, if we let (α,β) run in D2 along a linear segment
parallel to the first diagonal, then the free energy f (α,β;p) remains constant until (α,β)

enters L1. In other words, if we pick (α0, β0) ∈ D2 and consider for u ≥ 0 the point su =
(α0 + u,β0 + u), then the free energy f (su;p) remains equal to f (α0, β0;p) until su exits
D2 and enters L1. This passage from D2 to L1 comes with a non-analyticity of the free
energy. This phase transition is represented by a second critical curve in the phase diagram
(see Fig. 6).

1.4.4 The L2-Phase: AB-Localization, BA-Localization

The remaining phase is:

Definition 1.14 For p < pc ,

L2 = {
(α,β) ∈ CONE : fL1(α,β;p) < f (α,β;p)

}
. (1.36)
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Starting from (α,β) ∈ L1, we increase β until it becomes energetically advantageous for
the copolymer to localize at the interface in the AB-blocks as well. This new phase has
both AB- and BA-localization (see Fig. 7). Unfortunately, we are not able to show non-
analyticity at the crossover from L1 to L2 because, unlike in D2, in L1 the free energy is not
constant in one particular direction (and the argument we gave for the non-analyticity at the
crossover from D2 to L1 is not valid here). Consequently, the phase transition between L1

and L2 is still a conjecture at this stage, but we strongly believe that a third critical curve
indeed exists.

1.5 Main Results for the Phase Diagram

In Sect. 1.4 we defined the four phases and obtained a characterization of them in terms
of the block pair free energies and the single interface free energy at certain values of the
maximizers in the associated variational formulas. The latter serve as the starting point for
the analysis of the properties of the critical curves (Sect. 1.5.1) and the phases (Sects. 1.5.2–
1.5.3).

1.5.1 Critical Curves

The first two theorems are dedicated to the critical curves between D1 and D2, respectively,
between D2 and L1 (see Fig. 9).

Theorem 1.15 Let p < pc:

(i) There exists an α∗(p) ∈ (0,∞) such that (α∗(p),0) ∈ D1 and D1 ⊂ {(β + r, β) : r ≤
α∗(p),β ≥ − r

2 }.
(ii) For all r ∈ [0, α∗(p)] there exists a β1

c (r) ≥ 0 such that D1 ∩ {(β + r, β) : β ∈ R} is the
linear segment

J 1
r =

{
(β + r, β) : β ∈

[
− r

2
, β1

c (r)

]}
. (1.37)

The free energy f (α,β;p) is constant on this segment.
(iii) r �→ β1

c (r) is continuous on [0, α∗(p)].

Fig. 9 Further details of the
phase diagram for p < pc

sketched in Fig. 6. There are four
phases, separated by three critical
curves, meeting at two tricritical
points
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(iv) Along the curve r ∈ (0, α∗(p)] �→ (β1
c (r) + r, β1

c (r)) the two phases D1 and L1 touch
each other, i.e., for all r ∈ (0, α∗(p)] there exists a vr > 0 such that

{(β + r, β) : β ∈ (β1
c (r), β

1
c (r) + vr ]} ⊂ L1. (1.38)

(v) β1
c (r) ≥ log(1 + (1 − e−r )1/2) for all r ∈ [0, α∗(p)].

Theorem 1.16 Let p < pc:

(i) For all r ∈ (α∗(p),∞) there exists a β2
c (r) > 0 such that D2 ∩ {(β + r, β) : β ∈ R} is

the linear segment

J 2
r =

{
(β + r, β) : β ∈

[
− r

2
, β2

c (r)

]}
. (1.39)

The free energy f (α,β;p) is constant on this segment.

(ii) r �→ β2
c (r) is lower semi-continuous on (α∗(p),∞).

(iii) At α∗(p) the following inequality holds:

lim sup
r↓α∗(p)

β2
c (r) ≤ β1

c (α
∗(p)). (1.40)

(iv) There exists an r2 > α∗(p) such that along the interval (α∗(p), r2] the two phases D2

and L1 touch each other, i.e., for all r ∈ (α∗(p), r2] there exists a vr > 0 such that

{(β + r, β) : β ∈ [β2
c (r), β

2
c (r) + vr ]} ⊂ L1. (1.41)

(v) β2
c (r) ≥ log(1 + (1 − e−r )1/2) for all r ∈ (α∗(p),∞).

In [4] it was suggested that the tricritical point where D1, D2 and L1 meet lies on the
horizontal axis. Thanks to Theorem 1.16(iii) and (v) we now know that it lies strictly above.

1.5.2 Infinite Differentiability of the Free Energy

It was shown in [4], Lemma 2.5.1 and Proposition 4.2.2, that f is analytic on the interior
of D1. We complement this result with the following.

Theorem 1.17 Let p < pc . Then, under Assumption 4.3 in Sect. 4.3.1, (α,β) �→ f (α,β;p)

is infinitely differentiable on the interior of D2.

Consequently, there are no phase transitions of finite order in the interior of D1 and D2.
Assumption 4.3 in Sect. 4.3.1 concerns the first supremum in (1.20) when (α,β) ∈ D2.

Namely, it requires that this supremum is uniquely taken at (ρkl) = (ρ∗
kl(p)) with ρ∗

AA(p) +
ρ∗

AB(p) = ρ∗(p) given by (1.24) and with ρ∗
BA(p) maximal subject to the latter equality. In

view of Fig. 7, this is a reasonable assumption indeed, because in D2 the copolymer will first
try to maximize the fraction of time it spends crossing A-blocks, and then try to maximize
the fraction of time it spends crossing B-blocks that have an A-block as neighbor.

We do not have a similar result for the interior of L1 and L2, simply because we have
insufficient control of the free energy in these regions. Indeed, whereas the variational for-
mulas (1.23) and (1.29) only involve the block free energies ψAA, ψBB and ψκ̂

BA, for which
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(1.11) and (1.14) provide closed form expressions, the variational formula in (1.33) also in-
volves the block free energy ψBA, for which no closed form expression is known because
(1.13) contains the single flat infinite interface free energy φI .

1.5.3 Order of the Phase Transitions

Theorem 1.15(ii) states that, in D1, for all r ∈ [0, α∗(p)] the free energy f is constant on
the linear segment J 1

r , while Theorem 1.16(i) states that, in D2, for all r ∈ (α∗(p),∞) the
free energy f is constant on the linear segment J 2

r . We denote these constants by fD1(r),
respectively, fD2(r).

According to Theorems 1.15(ii) and 1.16(ii), the phase transition between D1 and D2

occurs along the linear segment J 1
α∗(p) with β1

c (α
∗(p)) = α∗∗(p) − α∗(p). This transition is

of order smaller than or equal to 2.

Theorem 1.18 There exists a c > 0 such that, for δ > 0 small enough,

cδ2 ≤ fD2(α
∗(p) + δ) − fD1(α

∗(p)) − f ′
D1

(α∗(p))δ − 1

2
f ′′

D1
(α∗(p))δ2. (1.42)

According to Theorem 1.15(iv), the phase transition between D1 and L1 occurs along the
curve {(r + β1

c (r), β
1
c (r)) : r ∈ [0, α∗(p)]}. This transition is of order smaller than or equal

to 2 and strictly larger than 1.

Theorem 1.19 For all r ∈ [0, α∗(p)) there exist c > 0 and ζ : [0,1] �→ [0,∞) satisfying
limx↓0 ζ(x) = 0 such that, for δ > 0 small enough,

cδ2 ≤ fL1(r + β1
c (r) + δ,β1

c (r) + δ) − fD1(r) ≤ ζ(δ)δ. (1.43)

According to Theorem 1.16(iv), the phase transition between D2 and L1 occurs at least
along the curve

{
(r + β2

c (r), β
2
c (r)) : r ∈ [α∗(p),α∗(p) + r2]

}
. (1.44)

We are not able to determine the order of this phase transition. However, as stated in The-
orem 1.20 below, it is smaller than or equal to the order of the phase transition in the sin-
gle interface model. The reason is that partial localization near the oil-water interface is
driven precisely by the polymer preferring to run along stretches of single interface. The
latter model was investigated (for a different but analogous Hamiltonian) in Giacomin and
Toninelli [3], where it was proved that the phase transition is at least of second order. Nu-
merical simulations suggest that the order is in fact higher than second order. In what fol-
lows we denote by γ the order of the single interface transition. This means that there exist
c2 > c1 > 0 and a slowly varying function L such that, for δ > 0 small enough,

c1δ
γ L(δ) ≤ φI

(
cr

br

; r + β2
c (r) + δ,β2

c (r) + δ

)
− κ̂

(
cr

br

)
≤ grc2δ

γ L(δ), (1.45)

where (cr , br ) are the unique maximizers of (1.14) at (r + β2
c (r), β

2
c (r);yr) and yr is the

second component of the unique maximizers of (1.29) at (r + β2
c (r), β

2
c (r)).

Theorem 1.20 For all r ∈ [α∗(p),α∗(p) + r2) there exist c > 0 such that, for δ > 0 small
enough,

cδγ L(δ) ≤ fL1(r + β2
c (r) + δ,β2

c (r) + δ) − fD2(r). (1.46)
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We believe that the order of the phase transition along the critical curve separating D1

and D2, D1 and L1, and D2 and L1 are, respectively, 2, 2 and γ . However, except for Theo-
rem 1.19, in which we give a partial upper bound, we have not been able to prove upper
bounds in Theorems 1.18 and 1.20 due to a technical difficulty associated with the unique-
ness of the maximizer (akl) in (1.20).

1.6 Open Problems

The following problems are interesting to pursue (see Fig. 9):

(a) Prove that r �→ β2
c (r) is continuous on (α∗(p),∞). Prove that r �→ β1

c (r) is strictly
decreasing and r �→ β2

c (r) is strictly increasing.
(b) Show that the critical curve between D2 and L1 meets the critical curve between D1

and D2 at the end of the linear segment, i.e., show that (1.40) can be strengthened to an
equality.

(c) Establish the existence of the critical curve between L1 and L2. Prove that the free
energy is infinitely differentiable on the interior of L1 and L2.

(d) Show that the critical curve between D2 and L1 never crosses the critical curve between
L1 and L2.

(e) Show that the phase transitions between D1 and L1 and between D1 and D2 are of
order 2.

1.7 Outline

In Sect. 2 we derive some preparatory results concerning existence and uniqueness of maxi-
mizers and inequalities between free energies. These will be used in Sects. 3 and 4 to prove
the claims made in Sects. 1.4 and 1.5, respectively.

The present paper concludes the analysis of the phase diagram started in [4] and contin-
ued in [6]. The results were announced in [5] without proof.

2 Preparations

2.1 Smoothness of κ̂ and κ

In this section, we recall some results from [4] concerning the entropies κ and κ̂ defined in
(1.9) and (1.5).

Lemma 2.1 ([4], Lemmas 2.1.2 and 2.1.1)

(i) (a, b) �→ aκ(a, b) is continuous and strictly concave on DOM and analytic on the inte-
rior of DOM.

(ii) μ �→ μκ̂(μ) is continuous and strictly concave on [1,∞) and analytic on (1,∞).

This allows to state the following properties of ψkl .

Corollary 2.2

(i) For kl ∈ {AA,BB}, (α,β, a) �→ ψkl(α,β;a) is infinitely differentiable on R
2 ×(2,∞).

(ii) For kl ∈ {AA,BB} and (α,β) ∈ CONE, a �→ ψkl(α,β;a) is strictly concave on [2,∞).
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(iii) For (α,β) ∈ CONE, a �→ ψκ̂
BA(α,β;a) is strictly concave on [2,∞).

Proof Lemma 2.1 and formulas (1.11) imply immediately (i) and (ii). Lemma 2.1 implies
also that for all a ≥ 2, (c, b) �→ cκ(c/b) and (c, b) �→ (a − c)κ(a − c,1 − b) are strictly
concave. The latter, together with formula (1.14) are sufficient to obtain (iii). �

2.2 Smoothness of φI and ψkl

In this section, we recall from [6] some key properties concerning the single interface free
energy and the block pair free energies.

Lemma 2.3

(i) (α,β,μ) �→ φI (α,β;μ) is continuous on CONE × [1,∞).
(ii) For all k, l ∈ {A,B}, (α,β;a) �→ ψkl(α,β;a) is continuous on CONE × [2,∞).

Proof To prove (i) it suffices to check that μ �→ φI (α,β;μ) is continuous on [1,∞) and that
there exists a K > 0 such that (α,β) �→ φI (α,β;μ) is K-Lipschitz for all μ ∈ [1,∞). These
two properties are obtained by using, respectively, the concavity of μ �→ μφI (α,β;μ) and
the expression of the Hamiltonian in (1.6). The proof of (ii) is the same. �

Other important results, proven in [6], are stated below. They concern the asymptotic
behavior of ψkl , φI and some of their partial derivatives as μ and a tend to ∞.

Lemma 2.4 ([6], Lemma 2.4.1) For any β0 > 0, uniformly in α ≥ β and β ≤ β0:

(i) limμ→∞ φI (α,β;μ) = 0.
(ii) For kl ∈ {AB,BA}, lima→∞ ψkl(α,β;a) = 0.

Lemma 2.5 ([6], Lemma 5.4.3) Fix (α,β) ∈ CONE:

(i) For all k, l ∈ {A,B} with kl �= BB , lima→∞ aψkl(a) = ∞.
(ii) Let K be a bounded subset of CONE. For all k, l ∈ {A,B}, lima→∞ ∂[aψkl(α,β;a)]/

∂a ≤ 0 uniformly in (α,β) ∈ K.

Proof Only the uniformity in (α,β) ∈ K in (ii) was not proven in [6]. This is obtained as
follows. Let m be the minimum of 2ψkl(α,β;2) on K. By Lemma 2.4(ii), for all ε > 0
there exists an a0 ≥ 2 such that ψkl(α,β;a) ≤ ε for all (α,β) ∈ K and a ≥ a0. Moreover, by
concavity, the derivative of a �→ aψkl(α,β;a) is decreasing and, consequently, aε − m ≥
(a − 2)∂aψkl(α,β;a) for a ≥ a0. This implies that

∂aψkl(α,β;a) ≤ aε − m

a − 2
= ε − m/a

1 − 2/a
, a ≥ a0. (2.1)

�

2.3 Maximizers for the Free Energy: Existence and Uniqueness

Up to now we have stated the existence and uniqueness of the maximizers of the variational
formula (1.20) only in some particular cases. In D1 we recalled the result of [4], stating
the uniqueness of the maximizers (x, y) in the variational formula (1.23), while in D2 we
announced the uniqueness of the maximizers (x, y, z) in the variational formula (1.29).
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For (α,β) ∈ CONE, p ∈ (0,1) and (ρkl) ∈ R(p), let (recall (1.19))

fα,β,(ρkl ) = sup
(akl )∈A

V
(
(ρkl), (akl)

)
,

O(ρkl ) = {
kl ∈ {A,B}2 : ρkl > 0

}
,

Jα,β,(ρkl ) = {(akl)kl∈Oρ ∈ A : fα,β,(ρkl ) = V ((ρkl), (akl))},
Rf

α,β,p = {(ρkl) ∈ R(p) : f (α,β;p) = fα,β,(ρkl )},
Pα,β,p =

⋃

(ρkl )∈Rf
α,β,p

O(ρkl ).

(2.2)

Lemma 2.6 For every (α,β) ∈ CONE, p ∈ (0,1) and (ρkl) ∈ R(p), the set Jα,β,(ρkl ) is non-
empty. Moreover, for all kl ∈ O(ρkl ) such that x �→ xψkl(x) is strictly concave, there exists a

unique a
(ρkl )

kl ≥ 2 such that akl = a
(ρkl )

kl for all (akl) ∈ Jα,β,(ρkl ).

Proof The proof that Jα,β,(ρkl ) �= ∅ is given in [6], Proposition 5.5.1. If (akl) ∈ Jα,β,(ρkl ), then
differentiation gives

∂[xψkl(x)]
∂x

(akl) = fα,β,(ρkl ), (2.3)

which implies the uniqueness of akl as soon as x �→ xψkl(x) is strictly concave. �

Remark 2.7 Note that (2.3) ought really to be written as

∂−[xψkl(x)](akl) ≤ fα,β,(ρkl ) ≤ ∂+[xψkl(x)](akl), (2.4)

where ∂− and ∂+ denote the left- and right-derivative. Indeed, for kl ∈ {AB,BA} we do not
know whether x �→ xψkl(x) is differentiable or not. However, we know that these functions
are concave, which is sufficient to ensure the existence of the left- and right-derivative. We
will continue this abuse of notation in what follows.

Proposition 2.8 For every (α,β) ∈ CONE and p ∈ (0,1), the set Rf

α,β,p is non-empty. More-
over, for all kl ∈ Pα,β,p such that x �→ xψkl(x;α,β) is strictly concave, there exists a unique
akl(α,β) ≥ 2 such that a

(ρ)

kl = akl(α,β) for all (ρkl) ∈ Rf

α,β,p .

Proof We begin with the proof of Rf

α,β,p �= ∅. Let (ρB) = (ρB
kl) denote the 2 × 2 matrix with

ρB
BB = 1 and ρB

BA = ρB
AB = ρB

AA = 0.

Case 1: supx≥2 ψBB(x) > 0. Since R(p) is a compact set, the continuity of (ρkl) �→ fα,β,(ρkl )

implies that Rf

α,β,p �= ∅. To prove this continuity, we note that, since ψkl ≥ ψBB for all k, l ∈
{A,B}, fα,β,(ρkl ) is bounded from below by supx≥2 ψBB(x) > 0 uniformly in (ρkl) ∈ R(p).
This is sufficient to mimic the proof of [6], Proposition 5.5.1(i), which shows that there
exists a R > 0 such that, for all (ρkl) ∈ R(p),

fα,β,(ρkl ) = sup
{(akl ) : akl∈[2,R]}

V ((ρkl), (akl)). (2.5)

This in turn is sufficient to obtain the continuity of (ρkl) �→ fα,β,(ρkl ).
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Case 2: supx≥2 ψBB(x) ≤ 0. Since p > 0 by assumption, we can exclude the case R(p) =
{ρB}, and therefore we may assume that R(p) contains at least one element different from
(ρB). Clearly, fα,β,(ρB ) ≤ 0, and for any sequence ((ρn))n≥1 in R(p) that converges to (ρB)

it can be shown that

lim sup
n→∞

fα,β,(ρn) ≤ 0. (2.6)

As asserted in Lemma 2.5(i), for kl �= BB we have limx→∞ xψkl(x) = ∞ and this, together
with (1.19–1.20), forces f (α,β) > 0. Therefore, (2.6) is sufficient to assert that there exists
an open neighborhood W of (ρB) such that fα,β,(ρkl ) ≤ f (α,β;p)/2 when (ρkl) ∈ W , and
then

f (α,β;p) = sup
(ρkl )∈R(p)∪W c

fα,β,(ρkl ). (2.7)

Finally, fα,β,(ρkl ) is bounded from below by a strictly positive constant uniformly in (ρkl) ∈
R(p) ∪ W c . Hence, by mimicking the proof of Case 1, we obtain that (ρkl) �→ fα,β,(ρkl ) is
continuous on the compact set W c ∪ R(p). To complete the proof, we note that, since

(ρ1), (ρ2) ∈ Rf

α,β,p =⇒ fα,β,(ρ1) = fα,β,(ρ2), (2.8)

(2.3) implies that a
(ρ1)

kl = a
(ρ2)

kl . �

Proposition 2.8 gives us the uniqueness of aAA(α,β) and aBB(α,β) for all (α,β) ∈ CONE.
In the following proposition we prove that these functions are continuous in (α,β).

Proposition 2.9 (α,β) �→ aAA(α,β) and (α,β) �→ aBB(α,β) are continuous on CONE.

Proof Let kl ∈ {AA,BB}. By Proposition 2.8, akl(α,β) is the unique solution of the equa-
tion ∂[xψkl(α,β;x)]/∂x = f (α,β;p). As proved in Case 2 of Proposition 2.8, we have
f (α,β;p) > 0. Moreover, with the help [4], Lemma 2.2.1, which gives the explicit value of
κ(x,1), we can easily show that lim supx→∞ ∂[xψkl(α,β;x)]/∂x ≤ 0 uniformly in (α,β) ∈
CONE. This, together with (2.3) and the fact that f (α,β) is bounded when (α,β) is bounded,
is sufficient to assert that akl(α,β) is bounded in the neighborhood of any (α,β) ∈ CONE.
Therefore, by the continuity of (α,β) �→ f (α,β) and (α,β, x) �→ xψkl(α,β;x) and by the
uniqueness of akl(α,β) for all (α,β) ∈ CONE, we obtain that (α,β) �→ akl(α,β) is continu-
ous. �

2.4 Inequalities between Free Energies

Abbreviate F = {AA,AB,BA,BB} and let

I =
{
(ρkl)kl∈F :

∑

kl∈F

ρkl = 1, ρkl > 0 ∀kl ∈ F
}
. (2.9)

For kl ∈ F , let x �→ xζkl(x) and x �→ xζ kl(x) be concave on [2,∞), ζkl be differentiable on
(2,∞), and ζ kl ≥ ζkl . For (ρkl) ∈ R(p) and (xkl) ∈ A, put

f(ρkl )((xkl)) =
∑

kl∈F ρklxklζkl(xkl)∑
kl∈F ρklxkl

and f (ρkl )
((xkl)) =

∑
kl∈F ρklxj ζ kl(xkl)∑

kl∈F ρklxkl

(2.10)



228 F. den Hollander, N. Pétrélis

and

f = sup
(ρkl )∈R(p)

sup
(xkl )∈A

f(ρkl )((xkl)) and f = sup
(ρkl )∈R(p)

sup
(xkl )∈A

f (ρkl )
((xkl)). (2.11)

Lemma 2.10 Assume that there exist (ρ̃kl) ∈ R(p) ∩ I and (x̃kl) ∈ (2,∞)F that maximize
the first variational formula in (2.11). Then the following are equivalent:

(i) f > f ;
(ii) there exists a kl ∈ F such that ζ kl(x̃kl) > ζkl(x̃kl).

Proof This proposition is a generalization of [4], Proposition 4.2.2. It is obvious that (ii)
implies (i). Therefore it will be enough to prove that f = f when (ii) fails. Trivially, f ≥ f .

Abbreviate θkl(x) = xζkl(x) and θkl(x) = xζ kl(x). If (ii) fails, then θkl(x̃kl) = θkl(x̃kl) for
all kl ∈ F . Since, by assumption, θkl is differentiable, θkl and θkl are concave and θkl ≥ θkl ,
it follows that θkl is differentiable at x̃kl with (θkl)

′(x̃kl) = (θkl)
′(x̃kl). The fact that (ρ̃kl) ∈

R(p) ∩ I and (x̃kl) ∈ (2,∞)F maximize the first variational formula in (2.10) implies, by
differentiation of the l.h.s. of (2.10) w.r.t. x̃kl at ((ρ̃kl), (x̃kl)), that (θkl)

′(x̃kl) = f for all
kl ∈ F . Therefore (θkl)

′(x̃kl) = f for all kl ∈ F . Now pick (ρkl) ∈ R(p), (xkl) ∈ A, and put
N = ∑

kl∈F ρklθkl(x̃kl), V = ∑
kl∈F ρkl x̃kl . Since θkl is concave, we can write

f (ρkl )
((xkl)) = N + ∑

kl∈F ρkl(θkl(xkl) − θkl(x̃kl))

V + ∑
kl∈F ρkl(xkl − x̃kl)

≤ N + f
∑

kl∈F ρkl(x̃kl − xkl)

V + ∑
kl∈F ρkl(xkl − x̃kl)

. (2.12)

But N/V = f(ρkl )((x̃kl)) ≤ f , and therefore (2.12) becomes f (ρkl )
((xkl)) ≤ f , which, after

taking the supremum over (ρkl) ∈ R ∩ I and (xkl) ∈ A, gives us f ≤ f . �

3 Characterization of the Four Phases

3.1 Proof of Proposition 1.9

Proof Recall that (x, y, z) is the unique maximizer of the variational formula in (1.29) at
(α,β;p). By (1.22), f = fD1 if (α,β) ∈ D1 and f > fD1 otherwise, and therefore Proposi-
tion 1.9 will be proven if we can show that

ψAB(x) = ψAA(x) and ψBA(y) = ψκ̂
BA(y) =⇒ f = fD2 ,

(3.1)
ψAB(x) > ψAA(x) or ψBA(y) > ψκ̂

BA(y) =⇒ f > fD2 .

But this follows by applying Lemma 2.10 with ζkl = ζ kl = ψkl for kl ∈ {AA,BB}, ζBB =
ζBB = ψBB , ζAB = ψAA, ζAB = ψAB , ζBA = ψκ̂

BA and ζBA = ψBA. �

3.2 Proof of Corollary 1.10

Proof By Lemma 1.3, ψAB(x) > ψAA(x) if and only if supμ≥1{φI (μ)−G(μ,x)} > 0, with
G(μ,x) defined in (1.15). Combine this with Lemma 3.1 below at y. �

Lemma 3.1 For all y ≥ 2, ψBA(y) > ψκ̂
BA(y) if and only if φI (c̃/b̃) > κ̂(c̃/b̃) with (b̃, c̃)

the unique maximizer of the variational formula (1.14) for ψκ̂
BA(y).
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Proof If φI (c̃/b̃) > κ̂(c̃/b̃), then clearly ψBA(y) > ψκ̂
BA(y). Thus, it suffices to assume that

ψBA(y) > ψκ̂
BA(y) and φI (c̃/b̃) = κ̂(c̃/b̃) and show that this leads to a contradiction. For

(b, c) ∈ DOM(y), let

T (b, c) = cφI (c/b) + (y − c)

{
κ(y − c,1 − b) + 1

2
(β − α)

}
,

T κ̂ (b, c) = cκ̂(c/b) + (y − c)

{
κ(y − c,1 − b) + 1

2
(β − α)

}
.

(3.2)

By definition, the unique maximizer of T κ̂ on DOM(y) is (b̃, c̃). Moreover, φI (c̃/b̃) =
κ̂(c̃/b̃) implies that T (b̃, c̃) = T κ̂(b̃, c̃). However, ψBA(y) > ψκ̂

BA(y) implies that there ex-
ists a (b′, c′) ∈ DOM(z) such that T (b′, c′) > T (b̃, c̃). Now put

ζ : t �→ (b̃, c̃) + t (b′ − b̃, c′ − c̃). (3.3)

Since (b, c) �→ T κ̂(b, c) is differentiable and concave on DOM(y) (recall that κ̂ and κ

are differentiable), also t �→ T κ̂(ζ(t)) is differentiable and concave, and reaches its max-
imum at t = 0. Moreover, t �→ T (ζ(t)) is concave and, since T (ζ(·)) ≥ T κ̂(ζ(·)) and
T (ζ(0)) = T κ̂(ζ(0)), it follows that t �→ T (ζ(t)) is differentiable at t = 0 with zero deriva-
tive. It therefore is impossible that T (ζ(1)) > T (ζ(0)). �

3.3 Proof of Proposition 1.12

Proof Recall that (x, y, z) is the unique maximizer of the variational formula in (1.33) at
(α,β;p). By (1.22) and (1.28), f > fD2 if (α,β) ∈ Dc

1 ∩ Dc
2 and f = fD2 otherwise. To

prove Proposition 1.12, we must show that

ψAB(x) = ψAA(x) =⇒ f = fL1 ,

ψAB(x) > ψAA(x) =⇒ f > fL1 .
(3.4)

But this follows by applying Lemma 2.10 with ζkl = ζ kl = ψkl for kl ∈ {AA,BB,BA},
ζAB = ψAA and ζAB = ψAB . �

3.4 Proof of Corollary 1.13

Proof This follows by applying Lemma 1.3 to ψAB(x). �

4 Proof of the Main Results for the Phase Diagram

4.1 Proof of Theorem 1.15

In what follows, we abbreviate α∗ = α∗(p) and ρ∗ = ρ∗(p). We recall the following.

Proposition 4.1 ([4], Proposition 2.5.1) Let (α,β) ∈ CONE and ρ ∈ (0,1). Abbreviate C =
α − β ≥ 0. The variational formula in (1.23) has unique maximizers x̄ = x̄(C,ρ) and ȳ =
ȳ(C,ρ) satisfying:

(i) 2 < ȳ < a∗ < x̄ < ∞ when C > 0 and x̄ = ȳ = a∗ when C = 0.
(ii) u(x̄) > v(ȳ) when C > 0 and u(x̄) = v(ȳ) when C = 0.
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(iii) ρ �→ x̄(C,ρ) and ρ �→ ȳ(C,ρ) are analytic and strictly decreasing on (0,1) for all
C > 0.

(iv) C �→ x̄(C,ρ) and C �→ ȳ(C,ρ) are analytic and strictly increasing, respectively,
strictly decreasing on (0,∞) for all ρ ∈ (0,1).

We are now ready to give the proof of Theorem 1.15.

Proof of Theorem 1.15 (i) Let (x, y) be the maximizer of the variational formula in (1.23)
at (α,β). Recall the criterion (1.7), i.e.,

(α,β) ∈ Dc
1 if and only if sup

μ≥1

{
φI (α,β;μ) + 1

2
(α − β) − G(μ,y)

}
> 0. (4.1)

Since φI (α,0;μ) = κ̂(μ) for all α ≥ 0 and μ ≥ 1, the r.h.s. in (4.1) can be replaced, when
β = 0, by

sup
μ≥1

{
κ̂(μ) + 1

2
α − G(μ,y)

}
> 0. (4.2)

Since, by Proposition 4.1, y depends on C = α − β only, the same is true for the l.h.s. in
(4.2). Moreover, as shown in [4], Proposition 4.2.3(iii), the l.h.s. of (4.2) is strictly negative
at C = 0, strictly increasing in C on [0,∞), and tends to infinity as C → ∞. Therefore there
exists an α∗ ∈ (0,∞) such that the l.h.s. in (4.2) is strictly positive if and only if α −β > α∗.
This implies that (α∗,0) ∈ D1 and, since φI (α,β;μ) ≥ κ̂(μ) for all (α,β) ∈ R

2 and μ ≥ 1,
it also implies that (β + r, β) ∈ Dc

1 when r > α∗ and β ≥ − r
2 .

(ii) The existence of β1
c (r) is proven in [4], Theorem 1.5.3(ii). Consequently, the segment

J 1
r = {(β+r, β) : β ∈ [− r

2 , β1
c (r)]} is included in D1. This means that f (α,β;p) is constant

and equal to fD1(r) on J 1
r .

(iii) The continuity of r �→ β1
c (r) is proven in [4], Theorem 1.5.3(ii).

(iv) Let r ≤ α∗ and, for u > 0 let su = (r + β1
c (r) + u,β1

c (r) + u). By the definition of
β1

c (r), we know that su ∈ Dc
1 and therefore that f (su;p) > fD1(su). Moreover, since fD2

depends only on α − β , f (su;p) cannot be equal to fD2(sμ;p), otherwise f would be
constant on J 1

β1
c (r)+u

(which would contradict the definition of β1
c (r)). Thus, denoting by

(xu, yu, zu) any maximizer of (1.33) at su (recall that xu is unique by Proposition 2.8), if
we prove that there exists a v > 0 such that ψAB(su, xu) = ψAA(su, xu) when u ∈ (0, v],
then Proposition 1.12 implies that f (su;p) = fL1(su;p). Since s0 ∈ D1, we know from [4],
Proposition 4.2.3(i), that

sup
μ≥1

{
φI (μ; s0) − G(μ,x0)

}
< 0. (4.3)

It follows from [6], Lemma 2.4.1, that φI (μ; su) → 0 as μ → ∞ uniformly in u ∈ [0,1]
on the linear segment {su : u ∈ [0,1]}. Moreover, Proposition 2.9 implies that u �→ xu

is continuous and Proposition 4.1(i) that xu > a∗ = 5/2 for all u ∈ [0,1]. Then, since
G(μ,xu) ≥ 1/4 log[xu/(xu −2)], we can assert that there exists an R > 0 and a μ0 > 1 such
that supμ≥μ0

{φI (μ; su) − G(μ,xu)} ≤ −R for all u ∈ [0,1]. Moreover, by Lemma 2.3(i)
and by (1.15) we know that (μ,u) �→ φI (μ; su) − G(μ,xu) is continuous and strictly
negative on the set [1,μ0] × {0}. Therefore we can choose v > 0 small enough so that
supμ∈[1,μ0]{φI (μ; su) − G(μ,xu)} < 0 for u ∈ [0, v].

(v) For r ≥ 0, let Tr = {(β + r, β) : β ∈ [− r
2 , log(1 + √

1 − e−r )]}. By an annealed
computation we can prove that, for all r ≥ 0, (α,β) ∈ Tr implies φI (α,β;μ) = κ̂(μ) for
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all μ ≥ 1. Consequently, the criterion given in Corollary 1.7 (for (α,β) ∈ Dc
1) reduces to

supμ≥1{κ̂(μ) + r
2 − G(μ,y)} > 0. By definition of α∗, this criterion is not satisfied when

r ≤ α∗, and therefore Tr ⊂ D1. Hence, β1
c (r) ≥ log(1 + √

1 − e−r ). �

4.2 Proof of Theorem 1.16

Below we suppress the p-dependence of the free energy to ease the notation.

Proof (i) From Theorem 1.15(i) we know that f (β + r, β) > fD1(r) when r > α∗ and
β ≥ − r

2 . Hence we must show that for all r ∈ (α∗,∞) there exists a β2
c (r) such that

f (β + r, β) = fD2(r) when β ∈ [− r
2 , β2

c (r)] and f (β + r, β) > fD2(r) when β > β2
c (r).

This is done as follows. Since φI (β + r, β;μ) = κ̂(μ) for all μ ≥ 1 and −r/2 ≤ β ≤ 0,
we have ψAB(β + r, β;a) = ψAA(β + r, β;a) and ψBA(β + r, β;a) = ψκ̂

BA(β + r, β;a) for
all a ≥ 2. Therefore Proposition 1.9 implies f (β + r, β) = fD2(r) for all −r/2 ≤ β ≤ 0.
Moreover, β �→ f (β + r, β) is convex and therefore the proof will be complete once we
show that there exists a β > 0 such that f (β + r, β) > fD2(r). To prove the latter, we recall
Corollary 1.10, which asserts that (β + r, β) ∈ Dc

2 in particular when

sup
μ≥1

{
φI (μ) − G(μ,x)

}
> 0, (4.4)

where (x, y, z) is the maximizer of (1.29) at (β + r, β), which depends on r only. It was
shown in [4], (4.1.17), that φI (α,β; 9

8 ) ≥ β

8 . Therefore, for r > α∗ and β large enough, the
criterion in (4.4) is satisfied at (β + r, β). Finally, since fD2 is a function of α − β and p

and since f (α,β;p) = fD2(α − β;p) for all (α,β) ∈ J 2
r , it follows that the free energy is

constant on J 2
r .

(ii) To prove that r �→ β2
c (r) is lower semi-continuous, we must show that for all x ∈

(α∗,∞)

lim sup
r→x

β2
c (r) ≤ β2

c (x). (4.5)

Set l = lim supr→x β2
c (r). Then there exists a sequence (rn) with limn→∞ rn = x and

limn→∞ β2
c (rn) = l. We note that (α,β) �→ f (α,β) and (α,β) �→ fD2(α − β) are both

convex and therefore are both continuous. Effectively, as in (1.17), fD2 can be written as
the free energy associated with the Hamiltonian in (1.2) and with an appropriate restric-
tion on the set of paths Wn,Ln , which implies its convexity. By the definition of β2

c (rn), we
can assert that f − fD2 = 0 on the linear segment J 2

rn
for all n. Thus, by the continuity of

(α,β) �→ (f −fD2)(α,β) and by the convergence of rn to x, we can assert that f −fD2 = 0
on {(β + x,β) : − x

2 ≤ β ≤ l}, which implies that l ≤ β2
c (x) by the definition of β2

c (x).
(iii) Set l = lim supr→α∗ β2

c (r). In the same spirit as the proof of (ii), since f − fD2 is
continuous and equal to 0 on every segment J 2

r , it must be that f is constant and equal to
fD2(α

∗) on the segment {(β + α∗, β) : − α∗
2 ≤ β ≤ l}. This, by the definition of β1

c (α
∗),

implies that l ≤ β1
c (α

∗).
(iv) We will prove that there exist r2 > α∗ and η > 0 such that, for all r ∈ (α∗, r2) and all

u ∈ [0, η],
sup
μ≥1

{
φI (r + β2

c (r) + u,β2
c (r) + u;μ) − G(μ,xr,u)

} ≤ 0, (4.6)

where xr,u is the first coordinate of the maximizer of (1.33) at (r + β2
c (r) + u,β2

c (r) + u).
This is sufficient to yield the claim, because by Corollary 1.13 it means that fL1 = f .
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By using (iii), as well as (v) below, we have

0 < lim inf
r↓α∗ β2

c (r) ≤ lim sup
r↓α∗

β2
c (r) ≤ β1

c (α
∗), (4.7)

and hence for all ε > 0 there exists a rε > α∗ such that, for α∗ < r < rε ,

0 ≤ β2
c (r) ≤ β1

c (α
∗) + ε. (4.8)

Next, we define the function

L : (α,β;μ) ∈ CONE × [1,∞) �→ φI (α,β;μ) − G(μ,xα,β), (4.9)

where xα,β is the first coordinate of the maximizer of (1.33) at (α,β), and we set

F : (α,β) ∈ CONE �→ sup
μ≥1

L(α,β;μ). (4.10)

We will show that there exist r1 > α∗ and v > 0 such that F(α,β) is non-positive on the
set {(r + u,u) : r ∈ [α∗, r1], u ∈ [0, β1

c (α
∗) + v]}. Thus, choosing ε = v

2 in (4.8), and r2 =
min{rv/2, r1} and η = v

2 in (4.6), we complete the proof. �

In what follows we abbreviate β∗ = β1
c (α

∗), I1 = [α∗, α∗ +1] and I2 = [0, β∗ +1]. Since
(α∗ +β∗, β∗) ∈ D1, we know from [4], Proposition 4.2.3(i), that F(α∗ +β∗, β∗) < 0. More-
over, xα∗+u,u is equal to xα∗+β∗,β∗ for u ≤ β∗ and, by convexity, u �→ φI (α∗ + u,u;μ)

is non-decreasing for all μ ≥ 1. This implies that F(α∗ + u,u) ≤ F(α∗ + β∗, β∗) for all
u ∈ [0, β∗]. Then, mimicking the proof of Theorem 1.15(iv), we use Lemma 2.4, which tells
us that φI (α + β,β;μ) → 0 as μ → ∞ uniformly in (α,β) ∈ I1 × I2. Moreover, Proposi-
tion 2.9 implies that (α,β) �→ xα+β,β is continuous and, since G(μ,x) ≥ 1/4 log[x/(x −2)]
for x ≥ 2, we have that there exist R > 0 and μ0 > 1 such that, for all (α,β) ∈ I1 × I2,

sup
μ≥μ0

{φI (α + β,β;μ) − G(μ,xα+β,β)} ≤ −R. (4.11)

Note that, by (1.15) and Lemma 2.3(i), the function L defined in (4.9) is continuous on
CONE × [1,∞). Moreover, L(α∗ + u,u;μ) ≤ F(α∗ + β∗, β∗) < 0 for all μ ≥ 1 and u ∈
[0, β∗]. Therefore, by the continuity of L, we can choose R1 > 0, r2 > α∗ and v > 0 small
enough such that

sup
μ≤μ0

L(α + β,β;μ) ≤ −R1 (4.12)

for α ∈ [α∗, r2] and β ∈ [0, β∗ + v].
(v) For r ≥ 0, let

Tr =
{
(β + r, β) : β ∈

[
− r

2
, log

(
1 + (1 − e−r )

1
2
)]}

. (4.13)

By an annealed computation we can show that, for all r ≥ 0, (α,β) ∈ Tr implies
φI (α,β;μ) = κ̂(μ) for all μ ≥ 1. Moreover, φI ≡ κ̂ implies ψAB ≡ ψAA. Therefore, for
r > α∗, using the criterion (1.30), we obtain that Tr ⊂ D2, because none of the conditions
for (α,β) to belong to Dc

1 ∩ Dc
2 are satisfied in Tr . Hence β2

c (r) ≥ log(1 + √
1 − e−r ).
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4.3 Proof of Theorem 1.17

In this section we give a sketch of the proof of the infinite differentiability of (α,β) �→
f (α,β;p) on the interior of D2. For that, we mimic the proof of [6], Theorem 1.4.3, which
states that, in the supercritical regime p ≥ pc , the free energy is infinitely differentiable
throughout the localized phase. The details of the proof are very similar, which is why we
omit the details.

It was explained in Sect. 1.4.2 that, throughout D2, all the quantities involved in the varia-
tional formula in (1.29) depend on (α,β) only through the difference r = α − β . Therefore,
it suffices to show that r �→ fD2(r) (defined at the beginning of Sect. 1.5.3) is infinitely
differentiable on (α∗(p),∞).

4.3.1 Smoothness of ψκ̂
BA in Its Localized Phase

This section is the counterpart of [6], Sect. 5.4. Let

Lψκ̂ = {(r, a) ∈ (α∗,∞) × [2,∞) : ψκ̂
BA(r;a) > ψBB(r;a)}, (4.14)

where ψBB(r;a) = κ(a,1) − r
2 (recall (1.11)). Our main result in this section is the follow-

ing.

Proposition 4.2 (α,β, a) �→ ψκ̂
BA(α,β;a) is infinitely differentiable on Lψκ̂ .

Proof Let int[DOM(a)] be the interior of DOM(a). The proof of the infinite differentiability
of ψAB on the set

{
(α,β, a) ∈ CONE × [2,∞) : ψAB(α,β;a) >

1

2
log

5

2

}
, (4.15)

which was introduced in [6], Sect. 5.4.1, can be readily extended after replacing ψAB and
φI on their domains of definition by ψκ̂

BA on Lψκ̂ , respectively, κ̂ on int[DOM(a)]. For this
reason, we will only repeat the main steps of the proof and refer to [6], Sect. 5.4.1, for
details.

We begin with some elementary observations. Fix r ∈ (α∗,∞), and recall that the supre-
mum of the variational formula in (1.13) is attained at a unique pair (c(r, a), b(r, a)) ∈
int[DOM(a)]. Let

F(c, b) = cκ̂(c/b), F̃ (c, b) = (a − c)

[
κ(a − c,1 − b) − r

2

]
, (4.16)

and denote by Fc,Fb,Fcc,Fcb,Fbb the partial derivatives of order 1 and 2 of F w.r.t. the
variables c and b (and similarly for F̃ ).

We need to show that (c(r, a), b(r, a)) is infinitely differentiable w.r.t. (r, a). To do so,
we use the implicit function theorem. Define

R = {
(r, a, c, b) : (r, a) ∈ Lψκ̂ , (c, b) ∈ int[DOM(a)]} (4.17)

and

ϒ1 : (r, a, c, b) ∈ R �→ (Fc + F̃c,Fb + F̃b). (4.18)

Let J1 be the Jacobian determinant of ϒ1 as a function of (c, b). Applying the implicit
function theorem to ϒ1 requires checking three properties:
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(i) ϒ1 is infinitely differentiable on R.
(ii) For all (r, a) ∈ Lψκ , the pair (c(r, a), b(r, a)) is the only pair in int[DOM(a)] satisfying

ϒ1 = 0.
(iii) For all (r, a) ∈ Lψκ , J1 �= 0 at (c(r, a), b(r, a)).

Lemma 2.1 implies that F and F̃ are strictly concave on DOM(a) and infinitely differen-
tiable on int[DOM(a)], which is sufficient to prove (i) and (ii). It remains to compute the
Jacobian determinant J1 and prove that it is non-null. This computation is written out in [6],
Sect. 5.4.1, and shows that J1 is non-null when F̃ccF̃bb − F̃ 2

cb > 0. This last inequality is
checked in [6], Lemma 5.4.2. �

The next step requires an assumption on the set R(p). Recall that Rf

α,β,p , which is defined
in (2.2), is the subset of R(p) containing the maximizers (ρkl) of the variational formula in
(1.20). Consider the triple (ρ∗(p),ρ∗

BA(p),ρ∗
BB(p)), where ρ∗(p) is defined in (1.24), and

ρ∗
BA(p) = max{ρBA : (ρkl) ∈ R(p) and ρAA + ρAB = ρ∗(p)},

ρ∗
BB(p) = 1 − ρ∗(p) − ρ∗

BB(p).
(4.19)

Assumption 4.3 For all (α,β) ∈ D2, (ρ∗(p),ρ∗
BA(p),ρ∗

BB(p)) ∈ Rf

α,β,p .

This assumption is reasonable, because in D2 (recall Fig. 7) we expect that the copolymer
first tries to maximize the fraction of time it spends crossing A-blocks, and then tries to
maximize the fraction of time it spends crossing B-blocks that have an A-block as neighbor.

4.3.2 Smoothness of f on L

By Proposition 2.8, we know that, for all r ∈ (α∗(p),∞), the maximizers x(r), y(r), z(r)

of the variational formula in (1.29) are unique. By (1.20) and Assumption 4.3, we have that

fD2(r) = V ((ρ∗
kl(p)), (x(r), y(r), z(r))) = V (ρ∗, x(r), y(r), z(r))

= ρ∗x(r)ψAA(x(r)) + ρ∗
BAy(r)ψκ̂

BA(y(r)) + ρ∗
BBz(r)ψBB(z(r))

ρ∗x(r) + ρ∗
BAy(r) + ρ∗

BBz(r)
, (4.20)

where we suppress the p-dependence and simplify the notation.
Since r ∈ (α∗,∞), Propositions 1.6 and 1.9 imply that (r, y(r)) ∈ Lψκ̂ . Hence, by Propo-

sition 4.2, Corollary 2.2 and the variational formula in (4.20), it suffices to prove that
r �→ (x(r), y(r), z(r)) is infinitely differentiable on (α∗,∞) to conclude that r �→ fD2(r) is
infinitely differentiable on (α∗,∞). To this end, we again use the implicit function theorem,
and define

N = {
(r, x, y, z) : x > 2, z > 2, (r, y) ∈ Lψκ̂

}
(4.21)

and

ϒ2 : (r, x, y, z) ∈ N �→
(

∂V

∂x
(ρ∗, x, y, z),

∂V

∂y
(ρ∗, x, y, z),

∂V

∂z
(ρ∗, x, y, z)

)
. (4.22)

Let J2 be the Jacobian determinant of ϒ2 as a function of (x, y, z). To apply the implicit
function theorem, we must check three properties:

(i) ϒ2 is infinitely differentiable on N .
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(ii) For all r ∈ (α∗,∞), the triple (x(r), y(r), z(r)) is the only triple in [2,∞)3 satisfying
(r, x(r), y(r), z(r)) ∈ N and ϒ2(r, x(r), y(r), z(r)) = 0.

(iii) For all r > α∗, J2 �= 0 at (r, x(r), y(r), z(r)).

Proposition 4.2 and Corollary 2.2(i) imply that (i) is satisfied. By Corollary 2.2(ii, iii), we
know that a �→ aψκ̂

BA(a) and a �→ aψkl(a) with kl ∈ {AA,BB} are strictly concave on
[2,∞). Therefore, Proposition 2.8 implies that (ii) is satisfied as well. Thus, it remains to
prove (iii).

For ease of notation, abbreviate ψAA(x) = xψAA(r;x), ψBA(y) = yψκ̂
BA(r;y) and

ψBB(z) = zψBB(r; z). Note that

∂2V

∂x∂y
(r, x(r), y(r), z(r)) = ∂2V

∂x∂z
(r, x(r), y(r), z(r))

= ∂2V

∂y∂z
(r, x(r), y(r), z(r)) = 0, (4.23)

which is obtained by differentiating (4.20) and using the equality in (2.3), i.e.,

∂ψAA(x)

∂x
(x(r)) = ∂ψBA(y)

∂y
(y(r)) = ∂ψBB(z)

∂z
(z(r)) = V (ρ∗, x(r), y(r), z(r)). (4.24)

With the help of (4.23), we can assert that, at (r, x(r), y(r), z(r)),

J2 = ∂2V

∂x2

∂2V

∂y2

∂2V

∂z2
= C

∂2ψAA(x)

∂x2

∂2ψBA(y)

∂y2

∂2ψBB(z)

∂z2
, (4.25)

with C a strictly positive constant. Abbreviate xκ(x,1) = κ(x), and denote by κ ′′(x) its
second derivative. Then (1.11) implies that (∂2/∂x2)(ψAA(x)) = κ ′′(x) and (∂2/∂z2)×
(ψBB(z)) = κ ′′(z). Next, recall the formula for κ stated in [4], Lemma 2.1.1:

κ(a) = log 2 + 1

2

[
a loga − (a − 2) log(a − 2)

]
, a ≥ 2. (4.26)

Differentiate (4.26) twice to obtain that κ ′′ is strictly negative on (2,∞). Therefore it suffices
to prove that (∂2/∂y2)ψBA(y(r)) < 0 to conclude that J2 �= 0 at (r, x(r), y(r), z(r)), which
will complete the proof of Theorem 1.17.

In [6], Lemma 5.5.2, it is shown that the second derivative of xψAB(x) w.r.t. x is strictly
negative at x∗, where (x∗, y∗) is the maximizer of the variational formula (5.5.8) in [6], that
gives the free energy in the localized phase in the supercritical regime. It turns out that this
proof readily extends to our setting, and for this reason we do not repeat it here.

4.4 Proof of Theorem 1.18

Proof Recall that α∗(p) = α∗ and set ρ∗(p) = ρ∗. Let xδ, yδ be the unique maximizers of
the variational formula in (1.23) at α∗ + δ, i.e.,

fD1(α
∗ + δ;p) = ρ∗xδκ(xδ,1) + (1 − ρ∗)yδ[κ(yδ,1) − 1

2 (α∗ + δ)]
ρ∗xδ + (1 − ρ∗)yδ

. (4.27)

Put

Tδ = fD2(α
∗ + δ) − fD1(α

∗) − f ′
D1

(α∗)δ − 1

2
f ′′

D1
(α∗)δ2 (4.28)
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and Vδ = ρ∗xδ + (1 − ρ∗)yδ . By picking x = xδ , y = yδ and z = yδ in (1.29), we obtain that,
for every (b, c) ∈ DOM(yδ),

fD2(α
∗ + δ) ≥ 1

Vδ

(
ρ∗xδκ(xδ,1) + ρBA

[
cκ̂

(
c

b

)
+ (yδ − c)

[
κ(yδ − c,1 − b) − α∗ + δ

2

]]

+ (1 − ρ∗ − ρBA)yδ

[
κ(yδ,1) − α∗ + δ

2

])
. (4.29)

Hence, using a first-order Taylor expansion of (a, b) �→ κ(a, b) at (yδ,1), and noting that
b ≤ c and Vδ ≥ 2 for all δ ≥ 0, we obtain

fD2(α
∗ + δ) ≥ fD1(α

∗ + δ) + ρBA

(c/b)Vδ

R c
b
,δ c + L(δ)c2, (4.30)

where δ �→ L(δ) is bounded in the neighborhood of 0 and

Rμ,δ =
[
μ

(
κ̂(μ) − κ(yδ,1) − yδ∂1κ(yδ,1) + α∗ + δ

2

)
− yδ∂2κ(yδ,1)

]
. (4.31)

The strict concavity of μ �→ μκ̂(μ) implies that, for every δ > 0, μ �→ Rμ,δ attains its max-
imum at a unique point μδ . Thus, we may pick b = c/μ0 in (4.30) and obtain

Tδ ≥
{
fD1(α

∗ +δ)−fD1(α
∗)−f ′

D1
(α∗)δ− 1

2
f ′′

D1
(α∗)δ2

}
+ ρBA

μ0Vδ

Rμ0,δ c+L(δ)c2. (4.32)

Since (α,β) �→ fD1(α−β) is analytic on CONE, and since δ �→ Vδ is continuous (recall that,
by Proposition 2.9, δ �→ (xδ, yδ) is continuous), we can write, for δ small enough,

Tδ ≥ ρBA

2μ0V0
Rμ0,δ c + L(δ)c2 + G(δ)δ3 (4.33)

where δ �→ G(δ) is bounded in the neighborhood of 0. Next, note that Proposition 1.7 im-
plies that Rμ0,0 = 0. Moreover, as shown in [4], Proposition 2.5.1, δ �→ (xδ, yδ) is infinitely
differentiable, so that ∂R

∂δ
(μ0,0) exists. If the latter is > 0, then we pick c = xδ in (1.43) and,

by choosing x > 0 small enough, we obtain that there exists a t > 0 such that Tδ ≥ tδ2 and
the proof is complete.

Thus, it remains to prove that ∂R
∂δ

(μ0,0) > 0. To that aim, we let (x ′
0, y

′
0) be the derivative

of δ �→ (xδ, yδ) at δ = 0 and recall the following expressions from [4]:

κ(a,1) = 1

a

[
log 2 + 1

2
[a loga − (a − 2) log(a − 2)]

]
,

∂κ

∂1
(a,1) = − log 2

a2
− 1

a2
log(a − 2),

∂κ

∂2
(a,1) = 1

2a
log

(
4(a − 2)(a − 1)2

a

)
.

(4.34)

These give

∂R

∂δ
(μ0,0) = 1

2

{
μ0 + y ′

0

[
2μ0

(y0 − 2)y0
− 1

y0 − 2
− 2

y0 − 1
+ 1

y0

]}
. (4.35)
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Since − 1
y0−2 − 2

y0−1 + 1
y0

< 0, and since it was proven in [4], Proposition 2.5.1, that y ′
0 < 0,

we obtain via (4.35) that

∂R

∂δ
(μ0,0) ≥ μ0

2

(
1 + y ′

0

2

(y0 − 2)y0

)
. (4.36)

It was also proven in [4], Proposition 2.5.1, that

y ′
0 = −y0(y0 − 2)

2
+ 2x ′

0y0(y0 − 2)

x0(x0 − 2)
, (4.37)

which implies that y ′
0 > − y0(y0−2)

2 because x ′
0 > 0. Thus, recalling (4.36), we indeed have

that ∂R
∂δ

(μ0,0) > 0. �

4.5 Proof of Theorem 1.19

4.5.1 Lower Bound

Proof Pick r ∈ [0, α∗) and δ > 0. Denote by αr and βr the quantities r + β1
c (r) and β1

c (r).
Let xr , yr be the maximizers of (1.23) at αr − βr (keep in mind that αr − βr = r), i.e.,

fD1(αr − βr;p) = ρ∗xrκ(xr ,1) + (1 − ρ∗)yr [κ(yr ,1) − αr−βr

2 ]
ρ∗xr + (1 − ρ∗)yr

. (4.38)

Put

Tδ = fL1(αr + δ,βr + δ;p) − fD1(αr − βr;p) (4.39)

and Vr = ρ∗xr + (1 − ρ∗)yr . By picking x = xr , y = yr and z = yr in (1.33) at (αr + δ,

βr + δ), we obtain, for every (b, c) ∈ DOM(yr),

fL1(αr + δ,βr + δ;p) ≥ 1

Vr

(
ρ∗xrκ(xr ,1) + ρBA

[
cφI

(
αr + δ,βr + δ; c

b

)

+ (yr − c)

[
κ(yr − c,1 − b) − αr − βr

2

]]

+ (1 − ρ∗ − ρBA)yr

[
κ(yr ,1) − αr − βr

2

])
. (4.40)

Therefore, using (4.38) and (4.40), we obtain

Tδ ≥ ρBA

Vr

(
c

[
φI

(
αr + δ,βr + δ; c

b

)
+ αr − βr

2
− κ(yr − c,1 − b)

]

+ yr [κ(yr − c,1 − b) − κ(yr ,1)]
)

. (4.41)

By a Taylor expansion of (a, b) �→ κ(a, b) at (yr ,1), noting that b ≤ c, we can rewrite (4.41)
as
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Tδ ≥ ρBA

Vr

(
c

[
φI

(
αr + δ,βr + δ; c

b

)
+ αr − βr

2
− κ(yr ,1) − yr∂1κ(yr ,1)

− byr

c
∂2κ(yr ,1)

]
+ ξ(c)c2

)
, (4.42)

where x �→ ξ(x) is bounded in the neighborhood of 0. As explained in the proof of Theo-
rem 1.15(i), for r < α∗,

sup
μ≥1

μ

(
κ̂(μ) + αr − βr

2
− κ(yr ,1) − yr∂1κ(yr ,1) − yr

μ
∂2κ(yr ,1)

)
< 0. (4.43)

Set

sr = αr − βr

2
− κ(yr ,1) − yr∂1κ(yr ,1). (4.44)

Then (4.43) and [4], Lemma 2.1.2(iii), which asserts that μκ̂(μ) ∼ logμ as μ → ∞, are
sufficient to conclude that sr < 0. Next, we note that, by the definition of βr and by Corol-
lary 1.7, for all δ > 0 there exists a μδ > 1 such that

μδ φI (αr + δ,βr + δ;μδ) + μδsr − yr∂2κ(yr ,1) > 0. (4.45)

Because of Lemma 2.4(i), which tells us that φI (αr + δ,βr + δ;μ) tends to 0 as μ → ∞
uniformly in δ ∈ [0,1], we know that μδ is necessarily bounded uniformly in δ. For this
reason, and since (αr , βr) ∈ D1 and (μ,α,β) �→ φI (α,β;μ) is continuous, Corollary 1.7
allows us to assert that there exists a μr > 1 such that

μr

(
φI (μr,αr , βr) + sr − yr

μr

∂2κ(yr ,1)

)
= 0. (4.46)

Hence, using (4.43), we obtain φI (αr , βr ,μr) > κ̂(μr). Moreover, x �→ φI (αr − βr +
x, x,μr) is convex and φI (αr − βr + x, x,μr) = κ̂(μr) for x ≤ 0. Therefore, we can assert
that ∂x(φ

I [αr −βr +x, x,μ)](x = βr) = m > 0 and, consequently, φI (μr,αr +δ,βr +δ) ≥
φI (μr,αr , βr) + mδ. Now (4.42) becomes

Tδ ≥ ρBA

Vr

(
cmδ + ξ(c)c2

)
, (4.47)

and by picking c = σδ with σ small enough we get the claim. �

4.5.2 Upper Bound

Proof For this proof only we assume the strict concavity of μ �→ μφI (α,β;μ) for all
(α,β) ∈ CONE. As mentioned in Remark 1.2(ii), the latter implies the strict concavity of
a �→ aψBA(α,β;a). We keep the notation of Sect. 4.5.1, i.e., we let (xδ, yδ, zδ) be the unique
maximizers of the variational formula in (1.33) at (αr + δ,βr + δ):

fL1(αr + δ,βr + δ;p) = ρAxδψAA(xδ) + ρBAyδψBA(yδ) + ρBBzδψBB(zδ)

ρAzδ + ρBAyδ + ρBBzδ

. (4.48)

We let (bδ, cδ) be the maximizers of the variational formula in (1.13) at (αr + δ,βr + δ, zδ).
Recall that, in D1, f (α,β;p) is equal to fD1(α,β;p), but is also equal to fL1(α,β;p).
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Therefore, by picking xδ , yδ and zδ in (1.33) at (αr , βr), and (bδ, cδ) in (1.13) at (αr , βr , yδ),
we obtain the upper bound

Tδ = fL1(αr + δ,βr + δ,p) − fL1(αr , βr ,p)

≤ cδ

[
φI

(
αr + δ,βr + δ,

cδ

bδ

)
− φI

(
αr,βr ,

cδ

bδ

)]
. (4.49)

As stated in the proof of Lemma 2.3, φI (α,β;μ) is K-Lipschitz in (α,β) uniformly in μ.
We therefore deduce from (4.49) that Tδ ≤ Kcδδ, and the proof will be complete once we
show that limδ↓0 cδ = 0.

Since (αr , βr) ∈ D1, we have fD1 = fL1 at (αr , βr) and since a �→ aψBA(αr , βr;a) is
strictly concave, the maximizers of (1.33) are unique. This yields y0 = z0. Moreover, by
applying Proposition 2.9, we obtain that (xδ, zδ) �→ (x0, z0) as δ → 0. Therefore we need
to show that yδ �→ y0 as δ → 0. For this, we recall (2.3), which allows us to assert that, for
δ ≥ 0,

∂[aψBA(αr + δ,βr + δ;a)]
∂a

(yδ) = f (αr + δ,βr + δ). (4.50)

Since f (αr , βr) > 0, by applying Lemma 2.5(ii) we can assert that there exists an a0 > 0
such that, for all δ ∈ [0,1] and all y ≥ a0, the l.h.s. of (4.50) is smaller than or equal to
f (αr, βr)/2, whereas for δ small enough the continuity of f implies that the r.h.s. of (4.50)
is strictly larger than f (αr , βr)/2. Therefore yδ ≤ a0 when δ is small. Next, the continuity
of (α,β) �→ f (α,β) and (α,β, a) �→ ψkl(α,β;a), together with the convergence of (xδ, zδ)

to (x0, y0) as δ → 0 allows us, after letting δ → 0 in (4.48) and using again the uniqueness
of the maximizers in (1.33), to conclude that yδ → y0 as δ → 0.

Now, put μδ = cδ

bδ
. Then, by the definition of (bδ, cδ), we have

yδψBA(αr + δ,βr + δ;yδ)

= cδφ
I (αr + δ,βr + δ;μδ) + (yδ − cδ)

[
κ

(
yδ − cδ,1 − cδ

μδ

)
− αr − βr

2

]
. (4.51)

We already know that cδ is bounded in δ, since cδ ≤ yδ and yδ converges. We want to show
that μδ is bounded in δ as well. Note that, by the concavity of a �→ aκ(a,1), the r.h.s. of
(4.51) is concave as a function of c. Moreover, for all δ > 0 we have cδ > 0, because (αr +
δ,βr + δ) ∈ L1. This implies that the derivative of the r.h.s. of (4.51) w.r.t. c at (c = 0,μδ)

is strictly positive when δ > 0, i.e.,

φI (αr + δ,βr + δ;μδ) − sr,δ − yδ

μδ

∂κ(yδ,1) > 0 (4.52)

with

sr,δ = αr − βr

2
− κ(yδ,1) − yδ∂1κ(yδ,1). (4.53)

Note that sr,0 = sr , with sr defined in (4.44). Since yδ converges to y0, and since we have
proved in Sect. 4.5.1 that sr,0 < 0, it follows that sr,δ ≤ sr,0/2 < 0 for δ small enough. More-
over, by Lemma 2.4(i), φI (αr + δ,βr + δ;μ) tends to 0 as μ → ∞ uniformly in δ ∈ [0,1],
which, with the help of (4.52), is sufficient to assert that μδ is bounded from above for δ

small.
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At this stage, it remains to prove that the only possible limit for cδ is 0. Assuming that
(cδ,μδ) �→ (c∞,μ∞), we obtain, when δ → 0 in (4.51),

y0ψBA(αr , βr;y0) = c∞φI (αr , βr;μ∞) + (y0 − c∞)

[
κ

(
y0 − c∞,1 − c∞

μ∞

)
− αr − βr

2

]
.

(4.54)

The fact that (αr , βr) ∈ D1 implies, by Corollary 1.7, that the derivative of the r.h.s. of (4.54)
w.r.t. c at (c = 0,μ∞) is non-positive. Therefore the concavity in c of the r.h.s. of (4.54) is
sufficient to assert that c∞ = 0. �

4.6 Proof of Theorem 1.20

Proof Recall Theorem 1.16(iv), and the constant r2 > 0 such that D2 and L1 touch each
other along the curve r ∈ [α∗, α∗ + r2) �→ (r + β2

c (r), β
2
c (r)). Pick r ∈ [α∗, α∗ + r2) and

δ > 0. We abbreviate αr and βr for the quantities r + β2
c (r) and β2

c (r). Let xr, yr , zr be the
unique maximizers of the variational formula (1.29) at αr − βr , i.e.,

fD2(αr − βr;p)

= ρAxrψAA(αr − βr;xr) + ρBAyrψ
κ̂
BA(αr − βr;yr) + ρBBzrψBB(αr − βr; zr)

ρAxr + ρBAyr + ρBBzr

. (4.55)

Put

Tδ = fL1(αr + δ,βr + δ;p) − fD2(αr − βr;p) (4.56)

and Vr = ρAxr +ρBAyr +ρBBzr . By picking x = xr , y = yr and z = yr in (1.33), we obtain,

fL1(αr + δ,βr + δ;p)

≥ ρAxrψAA(αr − βr, xr) + ρBAyrψBA(αr + δ,βr + δ;yr) + ρBBzrψBB(αr − βr; zr)

V (r)
.

(4.57)

Therefore, using (4.55–4.57) we obtain

Tδ ≥ ρBAyr

Vr

(
ψBA(αr + δ,βr + δ;yr) − ψκ̂

BA(αr − βr;yr)
)
. (4.58)

Let (cr , br) be the unique maximizer of (1.14) at (αr − βr;yr). By picking (c, b) = (cr , br)

in (1.13) at (αr + δ,βr + δ;yr), we can bound Tδ from below as

Tδ ≥ Rr

([
φI

(
αr + δ,βr + δ; cr

br

)
− κ̂

(
cr

br

)])
, (4.59)

where Rr = ρBAcr/Vr . Since (αr , βr) ∈ D2 and (αr + δ,βr + δ) ∈ L1, it follows from
Proposition 1.9 that ψBA(αr, βr;yr) = ψκ̂

BA(αr , βr;yr) and ψBA(αr + δ,βr + δ;yr) >

ψκ̂
BA(αr, βr;yr). Therefore, by Lemma 3.1, we obtain that φI (αr , βr; cr

br
) = κ̂( cr

br
), whereas

φI (αr + δ,βr + δ; cr

br
) > κ̂( cr

br
), which means that the phase transition of φI along

{(s + r, s) : s ≥ − r
2 } effectively occurs at s = βc(r). Using (1.20), we complete the proof. �
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