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Non-Cayley-Tree Model for Quasiparticle Decay in a Quantum Dot
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The decay of a quasiparticle in a confined geometry, resulting from electron-electron interacti
has been mapped onto the single-electron problem of diffusion on a Cayley tree discussed by Alts
et al. [Phys. Rev. Lett.78, 2803 (1997)]. We study an alternative model that captures the stro
correlations between the self-energies of different excitations with the same number of quasiparti
The model has a recursion relation for the single-particle density of states that is markedly different f
that of the Cayley tree. It remains tractable enough such that sufficiently large systems can be stu
to observe a breakdown of the golden rule of perturbation theory with decreasing excitation ene
[S0031-9007(99)09395-3]
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The lifetime of a quasiparticle in a quantum dot has bee
the subject of recent experimental [1] and theoretical wor
[2–9]. Much of the theoretical interest was fueled b
the striking prediction of Altshuler, Gefen, Kamenev, an
Levitov [3] of a critical excitation energy below which the
lifetime becomes essentially infinite. This prediction wa
based on a mapping between the decay process of a qu
particle and the phenomenon of Anderson localization on
Cayley tree [10,11]. An infinite lifetime corresponds to th
absence of diffusion on the lattice in Fock space consisti
of n-particle eigenstatesCn of the Hamiltonian without
interactions. Subsequent theoretical work by Mirlin an
Fyodorov [5] and by Jacquod and Shepelyansky [6] ind
cated that the localization transition is smooth rather th
abrupt, extending over a range of excitation energies fro
Dg1y2 to Dg2y3 (with D the single-particle level spacing
andg the conductance in units ofe2yh). The thermody-
namic limit g ¿ 1 is essential for the appearance of th
transition.

Numerical diagonalizations of a microscopic Hamilton
ian [8] and of the two-body random interaction model [9
were too far from the thermodynamic limit to observe th
localization transition. The need for a numerical test o
the theory is pressing because of a fundamental differen
between the decay process in Fock space and the diffus
process on a Cayley tree. The mapping between the t
problems maps differentCn ’s with the samen onto differ-
ent sites at the same level of the tree. While in the Ca
ley tree diffusion from each of these sites is independe
in the Fock space the decay of differentCn’s is strongly
correlated.

In this paper we consider the model Hamiltonian pro
posed by Georgeot and Shepelyansky [12], which perm
one to study these strong correlations in systems that
bigger than in Refs. [8,9]. We find a smooth transition
signaled by a breakdown of the golden rule of perturb
tion theory. This is the first observation of the breakdow
in a numerical simulation. An analytical approximation
to our numerical diagonalizations highlights the origin o
the correlations between theCn’s.
0031-9007y99y82(24)y4894(4)$15.00
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The Hamiltonian for spinless fermions isH ­ H0 1

H1, with

H0 ­
X

j

´jc
y
j cj , H1 ­

X
i,j,k,l

Vij,klc
y
l c

y
k cicj .

(1)
The noninteracting partH0 contains the single-particle
levels´j in a disordered quantum dot. We count the leve
from the Fermi level, meaning that the ground state
H0 has occupied levels forj , 0 and empty levels for
j $ 0. We assume that an energy level´j is uniformly
distributed in the intervalfs j 2

1
2 dD, s j 1

1
2 dDg. This

yields a linear level repulsion, consistent with time-revers
symmetry. The basis ofH0 consists of states that hav
m electron excitations (occupied levels withj $ 0) andn
hole excitations (empty levels withj , 0). The two-body
interactionH1 couples them to states that differ by at mo
two electron-hole pairs.

We assume thatVij,ij ­ 0. (These diagonal terms ca
be incorporated intoH0 in a mean-field approximation.)
For the off-diagonal matrix elements we adopt the lay
model of Ref. [12], which is based on the followin
observation. The interaction strengthV is related toD

and g by [2,3,13] V ­ Dyg. SinceV ø D for g ¿ 1,
only eigenstates ofH0 within an energy layer of widthD
are strongly coupled by the interaction. The layer mod
exploits this in a clever way by settingVij,kl ­ 0 unless
i, j, k, l are four distinct indices withi 1 j ­ k 1 l. The
nonzeroVij,kl are chosen to be independent real rando
variables, subject to the restrictionVij,kl ­ Vkl,ij imposed
by the Hermiticity of the Hamiltonian. We also se
Vji,kl ­ 2Vij,kl ­ Vij,lk. The distribution of each matrix
element is taken to be a Gaussian with zero mean
varianceV 2.

One advantage of the layer model is that the grou
statejFSl of H0 (the Fermi sea) remains an eigenstate
H0 1 H1. We assume that it remains the ground sta
A second advantage is that the effective dimension of
Hilbert space is greatly reduced. The number of states i
which an electron excitationc

y
j jFSl of energý j decays is
© 1999 The American Physical Society
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equal to the numberP s jd ø s4j
p

3 d21 expsp
p

2jy3 d of
partitions ofj [14], independent of the numberN of elec-
trons in the quantum dot (as long asN . j). This grows
much more slowly withj than in the conventional two-
body random interaction model [15,16], used in previou
work [6,9,17]. While the layer model renders the proble
tractable, it preserves the strong correlations mentioned
the introduction, as we will discuss shortly.

The decay of the quasiparticle statec
y
j jFSl is described

by the Green function

GjsEd ­ kFSjcjsE 1 EFS 2 Hd21c
y
j jFSl

­ fE 2 ´j 2 SjsEdg21, (2)

where EFS is the energy of the Fermi sea:HjFSl ­
H0jFSl ­ EFSjFSl. The second equality in Eq. (2) define
the self-energySjsEd. The quantity of physical interest
(measured by means of a tunneling probe in Ref. [1])
the single-particle density of statesrjsEd ­

P
a dsE 1

EFS 2 Ead jkajc
y
j jFSlj2, where the sum overa runs over

all eigenstatesjal of H, with eigenvaluesEa. It is related
to the imaginary part of the Green function by

rjsEd ­ 2
1
p

lim
h!0

ImGjsE 1 ihd . (3)

The ensemble averagērjsEd is not sensitive to the delo-
calization transition. For that reason, we will also stud
the inverse participation ratioPjsEd ­

P
a dsE 1 EFS 2

Ead jkajc
y
j jFSlj4, related to the Green function by

PjsEd ­
1
p

lim
h!0

hjGjsE 1 ihdj2. (4)
s
m

in

s
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y

The dimensionless ensemble-averaged quantity

Pj ­ P̄js´jdyr̄js´jd (5)

increases from 0 to 1 on going from extended to localiz
states.

We have computed the Green function numerically u
ing an iterative Lanczos method. The largest system
could study in this way hasj ­ 30, corresponding to a
basis ofP s30d ­ 5604 states. Before presenting the re
sults of this exact diagonalization, we discuss a certain
coupling approximation that has the advantage of show
explicitly how the decay of the quasiparticle is differen
from the diffusion on a Cayley tree.

The problem of the diffusion on a Cayley tree can b
solved exactly because the self-energy satisfies a clo
recursion relation [10,11]. Such a recursion relation exi
because the Cayley tree has no loops. The lattice in F
space generated by the quasiparticle decay process
does have loops, but we believe that these do not play
essential role and we will ignore them. The decouplin
approximation consists in writing the self-energySiklsEd
of a three-particle excitation as the sum of single-partic
self-energies:

SiklsEd ­ SisE 2 ¯́ k 2 ēld 1 SksE 2 ¯́ l 2 ¯́ id
1 SlsE 2 ¯́ i 2 ¯́ kd . (6)

Here ¯́ i is the excitation energy, defined as¯́ i ­ ´i for an
electron (i $ 0) and ¯́ i ­ 2´i for a hole (i , 0). With
this approximation, the self-energy satisfies the recurs
relation
SjsEd ­
X
kl

V 2
ij,klfE 2 ¯́ i 2 ¯́k 2 ¯́ l 2 SisE 2 ¯́ k 2 ¯́ ld 2 SksE 2 ¯́ l 2 ¯́ id 2 SlsE 2 ¯́ i 2 ¯́ kdg21, (7)
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where the sum runs over the indicesk, l with 0 # k , l
andi ­ k 1 l 2 j , 0.

This recursion relation in Fock space can be compar
with the recursion relation for the Cayley tree [10], whic
has the form

SjsEd ­
X

k

V 2
j,kfE 2 ´k 2 SksEdg21. (8)

Here the sum runs over all sitesk (energy´k) of the next
level of the tree that are connected toj, with hopping
matrix elementsVj,k. We notice two differences between
Eqs. (7) and (8). The first is that the recursion relatio
on the Cayley tree conserves energy, while the recurs
relation in Fock space does not. Another way of sayin
this is that Eq. (8) is a recursion relation betweennumbers
Sj at one fixedE, while Eq. (7) is a relation between
functionsSjsEd. The second difference is that the numbe
of self-energies coupled by repeated applications of t
recursion relation in the Cayley tree grows exponentia
(limited only by the size of the lattice), while in Fock spac
ed
h

n
ion
g

r
he
lly
e

this number remains fixed at the number2j of single-
particle levels coupled to the excitationc

y
j jFSl by the

interaction. Since2j is exponentially smaller than the siz
P s jd of the lattice in Fock space, this is an enormo
difference with the Cayley tree. We are able to make su
a precise statement because of the simplifications inhe
to the layer model. However, we believe that the stro
correlations between excitations with the same numbe
quasiparticles implied by Eq. (7) are present as well in t
full problem of quasiparticle decay—although we cann
write down such a simple recursion relation for the fu
problem.

We have calculated the average single-particle den
of statesr̄jsEd and the inverse participation ratioPj by
exact diagonalization forj up to 30, as a function of the
dimensionless conductanceg ­ DyV . [We have also
computed the same quantities by numerically solving
recursion relation (7), and find good agreement.] The
sults for the average density of states collapse appro
mately onto the same curve (see Fig. 1), once the ener
4895
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FIG. 1. Average single-particle density of states̄rjsEd,
rescaled byG ­ 1

3 pDs jygd2, for j ­ 25. The solid and
dashed curves are computed by exact diagonalization of
layer model forg ­ 55 and g ­ 300, respectively. Averages
are taken over 7500 realizations of the random Hamiltonia
The dotted curve is a Lorentzian of unit area and width.

are rescaled byG ­ 1
3 pDs jygd2. This expression forG

is the decay rate following from the golden rule of pertu
bation theory [2], assuming an energy-independent thr
particle density of states (equal to16 j2yD in the layer
model). The small deviations from a Lorentzian (dotte
curve in Fig. 1) are an artifact of the layer model. (The
disappear if the restrictioni 1 j ­ k 1 l on the matrix
elementsVij,kl of the interaction is removed.)

As expected, there is no indication in the average dens
of statesr̄j of a localization transition. The density o
statesrj for a single realization ofH is shown in Fig. 2.
The difference betweenrj for small and large values of
the ratioGyV is striking: a small number of sharp, isolate
peaks at largeGyV (top panel), in contrast to a single
broad peak at smallGyV (bottom panel). Following the
argument of Ref. [3], the top panel demonstrates that
single-particle excitation does not spread uniformly ov
the lattice in Fock space but remains localized at a sm
number of sites. The bottom panel is characteristic for
extended state in Fock space. Upon increasingGyV , there
is therefore a transition from extended to localized state

To study the localization transition we calculate the i
verse participation ratioPj , defined in Eq. (5). Following
Ref. [9], we compare with the prediction of a totally de
localized situation (“golden rule”). The golden rule pre
diction isPj . mins1, dyGd, whered is the mean energy
separation of the eigenstatesjal of H. In the layer model,
d . DyP s jd. SincedyG ~ g2, the golden rule predicts
aquadraticincrease ofPj with increasingg, until Pj satu-
rates at a value of order unity [12]. A faster than quadra
increase is a signature of localization, in the sense that
4896
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FIG. 2. Single-particle density of statesrj of an individual
member of the ensemble of quantum dots, computed by ex
diagonalization forj ­ 25 and two values ofg:300 (upper
panel) and55 (lower panel). The two results are qualitatively
different, although the ensemble averages are essentially
same (see Fig. 1).

eigenfunctions do not extend over the entire lattice in Fo
space. We show in Fig. 3 a double-logarithmic plot ofPj

versusg for j ­ 15, 20, 25, and30. The straight lines of
slope 2 show the quadratic increase predicted by the gold
rule. The largest systems considered (j ­ 25, squares and
j ­ 30, crosses) have unambiguously a region of fas

FIG. 3. Inverse participation ratio as a function of dimen
sionless conductance, forj ­ 15 (triangles),j ­ 20 (circles),
j ­ 25 (squares), andj ­ 30 (crosses). The straight lines of
slope 2 on the log-log scale show the quadratic increase ofPj
with g predicted by the golden rule. A faster than quadratic i
crease indicates a transition to the localized regime. Statisti
error bars have the size of the markers.
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than quadratic increase ofPj . In contrast, the smallest
system considered (j ­ 15, triangles) follows the golden
rule prediction until it saturates atg ø 60. This system
is clearly too small to show the transition to a localize
regime. The largest system studied in Ref. [9] hadj ø 15,
and indeed no deviations from the golden rule were fou
in that paper. We find that the inverse participation rat
exceeds the golden rule prediction by as much as a fac
of 3 in our largest system. This excess builds up gradua
with increasingg, consistent with the prediction [5,6] of a
smooth rather than an abrupt transition from extended
localized states.

In conclusion, we have studied a model for quasipa
ticle decay in a quantum dot that preserves the strong c
relations omitted in the Cayley-tree model, yet remai
tractable enough that large excitation energies are acc
sible. Our largest system demonstrates a breakdown
the golden rule of perturbation theory that had remain
elusive in previous studies on smaller systems.
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