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Abstract – We compare the elastic response of spring networks whose contact geometry is derived
from real packings of frictionless discs, to networks obtained by randomly cutting bonds in a highly
connected network derived from a well-compressed packing. We find that the shear response of
packing-derived networks, and both the shear and compression response of randomly cut networks,
are all similar: the elastic moduli vanish linearly near jamming, and distributions characterizing
the local geometry of the response scale with distance to jamming. Compression of packing-derived
networks is exceptional: the elastic modulus remains constant and the geometrical distributions
do not exhibit simple scaling. We conclude that the compression response of jammed packings is
anomalous, rather than the shear response.

Copyright c© EPLA, 2009

The jamming transition governs the onset of rigidity
in disordered media as diverse as foams, colloidal suspen-
sions, granular media and glasses [1]. While jamming in
general is controlled by a combination of density, shear
stress and temperature, most progress has been made
for frictionless soft spheres that interact through purely
repulsive contact forces, and that are at zero temperature
and zero load [2–7]. This simple model applies to static
foams or emulsions [8,9], and represents a simplified
version of granular media, if one ignores friction [10,11]
and nontrivial grain shapes [12–15].
From a theoretical point of view, this model is ideal

for two reasons. First, it exhibits a well-defined jamming
point, “point J”, which in the limit of large system sizes,
occurs at a well-defined density φ= φc [2]. Here the system
is a disordered packing of frictionless undeformed spheres,
which is marginally stable and isostatic, i.e., its contact
number (average number of contacts per particle) z equals
ziso = 2d in d dimensions [2,16]. Second, in recent years it
has been uncovered that the mechanical and geometric
properties of such jammed packings exhibit a number of
non-trivial power law scalings as a function of the distance
to the jamming point: 1) The excess contact number
∆z := z− ziso scales as (φ−φc)1/2 [2,6,9,10]; 2) The ratio

(a)E-mail: wouterel@sas.upenn.edu

of shear (G) and bulk (K) elastic moduli vanishes at point
J as G/K ∼∆z [2].
The latter behavior —a shear rigidity which becomes

much smaller than the compression modulus as the
jamming point is approached— is in many ways surpris-
ing. It also differs markedly from what is found in two
simplified models of jammed systems, effective medium
theory (EMT) and random elastic networks, as is illus-
trated schematically in fig. 1 for the simple case of
harmonic particles. EMT predicts that the elastic moduli
vary smoothly through the isostatic point where ∆z = 0
and that the moduli are of order of the local spring
constant k. This is because effective medium theory is
essentially “blind” to local packing considerations and
isostaticity. Thus, besides failing to capture the vanishing
of G near jamming, its prediction for the bulk modulus
fails spectacularly as well: it predicts finite rigidity below
isostaticity.
The failure of EMT to describe elasticity near jamming

motivated earlier suggestions that elasticity of jammed
packings might be captured by random networks of springs
—this problem is known as rigidity percolation [8,17–19].
However, in such random spring networks, both Gand K
are expected to go to zero as k∆z, as fig. 1c illustrates [17].
Thus, while from the point of view of effective medium

theory the shear rigidity of jammed packings behaves
anomalously, from the point of view of rigidity percolation,
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Fig. 1: (Colour on-line) Schematic comparison of the variation
of shear (G) and bulk (K) elastic moduli as function of distance
to jamming. (a) In effective medium theory, all elastic moduli
are simply of the order of the local spring constant k, and
moreover, the theory does not account for whether the packing
is rigid or not. (b) In jammed packings of harmonic particles,
the bulk modulus K remains constant down to the jamming
transition, where it vanishes discontinuously, whereas the shear
modulus G vanishes linearly in ∆z. (c) In random networks of
elastic springs, both elastic moduli vanish linearly with ∆z.

the compression modulus behaves unexpectedly. What sets
jammed packings apart from either of these two limiting
models? How to understand the difference in terms of
the local packing or response? Is the difference with
rigidity percolation visible in the scaling behavior of the
response of packings? These are issues we aim to clarify
in this paper. Our approach will hinge on characterizing
the elastic response at the level of the bonds. After all,
the elastic moduli characterize changes in elastic energy
∆E under deformations, and ∆E simply is a sum of the
changes in elastic energy of all contacts (bonds) in the
system.
By probing the nature of the local response of packing-

derived and randomly cut networks, we find that we
can distinguish two cases. In the “generic” case, all
geometrical characterizations exhibit simple scaling and
the elastic moduli scale as ∆z —this describes shear
and bulk deformations of randomly cut networks, as
well as shear deformations of packing-derived networks.
Packing derived networks under compression form the
“exceptional” case: the fact that the compression modulus
remains of order k near jamming is reflected in the fact
that various characteristics of the local displacements do
not exhibit pure scaling. We connect these findings to
recent theoretical work by Wyart [20,21].

Linear response. – All numerical results presented in
this paper concern quasistatic linear response of systems
to global shear or compressional forcing. First we generate,
for a range of pressures, ensembles of 50 two-dimensional
jammed packings of 1024 frictionless particles with one-
sided harmonic forces (k= 1) using a molecular dynam-
ics simulation (for details, see [22]). Our linear response
calculations are based on the dynamical matrix. We

(a) Jammed 
     Packings

(b) Spring Networks
     with pre-stress

(c) Spring Networks
     w/o pre-stress

(d) Randomly cut
     Networks

decompress

cut

Fig. 2: (Colour on-line) Two families of spring networks —see
text for details.

decompose, for linear deformations, the relative displace-
ment uij of neighboring particles i and j in components
parallel (u‖) and perpendicular (u⊥) to rij , where rij
connects the centers of particles i and j. In these terms
the change in energy takes a simple form [5,23],

∆E =
1

2

∑
i,j

k

2

(
u2‖,ij −

fij

krij
u2⊥,ij

)
. (1)

The dynamical matrix Mij,αβ is obtained by rewriting
eq. (1) in terms of the independent variables, ui,α, as

∆E =
1

2
Mij,αβui,αuj,β . (2)

Here fij are contact forces, k denotes the stiffness of the
springs1, M is a dN × dN matrix with N the number
of particles, indices α, β label the coordinate axes, and
the summation convention is used. The dynamical matrix
contains all information on the elastic properties of the
system, and in particular describes the linear response to
external forcing f exti,α as [7,24]:

Mij,αβuj,β = f
ext
i,α . (3)

Two families of spring networks. – We start by
noting that the analysis of the linear response of jammed
packings of particles with one-sided harmonic interactions
(fig. 2a) is exactly equivalent to that of networks of
appropriately loaded harmonic springs (fig. 2b), with the
nodes of the network given by the particle centers and the
geometry and forces of the spring network determined by
the force network of the packing.

1For our harmonic potential, k= 1 for each contact, but the
procedure works equally well for more general potentials, for which
kij is simply the value of the second derivative of the potential,
evaluated at the initial distance rij .
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In all that follows, we ignore the pre-stress term
fij
krij
u2⊥,ij which is subdominant near jamming —we have

checked that its exclusion does not affect the results [6].
The system without pre-stress is equivalent to a “neutral”
spring network where all contacts are replaced by springs
at their equilibrium length so that fij = 0 for all contacts
(fig. 2c). For such a neutral spring network the dynamical
matrix becomes particularly simple, as its only non-zero
elements are simply given by geometry and by the bond
strengths k of each bond.
We follow two routes to approach the (un)jamming

transition by lowering the contact number in the neutral
networks. In the first route, we map jammed pack-
ings under increasingly low pressure (fig. 2a) to neutral,
packing-derived spring networks (fig. 2c) —the geometry
of these networks and the contacts that are broken when
point J is approached are thus set by real packings that
were created using the MD protocol described in ref. [22].
In the second route, we start from a neutral spring network
that is obtained from a heavily compressed jammed pack-
ing for which z ≈ 5.98. We then create randomly cut
networks with lower contact number by randomly remov-
ing springs [25], making sure that we do not create local
disconnected patches and that each node in the network
remains connected by at least three springs (fig. 2d) —the
geometry of these networks becomes increasingly random.
Note that no relaxation is needed after removing springs
because the neutral network has fij = 0 in each contact.

Elastic moduli. – To analyze the linear response,
we impose an infinitesimal strain deformation of order ε,
implemented by the appropriate changes in rest lengths
of all bonds that cross the boundary of the periodic box
of size L×L. This amounts to replacing uij in eq. (1)
by uij −ubij , where ubij denotes the appropriate shift of
magnitude εL at bonds ij that cross the boundary, and is
zero for interior bonds. Keeping track of this substitution
in going from eq. (1) to eq. (3), these constant terms
are taken to the right-hand side, and thus act like an
effective f ext [7] that is proportional to ε. The response
of the system to this shape or volume change of the box is
then calculated by solving eq. (3) for this effective external
force.
The moduli are extracted from the energy (eq. (2))

according to

K,G=
∆E

2V ε2
, (4)

for a uniform strain, εxx = εyy = ε for compression, and
εxy = ε for shear. Here V is the volume of the system.
In fig. 3 we show the scaling of the elastic moduli G and
K thus obtained, as a function of the contact number z for
both packing-derived and randomly cut spring networks.
The main point is that these two families exhibit different
scaling behavior: for randomly cut networks, both moduli
vanish as ∆z, while for the packing-derived networks only
the shear modulus G goes to zero —the compression
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Fig. 3: (Colour on-line) Shear (diamonds) and bulk (squares)
elastic moduli as function of distance to jamming for (a)
jammed harmonic packings (b) randomly cut spring networks.
Both panels have the same linear fit for the shear modulus (blue
line). Inset: enlargement of the behavior ofK and G near z = 4.

modulus K remains finite2. The behavior of the randomly
cut networks is consistent with what is expected for
rigidity percolation in random spring networks [17,18],
while the behavior for packing-derived networks is in
agreement with earlier data for jammed packings [2,7].
Hence, from the point of view of rigidity percolation, the
anomaly in jammed packings is thus that the compression
modulus K/k stays finite as ∆z→ 0.
Note that the dynamical matrix of both types of

networks contains only geometric information about the
network, since the spring constant k= 1 for each bond.
Hence the crucial difference between packing-derived
networks and randomly cut networks that is causing
the bulk modulus to be different must have a purely
geometric origin.

Nonaffinity of response. – We will now connect the
scaling of the elastic moduli to the local deformation field.
One tool that we use to probe the degree of non-affinity of
the response near point J is P (α), the probability density
function (PDF) of the displacement angles αij [7]. Here α
denotes the angle between uij and rij , or,

tanαij =
u⊥,ij
u‖,ij

. (5)

In EMT, the displacements of the particles are
prescribed by an affine deformation field. Affine compres-
sion corresponds to a uniform shrinking of the bond
vectors, i.e. u⊥,ij = 0, while u‖,ij =−εrij < 0: the corre-
sponding P (α) exhibits thus a delta peak at α= π. The
effect of an affine shear on a bond vector depends on its
orientation, and for isotropic random packings P (α) is
flat.
The results for packing-derived networks are shown

in fig. 4a, c. Note that far away from jamming, the
PDFs are similar to the EMT predictions: a peak at π
under compression, and a flat PDF under shear. When

2Here and in what follows, ∆z = z− zc ≈ z− ziso, where for
packing-derived (randomly cut) networks zc = 4(4.045). The discrep-
ancy between zc and ziso (see inset of fig. 3) for the randomly cut
networks is not a finite size effect, but can be attributed to the precise
cutting protocol.
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Fig. 4: The PDF of the displacement angles P (α) for
compression (a,b) and shear (c,d). The seven curves
denote, in order of decreasing peak height at α= π/2,
z = 4.008, 4.027, 4.063, 4.14, 4.28, 4.74, 5.27. (a,c) For packing-
derived networks, P (α) for compression and shear appear
rather different. (b,d) For randomly cut networks, P (α) devel-
ops the same peaked structure when z→ 4 for compression and
shear. Insets: The width of the peaks (defined as the width of
the interval containing the central 50% of the data), as a func-
tion of ∆z. The dotted lines indicate w∼∆z for all cases except
compression of bead packings.

approaching the unjamming transition, a peak at α= π/2
develops, which signifies that an increasingly large frac-
tion of contacting particles mostly slide past each other.
However, under shear, this peak is much more pronounced
than under compression, and under compression the PDF
retains a significant shoulder between π/2 and π.
The results from the randomly cut networks are shown

in fig. 4b, d: a strong peak develops in P (α) as ∆z
decreases, both for the response to shear and to compres-
sion. The relative displacements of contacting particles
in response to compression thus signal an important
difference between packing-derived networks and random
networks.

Scaling arguments for non-affinity. – Wyart and
coworkers have given arguments for estimating the ener-
gies and local deformations of soft (low energy) modes
starting from purely floppy (zero energy) modes [5,25].
They construct trial soft modes that are basically floppy
modes, obtained by cutting bonds around a patch of
size �∗, and then modulating these with a sine function
of wavelength �∗ to make the displacements vanish at the
locations of the cut bonds. Here �∗ ∼ 1/∆z is a charac-
teristic length scale [5–7,20]. In particular, for the local
deformations (see fig. 5), they find [25]

u‖
u⊥
∼ 1
�∗
→ u‖
u⊥
∼∆z, (6)

uij
rijα

(a) Floppy mode (b) Soft mode

l*

α

Fig. 5: Illustration of Wyart’s argument [25] for u‖/u⊥: Left:
a floppy patch of material, obtained by cutting bonds on the
outer edge, in which all contacts have exactly α= π/2 upon
distortion, in accord with the definition of a floppy mode [23].
Right: a weakly distorted floppy mode (also called trial soft
mode) can be thought of as a floppy mode that is distorted
elastically on a scale �∗. Accordingly all angles α are slightly
different from π/2, as indicated in the figure. The dashed lines
denote the relative displacement pairs of contacting particles,
marked by the solid line connecting their centers.

where symbols without indices ij refer to typical
or average values of the respective quantities3. Note
that the width w of the peak in P (α) is, close to
the jamming transition, roughly w∼ u‖/u⊥, because
|αij −π/2| ≈ u‖,ij/u⊥,ij if u‖,ij� u⊥,ij .
The question is now, whether the linear response follows

this prediction for the soft modes, for our two families of
networks. The insets of fig. 4 show that the scaling behav-
ior (6) is consistent with our data for the width w of the
peak of P (α) for packing-derived networks under shear,
and for randomly cut networks under either compres-
sion and shear deformations. The P (α) for compression
of packing-derived networks is the exceptional case. The
peak of P (α) does not grow as much, and a substantial
shoulder for large α remains even close to jamming: the
tendency for particles to move towards each other remains
much more prominent under compression.

Fraction of compressed bonds. – In order to clarify
the significance of the large-α shoulder, let us analyze
the fraction of significantly compressed bonds. Intuitively,
it is clear that this fraction should be at the root of
the difference between randomly cut networks, whose
compression modulus K vanishes near jamming, and
packing-derived networks whose K does not. Indeed,
suppose we compress a packing-derived network. When
a finite fraction of the bonds gets shortened with a finite

3In earlier work [7], we have argued that the scaling u‖/u⊥ ∼∆z
can also be understood by balancing the first and second terms in
the energy expansion (eq. (1)) which yields the scaling u‖/u⊥ ∼

√
δ,

with δ is the typical overlap. For jammed packings, where the pre-
stress term is taken into account, this result is consistent with (6)

in view of the scaling ∆z ∼√δ. However, as we show here, even if
the pre-stress term is ignored in the dynamical matrix, very similar
scaling is obtained.
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Fig. 6: Scaling of (a) ρcomp, (b) ρstrict, and (c) ρ‖, as a function
of z for compression of packing-derived networks (symbols) and
randomly cut networks (curves). (d) The packing data on a log
scale, emphasizing the rapid rise of ρcomp at small ∆z. The
dotted lines mark exponents 0.5 and 0.65, to guide the eye
—there is no clean scaling.

fraction of the strain ε, then K will be proportional to the
bond strength k —this simply follows from the expression
for the energy change ∆E, eq. (1).
To quantify this, we define the fraction ρcomp of bonds

whose local response has α> 3π/4, i.e., contact pairs
which upon compression move more towards each other
than they move sideways (u‖ <−|u⊥|< 0). If the PDF
P (α) was governed by a single scale, the observed scaling
of the width of the peak of P (α)∼∆z in accord with (6),
suggests that ρcomp ∼∆z near jamming.
In fig. 6 we compare the scaling of ρcomp for both our

types of networks. The P (α) for random networks can be
described by a single scale 1/�∗ ∼w∼∆z (fig. 4b), and
indeed the corresponding ρcomp is linear in ∆z (fig. 6a).
For packing-derived networks close to jamming, ρcomp
rises more rapidly than linearly, and is much larger
than for the randomly cut networks. This shows that
under compression of packings a significant fraction of the
contacts remains non-sliding and that single-parameter
scaling does not apply —indeed, while our randomly cut
networks are consistent with a linear variation of ρcomp,
if we fit our data for packing-derived networks to a power
law form ρcomp ∼ (∆z)ζ , we do not find a clear scaling
(ζ ≈ 0.65, but only over 1 decade in ∆z).
In principle, many of the bonds with α> 3π/4 could

have anomalously small u‖ —to check that this is not
the case, we have also investigated ρstrict, the fraction of
bonds whose local response has α> 3π/4 and u‖ <−εrij ,
and ρ‖, the fraction of bonds whose local response has
u‖ <−εrij . The latter condition can be phrased as the
fraction of bonds that are more compressed than they
would be if the response were affine. As shown in fig. 6b, c,
these measures of compressed bond fractions are also much
larger for compression of packing-derived networks.

For compression of packing-derived networks, sinceK/k
remains finite for ∆z→ 0, one should expect a finite frac-
tion of bonds with u‖ of order ε —consistent with this ρ‖
remains finite in this case. Although P (α) in fig. 4a do not
appear to be governed by a single scale, a tentative argu-
ment can be given why the rise in ρcomp is steeper than
linear for small ∆z: Assume the typical u⊥ is still of the
order ε/

√
∆z, as is the case for compression of randomly

cut networks (from combining eq. (6) with eq. (1) and
K ∼ k∆z). Then, the relevant scale in P (α) would be set
by u‖/u⊥ ∼

√
∆z, and one would find ρcomp ∼

√
∆z. As

expected, we do not find such a clear scaling in fig. 6d,
but the rapid initial rise is clearly visible.
In conclusion, we find that the non-affine displacements

in random spring networks and sheared jammed packings
all share the same simple scalings of P (α), as well as
having elastic moduli which scale as k∆z, where k denotes
the bond stiffness. The response of jammed packings
to compression is the exceptional case: P (α) has more
structure than a single peak, naive scaling breaks down
and K ∼ k.
Interpretation in terms of the space of force
networks. – We finally briefly discuss these issues within
the framework developed byWyart [20,21] for the response
of frictionless granular packings. For a network consisting
of N particles and zN/2 contacts, any imposed deforma-
tion can be expressed in terms of the change of the rest
lengths of some bonds in the network. After perturbing
one or more bonds, for example in a way which corre-
sponds to a global shear or compression of the packing,
there will be an energy minimization involving the dN
degrees of freedom (displacements ui). Hence, the space
of responses to perturbations that cost energy has dimen-
sion zN/2− dN =∆zN/2. An equivalent way to view this
is that after perturbing the rest lengths of the bonds, the
particles will move so as to satisfy the dN local equations
of force balance. Therefore the force response network can
be expressed in a basis {f (i)} of the ∆zN/2-dimensional
solution space F of of the force balance equations.
The force space thus defined is very similar to the solu-

tion space of the force network ensemble [26–28], where
one studies the space of allowed force configurations, F fne
for a given contact geometry and externally imposed pres-
sure. Let us define the extended force network ensemble,
as the ensemble of all allowed force configurations, without
the constraint that the pressure be fixed [28]. This force
space is precisely the ∆zN/2-dimensional space spanned
by the orthonormal basis {f (i)} defined above.
Now, if we fix the pressure, this leads to an additional

constraint. By a simple rotation in force space it is possible
to choose the {f (i)} such that f (1) precisely gives the
direction of increasing pressure, so that all other base
vectors are perpendicular to the pressure direction [28]
—the force ensemble with fixed pressure simply results
from projecting out the f (1) direction from F .
Suppose we externally impose changes in the rest

lengths of the bonds, denoted by y —for a compression,

34004-p5



W. Ellenbroek et al.

we may for example increase all rest lengths. Wyart [20]
then shows that the energy change corresponding to such
external forcing can be expressed as

∆E =
1

2

N∆z/2∑
i=1

〈f (i)|y〉2, (7)

where 〈·|·〉 denotes the scalar product in force space. If
we consider a deformation y of which the components
are of order ε, then in general we may assume that
there will be no correlation between y and the force
space F . The dominant contribution to the squared inner
product in eq. (7) is then

∑
m(f

(i)
m )2y2m ∼

∑
m ε
2/N ∼ ε2,

and summing these over all basis vectors gives ∆E ∼
N∆zε2, making the energy extensive and proportional to
the distance to the jamming transition times the square
of the strain. This is the case for example if y represents
a shear deformation, so that G∼∆z.
In this scenario, however, the response to compression

is an exceptional case. Compression amounts to the
special situation that y is essentially pointing in the
same direction as the basis vector f (1), which we chose
to be in the direction of increasing pressure. In this case,

all terms in the inner product
∑
m f

(1)
m ym are positive,

and of order ε/
√
N , so that 〈f (1)|y〉2 ∼Nε2. Now the

contribution of the first term in eq. (7) is already extensive
by itself, and independent of ∆z. In this picture, the
compression response is anomalous since it corresponds to
an alignment with a special direction in the force space; in
other words, from this point of view too, it is best to think
of compression, and not shear, as being the anomalous
response!

Conclusion. – Since the jamming transition is about
loss of rigidity, it is natural to compare the elasticity of disc
packings to rigidity percolation on a random network [8].
From this reference point, what is special about jammed
packings is that they have an anomalously large resis-
tance to compression. In addition, the response of pack-
ings to compression does not follow the simple scaling
relations that govern the particles’ relative displacements
under shear. This interpretation should be contrasted with
the more commonly stated conclusion from comparing to
effective medium theory, which would be that the resis-
tance to shear is anomalously small [2,10].
The anomalous behavior of the bulk modulus has a

purely geometric origin, as we have shown by numerically
extracting it from the dynamical matrix, and interpreting
the results in terms of the solution space of the force
network ensemble, both of which are purely geometric: It
is all a matter of how purely repulsive particles arrange
themselves when they are pressed together.
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