VOLUME 82, NUMBER 24 PHYSICAL REVIEW LETTERS 14 Jne 1999

Non-Cayley-Tree Model for Quasiparticle Decay in a Quantum Dot
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The decay of a quasiparticle in a confined geometry, resulting from electron-electron interactions,
has been mapped onto the single-electron problem of diffusion on a Cayley tree discussed by Altshuler
et al. [Phys. Rev. Lett78, 2803 (1997)]. We study an alternative model that captures the strong
correlations between the self-energies of different excitations with the same number of quasiparticles.
The model has a recursion relation for the single-particle density of states that is markedly different from
that of the Cayley tree. It remains tractable enough such that sufficiently large systems can be studied
to observe a breakdown of the golden rule of perturbation theory with decreasing excitation energy.
[S0031-9007(99)09395-3]

PACS numbers: 72.15.Lh, 72.15.Rn, 73.23.-b

The lifetime of a quasiparticle in a quantum dot has been The Hamiltonian for spinless fermions B = H, +
the subject of recent experimental [1] and theoretical workg7;, with
[2-9]. Much of the theoretical interest was fueled by " bt
the striking prediction of Altshuler, Gefen, Kamenev, and Ho = Zsjcj Cj» H, = Z Vijkici crcic.
Levitov [3] of a critical excitation energy below which the J <jk<l
lifetime becomes essentially infinite. This prediction was ) ) . ] (1_)
based on a mapping between the decay process of a quasPe noninteracting parti, contains the single-particle
particle and the phenomenon of Anderson localization on &Velse; in a disordered quantum dot. We count the levels
Cayley tree [10,11]. An infinite lifetime corresponds to thefrom the Fermi level, meaning that the ground state of
absence of diffusion on the lattice in Fock space consistingfo has occupied levels fof < 0 and empty levels for
of n-particle eigenstate¥, of the Hamiltonian without J = 0. We assume that an energy lewglis uniformly
interactions. Subsequent theoretical work by Mirlin anddistributed in the interva[(j — 3)A,(j + 3)A]. This
Fyodorov [5] and by Jacquod and Shepelyansky [6] indiYyi€lds alinear level repulsion, consistent with time-reversal
cated that the localization transition is smooth rather thagymmetry. The basis off, consists of states that have
abrupt, extending over a range of excitation energies fromr: €lectron excitations (occupied levels with= 0) andn
Ag'/? to Ag?? (with A the single-particle level spacing hole excitations (empty levels with< 0). The two-body
andg the conductance in units @f/h). The thermody- interactionH; couples them to states that differ by at most
namic limit g > 1 is essential for the appearance of thetwo electron-hole pairs.
transition. We assume thélt;;;; = 0. (These diagonal terms can
Numerical diagonalizations of a microscopic Hamilton-be incorporated intdd, in a mean-field approximation.)
ian [8] and of the two-body random interaction model [9] FOr the off-diagonal matrix elements we adopt the layer
were too far from the thermodynamic limit to observe themodel of Ref. [12], which is based on the following
localization transition. The need for a numerical test ofobservation. The interaction strengthis related toA
the theory is pressing because of a fundamental differenc@d g by [2,3,13]V = A/g. SinceV < A for g > 1,
between the decay process in Fock space and the diffusigily eigenstates aofi, within an energy layer of widtiA
process on a Cayley tree. The mapping between the tware strongly coupled by the interaction. The layer model
problems maps different,’s with the same: onto differ-  exploits this in a clever way by setting;; ,, = 0 unless
ent sites at the same level of the tree. While in the Cayi, j, k. [ are four distinctindices with + j = k + /. The
ley tree diffusion from each of these sites is independentionzeroV;; ; are chosen to be independent real random
in the Fock space the decay of differehi,’s is strongly ~ variables, subject to the restrictiofy; i, = Vi;,;; imposed
correlated. by the Hermiticity of the Hamiltonian. We also set
In this paper we consider the model Hamiltonian pro-Vjixt = —Vijxu = Viju. The distribution of each matrix
posed by Georgeot and Shepelyansky [12], which permitglement is taken to be a Gaussian with zero mean and
one to study these strong correlations in systems that a@rianceV2.
bigger than in Refs. [8,9]. We find a smooth transition, One advantage of the layer model is that the ground
signaled by a breakdown of the golden rule of perturbastate|FS) of Hy (the Fermi sea) remains an eigenstate of
tion theory. This is the first observation of the breakdownHo + Hi. We assume that it remains the ground state.
in a numerical simulation. An analytical approximation A second advantage is that the effective dimension of the
to our numerical diagonalizations highlights the origin of Hilbert space is greatly reduced. The number of states into
the correlations between thig,’s. which an electron excitatioa}LIFS) of energye; decays is
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equal to the numbeP(j) = (4j+/3) ' exp(m+/2j/3) of  The dimensionless ensemble-averaged quantity
partitions of; [14], independent of the numbat of elec- _ ~
trons in the quantum dot (as long &s> j). This grows P; = Pi(e;)/pj(e)) ®)

much more SI.OWIV W'.thj than in the convent|c_>nal WO- i creases from 0 to 1 on going from extended to localized
body random interaction model [15,16], used in previous oo

¥vor|: [gl,9,_1t7]- While ﬂ:ﬁ Ia;i[er model rt=|3nt(_jers the pt(obledm We have computed the Green function numerically us-
ractable, It preserves the strong correiations mentione 'ﬁlug an iterative Lanczos method. The largest system we

the iniroduction, as we W_i” di§CUSS shortly.. _ could study in this way hag = 30, corresponding to a
The decay of the quasiparticle statFS) is described  pagig of P(30) = 5604 states. Before presenting the re-

by the Green function sults of this exact diagonalization, we discuss a certain de-
G;(E) = (FS¢j(E + Eps — H)‘%}lFS} coupling approximation that has the advantage of showing
B o . explicitly how the decay of the quasiparticle is different
o [E —e; = Zi(B)], _ @ from the diffusion on a Cayley tree.
where Egg is the energy of the Fermi sed|FS) = The problem of the diffusion on a Cayley tree can be

Hy|FS = Egs|FS. The second equality in Eq. (2) defines solved exactly because the self-energy satisfies a closed
the self-energy;(E). The quantity of physical interest recursion relation [10,11]. Such a recursion relation exists
(measured by means of a tunneling probe in Ref. [1]) iecause the Cayley tree has no loops. The lattice in Fock
the single-particle density of statgg(E) = >, 6(E +  space generated by the quasiparticle decay process [3]
Egs — E,) |<a|c;-r|FS>|2, where the sum over runs over does have loops, but we believe that these do not play an
all eigenstate$w ) of H, with eigenvalues,,. Itisrelated essential role and we will ignore them. The decoupling

to the imaginary part of the Green function by approximation consists in writing the self-enerdy;;(E)
| of a three-particle excitation as the sum of single-particle
pi(E) = —— lim ImG;(E + in). (3) self-energies:
a n—

The ensemble average (E) is not sensitive to the delo- 2u(E) = 2(E — & — &) + X(E — & — &)
calization transition. For that reason, we will also study + 3(E — & — &). (6)
the inverse participation ratiB;(E) = >, 8(E + Eps —

E.) |<a|c;-r|FS>|4, related to the Green function by Hereg; is the excitation energy, defined as= ¢; for an

electron ( = 0) and&; = —g; for a hole { < 0). With
1 . . this approximation, the self-energy satisfies the recursion
PAE) = lim |Gy (E + im)]”. @ olation ¥

2(E) = ZVl-zj,kz[E — &~ — 8 —S(E—&— &) S(E—-&—8&)—(E—-& -], (7)
]

where the sum runs over the indiced with 0 = k <[ | this number remains fixed at the numbigr of single-

andi =k +1—j<O0. particle levels coupled to the excitatihoIFS) by the
This recursion relation in Fock space can be compareghteraction. Sincéj is exponentially smaller than the size

with the recursion relation for the Cayley tree [10], which P( ) of the lattice in Fock space, this is an enormous

has the form difference with the Cayley tree. We are able to make such
5 4 a precise statement because of the simplifications inherent
SHE) = D VHIE — & — Sk(B)] (8)  to the layer model. However, we believe that the strong
k

correlations between excitations with the same number of
Here the sum runs over all sités(energye,) of the next  quasiparticles implied by Eq. (7) are present as well in the
level of the tree that are connected tpwith hopping full problem of quasiparticle decay—although we cannot
matrix elementd/; ;. We notice two differences between write down such a simple recursion relation for the full
Egs. (7) and (8). The first is that the recursion relationproblem.
on the Cayley tree conserves energy, while the recursion We have calculated the average single-particle density
relation in Fock space does not. Another way of sayingf statesp;(E) and the inverse participation rati®; by
this is that Eq. (8) is a recursion relation betweemmbers  exact diagonalization fof up to 30, as a function of the
3, at one fixedE, while Eq. (7) is a relation between dimensionless conductange= A/V. [We have also
functions> ;(E). The second difference is that the numbercomputed the same quantities by numerically solving the
of self-energies coupled by repeated applications of theecursion relation (7), and find good agreement.] The re-
recursion relation in the Cayley tree grows exponentiallysults for the average density of states collapse approxi-
(limited only by the size of the lattice), while in Fock space mately onto the same curve (see Fig. 1), once the energies
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FIG. 1. Average single-particle density of states;(E), -4 -2 0 2 4
rescaled byl = %rrA(j/g)z, for j =25. The solid and (E—¢)/T

dashed curves are computed by exact diagonalization of the . ] ) o

layer model forg = 55 andg = 300, respectively. Averages FIG. 2. Single-particle density of statgg of an individual

are taken over 7500 realizations of the random Hamiltonianmember of the ensemble of quantum dots, computed by exact

The dotted curve is a Lorentzian of unit area and width. diagonalization forj = 25 and two values ofg:300 (upper
panel) and55 (lower panel). The two results are qualitatively
different, although the ensemble averages are essentially the

are rescaled by’ = %wA(j/g)z. This expression fol’ same (see Fig. 1).

is the decay rate following from the golden rule of pertur-

bation theory [2], assuming an energy-independent threesigenfunctions do not extend over the entire lattice in Fock
particle density of states (equal pj*/A in the layer —space. We show in Fig. 3 a double-logarithmic plo®gf
model). The small deviations from a Lorentzian (dottedversusg for j = 15, 20, 25, and30. The straight lines of
curve in Fig. 1) are an artifact of the layer model. (Theyslope 2 show the quadratic increase predicted by the golden
disappear if the restriction + j = k + [ on the matrix rule. The largest systems considergd 25, squares and

elementsV;; x; of the interaction is removed.) j = 30, crosses) have unambiguously a region of faster
As expected, there is no indication in the average density

of statesp; of a localization transition. The density of
statesp; for a singlerealization ofH is shown in Fig. 2. 100
The difference betweep; for small and large values of
the ratiol’/V is striking: a small number of sharp, isolated
peaks at largd’/V (top panel), in contrast to a single

T T TTTTTT

broad peak at small'/V (bottom panel). Following the 10-1 &
argument of Ref. [3], the top panel demonstrates that the E
single-particle excitation does not spread uniformly over n” L
the lattice in Fock space but remains localized at a small r
number of sites. The bottom panel is characteristic for an 102

extended state in Fock space. Upon increa$ify, there

is therefore a transition from extended to localized states.
To study the localization transition we calculate the in-

verse participation rati®;, defined in Eq. (5). Following 10-3 — i

Ref. [9], we compare with the prediction of a totally de- 1ot 10

localized situation (“golden rule”). The golden rule pre- g

diction isP; = min(1, 8/T"), whereéd is the mean energy FIG. 3. Inverse participation ratio as a function of dimen-

separation of the eigenstaties) of H. In the layer model, sionless conductance, fgr= 15 (triangles),j = 20 (circles),

8 = A/P(j). Sinces/T = g2, the golden rule predicts Jj = 25 (squares), and = 30 (crosses). The straight lines of

dratici P with i . til P i slope 2 on the log-log scale show the quadratic increase; of
aguadraucincrease or’; with Increéasingg, until £; Satu- ith o predicted by the golden rule. A faster than quadratic in-

rates at a value of order unity [12]. A faster than quadratiGrease indicates a transition to the localized regime. Statistical
increase is a signature of localization, in the sense that theror bars have the size of the markers.
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