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Abstract
Amorphous materials as diverse as foams, emulsions, colloidal suspensions and granular media
can jam into a rigid, disordered state where they withstand finite shear stresses before yielding.
Here we review the current understanding of the transition to jamming and the nature of the
jammed state for disordered packings of particles that act through repulsive contact interactions
and are at zero temperature and zero shear stress. We first discuss the breakdown of affine
assumptions that underlies the rich mechanics near jamming. We then extensively discuss
jamming of frictionless soft spheres. At the jamming point, these systems are marginally stable
(isostatic) in the sense of constraint counting, and many geometric and mechanical properties
scale with distance to this jamming point. Finally, we discuss current explorations of jamming
of frictional and non-spherical (ellipsoidal) particles. Both friction and asphericity tune the
contact number at jamming away from the isostatic limit, but in opposite directions. This allows
one to disentangle the distance to jamming and the distance to isostaticity. The picture that
emerges is that most quantities are governed by the contact number and scale with the distance
to isostaticity, while the contact number itself scales with the distance to jamming.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Jamming governs the transition to rigidity of disordered matter.
Foams, emulsions, colloidal suspensions, pastes, granular
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Figure 1. (a)–(d) Examples of everyday disordered media in a jammed state. (a) Granular media, consisting of solid grains in gas or vacuum.
(b) Toothpaste, a dense packing of (colloidal) particles in fluid. (c) Mayonnaise, an emulsion consisting of a dense packing of (oil) droplets in
an immiscible fluid. (d) Shaving foam, a dense packing of gas bubbles in fluid. (e) Jamming diagram proposed by Liu et al [1, 2]. The
diagram illustrates that many disordered materials are in a jammed state for low temperature, low load and large density, but can yield and
become unjammed when these parameters are varied. In this review we will focus on the zero-temperature, zero-load axis. For frictionless
soft spheres, there is a well-defined jamming transition indicated by point ‘J’ on the inverse density axis, which exhibits similarities to an
(unusual) critical phase transition.

media and glasses can jam in rigid, disordered states in which
they respond essentially elastically to small applied shear
stresses (figures 1(a)–(d)). However, they can also easily be
made to yield (unjam) and flow by tuning various control
parameters.

The transition from the freely flowing to the jammed
state, the jamming transition, can be induced by varying
thermodynamic variables, such as temperature or density, but
also mechanical variables such as the stress applied to the
sample: colloidal suspensions become colloidal glasses as the
density is increased near random close packing, flowing foams
become static as the shear stress is decreased below the yield
stress, and supercooled liquids form glasses as the temperature
is lowered below the glass transition temperature. In 1998 Liu
and Nagel presented their provocative jamming phase diagram
(figure 1(e)) and proposed to probe the connections between
various transitions to rigidity [1].

This review provides an overview of the current (partial)
answers to the following two questions: what is the
nature of the jammed state? What is the nature of the
jamming transition? We focus on jammed model systems at
zero temperature and zero shear—models for non-Brownian
emulsions, foams and granular media rather than colloidal
and molecular glasses—and review the geometrical and
mechanical properties of these systems as a function of the
distance to jamming.

In view of the very rapid developments in the field, this
paper focuses on the basic jamming scenarios, which arise
in (weakly) compressed systems of soft particles interacting
through repulsive contact forces at zero temperature and zero
shear. The picture that has emerged for the jamming transition
in these systems is sufficiently complete to warrant an overview
article and, in addition, provides a starting point for work on
a wider range of phenomena, such as occurring in attractive
systems [3], systems below jamming [4], the flow of disordered
media near jamming [5–9], jamming of systems at finite
temperature [10, 11] and experiments [12–14].

In this review the focus is on jamming of frictionless
spheres, frictional spheres and frictionless ellipsoids—soft
(deformable) particles which interact through repulsive contact
forces. The distance to jamming of all these systems is set
by the amount of deformation of the particles, which can be
controlled by the applied pressure or enforced packing fraction.
These systems lose rigidity when the deformations vanish or,
equivalently, when the confining pressure reaches zero. As
we will see, these seemingly simple systems exhibit rich and
beautiful behavior, where geometry and mechanical response
are intricately linked.

The contact number, z, defined as the average number of
contacts per particle, plays a crucial role for these systems.
There is a minimal value of z below which the system loses
rigidity: when the contact number is too small, there are
collective particle motions, so-called floppy modes, that (in
lowest order) do not cost elastic energy. By a constraint
counting argument one can establish a precise value for the
minimum value of z where the system does not generically
allow floppy deformations—this is the isostatic contact number
ziso. As we will see, a host of mechanical and geometrical
properties of jammed systems scale with distance to the
isostatic point.

The crucial, and at first glance very puzzling, point is
that, while frictionless spheres reach isostaticity at the jamming
point, frictional spheres are generally hyperstatic (z > ziso) at
jamming, while frictionless ellipsoids are hypostatic (z < ziso)
at jamming. As we will see, the relations between contact
numbers, floppy modes, rigidity and jamming are subtle.

Truly new and surprising physics emerges near jamming
in systems as seemingly simple as disordered packings of
frictionless, deformable particles [2]. We first discuss the
breakdown of affine assumptions that underlies the rich physics
of jamming in section 2. We give an overview of the main
characteristics of the jamming transition for soft frictionless
spheres in section 3. Both friction and asphericity lead to
new physics, as here the jamming transition and isostaticity
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Figure 2. Simulated foam for increasing wetness, approaching unjamming for φ ↓ 0.84 (adapted from [15] with permission—copyright by
the American Physical Society).

decouple. Jamming of frictional soft spheres is discussed
in section 4 and jamming of frictionless soft ellipsoids in
section 5. Finally, in section 6 we sketch a number of open
problems.

2. Motivation: mechanics of disordered matter

The crucial question one faces when attempting to describe the
mechanics of materials such as foams, emulsions or granular
media, is how to deal with disorder. The simplest approach is to
ignore disorder altogether and attempt to gain insight based on
models for ordered, ‘crystalline’ packings. A related approach,
effective medium theory, does not strictly require ordered
packings, but assumes that local deformations and forces scale
similarly as global deformations and stresses. As we will see in
section 2.1, major discrepancies arise when these approaches
are confronted with (numerical) experiments on disordered
systems. This is because the response of disordered packings
becomes increasingly non-affine near jamming (section 2.2).

2.1. Failure of affine approaches

2.1.1. Foams and emulsions. Some of the earliest studies that
consider the question of the rigidity of packings of particles
concern the loss of rigidity in foams and emulsions with
increasing wetness. Foams are dispersions of gas bubbles
in liquid, stabilized by surfactant, and the gas fraction φ

plays a crucial role for the structure and rigidity of a foam.
The interactions between bubbles are repulsive and viscous,
and static foams are similar to the frictionless soft spheres
discussed in section 3. In real foams, gravity (which causes
drainage) and gas diffusion (which causes coarsening) play a
role, but we will ignore these.

The unjamming scenario for foams is as follows. When
the gas fraction approaches 1, the foam is called dry.
Application of deformations causes the liquid films to be
stretched, and the increase in surface area then provides a
restoring force: dry foams are jammed. When the gas fraction
is lowered and the foam becomes wetter, the gas bubbles
become increasingly spherical, and the foam loses rigidity for
some critical gas fraction φc where the bubbles lose contact
(figure 2). The unjamming transition is thus governed by the
gas fraction, which typically is seen as a material parameter.
For emulsions, consisting of droplets of one fluid dispersed in

a second fluid and stabilized by a surfactant, the same scenario
arises.

Analytical calculations are feasible for ordered packings,
because one only needs to consider a single particle and its
neighbors to capture the packing geometry and mechanical
response of the foam—due to the periodic nature of the
packing, the response of the material is affine. The affine
assumption basically states that, locally, particles follow the
globally applied deformation field—as if the particles are
pinned to an elastically deforming sheet. More precisely,
the strict definition of affine transformations states that three
collinear particles remain collinear and that the ratio of their
distances is preserved and affine transformations are, apart
from rotations and translations, composed of uniform shear and
compression or dilatation.

Packings of monodisperse bubbles in a two-dimensional
hexagonal lattice (‘liquid honeycomb’ [16]) deform affinely.
The bubbles lose contact at the critical density φc equal to

π

2
√

3
≈ 0.9069 and ordered foam packings are jammed for

larger densities [16, 17]. When for such a model foam φ is
lowered towards φc, the yield stress and shear modulus remain
finite and jump to zero precisely at φc [16, 17]. The contact
number (average number of contacting neighbors per bubble)
remains constant at 6 in the jammed regime. Similar results can
be obtained for three-dimensional ordered foams, where φc is
given by the packing density of the HCP lattice π

3
√

2
≈ 0.7405.

Early measurements for polydisperse emulsions by
Princen and Kiss in 1985 [18] found a shear modulus which
varied substantially with φ. Even though no data was presented
for φ less than 0.75 and the fit only included points for which
φ � 0.8, the shear modulus was fitted as G ∼ φ1/3(φ − φc),
where φc ≈ 0.71, and thus appeared to vanish at a critical
density below the value predicted for ordered lattices [18].

The fact that the critical packing density for ordered
systems is higher than that for disordered systems may not be
a surprise, given that, at the jamming threshold, the particles
are undeformed spheres and it is well known that ordered
sphere packings are denser than irregular ones [19]. However,
the differences between the variation of the moduli and yield
strength with distance to the rigidity threshold predicted for
ordered packings and measured for disordered emulsions
strongly indicates that one has to go beyond models of ordered
packings.
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2.1.2. Effective medium theory for granular media. For
granular media an important question has been to predict the
bulk elasticity, and Makse and co-workers have carried out
extensive studies of the variation of the elastic moduli and
sound propagation speed with pressure in granular media from
the perspective of effective medium theory [20–22].

Effective medium theory (EMT) basically assumes that:
(i) macroscopic, averaged quantities can be obtained by a
simple coarse graining procedure over the individual contacts
and (ii) the effect of global forcing, e.g. imposing a
deformation, trivially translates to changes in the local
contacts. This second assumption is the ‘affine assumption’
and this will be the crucial assumption that breaks down near
jamming.

Makse et al studied the breakdown of effective medium
theory in the context of granular media. Assuming a Hertzian
interaction between spherical grains [23], the contact force f
scales with the overlap δ between particles as f ∼ δ3/2. As a
result, the stiffness of these contacts then scales as ∂δ f ∼ δ1/2.
Since, to a good approximation, the pressure P ∼ f , one
obtains that the stiffness of the individual contacts scales as
P1/3. EMT then predicts that the elastic bulk modulus K
and shear modulus G scale as the stiffness of the contacts:
K ∼ G ∼ P1/3, and that the sound velocities scale as
P1/6 [20–22, 24]. In particular, the ratio G/K should be
independent of pressure.

From a range of simulations Makse et al concluded that
the affine assumption works well for the compression modulus,
provided that the change in contact number with P is taken into
account, but fails for the shear modulus and they suggested that
this is due to the non-affine nature of the deformations [20–22].
We will discuss this issue at length in section 3.

2.2. Beyond affine approaches

In a seminal paper in 1990, Bolton and Weaire asked how
a disordered foam loses rigidity when its gas fraction is
decreased [15]. They probed this question by simulations
of a two-dimensional polydisperse foam, consisting of
approximately a hundred bubbles, as a function of φ (figure 2).
Their model captures the essential surface-tension-driven
structure of foams and predates the now widely used ‘surface
evolver’ code for foams [26].

The following crucial observations are made: (i) the
critical density is around 0.84, which is identified as the
random close packing density in two dimensions—here the
yield stress appears to vanish smoothly. (ii) The contact
number z smoothly decreases with φ. At φ = 1 the contact
number equals 6. This can be understood by combining Euler’s
theorem which relates the number of vertices, faces and edges
in tilings with Plateau’s rule that, for a two-dimensional dry
foam in equilibrium, three films (faces) meet in one point
(vertex). When φ → φc, the contact number appears to reach
the marginal value of 4. (iii) The shear modulus decreases with
φ and appears to smoothly go to zero at φ = φc (unfortunately
the authors do not comment on the bulk modulus).

In related work on the so-called bubble model developed
for wet foams in 1995, Durian reached similar conclusions
for two-dimensional model foams and moreover found that

Figure 3. Square root scaling of contact number z with φ − φc

observed in the Durian bubble model (adapted from [25] with
permission—copyright by the American Physical Society).

the contact number indeed approaches 4(=2d) near jamming
and observed the non-trivial square root scaling of z − 4
with excess density for the first time (figure 3). All these
findings are consistent with what is found in closely related
models of frictionless soft spheres near jamming, as discussed
in section 3.

Experimentally, measurements of the shear modulus
and osmotic pressure of compressed three-dimensional
monodisperse but disordered emulsions found similar behavior
for the loss of rigidity [27–29]. The shear modulus (when
scaled appropriately with the Laplace pressure, which sets the
local ‘stiffness’ of the droplets) grows continuously with φ

and vanishes at φc ≈ 0.635, corresponding to random close
packing in three dimensions. The osmotic pressure exhibits
very similar scaling, implying that the bulk modulus (being
proportional to the derivative of the pressure with respect to
φ) scales differently from the shear modulus—the difference
between shear and bulk modulus is another hallmark of the
jamming of frictionless spheres.

There is thus a wealth of simulational and experimental
evidence that invalidates simple predictions for the rigidity of
disordered media based on our intuition for ordered packings.
The crucial ingredient that is missing is the non-affine nature of
the deformations of disordered packings (figure 4). There is no
simple way to estimate the particle’s motion and deformations
in disordered systems, and one needs to resort to (numerical)
experiments. Jamming can be seen as the avenue that connects
the results of such experiments. Jamming aims at capturing the
mechanical and geometric properties of disordered systems,
building on two insights: first, that the non-affine character
becomes large near the jamming transition, and second, that
disorder and non-affinity are not weak perturbations away
from the ordered, affine case, but may lead to completely new
physics [24, 27, 32–36].

3. Jamming of soft frictionless spheres

Over the last decade, tremendous progress has been made
in our understanding of what might be considered the ‘Ising
model’ for jamming: static packings of soft, frictionless
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Figure 4. Deformation fields of packings of 1000 frictionless particles under compression ((a), (c)) and shear ((b), (d)) as indicated by the red
arrows. The packings in the top row ((a), (b)) are strongly jammed (contact number z = 5.87), while the packings in the bottom row ((c), (d))
are close to the jamming point—their contact number is 4.09, while the jamming transition occurs for z = 4 in this case. Clearly, the
deformation field becomes increasingly non-affine when the jamming point is approached (adapted from [30, 31] with permission—copyright
by the American Physical Society).

spheres that act through purely repulsive contact forces. In
this model, temperature, gravity and shear are set to zero. The
beauty of such systems is that they allow for a precise study
of a jamming transition. As we will see in sections 4 and 5,
caution should be applied when applying the results for soft
frictionless spheres to frictional and/or non-spherical particles.

From a theoretical point of view, packings of soft
frictionless spheres are ideal for three reasons. First, they
exhibit a well-defined jamming point: for positive P the
system is jammed, as it exhibits a finite shear modulus and
a finite yield stress [2], while at zero pressure the system
loses rigidity. Hence, the (un)jamming transition occurs when
the pressure P approaches zero, or, geometrically, when the
deformations of the particles vanish. The zero-pressure, zero-
shear, zero-temperature point in the jamming phase diagram is
referred to as ‘point J’ (figures 1(e) and 5). In this review, point
J will only refer to soft frictionless spheres and not to jamming
transitions of other types of particles. Second, at point J the
contact number approaches the so-called isostatic value and
the system is marginally stable. The system’s mechanical and
geometrical properties are rich and peculiar here. For large
systems the critical packing density, φc, approaches values
usually associated with random close packing. Third, the
mechanical and geometrical properties of jammed systems at

finite pressure, or equivalently φ − φc > 0, exhibit non-trivial
power law scalings as a function �φ := φ − φc or, similarly,
as a function of the pressure, P .

In this section we address the special nature of point J
and discuss the scaling of the mechanical and geometrical
properties for jammed systems near point J. We start in
section 3.1 with a brief discussion of a few common contact
laws and various numerical protocols used to generate jammed
packings. We then present evidence that the jamming transition
of frictionless spheres is sharp and discuss the relevant control
parameters in section 3.2. In section 3.3 we discuss the special
geometrical features of systems at point J, as probed by the
contact number and pair correlation function. Away from
point J the contact number exhibits non-trivial scaling, which
appears to be closely related to the pair correlation function at
point J, as discussed in section 3.4. Many features of systems
near point J can be probed in linear response, and these are
discussed at length in section 3.5—these include the density of
states (3.5.1), diverging length and timescales (3.5.2), elastic
moduli (3.5.3) and non-affine displacements (3.5.4). We close
this section by a comparison of effective medium theory,
rigidity percolation and jamming, highlighting the unique
nature of jamming near point J (3.5.5).
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Figure 5. States of soft frictionless spheres as a function of packing density φ, below, at and above the critical density φc. Left: unjammed
system at a density below the critical density—pressure is zero and there are no contacts. Middle: marginally rigid system consisting of
undeformed frictionless spheres just touching. The system is at the jamming transition (point J), has vanishing pressure, critical density and
2d contacts per particle, where d is the dimension. Right: jammed system for finite pressure and density above φc.

3.1. Definition of the model

At the (un)jamming transition soft particles are undeformed
and the distance to jamming depends on the amount of
deformation. Rigid particles are therefore always at the
jamming transition, and soft particles are necessary to vary
the distance to point J. Deformable frictionless spheres interact
through purely repulsive body centered forces, which can be
written as a function of the amount of virtual overlap between
two particles in contact. Denoting the radii of particles in
contact as Ri and R j and the center-to-center distance as ri j ,
it is convenient to define a dimensionless overlap parameter δi j

as
δi j := 1 − ri j

Ri + R j
, (1)

so that particles are in contact only if δi j � 0. We limit
ourselves here to interaction potentials of the form

Vi j = εi jδ
α
i j δi j � 0, (2)

Vi j = 0 δi j � 0. (3)

By varying the exponent, α, one can probe the nature
and robustness of the various scaling laws discussed below.
For harmonic interactions, α = 2 and εi j sets the spring
constant of the contacts. Hertzian interactions between three-
dimensional spheres, where contacts are stiffer as they are
more compressed, correspond to α = 5/2.1 O’Hern et al
have also studied the ‘Hernian’ interaction (α = 3/2), which
corresponds to contacts that become progressively weaker
when compressed [2].

Once the contact laws are given, one can generate
packings by various different protocols, of which MD
(molecular dynamics) [20–22, 24] and conjugate gradient [2]
are the most commonly used2. In MD simulations one typically

1 When one strictly follows Hertz’s law, one finds that εi j depends on the
radii Ri and R j —but often εi j is simply taken as a constant, and for typical
polydispersities the effect of this for statistical properties of packings is likely
small [31].
2 For undeformable particles, the Lubachevsky–Stillinger algorithm can be
used.

starts simulations with a loose gas of particles, which are
incrementally compressed, either by shrinking their container
or by inflating their radii. Supplementing the contact laws with
dissipation (inelastic collisions, viscous drag with a virtual
background fluid, etc) the system ‘cools’ and eventually one
obtains a stationary jammed state. While straightforward, one
might worry that statistical properties of packings obtained by
such a procedure depend on aspects of the procedure itself—
for frictional packings, this is certainly the case [37].

For frictionless particles, the interactions are conservative
and one can exploit the fact that stable packings correspond
to minima of the elastic energy. Packings can then be created
by starting from a completely random configuration and then
bringing the system to the nearest minimum of the potential
energy. When the energy at this minimum is finite, the packing
is at finite pressure, and this procedure is purported to sample
the phase space of allowed packings flatly [2, 38]. An effective
algorithm to find such minima is known as the ‘conjugate
gradient technique’ [39]. For frictionless systems, we are not
aware of significant differences between packings obtained by
MD and by this method3.

Finally it should be noted that, to avoid crystallization,
two-dimensional packings are usually made polydisperse, and
a popular choice is bidisperse packings where particles of
radii 1 and 1.4 are mixed in equal amounts [2, 30]. In three
dimensions, this is not necessary as monodisperse spheres then
do not appear to order or crystallize for typically employed
numerical packing generation techniques.

3.2. Evidence for sharp transition

The seminal work of O’Hern et al [2, 40] has laid the
groundwork for much of what we understand about jamming
of frictionless soft spheres. These authors begin by carefully
establishing that frictionless soft spheres exhibit a sharp
jamming transition. First, it was found that, when a jammed

3 It is an open question whether history never plays a role for frictionless
spheres—for example, one may imagine that, by repeated decompression and
recompression, different ensembles of packings could be accessed.
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packing is decompressed, the pressure, the bulk modulus and
the shear modulus vanish at the same critical density φc. For
finite systems, the value of φc varies from system to system.
For systems of 1000 particles the width of the distribution of
φc, W , still corresponds to 0.4% and must therefore not be
ignored. Second, it was shown that the width, W , vanishes with
the number of particles N as W ∼ N−1/2—independent of
dimension, interaction potential or polydispersity. In addition,
the location of the peak of the distribution of φc, φ0, also
scales with N : φ0 − φ∗ = (0.12 ± 0.03)N−1/νd . Here d
is the dimensionality, ν = 0.71 ± 0.08 and φ∗ approaches
0.639 ± 0.001 for three-dimensional monodisperse systems.

These various scaling laws suggest that for frictionless
spheres the jamming transition is sharp in the limit of large
systems. This jamming point is referred to as point J (see
figures 1(e) and 5). At the jamming point, the packings consist
of perfectly spherical (i.e. undeformed) spheres which just
touch (figure 5). The packing fraction for large systems, φ∗,
reaches values which have been associated with random close
packing (RCP) [2, 15]—(∼0.84 in two dimensions, ∼0.64 in
three dimensions). It should be noted that the RCP concept
itself is controversial [41].
Control parameters. As we will see, the properties of packings
of soft slippery balls are controlled by their distance to point
J. What is a good control parameter for jamming at point J?
The spread in critical density for finite systems indicates that
one should not use the density, but only the excess density
�φ := φ−φc as a control parameter. In other words, fixing the
volume is not the same as fixing the pressure for finite systems.

The disadvantage of using the excess density is that it
requires deflating packings to first obtain φc [2]. This extra
step is not necessary when P is used as a control parameter,
since the jamming point corresponds to P = 0—no matter
what the system size or φc is of a given system. While we
believe it is much simpler to deal with fixed pressure than with
fixed volume, a disadvantage of P is that its relation to �φ

is interaction-dependent: the use of the excess density stresses
the geometric nature of the jamming transition at point J.

We suggest that the average overlap 〈δ〉 is the simplest
control parameter—even though its use is not common. First,
〈δ〉 is geometric and interaction-independent and reaches zero
at jamming, also for finite systems. Moreover, for finite
systems 〈δ〉 still controls the pressure and will be very close to
�φ. Of course, in infinite systems, control parameters like the
pressure P , the average particle overlap 〈δ〉 and the density φ

are directly linked—for interactions of the form equation (2),
P ∼ δα−1 ∼ (�φ)α−1. Below, we will use a combination
of all these control parameters, reflecting the different choices
currently made in the field.

3.3. Geometry at point J

At point J, the system’s packing geometry is highly non-
trivial. First, systems at point J are isostatic [43]: the average
number of contacts per particle is sharply defined and equals
the minimum required for stability [2, 44, 45]. Second,
near jamming g(r) diverges when r ↓ 1 (for particles of
radius 1) [42, 46, 47].

Isostaticity. The fact that the contact number at point J attains
a sharply defined value has been argued to follow directly from
counting the degrees of freedom and constraints [44, 45]. We
discuss such counting arguments in detail in the appendix, but
give here the gist of the argument for frictionless spheres.

Suppose we have a packing of N soft spheres in d
dimensions, and that the contact number, the average number
of contacts at a particle, equals z—the total number of contacts
equals z N/2, since each contact is shared by two particles.
First, the resulting packing should not have any floppy modes,
deformation modes that cost zero energy in lowest order. As
we discuss in the appendix, this is equivalent to requiring that
the Nz/2 contact forces balance on all grains, which yields d N
constraints on Nz/2 force degrees of freedom: hence z � 2d .
The minimum value of z required is referred to as the isostatic
value ziso: for frictionless spheres, ziso = 2d .

Second, at point J, since the particles are undeformed, the
distance between contacting particles has to be precisely equal
to the sum of their radii. This yields Nz/2 constraints for the
d N positional degrees of freedom: therefore, one only expects
generic solutions at jamming when z � 2d .

Combining these two inequalities then yields that the
contact number zc at the jamming point for soft frictionless
discs generically will attain the isostatic value: zc = ziso =
2d [2, 44, 45]. As we will see below, such counting arguments
should be regarded with caution, since they do not provide
a correct estimate for the contact number at jamming of
frictionless ellipsoidal particles [48–50].

Numerically, it is far from trivial to obtain convincing
evidence for the approach of the contact number to the isostatic
value. Apart from corrections due to finite system sizes and
finite pressures, a subtle issue is how to deal with rattlers,
particles that do not have any contacts with substantial forces
but still arise in a typical simulation. These particles have
low coordination number and their overlap with other particles
is set by the numerical precision—these particles do not
contribute to rigidity. For low pressures, they can easily make
up 5% of the particles. An accurate estimate of the contact
number then requires one to ignore these particles and the
corresponding ‘numerical’ contacts [2, 70].
Pair correlation function. In simulations of monodisperse
spheres in three dimensions, it was found that near jamming
g(r) diverges when r ↓ 1 (for particles of radius 1):

g(r) ∼ 1√
r − 1

. (4)

This expresses that at jamming a singularly large number of
particles are on the verge of making contact (figure 6) [42, 46].
This divergence has also been seen in pure hard sphere
packings [47]. In addition to this divergence, g(r) exhibits a
delta peak at r = 1 corresponding to the d N/2 contacting pairs
of particles.

In simulations of two-dimensional bidisperse systems, a
similar divergence can be observed, provided one studies g(ξ),
where the rescaled interparticle distance ξ is defined as r/(Ri +
R j), and where Ri and R j are the radii of the undeformed
particles in contact [51].
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Figure 6. The pair correlation function g(r > 1) of a
three-dimensional system of monodisperse spheres of radius 1
illustrates the abundance of near contacts close to jamming
(�φ = 10−8 here). Reproduced from [42] with
permission—copyright by the American Physical Society.

3.4. Relating contact numbers and packing densities away
from J

Below jamming, there are no load bearing contacts and the
contact number is zero, while at point J the contact number
attains the value 2d . How does the contact number grow for
systems at finite pressure? Assuming that (i) compression of
packings near point J leads to essentially affine deformations
and that (ii) g(r) is regular for r > 1, z would be expected
to grow linearly with φ: compression by 1% would then bring
particles that are separated by less than 1% of their diameter
into contact, etc. But we have seen above that g(r) is not
regular, and we will show below that deformations are very
far from affine near jamming—so how does z grow with φ?

Many authors have found that the contact number grows
with the square root of the excess density �φ := φ −
φc [2, 15, 20, 25] (see figure 7). O’Hern et al have studied this
scaling in detail and find that the excess contact number �z :=
z − zc scales as �z ∼ (�φ)0.50±0.03, where zc, the critical
contact number, is within error bars equal to the isostatic value
2d [2]. Note that this result is independent of dimension,

interaction potential or polydispersity (see figure 7(a)). Hence,
the crucial scaling law is

�z = z0

√
�φ, (5)

where the precise value of the prefactor z0 depends
on dimension, and possibly weakly on the degree of
polydispersity, and is similar to 3.5 ± 0.3 in two dimensions
and 7.9 ± 0.5 in three dimensions [2].

The variation of the contact number near J can therefore
be perceived to be of mixed first-/second-order character:
below jamming z = 0, at J the contact number z jumps
discontinuously from zero to 2d , and for jammed systems the
contact number exhibits non-trivial power law scaling as a
function of increasing density (figures 3 and 7).

We will see below that many other scaling relations (for
elastic moduli, for the density of state and for characteristic
scales) are intimately related to the scaling of z and the contact
number scaling can be seen as the central non-trivial scaling in
this system. (In frictional and non-spherical packings, similar
scalings for z are found.)

A subtle point is that the clean scaling laws for �z
versus �φ are only obtained if one excludes the rattlers
when counting contacts, but includes them for the packing
fraction [2]. Moreover, for individual packings the scatter
in contact numbers at a given pressure is quite substantial—
see, for example, figure 9 from [52]—and smooth curves such
as shown in figure 7(a) can only be obtained by averaging
over many packings. Finally, the density φ is usually defined
by dividing the volume of the undeformed particles by the
box size, and packing fractions larger than 1 are perfectly
reasonable. Hence, in comparison to packing fractions defined
by dividing the volume of the deformed particles by the box
size, φ is larger because the overlap is essentially counted
double. Even though none of these subtleties should play a role
for the asymptotic scaling close to jamming in large enough
systems, they are crucial when compared to experiments and
also for numerical simulations.

3.4.1. Connections between contact number scaling, g(r) and
marginal stability. The scaling of �z can be related to the

2d

Figure 7. (a) Excess contact number z − zc as a function of excess density φ − φc. Upper curves represent monodisperse and bidisperse
packings of 512 soft spheres in three dimensions with various interaction potentials, while lower curves correspond to bidisperse packings of
1024 soft discs in two dimensions. The straight lines have slope 0.5. Reproduced from [2] with permission—copyright by the American
Physical Society. (b) Schematic contact number as a function of density, illustrating the mixed nature of the jamming transition for frictionless
soft spheres.
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divergence of the radial distribution function as follows [56].
Imagine compressing the packing, starting from the critical
state at point J, and increasing the typical particle overlap from
zero to δ. If one assumes that this compression is essentially
affine, then it is reasonable to expect that such compression
closes all gaps between particles that are smaller than δ. Hence

�z ∼
∫ 1+δ

1
dξ

1√
ξ − 1

∼ √
δ. (6)

Wyart approaches the square root scaling of �z from a
different angle, by first showing that the scaling �z ∼ √

δ

is consistent with the system staying marginally stable at all
densities, and then arguing that the divergence in g(r) is a
necessary consequence of that [54]. Both his arguments require
assumptions which are not self-evident, though [52].

3.5. Linear response and dynamical matrix

A major consequence of isostaticity at point J is that packings
of soft frictionless spheres exhibit increasingly anomalous
behavior as the jamming transition is approached. That
anomalies occur near jamming is ultimately a consequence
of the fact that the mechanical response of an isostatic
system cannot be described by elasticity—isostatic systems are
essentially different from ordinary elastic systems [45, 55].

In principle these anomalies can be studied at the jamming
point: however, much insight can be gained by exploring
the mechanical properties as a function of distance to the
isostatic point. Below we review a number of such non-trivial
behaviors and scaling laws that arise near point J. We will
focus on the response to weak quasistatic perturbations, and
on the vibrational eigenfrequencies and eigenmodes of weakly
jammed systems. Both are governed by the dynamical matrix
of the jammed packing under consideration.

For linear deformations, the changes in elastic energy can
be expressed in the relative displacement ui j of neighboring
particles i and j . It is convenient to decompose ui j into
components parallel (u‖) and perpendicular (u⊥) to ri j , where
ri j connects the centers of particles i and j (figure 8). In these
terms the change in energy takes a simple form [31, 43, 54]:

�E = 1

2

∑

i, j

ki j

(
u2

‖,i j − fi j

ki jri j
u2

⊥,i j

)
, (7)

where fi j and ki j denote the contact forces and stiffnesses. For
power law interactions of the form given in equation (2), we
can rewrite this as [30]

�E = 1

2

∑

i, j

ki j

(
u2

‖,i j − δi j

α − 1
u2

⊥,i j

)
. (8)

The dynamical matrix Mi j,αβ is obtained by rewriting
equation (7) in terms of the independent variables, ui,n , as

�E = 1
2Mi j,nmui,nu j,m . (9)

Here M is a dN × dN matrix with N the number of particles,
indices n, m label the coordinate axes and the summation
convention is used.

Figure 8. Definition of relative displacement ui j , u‖ and u⊥.

The dynamical matrix contains all information on the
elastic properties of the system. By diagonalizing the
dynamical matrix one can probe the vibrational properties
of systems near jamming [2, 33, 54, 56] (see section 3.5.1).
The dynamical matrix also governs the elastic response
of the system to external forces f ext (see sections 3.5.2–
3.5.4) [30, 57]:

Mi j,nmu j,m = f ext
i,n . (10)

3.5.1. Density of states. Studies of the vibrational modes
and the associated density of (vibrational) states (DOS) have
played a key role in identifying anomalous behavior near
point J. Low frequency vibrations in ordinary crystalline or
amorphous matter are long-wavelength plane waves. Counting
the number of these, one finds that the density of vibrational
states D(ω) is expected to scale as D(ω) ∼ ωd−1 for low
frequencies—this is called Debye behavior. Jammed packings
of frictionless spheres do show Debye-like behavior far away
from jamming, but as point J is approached, both the structure
of the modes and the density of states exhibit surprising
features [2, 54, 56, 58].

The most striking features of the density of states are
illustrated in figure 9. First, far above jamming, the DOS
for small frequencies is regular (black curve). Second,
approaching point J, the density of vibrational state DOS at
low frequencies is strongly enhanced. (In analogy to what
is observed in glasses, this is sometimes referred to as the
boson peak, since the ratio of the observed DOS and the Debye
prediction exhibits a peak at low ω.) More precisely, the
DOS becomes essentially constant up to some low frequency
crossover scale at ω = ω∗, below which the continuum scaling
∼wd−1 is recovered. Third, the characteristic frequency ω∗
vanishes at point J as ω∗ ∼ �z.

The density of states thus convincingly shows that, close
to the isostatic point/jamming point, the material is anomalous
in that it exhibits an excess of low frequency modes, and
that at point J the material does not appear to exhibit any
ordinary Debye/continuum behavior as here the DOS becomes
flat. Jamming of frictionless spheres thus describes truly new
physics.
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Figure 9. Density of vibrational states D(ω) for 1024 spheres
interacting with repulsive harmonic potentials. Distance to jamming
�φ equals 0.1 (black), 10−2 (blue), 10−3 (green), 10−4 (red) and
10−8 (black). The inset shows that the characteristic frequency ω∗,
defined as where D(ω) is half of the plateau value, scales linearly
with �z. The line has slope 1. Adapted from [54, 56] with
permission—copyright by the Institute of Physics.

Normal modes. The nature of the vibrational modes
changes strongly with frequency and, to a lesser extent, with
distance to point J. Various order parameters can be used to
characterize these modes, such as the (inverse) participation
ratio, level repulsion and localization length [58, 59]. The
participation ratio for a given mode is defined as P =
(1/N) (
i |ui |2)2/
i |ui |4, where ui is the polarization vector
of particle i [58]. It characterizes how evenly the particles
participate in a certain vibrational mode—extended modes
have P of order one, while localized modes have smaller P ,
with hypothetical modes where only one particle participates
in reaching P = 1/N .

Studies of such order parameters have not found very
sharp changes in the nature of the modes either with distance
to jamming or with eigenfrequency [58–60]. It appears to
be more appropriate to think in terms of typical modes and
crossovers. Qualitatively, one can consider the DOS to consist
of roughly three bands: a low frequency band where D(ω) ∼
ωd−1, a middle frequency band where D(ω) is approximately
flat, and a high frequency band where D(ω) decreases with
ω [58].

Representative examples of modes in these three bands are
shown in figure 10. The modes in the low frequency band come
in two flavors: plane-wave-like with P ∼ 1 and quasi-localized
with small P [59, 60]. The modes in the large frequency
band are essentially localized with small P . The vast majority
of the modes are in the mid-frequency band (especially close
to jamming) and are extended but not simple plane waves—
typically the eigenvectors have a swirly appearance.

The localization length ξ of these modes has been
estimated to be large, so that many modes have ξ comparable to
or larger than the system size. Consistent with this, the modes
in the low and mid-frequency range are mostly extended, ξ >

L, and exhibit level repulsion (i.e. the level spacing statistics
P(�ω) follows the so-called Wigner surmise of random matrix
theory), while the high frequency modes are localized (ξ < L)

and exhibit Poissonian level statistics [59].
When point J is approached, the main change is that

the low frequency, ‘Debye’ range shrinks, and that both the
number of plane waves and of quasi-localized resonances
diminishes [58–60].

3.5.2. Characteristic length and timescales. The vanishing of
the characteristic frequency ω∗ at point J suggests searching for
a diverging length scale. Below we give an analytical estimate
for this length scale and discuss indirect and direct observations
of this length scale in simulations.
Estimate of l∗. As pointed out by Wyart et al [54], if we cut a
circular blob of radius � from a rigid material, it should remain
rigid. The rigidity (given by the shear modulus) of jammed
materials is proportional to �z. The circular blob has of the
order of �d�z excess contacts. By cutting it out, one breaks
the contacts at the perimeter, of which there are of the order of
z�d−1. If the number of broken contacts at the edge is larger
than the number of excess contacts in the bulk, the resulting
blob is not rigid but floppy: it can be deformed without energy
cost (in lowest order). The smallest blob one can cut out
without it being floppy is obtained when these numbers are
equal, which implies that it has radius �∗ ∼ z/�z. Close to the
jamming transition, z is essentially constant and so one obtains
as a scaling relation that [54]

�∗ ∼ 1

�z
. (11)

Figure 10. Representative eigenmodes for a two-dimensional system of 104 particles interacting with three-dimensional Hertzian interactions
(α = 5/2, see equation (2)) at a pressure far away from jamming (z ≈ 5.09). For all modes, the length of the vectors ∝ui is normalized such
that σi |ui |2 is a constant. (a) Continuum-like low frequency mode at ω ≈ 0.030,P ≈ 0.79 and iω = 3, where iω counts the non-trivial modes,
ordered by frequency. (b) Quasi-localized low frequency mode at ω ≈ 0.040,P ≈ 0.06 and iω = 7. (c) Disordered, ‘swirly’ mid-frequency
mode at ω ≈ 0.39,P ≈ 0.31 and iω = 1000. (d) Localized high frequency mode at ω ≈ 4.00,P ≈ 0.0013 and iω = 9970.
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Figure 11. Divergence of a characteristic length scale near jamming
as observed in the fluctuations of the changes of contact forces of a
system of 104 Hertzian discs. Blue (red) bonds correspond to
increased (decreased) force in response to pushing a single particle in
the center of the packing to the right. In panel (a), the system is far
from jamming and z = 5.55, while in panel (b), the system is close
to jamming and z = 4.05 (adapted from [31]).

Observation of l∗ in vibration modes. Using the speed of sound
one can translate the crossover frequency ω∗ into a wavelength,
which scales as λT ∼ 1/

√
�z for transverse (shear) waves

and as λL ∼ 1/�z for longitudinal (compressional) waves—
the difference in scaling is due to the difference in scaling of
shear and bulk moduli (see section 3.5.3 below). By examining
the spatial variation of the eigenmode corresponding to the
frequency ω∗, λT has been observed by Silbert et al [56].
Notice, however, that the scaling of λT is different from the
scaling of l∗—it is λL that coincides with the length scale �∗
derived above.
Observation of l∗ in point response. The signature of the
length scale �∗ can be observed directly in the point force
response networks: close to point J, i.e. for small �z, the scale
up to which the response looks disordered becomes large (see
figure 11) [30, 31]. By studying the radial decay of fluctuations
in the response to the inflation of a single central particle
(which is more symmetric than that of point forcing, as shown
in figure 11) as a function of distance to jamming, one obtains
a crossover length l∗ which, as the theoretically derived length
scale, varies as l∗ ≈ 6/�z [31].
Characteristic length and validity of elasticity. An important
issue, which has in particular been studied extensively in the
context of granular media, is whether elasticity can describe
a system’s response to, for example, point forcing [55, 61].
Extensive observations of the linear response, connected
to the direct observation of l∗, suggest that there is a
simple answer and that the distance to the isostatic limit is
crucial [30, 31]: below a length scale l∗ the response is
dominated by fluctuations, and the deformation field can be
seen as a distorted floppy mode, while at larger length scales
the system’s response crosses over to elasticity. This is for
a single realization—it can also be shown that, even close to
jamming, the ensemble averaged response of a weakly jammed
system is consistent with elasticity, provided the correct values

of the elastic moduli are chosen—these moduli are consistent
with the globally defined ones [31].

3.5.3. Scaling of shear and bulk moduli. The scaling of
the shear modulus, G, and bulk modulus, K , plays a central
role in connecting the non-affine, disordered nature of the
response to the anomalous elastic properties of systems near
jamming. To understand why disorder is so crucial for the
global, mechanical response of a collection of particles that
act through short range interactions, consider the local motion
of a packing of spherical, soft frictionless spheres under global
forcing. The global stresses can be obtained from the relative
positions 
ri j and contact forces 
fi j of pairs of contacting
particles i and j via the Irving–Kirkwood equation:


αβ = 1

2V

i j fi j,αri j,β , (12)

where σab is the stress tensor, α and β label coordinates and V
is the volume.

Once we know the local motion of the particles in response
to an externally applied deformation, we can calculate the
contact forces from the force law and thus obtain the stress
in response to deformation. Let us first estimate the scaling
of the moduli from the affine prediction where one assumes
that the typical particle overlap δ is proportional to �φ and
that all bonds contribute similarly to the increase in elastic
energy when the packing is deformed. For a deformation
strain ε we can estimate the corresponding increase in energy
from equation (8) as �E ∼ 
kε2. Therefore, under affine
deformations, the corresponding elastic modulus is of order
k—in other words, the elastic moduli simply follow from the
typical stiffnesses of the contacts.

Consider now deforming a disordered jammed packing.
All particles feel a local disordered environment and
deformations will not be affine (figure 4). The point is
that these non-affine motions become increasingly strong near
the jamming transition and qualitatively change the scaling
behavior of, for example, the shear modulus of foams and
granular media [2, 15, 20, 43, 62].

A particularly enlightening manner to illustrate the role
of non-affine deformations is to initially force the particle
displacements to be affine and then let them relax. In general,
the system can lower its elastic energy by additional non-
affine motions. Calculating the elastic energies of enforced
affine deformations and of the subsequent relaxed packings
of soft frictionless spheres, O’Hern et al found that the non-
affine relaxation lowers both the shear and bulk modulus,
but crucially changes the scaling of the shear modulus with
distance to jamming [2]—see figure 12.

In general, one finds that, for power law interactions
(equation (2)), the pressure scales as �φα−1 and the contact
stiffness k and bulk modulus K scale as �φα−2 [2, 30, 62]. The
surprise is that the shear modulus G gets progressively smaller
as the bulk modulus near point J, and G scales differently
from K with distance to jamming: G ∼ �φα−3/2 (see
figure 12) [2, 20, 30, 62]. The relations between the scaling
of G, K and k can be rewritten as

G ∼ �zK ∼ �zk. (13)
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Figure 12. Bulk (K ) and shear (G) modulus as a function of distance to jamming for two-dimensional bidisperse systems, with interaction
potential V ∼ δα (see equation (2)). The closed symbols denote moduli calculated by forcing the particles to move affinely and the open
symbols correspond to the moduli calculated after the system has relaxed. Slopes are as indicated (adapted from [2] with
permission—copyright by the American Physical Society).

It is worth noting that many soft matter systems (pastes,
emulsions) have shear moduli which are much smaller than
compressional moduli—from an application point of view, this
is a crucial property.

Putting all this together, we conclude that the affine
assumption gives the correct prediction for the bulk modulus
(since k ∼ δα−2 ∼ �φα−2), but fails for the shear modulus.
This failure is due to the strongly non-affine nature of shear
deformations: deviations from affine deformations set the
elastic constants [2, 20, 30, 43, 62]. As we will see below,
the correspondence between the bulk modulus and the affine
prediction is fortuitous, since the response becomes singularly
non-affine close to point J for both compressive and shear
deformations (section 3.5.5).

3.5.4. Non-affine character of deformations. Approaching
the jamming transition, the spatial structure of the mechanical
response becomes less and less similar to continuum
elasticity, but instead increasingly reflects the details of the
underlying disordered packing and becomes increasingly non-
affine [30]—see figure 4(a). Here we will discuss this in the
light of equation (8), which expresses the changes in energy
as a function of the local deformations u‖ and u⊥: �E =
1
2

∑
i, j ki j(u2

‖,i j − δi j

α−1 u2
⊥,i j).

To capture the degree of non-affinity of the response,
Ellenbroek and co-workers have introduced the displacement
angle αi j .4 Here αi j denotes the angle between ui j and ri j , or

tan αi j = u⊥,i j

u‖,i j
. (14)

The probability distribution P(α) can probe the degree of
non-affinity by comparison with the expected P(α) for affine
deformations. Affine compression corresponds to a uniform
shrinking of the bond vectors, i.e. u⊥,i j = 0 while u‖,i j =
−εri j < 0: the corresponding P(α) exhibits a delta peak at
α = π . The effect of an affine shear on a bond vector depends

4 Not to be confused by the power law index of the interaction potential.

on its orientation, and for isotropic random packings P(α) is
flat.

Numerical determination of P(α) shows that systems far
away from the jamming point exhibit a P(α) similar to the
affine prediction but that, as point J is approached, P(α)

becomes increasingly peaked around α = π/2 (figures 13(b)
and (c)). This is reminiscent of the P(α) of floppy
deformations, where the bond length does not change and P(α)

exhibits a δ peak at π/2. Hence deformations near jamming
become strongly non-affine, and, at least locally, resemble
those of floppy modes.
Non-affinity of floppy modes and elastic response. Wyart
and co-workers have given variational arguments for deriving
bounds on the energies and local deformations of soft (low
energy) modes starting from purely floppy (zero energy)
modes [54, 63]. They construct trial soft modes that are
basically floppy modes, obtained by cutting bonds around a
patch of size �∗ and then modulating these trial modes with
a sine function of wavelength �∗ to make the displacements
vanish at the locations of the cut bonds [30, 54]. In particular,
for the local deformations, they find [63]

u‖
u⊥

∼ 1

�∗ → u‖
u⊥

∼ �z, (15)

where symbols without indices i j refer to typical or average
values of the respective quantities.

The question is whether the linear response follows this
prediction for the soft modes. The width w of the peak in P(α)

is, close to the jamming transition, roughly u‖/u⊥ because
|αi j − π/2| ≈ u‖,i j/u⊥,i j if u‖,i j � u⊥,i j . It turns out
that the scaling behavior (15) is consistent with the width
w of the peak of P(α) for shear deformations, but not for
compression. There the peak of P(α) does not grow as much
and a substantial shoulder for large α remains even close to
jamming: the tendency for particles to move towards each
other remains much more prominent under compression.
Scaling of u‖ and u⊥. The scaling of the distributions of u‖
and u⊥ has also been probed. The key observation is that in
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Figure 13. (a) Illustration of definition of displacement angle α. ((b) and (c)) Probability distributions P(α) for compression (b) and shear (c)
for Hertzian particles in two dimensions. The three pressures indicated correspond to z ≈ 6.0, z ≈ 4.5 and z ≈ 4.1, respectively (adapted
from [30] with permission—copyright by the American Physical Society).

equation (8) the terms ∼ u‖ and u⊥ have opposite signs. What
is the relative contribution of these terms, and can we ignore the
latter? Surprisingly, even though δ � 1, equation (15) predicts
that the two terms are of equal magnitude in soft modes, and
so for a linear response one needs to be cautious.

It has become clear that the balance of the terms is never so
precise as to qualitatively change the magnitude of the energy
changes: �E and 1

2

∑
i, j ki j(u2

‖,i j) scale similarly [31, 62].
Hence, the typical values of u‖ under a deformation are
directly connected to the corresponding elastic modulus: for
compression u‖ is essentially independent of the distance to
jamming (u‖ ∼ ε), while for shear u‖ ∼ ε�φ1/4, where ε is
the magnitude of the strain [31, 62].

The scaling for u⊥, the amount by which particles in
contact slide past each other, is more subtle. Numerically,
one observes that, for shear deformations, u⊥ ∼ ε�φ−1/4.
The two terms ∼ u‖ and ∼ u⊥ become comparable here,
and the amount of sideways sliding under a shear deformation
diverges near jamming [30, 31, 62]. For compression there is
no simple scaling. Combining the observed scaling for u‖ with
equation (15), one might have expected that u⊥ ∼ ε�φ−1/2.
However, the data suggests a weaker divergence, close to
�φ−0.3. Hence, consistent with the absence of simple scaling
of the peak of P(α) for compression, the two terms ∝ u‖
and ∝ u⊥ do not balance for compression. Nevertheless, both
under shear and compression, the sliding, sideways motion of
contacting particles dominates and diverges near jamming.

3.5.5. Effective medium theory, rigidity percolation, random
networks and jammed systems. In 1984, Feng and Sen
showed that elastic percolation is not equivalent to scalar
percolation, but forms a new universality class [64]. In
the simplest realization of rigidity percolation, bonds of a
ordered spring network are randomly removed and the elastic
response is probed. For such systems, both bulk and shear
modulus go to zero at the elastic percolation threshold5 and
at this threshold the contact number reaches the isostatic value
2d [65]. Later it was shown that rigidity percolation is singular

5 To translate the data for c11 and c44 as a function of p shown in figure 1,
note that G = C44 and K = c11 − c44. All go to zero linearly in p − pc.

on ordered lattices [66], but similar results are expected to hold
on irregular lattices.

While it has been suggested that jamming of frictionless
spheres corresponds to the onset of rigidity percolation [59],
there are significant differences, for example that the con-
tact number varies smoothly through the rigidity percolation
threshold but jumps at the jamming transition [2]. Never-
theless, it is instructive to compare the response of random
spring networks of a given contact number to those of jammed
packings—note that the linear response of jammed packings of
particles with one-sided harmonic interactions is exactly equiv-
alent to that of networks of appropriately loaded harmonic
springs, with the nodes of the network given by the particle
centers and the geometry and forces of the spring network de-
termined by the force network of the packing.

In figure 14, a schematic comparison of the variation of
the elastic moduli with contact number in effective medium
theory, for jammed packings and for random networks, is
shown. This illustrates that EMT predicts that the elastic
moduli vary smoothly through the isostatic point and that the
moduli are of the order of the local spring constant k. This is
because effective medium theory is essentially ‘blind’ to local
packing considerations and isostaticity. Thus, besides failing
to capture the vanishing of G near jamming, its prediction
for the bulk modulus fails spectacularly as well: it predicts
finite rigidity below isostaticity. Clearly random networks also
fail to describe jammed systems, as for random networks both
shear and bulk modulus vanish when z approaches ziso—from
the perspective of random networks, it is the bulk modulus of
jammed systems that behaves anomalously.

By comparing the displacement angle distributions P(α)

of jammed systems and random networks under both shear
and compression, Ellenbroek et al conclude that two cases can
be distinguished [62]. In the ‘generic’ case, all geometrical
characterizations exhibit simple scaling and the elastic moduli
scale as �z—this describes shear and bulk deformations of
randomly cut networks, as well as shear deformations of
jammed packings. Jammed packings under compression form
the ‘exceptional’ case: the fact that the compression modulus
remains of the order of k near jamming is reflected in the fact
that various characteristics of the local displacements do not
exhibit pure scaling.
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Figure 14. Schematic comparison of the variation of shear (G) and bulk (K ) elastic moduli as a function of distance to jamming. (a) In
effective medium theory, all elastic moduli are simply of the order of the local spring constant k and, moreover, the theory does not account
for whether the packing is rigid or not. (b) In jammed packings of harmonic particles, the bulk modulus K remains constant down to the
jamming transition, where it vanishes discontinuously, whereas the shear modulus G vanishes linearly in �z. (c) In random networks of
elastic springs, both elastic moduli vanish linearly with �z. (Reproduced with permission from [62]—copyright by the Institute of Physics.)

3.6. Conclusion

For packings of soft frictionless spheres and in the limit of large
systems, contact number, packing density, particle deformation
and (for given a force law) pressure are all directly linked
and at point J the system becomes isostatic. The jamming
transition for frictionless spheres exhibits a number of non-
trivial scaling behaviors, all intimately linked to the non-trivial
square root scaling of the excess contact number with distance
to the isostatic jamming point. We have stressed the viewpoint
that geometry and mechanics are intimately linked for these
systems, and that near point J, local non-affinity and global
anomalous mechanical scaling go hand in hand.

4. Jamming of frictional spheres

Here we discuss the rich phenomenology of jamming of
frictional soft spheres. The crucial difference with the
frictionless case is that both the packing density φc and contact
number zc at jamming are not unique: both depend on the
friction coefficient and on the history of the packing, and
are lower than for frictionless spheres [37, 46, 67–71]—see
figure 15.

Jamming and isostaticity no longer go hand in hand for
frictional spheres. The contact number at jamming, zc, can
range from d + 1 to 2d , where d + 1 is the isostatic value
zμ

iso for frictional spheres (see section 4.2.1 and the appendix).
It appears that zc approaches zμ

iso only in the limit of μ →
∞ and very slow equilibration of the packings [69–71]—see
section 4.2.4. In all other cases, the number of contacts at

Figure 15. Part of a packing of frictional discs in two dimensions for
low pressure, zero gravity and friction coefficient μ = 10. For this
packing, z ≈ 3.06 and φ ≈ 0.77 (this density includes rattlers, which
are not shown in this image and occur in the ‘holes’). Lines indicate
the strength of the normal forces—note the large number of
near-contacts (pairs of particles appearing to touch but not connected
by a force line). Disc color indicates local contact number, clearly
identifying the large fraction of particles with two contacts
only—these do not arise in frictionless systems.

jamming is larger than the minimal number needed for force
balance and rigidity, and frictional packings of soft spheres
at jamming (or, equivalently, frictional rigid spheres) are
hyperstatic: zc > zμ

iso. Hyperstaticity implies that, for packings
of rigid, frictional spheres, the contact forces are not uniquely
determined by the packing geometry, as was the case for the
isostatic packings of rigid, frictionless spheres [44, 45]. An
explicit example of this so-called indeterminacy of frictional
forces is shown in figure 16 [72].
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Figure 16. Frictionless (a) and frictional (b) disc in a groove [72]. (a)
In the frictionless case, the system is isostatic and the contact forces
(black) balancing the gravitational force (blue) are unique. (b) In the
frictional case, the system is hyperstatic: contact forces in hard
frictional systems are, in general, under-determined. In this example,
there are four force degrees of freedom (two normal and two
frictional forces) and only three balance equations (total force in x
and y directions and torque balance). This leads to a family of
solutions (three examples indicated in red, orange and green) that
balance the gravitational force (blue). Which of these is realized
depends on the history of the system.

What does the deviation of the critical contact number
from the isostatic value imply for the scaling of quantities such
as G, K and ω∗? We will show that these scale with distance
to the frictional isostatic point, z − zμ

iso. Thus, when the
jamming transition is approached, bulk quantities in general do
not exhibit scaling with distance to the jamming point since, at
jamming, z approaches zc � zμ

iso [46, 67, 69–71, 73]. Scaling
with distance to jamming can only occur when zc = zμ

iso.
Hence, jamming is not critical for frictional systems: power
law scaling of bulk quantities with distance to jamming is the
exception, not the rule.

The jamming scenario for frictional soft spheres is
detailed below. We briefly discuss the frictional contact laws
in section 4.1. In section 4.2 we discuss the properties
of frictional sphere packings at the jamming threshold or,
equivalently, packings of undeformable frictional spheres. We
focus on the variation of the range of contact numbers and
densities as a function of μ in sections 4.2.1–4.2.3. Finally
in section 4.2.4 we introduce the concept of generalized
isostaticity, which is relevant for frictional packings that have
fully mobilized contacts. Section 4.3 concerns frictional
packings at finite pressures and we discuss the (breakdown)
of scaling with distance to jamming.

4.1. Frictional contact laws.

Friction is taken into account by extending the contact force
model to account both for normal forces Fn and tangential
forces Ft. In the simple Coulomb picture of friction, contacts
do not slide as long as the ratio of tangential and normal forces
remains smaller than or equal to the friction coefficient μ:
|Ft|/Fn � μ, which introduces a very sharp nonlinearity in
the contact laws. Typical values for μ relevant in experiments
range from 0.1 to 1, which is where properties of frictional
packs vary strongly with μ.

Frictional forces do not only depend on the relative
position of the contacting particles, but also on their
history [22, 37, 71–74]. This is encoded in the widely used
Hertz–Mindlin model for frictional three-dimensional spheres,
which takes the normal force Fn ∼ δ3/2 with δ the overlap
between particles, while the tangential force increment dFt ∼

δ1/2 dt , where dt is the relative tangential displacement change,
provided Ft � μFn [22, 71, 74]. Studies of friction can also
be performed for other contact laws, most notably the linear
model for which Fn ∼ δ, so that the stiffness of the contacts
in the normal and tangential directions are independent of the
normal force and do not vary with distance to jamming [46].

4.2. Frictional packings at zero pressure

4.2.1. Contact number. How can the counting arguments
for the contact number at zero pressure be extended to the
frictional case? On the one hand, the requirement that
contacting spheres precisely touch is the same as for the
frictionless case and gives z N/2 constraints on the d N particle
coordinates, leading to z � 2d . On the other hand, for
frictional packings, the constraint counting for the zd N/2
contact force components constrained by d N force and d(d −
1)N/2 torque balance equations (see the appendix) gives z �
d + 1, where the isostatic value zμ

iso = d + 1. Combining these
two bounds, frictional spheres can attain a range of contact
numbers: d + 1 � zc � 2d (see the appendix).

It is important to stress that neither bound is sensitive
to the value of μ. What mechanism (if any) selects the
contact number zc of a frictional packing at jamming? The
first additional ingredient to consider is the Coulomb criterion
that for all contact forces |Ft|/Fn � μ. So, while constraint
counting allows force configurations that satisfy force and
torque balance for z arbitrarily close to zμ

iso, such configurations
are not guaranteed to be compatible with the Coulomb
criterion, and in particular for small μ they generally will not
be. This is consistent with the intuition that a small increase of
μ away from zero is not expected to make zc jump from 2d to
d + 1. In section 4.2.4 we will discuss an additional bound on
z as a function of μ.

Simulations show that, in practice, zc is a decreasing
function of μ, approaching 2d at small μ and approaching
d + 1 for large friction coefficient [46, 68–71] (figure 17(a)).
However, zc(μ) cannot be a sharply defined curve unless
additional information about the preparation history is given:
from the non-sliding condition |Ft|/Fn � μ it follows that a
packing which is stable for a certain value of μ remains so for
all larger values of μ—increasing the friction coefficient only
expands the range of allowed force configurations (and does
not change any of the contact forces). Hence, a numerically
obtained curve zc(μ) at best is a bound for the allowed
combinations of zc and μ (see figure 17(a)). History is a second
additional ingredient to consider [37], although it is remarkable
that several different equilibration algorithms appear to give
very similar estimates for zc(μ) [37, 46, 67–71].

4.2.2. Density. The existence of a wide range of statistically
different frictional packings is also reflected in packing
densities, which experimentally are more easily observed
than the contact number. It is well known that packings of
spherical hard particles under gravity (in other words, frictional
spheres close to jamming) can be compacted over a range of
densities [76]. Different packing densities of these systems do
not correspond to deformations of the particles, but to changes
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c

Figure 17. (a) Example of the variation of the zero-pressure contact number zc in two-dimensional rigid discs as a function of μ, smoothly
interpolating between the isostatic limits 2d (red) for zero friction and d + 1 (blue) for frictional contacts. The arched area indicate
combinations of contact numbers and μ that, while they are not reached in these numerics, are perfectly possible—see text (adapted
from [68]—copyright by the American Physical Society). (b) State diagram for frictional spheres. While the random close packed, isostatic
packings obtained for zero friction are compatible with all values of μ, a range of packings with lower densities and contact numbers open up
when μ > 0. For a given preparation protocol, there might be a well-defined density (dashed curve). Whether there is a well-defined lowest
packing fraction for given μ, which would define random loose packing, is an open question, and the question what the contact number of
such states would be is open as well (adapted from [75]).

in the organization of the particles. Hence, at jamming, the
range of packing densities does not go to zero for frictional
particles.

The relation between density and friction coefficient can
be summarized in a simple state diagram (figure 17(b)), which
stresses that random close packing (RCP) is independent
of μ, while the random loose packing (RLP) density
depends strongly on μ, thus connecting random close
packing, random loose packing and the value of the friction
coefficient [69, 70, 73, 77–80]. This diagram further suggests
that the packing density at point J may also be seen as random
loose packing of frictionless spheres (since for μ = 0 one
expects RCP and RLP to coincide)—it is the loosest possible
packings, rather than the densest possible ones, that arise
near jamming. It should be noted that the definition of RLP
is even more contentious than RCP, and the debate is wide
open [73, 78, 79].

4.2.3. Scaling with μ. One may now also wonder how the
contact number and packing density at jamming scale with
μ. Qualitative evidence for scaling was found by Silbert et al
in numerical studies of frictional packings (figures 2 and 3
from [46]). By focusing explicitly on a single preparation
protocol, such as slow equilibration, this becomes a well-posed
question—leading to the concept of generalized isostaticity,
defined below. Data for generalized isostatic packings suggests
that both contact number and density exhibit power law scaling
with μ for small friction, while for large friction, excess contact
number and density (defined with respect to the infinite friction
limit) are also related by scaling, although clearly more work
is needed to establish these scalings firmly [70, 73].

4.2.4. Generalized isostaticity. Here we will discuss the role
of the frictional forces in some more detail, and in particular

focus on frictional packings for which a large number of
contacts are fully mobilized, meaning that the frictional forces
are maximal: |Ft|/Fn = μ. These packings arise in numerical
studies when packings are equilibrated slowly for a wide range
of values of μ.

The mobilization, m, of a contact is defined as the ratio
|Ft|/(μFn) and ranges from 0 to 1 (fully mobilized). Earlier
numerical data suggested that m generally stays away from
1, and that in the limit of large μ, the distribution of the
mobilization P(m) becomes independent of μ [37, 46]. Later it
became clear that P(m) can depend strongly on the preparation
history [69]. Furthermore, frictional two-dimensional packings
which are very slowly equilibrated yield packings for which a
substantial amount of the contact forces are fully mobilized,
meaning that |Ft|/Fn = μ [46, 70, 81]. One imagines that,
during equilibration, many contacts slowly slide, and when
the packing jams many contacts are still close to failure—such
packings are marginal with respect to lowering μ.

For packings with fully mobilized contacts, the counting
arguments need to be augmented, since at fully mobilized
contacts, the frictional and normal forces are no longer
independent [70]. Defining the number of fully mobilized
contacts per particle as nm, the constraints for the zd N/2 force
degrees of freedom then are: d N force balance equations,
d(d−1)N/2 torque balance equations and nm N constraints for
the fully mobilized contacts. This yields the following relation
between z, zμ

iso = d + 1 and nm:6

z − zμ

iso � 2nm/d. (16)

Surprisingly, for sufficiently slowly equilibrated packings and
for all values of μ, the values for nm and z tend to satisfy this
bound when P is lowered to zero (figure 18). Such packings

6 The corresponding equation in [70] is only correct for d = 2.
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Figure 18. Generalized isostaticity plot, comparing the fraction of
fully mobilized contacts per particle, nm, to the contact number, z.
Data points (open symbols) are for two-dimensional systems and for
μ ranging from 0.001 to 1000 at finite P. The black squares are the
corresponding nm and z extrapolated to P = 0. The left and bottom
axes refer to the numerical values for contact number and number of
fully mobilized contacts per particle, nm, for this specific
two-dimensional example, while the right and top axes give the
corresponding general expressions for higher dimensions. The red
line denotes the generalized isostaticity line where the number of
fully mobilized contacts is maximized: nm = d(z − d − 1)/2. The
area to the right of this line refers to generalized hyperstatic
packings, while the area to the left of the red line is forbidden
(adapted from [70] with permission—copyright by the American
Physical Society).

which maximize their number of fully mobilized contacts have
been referred to as ‘generalized isostatic’ packings [70, 81].
These should be widely occurring, since most preparation
algorithms tend to equilibrate slowly [37, 46, 67–71].

For fully mobilized packings, the amount of fully
mobilized contacts vanishes in the limit of infinite friction
(see figure 18), consistent with the observation that there z ≈
d + 1. The number of fully mobilized contacts is maximal
for vanishingly small friction (which we refer to as μ = 0+),
where, by continuity, z ≈ 2d and nm ≈ d(d − 1)/2. Taking
into account that each contact is shared by two particles, the
fraction of fully mobilized contacts is (d −1)/2—hence in two
dimensions 50% of all contacts are fully mobilized, in three
dimensions 100% of the contacts would be fully mobilized
for μ = 0+, and in higher dimensions one cannot reach
generalized isostaticity for μ = 0+.

By itself, the inequality (16) is not a stricter bound on z
than the ordinary condition z � d+1, since nm(μ) is unknown.
However, if we could determine nm(μ), we would immediately
obtain the bound z = d + 1 + 2nm(μ)/d . It is, at present,
an open question how nm(μ) can be estimated or obtained
numerically other than through direct numerical simulations.

4.3. Frictional packings at finite pressure

Once a mechanically stable frictional packing has been created,
its linear mechanical response is given by the dynamical
matrix. For Hertz–Mindlin-type interactions, each contact can
be thought of as being given by two springs (one parallel to the
contact vector ri j and one perpendicular to the contact vector),
the spring constants of which are set by the normal force and
the Poisson ratio [23].

Various authors have found that, for essentially all values
of μ, the excess contact number z − zc grows as a square root
with the excess density [67, 71, 73]—for Hertzian contacts,
this is equivalent to stating that z − zc ∼ P1/3. However, zc

differs from the frictional isostatic value d + 1, so that z − zμ

iso
does not scale with pressure (see figures 19(a) and (b)). Note
that the slope in figure 19(b), which represents the prefactor z0

in a scaling law of the form z − zc = z0
√

φ − φc, does not
appear to vary strongly with μ. As is the case for frictionless
particles, it is essential to remove rattlers for the count of the
contact number, but include them for the estimate of the density
to obtain the square root scaling of z − zc over an appreciable
range [70]. This square root scaling is intriguing and, as far as
we are aware, without explanation.

The deviations of zc from the isostatic value imply that
packings near the (un)jamming transition do not approach
isostatic packings and, consistent with this, there is, in general,
no scaling of the mechanical properties as a function of the
distance to jamming.

The mechanical properties do, however, scale with the
distance to the isostatic point, as measured by the contact
number. First, calculations of the characteristic frequency
ω∗ from the density of vibrational states for two-dimensional
frictional packings show that the variation of ω∗ with μ and
distance to jamming (as measured by the pressure P) is very
similar to that of z (figure 19(c)). In fact, when this data
is replotted as a function of z − zμ

iso = z − 3 one finds a
linear relation between ω∗ and z − zμ

iso (figure 19(d)). Second,
the ratio of the shear and bulk modulus exhibits the same
phenomenology: G/K scales linearly with z − zμ

iso = z −
3 (19(e) and (f)) [71, 82]. These findings suggest that, in
general, scaling is governed by the distance to isostaticity,
rather than the distance to jamming.

The contact number and geometry of the packings change
smoothly with μ [71, 73], while the mechanical behavior
exhibits a discontinuous jump from μ = 0 to 0+. This is
caused by the fact that, when friction is included, the nature
of the dynamical matrix changes completely, because the
tangential contact stiffnesses jump from zero to a finite value.
When the tangential stiffness is varied smoothly from μ =
0 to finite friction, the mechanical properties vary smoothly
also [53].

Finally a word of caution regarding the notion of
generalized isostaticity and the role of fully mobilized contacts
for scaling away from jamming. In the calculations presented
above fully mobilized contacts are treated as ordinary elastic
contacts. Strictly speaking, such marginal contacts cause
a breakdown of linear response. One may argue that tiny
perturbations would simply let the fully mobilized contacts
relax to almost-fully-mobilized, after which linear response
would no longer be problematic. Taking the opposite view,
Henkes et al have recently shown that, if the dynamical matrix
is calculated under the assumption that fully mobilized contacts
can slide freely, the characteristic frequency ω∗ scales and
vanishes with P for all values of μ—provided one considers
systems that approach generalized isostaticity [53].
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Figure 19. Scaling of contact number, w∗ and elastic moduli for frictional discs, interacting through three-dimensional Hertzian–Mindlin
forces. (a) The zero-pressure contact number, z J , does not reach the isostatic limit (z = 3) unless μ is very large. (b) The excess coordination
number z − z J scales linearly with P1/3 ∼ √

�φ. ((c) and (d)) The characteristic frequency of the DOS, ω∗, scales similarly to z − 3.7

(e) The bulk modulus K (red curves) approaches a plateau for small P, while G appears to scale as z − 3.8 (f) As in frictionless spheres, the
ratio G/K scales with distance to the isostatic point, now given by z − zμ

iso = z − 3 (adapted from [71] with permission—copyright by the
American Physical Society).

4.4. Conclusion

Jamming of frictional grains can be seen as a two-step process.
The first step is the selection of a contact number, z, given
the friction coefficient, pressure and procedure. In the second
step, in which the mechanical properties of the packing are
determined, everything scales with z − zμ

iso. The crucial
difference with frictionless spheres is that the contact number
zc at the P = 0 jamming point in general does not coincide
with zμ

iso. Most quantities are governed by the contact number
and scale with distance to isostaticity, while the contact number
itself scales with distance to jamming.

5. Jamming of non-spherical particles

New phenomena occur in packings of non-spherical particles,
and here we briefly discuss the jamming scenario for
frictionless ellipsoids.
7 A trivial scaling of ω ∼ P1/6, characteristic for Hertzian contacts, has been
scaled out.
8 A trivial scaling of K , G ∼ P1/3, characteristic for Hertzian contacts, has
been scaled out.

First, configurations for hard (or zero-pressure) friction-
less ellipsoids pack more densely and have larger contact num-
bers than frictionless spheres [48–50, 83]. As we discuss in
section 5.1, both the increase in density and in contact number
away from the sphere limit are continuous but not smooth—
plots of φ and z as a function of the ellipticity show a cusp at
the sphere limit (figure 20).

Second, the counting arguments for general ellipsoids
suggest that, at jamming, ellipsoids attain z = ziso = d(d +
1). However, weakly aspherical ellipsoids actually attain a
contact number arbitrarily close to the sphere limit z = 2d .
As a consequence, (weakly) ellipsoidal packings are strongly
hypostatic (underconstrained) near jamming. This leads to
questions about the relation between contact number, rigidity
and floppy modes (section 5.2).

Third, the question arises whether quantities such as z
and ω∗ exhibit scaling, either as a function of the pressure,
as a function of the asphericity or as a function of distance
to either the spherical or the ellipsoidal isostatic point—the
partial answers to these questions, based on recent studies of
the density of states [49, 50], will be addressed in section 5.3.
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Figure 20. (a) Packing fraction φ of spheroids (open symbols) and
general ellipsoids (blue symbols) as a function of the asphericity α.
The density shows a cusp at α = 1 (sphere limit). The orange line
indicates the HCP packing density ≈0.74, which is almost reached
by random packings of some ellipsoids. (b) The contact number, z,
for the same spheroids and ellipsoids as shown in panel (a) also
shows a cusp at α = 1. The red, green and blue lines at z = 6, 10 and
12 indicate the isostatic contact numbers for spheres, spheroids and
ellipsoids (adapted from [83]—copyright by The American
Association for the Advancement of Science).

5.1. Packings of spherocylinders, spheroids and ellipsoids

Spherocylinders. Early indications for surprisingly dense
packings of non-spherical particles come from studies of
spherocylinders, particles consisting of a cylinder of length
a and diameter 1, which on both ends are capped by a half-
sphere. For zero a, these are spheres, while the large a
limit is relevant for the loose packings of thin (colloidal)
rods [84]. Williams et al studied the packing fraction and
contact numbers of such spherocylinders numerically and
found that both the packing fraction φ and contact number z
increase when a is increased, reach a maximum for a ∼ 0.4,
and then decrease [85]. The density peaks at a value of
0.695, substantially larger than the typical values for random
close packing of spheres ∼0.64, while for large a > 10 the
density decays as φ ∼ 1/a, consistent with arguments given
before [84].

The contact number in these simulations was found to start
out at z ≈ 5.8 for a = 0 and increased until it reached z ≈ 9
for a ≈ 0.4. The initial value is close to the isostatic number
for spheres (6), while the peak value is similar to the isostatic
number for rods (10) [86]9.

9 The data also suggested that z decays monotonically for large a but this is
likely due to a problem with the contact counting.

Spheroids and ellipsoids. In seminal work, Donev
et al explored the packing properties of hard spheroids and
ellipsoids [83]. As shown in figure 20(a), the density of
spheroids (axis: 1:1:α) exhibits a cusp-like local minimum for
the pure spherical case α = 1 and reaches two local maxima:
oblate (disc-like) spheroids at α ≈ 0.6 pack at a density
φ ≈ 0.70 and prolate (cigar-shaped) ellipsoids at α = 1.5
pack even denser at φ ≈ 0.715. Note that the spheroid packing
density only drops below the random close packing value for
spheres for very strongly oblate (α � 0.25) or prolate (α � 4)
particles.

Even larger packing densities can be obtained for triaxial
ellipsoids, and for the case that the axes are given as 1/α:1:α,
the maximum packing density peaks at 0.735 for α ≈
1.25 [48, 83]. This density is surprisingly close to the density
≈ 0.74 obtained for fcc and hcp packings, which are the
densest possible packings for spheres—but those are crystals,
whereas the ellipsoidal packings do not show any appreciable
orientational ordering. Finally, crystals of ellipsoids can be
packed even denser, with the highest density currently known,
0.7707, is obtained in nonlattice periodic packings of spheroids
with either α �

√
3 or α � 1/

√
3 [87].

The contact number grows monotonically with aspheric-
ity, from a value ≈2d for the spherical case to values close
to the corresponding higher isostatic number for ellipsoids:
the contact number for the spheroids measured for strongly
oblate or prolate appears to level off at values around 9.8 (the
corresponding isostatic number is 10), and for ellipsoids one
reaches 11.4 (the corresponding isostatic number is 12) [83].
(The contact numbers in the disordered ellipsoidal systems
are difficult to obtain accurately from numerics, in particular
for hard particles—since, similar to hard spheres, one expects
anomalously many near-contacts [42, 47].) It is noteworthy
that the contact numbers reach these asymptotic values at the
same asphericities where the density is maximal. Recent work
on two-dimensional ellipses [48, 49] and three-dimensional
spheroids [50] confirm these trends in contact numbers.

5.2. Counting arguments, floppy modes and rigidity of
ellipsoids

The counting arguments for general ellipsoids suggest that, at
jamming, ellipsoids attain z = ziso = d(d + 1). However,
weakly aspherical ellipsoids actually attain a contact number
arbitrarily close to the sphere limit z = 2d . Hence counting
arguments suggest that packings of weakly ellipsoidal particles
possess a large number of floppy modes. Are these packings
stable?

As a first step in understanding such packings, it is helpful
to think about weakly aspherical ellipsoids that approach
the sphere limit. The number of floppy modes in such an
underconstrained system equals (N/2)(ziso − z), which for the
sphere limit (where z → 2d) equals N(d(d − 1)/2). What are
these floppy modes?

The key observation is that, in the counting arguments
for ellipsoids, the rotational degrees of freedom are taken into
account while for spheres, where they correspond to trivial
rotations of the particles, these are ignored. When these
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s

Figure 21. Schematic scenario for the density of states for frictionless soft ellipsoidal particles, based on [49, 50]. ((a)–(d)) Density of states
as a function of distance to the spherical limit. The gray, blue, red and green colors refer to floppy modes, rotational modes, translational
modes and hybridized modes, respectively. (a) For frictionless spheres, one usually only considers the translational band (red), but when one
takes the rotational degrees of freedom into account, a large number of trivial floppy modes occur (dashed gray line). (b) For contact numbers
just above z − zsphere

iso , the density of states exhibits three bands, and the characteristic frequencies ωs and ω∗ scale with asphericity and
z − zsphere

iso , respectively—see text. (c) For contact numbers approaching z − zellip
iso , the rotational and translational band merge. (d) For contact

numbers above z − zellip
iso , there are no floppy modes and the characteristic frequency ω† scales with z − zellip

iso .

rotational degrees of freedom are also taken into account for
frictionless spheres, one obtains precisely N(d(d−1)/2) trivial
floppy modes, corresponding to the trivial rotational degrees
of freedom of individual frictionless spheres [48, 50]. These
floppy modes do not affect the rigidity of the packings, which
suggests that, in general, the absence of floppy modes may be
a sufficient but not a necessary condition for rigidity [48].

From the perspective of constraint counting of the contact
forces, something similar happens in the sphere limit: how do
d N force degrees of freedom satisfy both d N force balance
equations and also all the additional torque balance equations?
The answer is simple: for frictionless spheres, the torques
exerted by each contact force are zero, and so torque balance is
trivially satisfied.

The key question, however, is what happens to hypostatic
packings at finite asphericity and pressure. The full answers
are not known, but two recent studies on the density
of vibrational states for soft frictionless bidisperse two-
dimensional ellipses [49] and three-dimensional spheroids [50]
provide important ingredients that we will discuss below.

5.3. Jamming of ellipsoids

The main findings for the density of states of ellipsoidal
particles are shown in figure 21. Close to the sphere
limit, where the contact number is far below the relevant
ellipsoidal isostatic value, the density of states consists of
three bands: first, a number of zero-frequency, floppy modes
corresponding to the degree of hypostaticity, second, a band
of rotational modes and third, a band of translational modes,
corresponding to the translational modes present for the pure
sphere case. When, for increasing pressure and/or strong
ellipticity, the contact number starts to approach the ellipsoidal
isostatic value, the rotational and translational bands hybridize
and merge. Finally, when the contact number exceeds the
ellipsoidal isostatic value, the floppy modes have vanished
and the characteristic frequency of the remaining single band
density of states scales with distance to the ellipsoidal isostatic
value.

Figure 22. Schematic representation of the number of modes per
band for the specific case of spheroids in three dimensions.
(Reproduced with permission from [50]—copyright by the Institute
of Physics.)

The counting arguments provide a clear picture of the
number of modes per band, as shown in figure 22, where the
variation of these numbers with contact number is shown for
the case of spheroids in 3d.

First, the vibrational modes present for the spherical case
are only weakly perturbed by the inclusion of weak ellipticity,
so their number still equals d N . The particle motions of modes
in this band are essentially translational, and the characteristic
frequency of this band, ω∗, still scales with z − zsphere

iso , not with
z − zellips

iso . Hence, this part of the density of states is smoothly
perturbed when going from the sphere to the weakly ellipsoidal
case.

Second, for z < zellip
iso the system is underconstrained and

the crucial observation is that here there are (z−zellip
iso )/2 floppy

modes. In the sphere limit, these modes are the trivial local
rotations, and away from the sphere limit most of these modes
survive and become delocalized—their precise nature is not
fully understood yet.

Thirds, at finite pressures and/or finite asphericities, (z −
zsphere

iso )/2 modes emerge from the zero-frequency band and
attain finite frequencies. This is the rotational band: particle
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motions of modes in this band are essentially rotational and
the vibration frequencies are below those of the translational
band. This allows the definition of a characteristic maximal
frequency of the rotational band ωs, which is found to scale
with the degree of asphericity |1 − α|, but is essentially
insensitive to the pressure.

Fourth, for large pressure and asphericity, the contact
number approaches the relevant ellipsoidal isostatic number,
the rotational and translational bands start to approach each
other (ω∗ − ωs � 1), the modes hybridize and these two
bands eventually merge. In the regime where the contact
number exceeds the relevant ellipsoidal contact number, there
are no more floppy modes. The only band of vibrational
modes then has a mixed translational/rotational character, and
its characteristic frequency, ω†, scales with distance to the
relevant ellipsoidal isostatic point: ω† ∼ z − zellip

iso .
Finally, note that for weakly elliptical systems that are

hypostatic, the counting argument implies that the forces must
be non-generic—one still has more equations of force and
torque balance than one has force degrees of freedom. In
terms of the elastic energy landscape, one imagines that near
such systems there must exhibit many directions in phase
space where the second derivative is zero (leading to quartic
modes [49]), but a deep understanding is missing.

5.4. Conclusion

Jamming of frictionless ellipsoidal particles is surprisingly
similar to that of frictionless spheres, despite the strongly
hypostatic nature of weakly aspherical packings. The crucial
observation is that frictionless spheres can also be seen as
strongly hypostatic near jamming, as they possess a large
number of trivial floppy modes. Most of these modes remain
at zero frequency for weakly ellipsoidal particles, even though
their spatial structure is no longer trivial, and these modes
do not appear to affect the rigidity of packings of frictionless
ellipses.

6. Summary, open questions and outlook

The jamming scenario for disordered packings of soft, purely
repulsive particles at zero temperature and shear, as described
above, can be seen as a two-step process. First, for a given
pressure, contact law and preparation protocol, a packing with
a certain contact number, z, is created. Second, the mechanical
characteristics such as elastic moduli and density of states
depend on the difference between the actual contact number
and the relevant isostatic value.

Depending on the particles’ friction or shape, the contact
number may span a range of values—see figure 23 for this
range for P → 0. For frictionless particles it appears that the
contact number at jamming is independent of the preparation
procedure, even for finite pressures. For frictional particles,
a range of contact numbers arises and the history becomes
crucial.

Jamming of frictionless soft spheres constitutes a special
case, since here the isostatic contact number (excluding the
trivial rotational degrees of freedom of the particles) is reached

Figure 23. Conjectured range of selected contact numbers at
jamming, i.e. at P = 0, as a function of the friction coefficient μ and
ellipticity ε. The red dot indicates the isostatic limit for frictionless
spheres at (μ = 0, ε = 0), the green line indicates the isostatic limit
for frictionless ellipsoids (μ = 0, ε �= 0) and the blue plane indicates
the isostatic limit for frictional particles (μ �= 0). The contact
number is precisely selected in the frictionless plane, and for
sufficiently large ellipticity the contact number crosses the isostatic
value (green dot). Once friction comes into play, a range of contact
numbers are allowed. For a given μ and ε, the upper bound is given
by the selected contact number for frictionless ellipsoids at μ = 0,
while the lower bound is given by the generalized isostaticity
limit—i.e. for finite μ, the maximal number of contacts is fully
mobilized here, and only for μ → ∞ does z reach the frictional
isostatic value z = d + 1.

at the jamming threshold. The counting for ellipsoidal particles
takes these rotational degrees into account, which leads to
strongly hypostatic packings near jamming—however, the
associated zero modes do not appear to contribute to the
mechanical properties of the packings. Furthermore, the
perturbation from spheres to weak ellipsoids is smooth when
the trivial rotational modes for the spheres are included.

Friction, however, acts differently. Given a certain
preparation procedure, the change in contact number is smooth
with μ. However, the frictional interactions are such that, at
the level of the dynamical matrix, the inclusion of arbitrary
small friction introduces a discontinuous change. For any
value of the friction the tangential stiffness takes on a finite
value which leads to contributions to the dynamical matrix of
order one, contributions which are absent in the frictionless
case. Friction become a smooth perturbation only when the
tangential stiffness is varied smoothly with μ.

6.1. Open questions

A crucial question is that of experimental relevance. Many
recent predictions of the theory should be observable in
experiment, in particular for frictionless systems such as foams
and emulsions, but very few have been observed so far.
Frictional packings have been explored theoretically far less
than frictionless systems, despite their obvious experimental
relevance [12, 88]. How many different order parameters
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does one need to characterize the statistics of generic frictional
packings?

More work is needed to clarify the notion of random loose
packing [77–79] and to unravel the role of packing protocols.
What is the underlying distribution of possible contact numbers
and densities for frictional spheres, given a certain pressure
and friction coefficient? Do RCP and RLP correspond to
sharp gradients in this distribution? Are the RCP and RLP
limits identical for frictionless packings? Random packings
of spheres are much looser than random packings of non-
spherical particles—can we understand why?

It is, in many cases, unknown how results obtained
for frictionless spheres extend to more complex systems.
For example, do a diverging length scale and a singularly
non-affine response arise when frictional spheres or ellipses
approach their isostatic limit(s)? What about the elastic
moduli [71, 82]? Similarly, what is the jamming scenario
for more general particles, such as frictional ellipses and
nonconvex particles that may share multiple contacts? What
is the scenario for more general interactions (attraction, long
range, etc)?

Given the central role of the square root scaling of the
contact number with distance to jamming, it would be useful to
probe the connection to the square root singularity of g(r)—the
argument outlined in section 3.4.1 assumes displacements to be
primarily affine, while near J the displacements are singularly
non-affine and diverge. What may happen is that the relative
displacement of particles that are not in contact are not strongly
non-affine—we do not know. For frictional spheres it is not
understood whether z − zc exhibits true square root scaling
with excess density and whether g(r) exhibits similar scaling
behavior there.

Essentially all the work discussed above focuses on
averaged quantities and linear response. For finite systems,
contact numbers, moduli, etc, exhibit significant differences
in different realizations [2, 52]. Can we understand these
fluctuations near jamming? What is the nonlinear yielding
behavior of systems near jamming [2]?

A whole host of new phenomena arise when jammed
systems are put under shear stress, and possibly are made to
flow [5, 6, 8, 9], or when systems of finite temperature [10, 11]
are considered. Can these phenomena be connected in a
meaningful manner to the zero-shear, zero-temperature limit?

6.2. Outlook

Jamming is cool [1], as it provides a framework to approach the
mechanics of disordered systems. The studies of the simplest
case of static soft frictionless spheres have demonstrated
that such systems exhibit rich spatial organization and
anomalous mechanical properties near the isostatic/jamming
limit. Important tasks for the coming years include
exploring the relevance of these observations for experimental
observations and for systems with more complex interactions.
New horizons are emerging for systems at finite temperature
and in particular for flow near jamming—as attested by the rich
phenomenology of flowing foams, suspensions and granular
media.

Appendix. Counting arguments for the contact
number

By constraint counting one can establish bounds on the contact
number [43]. First, one may require that floppy modes,
deformations that in lowest non-trivial order do not cost
energy, are absent. This yields a lower bound on the contact
number. Packings that violate this second constraint are called
hypostatic, packings that marginally fulfill this constraint are
isostatic and packings that fulfill this constraint are called
hyperstatic.

Note that the same lower bound on the contact number is
obtained by requiring that all contact forces balance. As we
will see, this is because the number of independent degrees
of freedom necessary to describe changes in the energy at a
contact equals the number of force degrees of freedom per
contact. Therefore, the requirement that floppy modes are
absent is equivalent to the requirement that the contact forces
balance, and often the counting argument that yields the lower
bound on z is phrased in terms of the contact forces.

Secondly, for packings at jamming, one arrives at a
second constraint, which follows from the requirement that
the particles are undeformed at jamming. This yields an
upper bound on the contact number. Violations of this second
condition are possible for special (non-generic) packings, such
as perfect crystals.

As we will see, for frictionless particles the first and
second bounds coincide. This does not necessarily imply that
the corresponding contact numbers are realized at jamming:
numerically it is found that frictionless spheres are indeed
isostatic at jamming [2], while weakly aspherical frictionless
ellipsoids are strongly hypostatic [48, 49, 59]. For frictional
particles the two bounds never coincide, and numerically it is
found that frictional particles are almost always hyperstatic at
jamming.

Below we present the counting arguments in detail, for
packings of N soft particles in d dimensions which interact
through contact forces, and for which the contact number
z is defined as the average number of contacts per particle.
Note that the total number of contacts equals Nz/2—each
contact is shared by two particles. As we will find below, to
perform these counting arguments we need to know the number
of force components per contact, or equivalently the number
of independent degrees of freedom necessarily to describe
changes in the energy at a contact ( f̃ ), the geometrical number
of degrees freedom per particle (x̃) and the number of force
balance equations per particle (b̃).
Absence of floppy modes. The counting that follows from
requiring that there are no floppy modes can most easily be
carried out by considering �E , the change in elastic energy as
a function of deformation of a certain packing. The number
of terms contributing to �E equals the number of contacts,
Nz/2, multiplied by f̃ , the number of independent degrees
of freedom necessary to describe changes in the energy at a
contact. �E is a function of all Nd positional degrees of
freedom and all additional orientational degrees of freedom
which are not symmetries—zero for spheres, 2N for spheroids
in three dimensions and d(d − 1)N/2 for general ellipsoids.
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Table A.1. Results of ‘Maxwell’ constraint counting for a range of different types of soft particles. As explained in the text, f̃ denotes the
number of force components per contact, x̃ denotes the geometrical number of freedom per particle and b̃ denotes the number of balance
equations per particle.

Particle f̃ x̃ b̃ Touch z/2 � x̃ Rigidity z f̃ /2 � b̃ Range

Frictionless sphere 1 d d z � 2d z � 2d z = 2d
Frictional sphere d d d(d + 1)/2 z � 2d z � d + 1 d + 1 � z � 2d
Frictionless spheroid 1 5 5 z � 10 z � 10 z = 10
Frictional spheroid 3 5 6 z � 10 z � 4 4 � z � 10
Frictionless ellipsoid 1 d(d + 1)/2 d(d + 1)/2 z � d(d + 1) z � d(d + 1) z = d(d + 1)
Frictional ellipsoid d d(d + 1)/2 d(d + 1)/2 z � d(d + 1) z � d + 1 d + 1 � z � d(d + 1)

We denote these numbers of degrees of freedom relevant for
�E by b̃.

Absence of generic floppy modes requires that the number
of terms contributing to �E exceeds the number of degrees of
freedom: z f̃ /2 � b̃.

For frictionless particles, f̃ equals 1 because energy
changes result from (de)compression of contacts only, while
for frictional particles, f̃ equals d , since relative motions of
contacting particles in all directions are relevant.

The situation for b̃ is simple for frictional particles,
where all positional and orientational degrees of freedom are
relevant and b̃ = d(d + 1)/2. For frictionless particles, b̃
depends on the symmetries. For frictionless spheres, only
translational degrees of freedom are important and b̃ = d .
For frictionless spheroids in three dimensions, two additional
rotational degrees of freedom come into play and b̃ = 5,
while for general frictionless ellipsoids all rotational degrees
are relevant and b̃ = d(d + 1)/2.
Equivalence of floppy mode and force balance counting. The
requirement z f̃ /2 � b̃ is exactly the same as requiring that
there are sufficient contact forces in the system so that they
generically can be expected to balance: the number of contact
force degrees of freedom per particles is z f̃ /2 and the number
of equations that need to be satisfied equals b̃. The number
of relevant particle degrees of freedom in the energy expansion
thus corresponds to the number of force balance equations, and
the number of terms in �E (=number of constraints needed
to generically avoid floppiness) corresponds to the number of
force degrees of freedom—changes in energy and forces are
directly linked.

Note that, even though the role of constraints and degrees
of freedom interchanges when altering the picture between the
absence of floppy modes and satisfaction of force balance, so
does the requirement (floppy modes: making sure there are no
generic solutions, force balance: making sure there are generic
solutions), and in the force balance picture one ends up with
precisely the same inequality: z f̃ /2 � b̃.
Touch. The conditions that particles precisely touch yields
Nz/2 constraints on the degrees of freedom of the particles.
Denoting the number of geometric degrees per particle as x̃ ,
the condition that for generic packings there should be less
constraints than degrees of freedom yields z/2 � x̃ .

For the particles that are considered here (spheres and
ellipsoids with and without friction), the number of degrees
of freedom per particles are their d positional coordinates, to
which ellipsoids add their relevant angular degrees of freedom.

For general ellipsoids, these yield d(d + 1)/2 degrees of
freedom—for spheroids in three dimensions (an ellipsoid with
two equal axes, which thus has one symmetry of rotation—
see section 5) these yield 5 degrees of freedom. The resulting
counting of x̃ and corresponding inequalities are listed in
table A.1. In particular, for frictional particles, the lower bound
for the contact number is d + 1, while for frictionless particles
it depends on the symmetries of the particles.
Results. The resulting inequalities are listed in table A.1.
Note that the upper bounds for z coincide for frictional and
frictionless particles, as this number only depends on the
geometrical number of degrees of freedom. The inequalities
can be summarized as follows. For frictionless particles, f̃
equals 1, b̃ = f̃ and the lower and upper bounds coincide at
z = 2x̃ = 2b̃/ f̃ . For frictional particles, 2x̃ > 2b̃/ f̃ , the
lower and upper bounds do not coincide and a range of contact
numbers is allowed at jamming.
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