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Chapter 5

Position-Dependent Internal

Detection Probability in a

Nanowire Superconducting

Single-Photon Detector

We probe the local nature of the detection probability in nanowire
superconducting single-photon detectors at the nanoscale. By
using detector tomography, we demonstrate that the detection
probability depends on the distance from the edge of the wire at
which a photon is absorbed. We probe this e�ect with a ∼10 nm
resolution. We �nd that there is qualitative agreement with the
di�usion-based vortex crossing model but not with other models.

5.1 Introduction

Nanowire superconducting single-photon detectors typically consist of a 60-
100 nm wide, current-carrying, thin, superconducting �lm [1]. These photo-
detectors have favourable properties such as high e�ciency, low dark count
rate and fast reset time [89], and are therefore a key resource for various
technologies, such as quantum key distribution [90], interplanetary commu-
nication [6] and cancer research [91]. Recently, large steps have been made
in the understanding of the internal working mechanism of such detectors.

While the picture is not yet complete, the current understanding of de-
tection events in superconducting single-photon detectors is as follows: an
absorbed photon breaks Cooper pairs through an avalanche process, causing
a cloud of quasiparticles a few tens of nm in size to form in the supercon-
ducting �lm. This in turn causes the current to be diverted through the
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60 CHAPTER 5. POSITION-DEPENDENT RESPONSE

una�ected parts of the wire. If the diverted current is su�ciently strong this
causes a magnetic vortex to unbind from the edge of the detector. Under
the in�uence of the Lorentz force, this vortex is pulled across the wire, dis-
sipating enough energy to cause a transition to the normal state, leading to
a detection event [17, 24, 25, 28, 33, 34, 72]1. One unexpected implication
of such models is a nanoscale variation of the internal detection e�ciency
(IDE), i.e. the probability that an absorbed photon is detected: the amount
of bias current required to detect a photon of a given energy depends on
the position in the cross section of the wire where the photon is absorbed
[32, 34].

To observe this e�ect, one must introduce a variation in the absorption
probability as function of position. This can be done by changing polariza-
tions of the light incident on the detector, since light polarized orthogonal to
the wire is preferentially absorbed in the center of the wire (see Figure 5.1).
However, this introduces a complication: apart from a possible di�erence in
internal e�ciency once a photon is absorbed, the two polarizations are also
not absorbed with equal e�ciency in the �rst place [10, 11, 12, 13, 92].

In this work, we investigate the local IDE by using a tomographic method
to separate the overall absorption probability from the IDE. We �nd and
quantify a polarization-dependent IDE. Our results are consistent with pre-
vious qualitative observations [10, 93, 94]. We conclude that the �eld distri-
bution inside the detector determines the position of the photon absorption
event and that the local IDE depends on where the photon is absorbed.

We explore this e�ect experimentally by measuring the polarization de-
pendence of the internal detection e�ciency as a function of wavelength and
bias current. From these data we reconstruct the position dependent in-
ternal detection e�ciency of a 150 nm wide NbN wire with ∼10 nm spatial
resolution. We compare these data to an ab initio numerical calculation in
the context of a di�usion-based vortex crossing model. From the good qual-
itative agreement with experimental data we conclude that, while this model
may require some re�nement, it contains the essential microscopic physics
of the photon detection event in SSPDs.

5.2 Experiment

To measure the internal detection probability of the detector, we use quantum
detector tomography (QDT)2 [17, 36, 37, 43, 44, 48, 49, 60, 67, 72, 95]. QDT
relies on illuminating the detector with a series of known quantum states of
light - in our case coherent states - which together function as a probe of the
detection statistics. By comparing the response of the detector to di�erent
photon numbers in the coherent light state, we can separate the one-photon
detection probability p1 from the overall probability η that a photon is ab-

1See Chapter 4.
2See Chapter 2.
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Figure 5.1: Sketch of our experiment. Top: Absorption as a function of
position in the wire for parallel (TE) and perpendicular (TM) polarizations,
calculated with an FDTD method (see text). Inset : Sketch showing the
TE and TM polarizations. The red arrow represents the polarization of the
electric �eld. Bottom: Experimental setup. Our laser pulses are tuned in
intensity by a variable attenuator consisting of two crossed polarizers and a
λ/2 wave plate. Polarization is set by an additional λ/2 wave plate. The
image is a SEM micrograph of a detector nominally identical to the one used
in this experiment.

sorbed3. From the fact that η is almost independent of bias current [67] and
that it corresponds to the area of our detector, we identify p1 with the IDE.

We perform our experiments on a 100 nm long, 150 nm wide NbN bridge
patterned on a 5 nm-thick NbN sputtered on a GaAs substrate [47]. We read
out the detector with the usual measurement setup based on a bias-tee to
separate high-frequency detection pulses from the DC bias current, followed
by a series of RF ampli�ers and a pulse counter. At each combination of
bias current, photon energy and polarization, we record the detector count
rate as a function of input intensity. Our probe states were prepared by
a broadband pulsed laser (Fianium, repetition rate 20 MHz) out of which
we select a narrow wavelength band with dielectric �lters4. We prepare
the desired intensity and polarization by �rst attenuating the light with a
combination of two crossed polarizers and a half-wave plate, and then setting
the polarization with an additional wave plate (see Figure 5.1)5.

3For more information, see Appendix I.
4For a more extensive description of our setup, see Chapter 4, Appendix I.
5While in principle it is possible to achieve the desired combination of polarizations
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Figure 5.2: Experimental results on the polarization dependence of the in-
ternal detection probability at an excitation wavelength of 1500 nm. a)
Internal detection probability p1 as a function of input polarization, for dif-
ferent bias currents (0.5 µA apart). b),c) Zoom-ins on two typical experi-
mental results (marked in thicker lines in a)) at di�erent bias currents. We
plot the internal detection probability p1 (squares) as well as the absorption
e�ciency η (circles). The red lines are sine �ts with a �xed period of 180
degrees. d) Visibilty of the observed oscillation in p1 as a function of bias
current. We �nd that our results are consistent with a constant visibility of
V = 0.09.
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5.3 Results

Figure 5.2 shows that the internal detection probability of our device is
dependent on polarization. We plot the internal detection e�ciency p1 as a
function of the polarization of light with λ = 1500 nm. Each curve represents
a di�erent bias current, in steps of 0.5 µA. We �nd that over the current
range where our experiment has su�cient signal to noise ratio, the visibility
V = (pmax − pmin)/(pmax + pmin) is independent of bias current. For this
wavelength, we �nd V = 0.09. The error bars in Figure 5.2 are derived from
a series of repeated experiments which are analyzed independently, for which
we plot the mean and standard deviation6.

Our experiments show that the internal detection e�ciency and external
detection e�ciency oscilate in phase when the polarization is rotated, with
a minimum at TM polarization and a maximum at TE polarization. This
demonstrates that absorption of TM-polarized photons is less likely to result
in a detection. This polarization is absorbed in the middle of the wire. Our
result therefore con�rms the preliminary result of Anant et al. [10]: at a
given bias current, the edges of the detector are therefore more e�ciently
photodetecting than the center of the wire.

In order to quantify the variations in local IDE we must compute the IDE
as a function of polarization. We do this by multiplying the local optical
absorption probability with the local IDE. We do this for each wavelength
at which we measure the polarization-dependent detection probability.

Our strategy is to take the absorption pro�les as given - since they are
well studied - and to take the internal detection e�ciency (IDE) pro�le as a
free parameter and �t it to our experimental data. The rest of this chapter
is structured as follows: �rst, we will describe the computation of the two
pro�les, resulting in a �t to our experimental data. Then, we will compare
the resulting internal detection e�ciency pro�le to one that we calculated
from an ab initio theory.

To calculate the absorption distributions, we perform a series of numerical
simulations at the wavelengths at which we conducted our experiments of the
polarization-dependent absorption in the detector structure using a �nite-
di�erence time domain (FDTD) method (RSOFT Fullwave). We consider
a 2D model of a 150 nm wide, 5 nm thick NbN wire on a semi-in�nite
GaAs substrate and an 80 nm thick HSQ layer on top of the NbN wire. The
refractive index of NbN deposited �lm on GaAs is derived from spectroscopic
ellipsometry measurements [96]. In these calculations we neglect the e�ect
of the tapered parts of the bridge because they have little in�uence on the
absorption in the central, photodetecting section7. In Figure 5.1, the result

and intensities using two independently rotating polarizers, we found that the e�ects of
wedge in the polarizers preclude this solution.

6We will analyze the change in linear e�ciency from η = 1.6 ∗ 10−4 to η = 1.1 ∗ 10−4

in Chapter 7.
7See Appendix I for details.
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of this calculation is shown for λ = 1500 nm.

For the internal detection probability, we use the fact that the energy-
current relation was measured to be of the form Ith = I0 − γE, [28, 17, 72]
where Ith is the threshold current (i.e. the current where the detection
e�ciency is equal to some reference value), I0 is the reference current8, E
is the photon energy and γ is an experimental ratio which describes the
interchange between bias current and photon energy. We postulate that
this relation holds microscopically, i.e. jth(x) = j0 − γ′(x)E. Moreover, we
must posit a relation between threshold current and detection probability.
For this, we postulate the relation P (x) = min{1, exp(jb − jth)/j?}, with
P (x) the local detection probability, jb the bias current density,

9 and j? =
0.9 GA/m2 the low-detection probability scale which can be read o� from
the experimental data when converted to a bias current. This relation is
motivated by the idea that at P (x) < 1 the detection process consists of
tunneling through the energy barrier binding the vortices to the edge of
the wire [23, 33]. With this set of assumptions, we are able to compute
the polarization visibility for di�erent wavelengths, with the γ′(x) pro�le
speci�ed at 10 nm intervals as �t parameters.

Figure 5.3 shows the calculated and measured visibility of the polarization-
dependent internal e�ciency as a function of wavelength. We �nd that at
long wavelengths there is a greater di�erence between the measured IDE for
the two polarizations. The line in Figure 5.3 shows the result of our �t of the
internal detection pro�le to the data. From the local IDE and the optical
absorption probability, we compute the overall IDE. We �nd that we are able
to reproduce the observed internal e�ciencies with our �t. The left inset of
Figure 5.3 shows the dependence of the polarization-dependent IDE visibil-
ity on current. We �nd that theoretically, the IDE visibility is independent
of current, which is reasonable agreement with our experimental data.

The right inset shows the overall value of the single-photon internal de-
tection e�ciency, integrated across the wire. We observe that our curve
predicts the right current for the roll-o� at low detection probabilities, and
that it reproduces the slow saturation of the detector at high currents. In
this regime, parts of the detector are fully photodetecting, while other parts
are still in a �uctuation-assisted regime [35]. The variations between the
experimental data and the calculated values are less than a factor of 2. We
stress that the two insets of Figure 5.3 are direct results of the internal de-
tection e�ciency pro�le inferred from the polarization measurements. We
therefore conclude that our proposed internal detection probability pro�le is
consistent with all of the observed properties of our detector.

8see Chapter 4.
9Throughout this Chapter, we assume homogeneous current �ow, so the relation j =

Ib/(wd) holds.
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Figure 5.3: Wavelength-dependent visibility of the internal detection e�-
ciency (p1). The black squares show the experimental data. The line shows
a �t of the internal e�ciency pro�le, based on the di�usion-based vortex
crossing model. Left inset: Measured (squares) and computed (line) visib-
ility of the polarization-dependent oscilation as a function of bias current.
Right inset: Observed (squares) and computed (line) values the integrated
single-photon internal detection probability p1.
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5.4 Comparison to Theory

Figure 5.4 shows the internal threshold current pro�le which comes from the
�t to the wavelength-dependent polarization visibility data, for a wavelength
of 1000 nm (see also Figure 5.3). For comparison with other experiments, we
plot the overall bias current required to make a particular part of the wire
fully photodetecting. We estimate the systematic error on the threshold
current that is induced by uncertainty in the calculation of the optical ab-
sorption pro�les10, shown in Figure 5.4 as a grey band around our data,
which is particularly prominent around 50 nm. We �nd that this e�ect is
negligible compared to the statistical error. Moreover, it shows an inde-
pendent, ab initio calculation of the threshold current based on the model
described below. We �nd reasonably good agreement between our observed
experimental results and the theoretical values. From this, we conclude that
our model is su�ciently detailed to model the detection process in SSPDs.

Our ab initio calculations of the position-dependent detection probability
are based on a numerical model11 that allows one to determine the threshold
current for the detection of an absorbed photon of a given wavelength [28]
and a recently proposed extension [32]. Based on a simple model of qua-
siparticle generation and di�usion, we determine the local reduction of the
order parameter after the photon has been absorbed. Solving the continuity
equation for the applied bias current for this inhomogeneous situation, we
are then able to calculate the time evolution of the vortex-entry barrier. The
minimum bias current that leads to a vanishing barrier height is de�ned as
the threshold current for photon detection, as this will unavoidably lead to
a vortex entering the strip. Its subsequent movement across the strip un-
der the action of the bias current then leads to the formation of the initial
normal conducting domain triggering the detection event.

We compute the threshold current for various photon energies and ab-
sorption positions across the strip and we �nd a linear relation between
photon energy and threshold current for each position. This vindicates the
assumption that the linear relation between current and photon energy holds
on a microscopic level12.

Our ab initio calculation gives a physical explanation for the enhanced
e�ciency at the edges of the wire in terms of our microscopic model. Com-
paring a photon absorption in the center of the wire to one at the edge,
there are two di�erences. First, for an absorption event at the edge, the cur-
rent density at the edge of the wire is reduced, due to the reduction in the
number of superconducting electrons ns. However, this is more than com-
pensated by the reduction of the vortex self-energy, which is proportional to
ns. Vortices enter more easily when the superconductivity is weakened at
their entry point, and that makes the detector more e�cient at the edges.

10See Appendix I for details.
11These simulations were performed by Andreas Engel at the University of Zurich.
12See Appendix I for details.
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Figure 5.4: Top panel: Threshold current as a function of position across
the detector, for our �t and our ab initio calculation, for a wavelength of λ
= 1000 nm. The red curve shows the �t from Figure 5.3, the black curve
shows our ab initio calculation. The grey band shows the systematic error
coming from the uncertainty in the �lm thickness. The dashed line indicates
the critical current. Bottom panel: Calculated position-dependent detection
probability density as a function of bias current (1 µA intervals). At a bias
current where the edges of the wire are fully photodetecting, the detection
probability in the middle of the wire is less than 1%.
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The bottom panel of Figure 5.4 shows the consequences of the variation
of the internal detection e�ciency, evaluated for a photon with wavelength
λ = 1000 nm. We plot the detection probability as a function of position
for di�erent bias currents. The e�ect of the position-dependent detection
e�ciency is quite strong: for a current of 25 µA, photons absorbed at the
very edge of the detector have 100% probability of causing a detection event,
whereas photons absorbed at the center of the wire have only 3% probability.

5.5 Discussion and Conclusion

We note that there is some disagreement in literature about the shape of
the internal detection probability curve. The alternative model of Zotova
et al. [34], which is based on the Ginzburg-Landau formalism, naturally
takes into account vortex entry. However, it disregards quasiparticle dif-
fusion and implements a hotspot with hard boundaries. The results from
this model disagree qualitatively with our experimental results: there, a W-
shaped threshold current pro�le is predicted, with threshold currents at the
edges almost as high as in the center of the wire. The discrepancy between
their model and ours occurs precisely at the point where their 'hard' hotspot
touches the edge of the wire. We speculate that both models, if re�ned more,
will likely converge in their predictions.

In conclusion, we have demonstrated via detector tomography that the
internal detection probability of an SSPD depends on the distance from the
edge of the nanowire at which the photon is absorbed. We have probed this
e�ect with a resolution of approximately 10 nm. This e�ect occurs in addi-
tion to the well-known e�ect that photons of parallel polarization are more
e�ciently absorbed in the wire. From the wavelength dependence of this ef-
fect we have derived a spatial pro�le for the local internal detection e�ciency,
which is in good agreement with theoretical calculations done in the context
of the di�usion-based vortex crossing model. From this, we conclude that
this model contains the essential features for a complete microscopic picture
of the detection model in SSPDs. These results pave the way for quantitative
theoretical results on the detection mechanism in SSPDs.
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5.i Appendix: Supplementary Material

5.i.1 Quantum Detector Tomography

The purpose of this section is to review quantum detector tomograpy as
a technique, and to demonstrate that we can separate the change in in-
ternal detection probability associated with a change in polarization from
the change in overall e�ciency. This section consists of three parts. First,
we review the basics of quantum detector tomography. Then, we investigate
the input power dynamic range requirements of our experiment. Lastly, we
demonstrate that our experiment is accurate enough that we can reject the
alternate hypotheses that our results are entirely attributable to a change in
only either the internal or external detection e�ciency.

5.i.1.1 Tomography Basics13

The goal of quantum detector tomography is to �nd the photodetection
statistics of an unknown detector in the number state basis, i.e. to �nd
the probability of a particular detection outcome given that n photons are
incident on the detector. To probe these statistics, a collection of known
quantum states of light is used. The detector is probed su�ciently many
times with each state to accurately determine the probability of each pos-
sible experimental outcome (i.e. a detection event) for each input state.
Since the probability distribution of photons in the states is known and the
probability of each outcome has been measured, it is possible to determine
the probability of each outcome given a certain number of photons.

In experimental practice, it is convenient to use the coherent states
for this, which have a Poisson-distributed probability of photon numbers:
Πi(N) = e−NN i/i!, where N is the mean photon number, which can be
determined clasically, and i indexes the Fock states. These states are readily
produced by a laser, and the mean photon number can be adjusted by atten-
uation, giving straightforward access to a su�ciently large set of quantum
states. We denote the probability of the k-th experimental outcome to the
j-th test state Rk(Nj). The probability for i photons to produce the k-th
experimental outcome pk,i, which is the desired quantity, can then be found
by solving the matrix equation:

Rk(Nj) = Πi(Nj)pk,i. (5.1)

An SSPD has only two outcomes, a detection event (click) or the lack of
a detection event (no click), and because overall probabilities must sum to
1, it is su�cient to consider only one of these. In Chapter 2, we modi�ed
equation 5.1 to make it usable in the case where only a very small fraction of
the photons participates in the detection process. We did this by introducing

13See also Chapter 2.
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a separate quantity η which describes the overall linear e�ciency of the
detection process. We arrive at:

Rclick(N) = 1− e−ηN
n<nmax∑
n=0

(1− pn)
(ηN)n

n!
, (5.2)

where Rclick is the observed detection rate as a function of input power, η is
the overall e�ciency with which photons participate in the detection process,
and pn represents the probability that the n-photon absorption event results
in a photodetection event.

To �x the additional degree of freedom introduced by the linear e�ciency,
we must introduce an additional assumption. The essential assumption be-
hind our modi�ed version of quantum detector tomography is that there is
some unknown but large photon number for which the count rate tends to
a known, constant value14, in our case Rclick(N → ∞) = 1. For an SSPD,
the assumption is well justi�ed by the fact that high-energy excitations are
known to be more e�ciently detected than low-energy ones. It is therefore
not unreasonable to assume that we have pn = 1 for su�ciently large nmax.
At these powers, we can �x η, and �nd the nonunity pn<nmax

from the low
count rate values.

The resulting procedure is illustrated in Figure 5.5, where we plot a data
set from Chapter 2 to demonstrate the procedure. At high powers, we assume
pn = 1, which enables us to �x η. At lower light powers this discription
becomes inadequate, and we must adjust pn to �t our data. The threshold
value nmax for which pn≥nmax

= 1 can be found via model selection. In the
present experiment, we are working in the regime where only nonlinearities
at the single-photon level play a role, so nmax = 2 throughout. The only
exception is the multiphoton experiment reported on in Section 5.6.2.

5.i.1.2 Dynamic Range

From the discussion above, it is clear that su�cient dynamic range in input
powers is the essential requirement for quantum detector tomography. In
order for the procedure to work, su�ciently high powers must be taken into
account to obtain an adequate measurement of the saturation behaviour of
the detector. In order to ascertain whether this is the case in our experi-
ment, we perform the following numerical procedure: we carry out detector
tomography on our entire ensamble of data points. Then, we remove the
data point at highest power, perform tomography again, and repeat this
procedure. If we have su�cient dynamic range in our experiment, we expect
to �nd that our results are independent of the speci�c choice of probe states.

14We note that in Chapter 2 [67], we claimed that the requirement is saturation, i.e.
RN→∞ = 1. While this is by far the most natural case, in principle it is possible for
a detector to have RN→∞ 6= 1, for example the one-element detection probability of a
multi-element detector, which has RN→∞ = 0. Equation 5.1 can be trivially rewritten to
accomodate this case.
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Figure 5.5: Sketch of quantum detector tomography (data taken from
Chapter 2). We measure the response of an SSPD at various input powers.
The solid line shows the �t to equation 5.2 for this data set. The dashed
line shows the low-power extrapolation from the high-power data.

Figure 5.6 shows that this is indeed the case. We plot the internal detec-
tion probability p1 as a function of the dynamic range in our probe states, for
one data set of our experiment (1500 nm). We �nd that for dynamic ranges
> 150, our result is independent of which subset of our data we choose.
This data set is representative of our full set of experimental results; we
typically �nd values between 100 and 300 for the minimum dynamic range
requirement. This demonstrates the robustness of our result.

5.i.1.3 Constant p1 and Constant η

Lastly, we demonstrate that we are able to reject the alternative hypotheses
that our experimental results can be explained by only a polarization-induced
modulation in either p1 or η. To ascertain this, we perform the following
analysis: at each set of experimental settings (input wavelength, input power,
bias current, polarization) we record a series of independent measurements.
Then, we process these measurements separately. This gives us a measure
of the statistical spread of our results.

In Figure 5.7, we plot the result of this procedure for one data set at 826
nm. Each set of symbols of the same colour represents ten realizations of
the same experimental setting, and the spread within each colour is therefore
a measure of the statistical spread in our experiment. We �nd that there
is negative covariance between internal and external e�ciency. However,
the spread which this covariance causes is much smaller than the typical
polarization-induced shift in either p1 or η. The two dashed lines indicate the
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Figure 5.6: Quantum detector tomography at di�erent dynamic ranges in
the input power. We plot the internal detection probability as a function of
bias current for a given polarization at �xed bias current, at an excitation
wavelength of 1500 nm. The red curve shows the observed visibility for
the data set to which this polarization belongs as a function of dynamic
range. We �nd that for a dynamic range > 150, the observed visibility is
independent of the chosen range. This indicates that at su�cient dynamic
range, our results are independent of the choice of input powers.

alternative hypotheses in which only either p1 or η is polarization-dependent.
It can be seen that a large part of our data is far away from these two lines.
From this, we conclude that both internal and external e�ects are necessary
to explain our measurements.

5.i.2 Multiphoton Polarization E�ects

Detection events in SSPDs can also occur via multiphoton excitation [1, 67].
We performed an experiment at 826 nm where we illuminate the detector
with su�cient power to cause two-photon processes at lower bias current.
Figure 5.8 shows the results of this experiment. We �nd that also for mul-
tiphoton processes, the internal detection e�ciency is position-dependent.
We �nd that the visibility is a factor 2-3 higher for the 2-photon excitations
than for the single-photon excitations.

We can o�er two partial explanations for the enhanced visibility. First,
we demonstrated in Chapter 2 that multiphoton excitations are equivalent -
at least in their energy-current dependence - to single-photon excitations of
the same energy. From our simulations of the internal detection e�ciency,
we �nd that the di�erence in threshold current between the edges of the
wire and the center decreases with increasing photon energy. We therefore
expect two 826 nm photons to respond similarly to a single 413 nm photon
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Figure 5.7: Experimental test of the statistical relevance of our result. Each
set of symbols represents a single experimental setting, the spread between
them is a measure of the statistical uncertainty in our experiment. There is
a negative covariance between p1 and η within each experimental setting, as
expected.

Figure 5.8: Multiphoton polarization-dependent absorption. We plot the
two-photon detection probability p2 as a function of polarization angle. The
line shows a sine �t with a �xed period of 180 degrees to the data.
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and experience a greater di�erence in detection e�ciency. A second e�ect is
that, qualitatively, we expect the two-photon absorption probability to be
more sharply peaked at the edges of the wire. However, a full quantitative
investigation of this multiphoton e�ect would involve computation of the
internal detection e�ciency for each possible two-photon absorption scenario,
which is beyond the scope of the present work.

5.i.3 Numerical Detection Model

The simulation of the quasiparticle distribution after the absorption of a
photon is based on the model described in [28]. Here, we will repeat the
main features and assumptions of this model. It is assumed that the photon
excites one electron with energy hc/λ. This electron moves in the �lm with
a di�usion constant De. It thermalizes via inelastic scattering with other
electrons/Cooper-pairs and the lattice. Neglecting details of this thermaliza-
tion process, an exponential increase of excess quasiparticles is assumed with
a time constant τqp and an overall e�ciency ς [15]. The excess quasiparticles
themselves are also subject to di�usion with a temperature dependent dif-
fusion constant Dqp < De and eventually recombine to form Cooper-pairs
on a time-scale τr � τqp. This can be described by the following coupled
di�erential equations [28]:

∂Ce(r, t)

∂t
= De∇2Ce(r, t) (5.3)

∂Cqp(r, t)

∂t
= Dqp∇2Cqp(r, t)− Cqp/τr (5.4)

+
ςhν

∆τqp
exp(−t/τqp)Ce(r, t),

with ∆ the superconducting gap, Ce(r, t) the probability density to �nd the
excited electron at position r at time t after photon absorption and Cqp(r, t)
the quasiparticle density.

An estimation of the Ginzburg-Landau relaxation time results in τgp �
1 ps. Therefore, we assume the current redistribution due to the spatial
variation of the density of superconducting electrons nse − Cqp(r, t) to be
instantaneous on time scales > 1 ps. To obtain a more realistic current-
distribution than in [28], we now apply the relation that the velocity of
superconducting electrons can be calculated from the gradient of the phase
of the superconducting condensate [32]:

vS =
~
m
∇ϕ, (5.5)

and the current density then becomes

js = −ense
~
m
∇ϕ. (5.6)
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Figure 5.9: Variation of reduced current density at the edge j(w/2)/jb,
normalized density of superconducting electrons ns(w/2)/ns,0, and rescaled
threshold current for photon detection as a function of the distance of the
photon absorption position from the center of the wire. The variation of
the threshold current near the center of the wire is dominated by the vari-
ation of the current density at the edge. For absorption events closer to the
edge the reduction of the density of superconducting electrons becomes the
dominating e�ect. In the inset we show the variation of the current density
across the wire for di�erent absorption positions.

and we have to solve the continuity equation:

∇ · (−ense∇ϕ) = 0, (5.7)

where we use the previously calculated quasiparticle distribution to obtain
nse. Additionally, we take into account that the density of superconducting
electrons depends on the velocity vs [97].

nse ∝ 1− (vs/vc)
2/3, (5.8)

with vc the critical velocity at the critical-current density jc. Thus equation
5.7 becomes nonlinear. Once we know the current distribution, the potential
energy experienced by a vortex be can calculated as suggested in [29]. More
details about the re�ned numerical model can be found in [32].

In the inset of Figure 5.9 we plot reduced current densities j/jb across
the strip for some absorption positions. At �rst, current densities increase
with decreasing distance of the absorption position to the near edge. If the
distance becomes less than 20 nm to the edge the current density near the
edge is reduced, eventually below the equilibrium bias current-density jb.

In the main graph of Figure 5.9 the reduced current density at the edge
j(w/2)/jb is plotted as a function of absorption position, together with the
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density of superconducting electrons at the edge ns(w/2) normalized to their
equilibrium density ns,0, and the threshold current scaled by the threshold
current for absorption in the center Ith/Ith(0). For absorption events near
the center, the variation of the threshold current is mostly determined by
the variation of the current density at the edge, since the density of super-
conducting electrons at the edge remains approximately constant. At close
distances to the edge ns is signi�cantly reduced at the edge. This is the
reason for a reduced current density at the edge, but additionally leads to a
reduction of the vortex self-energy which is proportional to ns. This second
e�ect is stronger than the e�ect of the reduced current density and as a
result we obtain a monotonic reduction of the threshold current for vortex
entry as a function of the distance from the strip center.

We de�ne the threshold current as that value of the bias current for
which the maximum potential energy for a vortex becomes zero. In this case
we expect an internal detection e�ciency equal to one. With this criterion,
we obtain the energy dependence of the threshold current as a function of
position, which is plotted in Figure 5.10. The vortex-entry current without
photon absorption is also indicated by the horizontal line. This curve is
symmetric with respect to the center line of the wire due to the symmetry
between vortices and antivortices in zero applied magnetic �eld. There is a
signi�cant reduction of the threshold current for photons absorbed near the
edge of around 10% as compared to the center of the wire. We would like to
point out that for each position in the wire we �nd a linear relation between
threshold current and photon energy, consistent with previous experimental
results [18] reported in Chapters 3 and 4.

As the photon energy increases and as absorption occurs closer to the
edge, the relation between the density of superconducting electrons and the
current distribution (equations 5.7 and 5.8) becomes more nonlinear. For
absorptions very close to the edge, the nonlinear solver produces systematic
errors. For all wavelengths, we do not calculate the detection current for
absorption sites closer than one coherence length to the edge of the wire. For
short wavelengths, the area in which this occurs increases, to approximately
12 nm from each edge at 800 nm. In our calculations, we assume that the
detection current this close to the edge of the wire is weakly dependent on the
absorption position and set it constant, with a value equal to the threshold
current in the point closest to the edge that we can still reliably compute.

In our experiment, we are operating below this threshold current. To
convert the threshold current into a local detection probability, we assume
a functional dependence of the form p(Ib) = exp((jth − jb)/j?), where j? =
0.9 GA is an experimentally determined scaling current. In this way, we ob-
tain the variation of the internal detection e�ciency for a given bias current
as shown in the inset of Figure 5.4
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Figure 5.10: Calculated threshold current as a function of the distance of the
photon absorption position from the center of the wire for di�erent photon
wavelengths. The relative reduction of the threshold current for absorption
near the edge compared to absorption in the center increases with increasing
photon energy for the energy range considered in this study.

5.i.4 Absorption Calculations

In this section, we demonstrate two things: �rst, that the absorption in the
NbN wire is well approximated by considering only a 2D cross-section, i.e.
that the e�ect from the tapers of the bridge used in our experiment is small.
Second, we show that the uncertainty in the dielectric constant of our �lm
does not strongly a�ect the overall absorption pro�les.

We calculate the absorption of the detector for both polarizations using
a �nite-di�erence-time-domain (FDTD) programme (RSOFT Fullwave). To
test whether the e�ect of the taper is prominent, we perform a 3D simulation
at a wavelength of λ = 1500 nm, including the tapered parts and the central
wire, which is 150 nm wide, 200 nm long and 5 nm thick. The results of this
calculation are shown in Figure 1. The top plots of Figure 5.11 (a) and (b)
are 1D absorption distributions across the wire from the center (z = 0 nm)
to the ends of the wire, extracted from the 3D simulations. For the case of
both TE and TM, the absorption distributions across the wire have roughly
the same shape, irrespective of the position along the wire at which they are
taken.

We compare these 3D results with a 2D simulation, in which the detector
is modeled as an in�nite wire. The bottom panels of Figure 5.11 (a) and (b)
show the comparison of 2D (solid) and 3D (dashed) simulation, where the
3D absorption curve is the average of the absorption curves at di�erent z po-
sitions shown in the top part of Figure 5.11. Because we are only interested
in relative di�erences within each absorption pro�le, we normalized the 2D
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Figure 5.11: Absorption distribution in 2D and 3D, computed at a
wavelength of 1500 nm for TE (left) and TM (right). In each sub�gure,
the top panel shows the 1D absorption density across the wire at di�erent
positions on z axis, and the bottom panel shows the averaged absorption
(dashed line) of six curves on the top, as well as the result of the 2D simu-
lation, which does not consider the tapered parts.

and the averaged 3D curves to their maximal values individually. For both
the TE and TM case there is little di�erence between the 3D and 2D absorp-
tion pro�les, which means that we are justi�ed in using the computationally
e�cient 2D simulations in our main text.

The dielectric constant of NbN εNbN used throughout these calculations
is obtained from ellipsometry measurements. If we calculate εNbN from
these measurements, the result will depend on the assumed thickness of
the �lm. To assess the implications of this e�ect, our strategy is there-
fore to re-calculate ε for di�erent thicknesses, and observe the e�ect on the
absorption pro�les. In [96], the thickness of the �lm was estimated to be
4.9nm ± 0.1nm. We assume a more conservative error bar ± 0.3nm on the
thickness, based on the thickness of a single atomic layer. Then we compute
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Figure 5.12: Dielectric constant of NbN obtained by considering potential
errors in the thickness of the NbN �lm. (a) and (b) show the real and
imaginary part of εNbN . (c) and (d) show the absorption of the 2D NbN wire
with the three sets of dielectric constant of NbN, for TM and TE respectively.

the related epsilon εNbN(4.6 nm) and εNbN(5.2 nm) for thickness of 4.6 nm and
5.2 nm. These are shown in Figure 5.12 (a) (real part) and (b) (imagin-
ary part). Throughout Figure 5.12, red and blue lines indicate εNbN(4.6 nm)

and εNbN(5.2 nm) respectively. Then, we compute the absorption using these
two new sets of dielectric constants. We obtain the total absorption in the
NbN wire as a function of wavelength, which is shown in Figure 5.12 (c) for
TE and in Fig 5.12 (d) for TM. For most wavelengths (600nm � 1500 nm),
εNbN(4.6 nm) causes higher absorption, which is due to its larger imaginary
part of dielectric constant at small thickness (4.6 nm).

Variations in εNbN also a�ect the distribution of absorption across the
wire. To investigate this, we calculate the position-dependent absorption
with the three sets of εNbN for TE and TM polarization. The inset of Figure
5.13 shows these, for three representative wavelengths of 500nm (a), 1000nm
(b) and 1500nm (c). We plot the ratio between TE and TM, since this is
ultimately the quantity of interest. In Figure 5.13, the ratios of the TE
absorption over the TM absorption for each of the three wavelengths are
shown. The small variations indicate that any potential systematic error
in the dielectric constant due to a di�erent thickness of the �lm does not
signi�cantly in�uence our results in the main text.
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Figure 5.13: Position-dependent absorption ratio TE / TM at wavelengths
of 500 nm (a), 1000 nm (b) and 1500 nm (c). In each sub-�gure, three
dielectric constants (red for εNbN(4.6 nm), black for εNbN(4.9 nm) and blue
for εNbN(5.2 nm)) are plotted, corresponding to three di�erent thicknesses
of the �lm. The insets show the absorption distributions for TE and TM
illumination individually.
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5.i.5 Computation of Polarization-Dependent Visibility

In this section, we outline the algorithm which we use for computing the vis-
ibility of the polarization-dependent oscilation in p1 from a given microscopic
energy-current relation γ′(x).

� Interpolate γ′(x) on a 1 nm grid, from the points at which it is given.
We assume mirror symmetry around the point x = 0.

� Normalize each pair of absorption pro�les A(x)k, where k stands for
either TE or TM, such that their integrals are the same. This is done
to take out the dependence on overall absorption probability, which is
not measured in p1.

� For each wavelength, compute jth(x) = j0 − γ(x)E. We take j0 to
be jc,exp, in accordance with the theoretical predictions of the vortex
crossing model.

� For each current, for each wavelength, compute the detection probab-
ility density P (X) = min{1, exp(jb − jth)/j?}, with j? = 0.9 GA/m2.

� Compute p1,k(I, E) =
´ w/2
−w/2 P (x, I, E)A(x)kdx.

� Compute the average value of p1 = (p1,‖ + p1,⊥)/2

� Compute the visibilityVI,E = (p1,‖ − p1,⊥)/(p1,‖ + p1,⊥).

In order to �t the internal theshold current pro�le to the experimental data,
we use Tikhonov regularization [98]. That is, to the usual function that is
minimized in an inversion problem

g(x) =
∑
i

(Vi(γ
′(x))− Vi,exp)2/σ2

i , (5.9)

where V is the observed visibility and σ is the error on each visibility, we
add the extra term

g(x) =
∑
i

(Vi(γ
′(x))− Vi,exp)2/σ2

i + s
∑
j

(γ′(xj)− γ′(xj+1))2, (5.10)

which has the e�ect of penalizing solutions where the di�erence between ad-
jacent points in the curve is large. This is a standard way of regularizing (i.e.
making invertible) nearly ill-posed problems. We apply only weak regulariz-
ation such that the contribution to g(x) from the second term is approxim-
ately 20% of the �rst. Furthermore, we apply the constraint that the sum
γ′(x) should be comparable to the sum of the theoretical γ′(x) curve. We
�nd that we can �t our data if we set

∑
i γ
′(x)exp∆xi=1.15

∑
i γ
′(x)theo∆xi.

We varied the number of points and value of s and veri�ed that the solution
presented in the main text is robust.
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Figure 5.14: Residual sum of squares as a function of the number of points
at which we de�ne γ′(x), i.e. the number of free parameters in our �t.
We observe that beyond ∆x = 15 nm, there is only a slow decrease in our
goodness-of-�t parameter. This decrease stops at ∆x = 10 nm. From this,
we conclude that the resolution with which we can determine the local IDE
is around 10 nm.

5.i.6 Resolution

In this section we will justify the resolution claimed in the main text of
Chapter 5. To �nd the resolution with which we can reconstruct the local
IDE, we perform the procedure outlined in section 5.6.5 for various spacings
∆x of the points at which we specify γ′(x). We de�ne the resolution as that
spacing beyond which adding further points does not improve the �t to our
experimental data.

In Figure 5.14, we show the results of this procedure. We plot the RSS
(residual sum of squares) for both the unregularized and regularized version
of our �t (i.e. equations 5.9 and 5.10, respectively). We �nd (as expected)
that the RSS of the regularized �t typically lies above that of the unregular-
ized �t. We �nd that the value of the RSS decreases rapidly when increasing
the number of �t parameters, dropping to 1.3 (in arbitrary units) at a value
of ∆x = 15 nm. At ∆x = 9.3 nm, the unregularized RSS reaches a minimum
of 0.96. From this, we conclude that the resolution with which we can de-
termine the local IDE is in the range of 10 nm. In Figure 5.15, we show the
corresponding �ts to our experimental data, for a few representative values
of ∆x. It can be seen that the �ts at high values of ∆x do not �t the data.
Around ∆x = 10 nm, we achieve a good �t.

We conclude with two remarks. First, as can be seen from the top panel
of Figure 5.4, the accuracy with which we can determine the values of γ′(x) is
higher at the edges of the wire than in the center. The reason for this is that
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Figure 5.15: Fits of the regularized detection model to our experimental
data, for various values of ∆x.

the edges contribute much more to the e�ect of a polarization-dependent
internal detection e�cency, as these parts are preferentially excited by one
polarization. In the discussion above, we have largely assumed a constant
spacing between points. In principle, however, the resolution could also be a
function of the position along the wire. Our data is not of su�cient quality
to say anything quantitative about this, but we expect that the resolution
in the center would be lower than at the edges.

Second, we note that our experimental data has several outliers, which
are �tted by none of the models. For a model which completely describes the
data, we would be able to compute χ2 to determine which model describes
the data with the minimum number of free parameters. Unfortunately, the
presence of these outliers precludes this route since we would have χ2 � 1.

5.i.7 Detection Probability Pro�les

For completeness, we present all position-dependent quantities in our ana-
lysis combined, for three representative wavelengths. In Figures 5.16-5.18,
we plot the absorption for both polarizations A(x), internal detection prob-
ability P (x) and the detection probability density P (x)A(x) (dashed line)
for 1500 nm (Figure 5.16), 1000 nm (Figure 5.17) and 500 nm (Figure 5.18).
These graphs clearly illustrate why the visibility of our observed e�ect in-
creases with wavelength: for short wavelengths, the di�erence between the
two optical absorption probability densities is very small, and occurs only at
the outermost 10 nm or so. In contrast, at high wavelengths the di�erence in
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absorption probabilities is much larger, which makes the internal probability
distribution more visible.
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Figure 5.16: Internal detection probability, TE and TM absorption, and TE
and TM detection probabilty, for 1500 nm illumination.

Figure 5.17: Internal detection probability, TE and TM absorption, and TE
and TM detection probabilty, for 1000 nm illumination.

Figure 5.18: Internal detection probability, TE and TM absorption, and TE
and TM detection probabilty, for 500 nm illumination.



86 CHAPTER 5. APPENDIX II

5.ii Appendix: Implications of the Position De-

pendence of the Threshold Current of SSPDs

Nanowire superconducting single-photon detectors [1] are a crucial resource
for high-e�ciency, low-dark count photodetection in the infrared [3]. Such
detectors are of great value for many applications, including cancer research
[91], and a variety of fundamental experiments [59]. The detection mechan-
ism of such devices is an ongoing �eld of study which has seen great steps in
recent years [17, 24, 25, 28, 32, 33, 34, 35, 72], in part driven by the develop-
ment of SSPDs made of novel materials such as MoGe [99], WSi [55], MoSi
[100] and MgB2 [101]. The current understanding is that when a photon is
absorbed, a cloud of quasiparticles is formed, which diverts the current from
the absorption spot. If the current is large enough, a vortex unbinds from
the edge of the wire, causing a detection event.

One crucial step in the theoretical understanding was the suggestion that
the threshold current of the detector, i.e. the current at which the detector
becomes fully e�cient, is dependent on the position along the cross-section
of the wire [34, 32] where the photon is absorbed. In Chapter 5, we demon-
strated a measurement of this position-dependent threshold current via a
di�erential measurement of two absorption probability pro�les induced by
parallel and orthogonal polarization. This con�rmed an earlier preliminary
result by Anant et al. [10] of a position-dependent internal threshold current.
Within our model, the position-dependent detection e�ciency is explained
by the fact that vortices enter more easily at the point where superconduct-
ivity is already weakened by the presence of quasiparticles.

We demonstrated a reconstruction of this internal threshold current with
a resolution around 10 nm. This is shown in Figure 5.19, where we plot
the �nal result from Chapter 5. We plot the position-dependent detection
e�ciency as established from our experiments, as well as a theoretical cal-
culation done in the vortex crossing model.

In this Appendix, we discuss the implications of a position-dependent
threshold current on other quantities which have been used to investigate
the detection mechanism. We take the result in Figure 5.17 as a point of
departure for our calculations. We will focus on two of them: the universal
curve of the detection probability and the energy-current relation. We �rst
review the main ingredients of our model. We then move on to discuss the
implications for the two quantities mentioned above.

5.ii.1 Ingredients of the Model

Our model of detection events in superconducting single-photon detectors is
inspired by previous experimental observations reported in Chapters 3 and 4
and by the numerical simulations described in [28, 32]. In these experiments,
we found that the threshold current required to achieve a constant detection
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Figure 5.19: Position dependent threshold current slope in a 150 nm wide
NbN SSPD. We have converted γ′(x) to macroscopic units for easy com-
parison with other experimental data. The dashed line shows the threshold
current which is observed for the entire wire, at low detection probabilities.

probability Ith = I0 − γE, where E is the photon energy, γ is a conversion
constant - which was found to be width-dependent - and I0 is a current scale,
which was found to be I0 ≈ 0.8Ic for a 1% detection probability at T = 3.1
K on a 220 nm wide nanodetector [17].

The numerical simulations consist of a series calculations of the threshold
current as a function of photon energy and absorption position. From these
calculations, we �nd that the linear energy-current relation extends micro-
scopically as well, that is: jth = j0 − γ′(x)E. In this way, we introduce a
position-dependent threshold current. We found in Chapter 5, however, that
in order to make our calculations agree with the observed experimental data,
we had to make a �t which resulted in slightly di�erent values for γ′(x) than
were predicted by theory.

A second component of our detection model is the assumption that the
detection probability decreases exponentially below the threshold current:
P (x) = min{1, exp((jb − jth)/j?)}, where Ib is the applied bias current, jth
is the threshold current calculated from the local energy-current relation and
j? is a current scale that describes the detection probability below threshold.
j? is in principle an unknown quantity, but it can easily be read o� from the
current dependence of the detection probability at very low current. This
proposed expression is justi�ed by the notion that low-detection probability
detection events are a tunneling process, similar to dark counts. Around
Ib = Ic, the relation between bias current and energy barrier is linear [24].
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Figure 5.20: Computed versus observed detection probability as a function
of bias current for 1000 nm and 1500 nm. The squares show experimental
data, and the solid lines show a detection probability computed as described
in the main text. The arrows indicate the point where the �rst sections of
the wire become fully photodetecting.

This serves as justi�cation of our proposed relation.

With these two ingredients, we can calculate the internal detection prob-
ability p1 as a function of bias current: we �rst compute jth for the photon
energy we are interested in, then compute the local detection probability.

We then compute the integral p1 =
´ w/2
−w/2 P (x)A(x)dx, where A(x) is the

absorption probability as a function of position.

We show the results of this computation in Figure 5.20 for two di�erent
wavelengths. We note that our calculated curves coincide with the experi-
mental data to within a factor of 2 while the measured count rate changes
over 2-4 orders of magnitude. Moreover, we note that the e�ciency im-
plied by these measurements (η ≈ 10−5) is in good agreement with the
geometry of our experiment, in which a free-space beam of a few tens of µm
is impinging on a 100 nm x 150 nm active area. We therefore conclude that
our calculations are in reasonable agreement with our measurements.

5.ii.2 Universal Curve

In Chapter 3, the idea was put forward that there is a universal curve for
photodetection in SSPDs. We observed that for photons with a wavelength
between 1000 nm and 1500 nm, the detection probability as a function of
bias current superimposes when they are rescaled as p1(I, E) = p1(I − γE).
In this section, we will demonstrate that this is only approximately true:
this relation holds only for photon states with su�ciently low energy or for
su�ciently low detection probability.

Figure 5.21 shows the calculated detection probability for various wavelengths,
calculated in the way described in Section 5.7.2. We clearly observe three re-
gimes: a regime where the detection probability increases exponentially with
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Figure 5.21: Computed detection probability as a function of bias current
and photon energy, for wavelengths from 500 nm (leftmost curve) to 1500
nm (rightmost curve). Insets: Detection probability distribution for two
wavelengths, at constant overall detection probability.

applied bias current, a regime where the detection probability increases, but
much more slowly, and a regime where the detection probability is saturated
at unity. These three regimes correspond to what is observed in experiments
[8]. With these results, we can therefore o�er an explanation of these three
regimes.

In the low-detection probability regime, only the edges of the detector
are photodetecting, and with low probability (see right inset of Figure 5.21).
As the current is increased, gradually the edges become more e�cient. Even-
tually, the edges of the detector saturate (see left inset of Figure 5.21) and
we enter the second regime. In this regime of slowly increasing detection
probability, the detection probability is increased because the area which is
fully photodetecting moves inward. Eventually, the third regime is reached
where the entire detector is operating with probability unity and the in-
ternal detection e�ciency is constant. This result provides an explanation
for the slow roll-o� of the detection e�ciency at low bias currents, which was
previously attributed to inhomogeneities in the detector. We note that our
explanation was put forward independently by Zotova and Vodolazov [34].

5.ii.3 Threshold Current

Measurements of the energy-current relation are a common way of invest-
igating the detection mechanism [8, 16, 17, 35, 20, 73, 72]. The proced-
ure is to take various excitation energies and bias currents and observe the
iso-detection probabiltiy lines, i.e. those combinations of bias current and
photon energy for which a particular prede�ned threshold detection probab-
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Figure 5.22: Calculated curves of constant overall detection probability for
various threshold probability levels for a 150 nm wide detector. The solid
lines indicate the wavelength range over which the experiment in Chapter
5 was conducted. The dashed lines indicate linear extrapolation to lower
currents; the dotted lines indicate the computed theshold current at lower
photon energies. The arrows and captions indicate the macroscopic values
of γ found at these threshold values.

ility is achieved. Usual values are 1% to 10%. Also in use is an empirical
rollo�-formula which is equivalent to a detection probability of 50% [73].

In Figure 5.22, we plot a series of computed energy-current relations.
From this �gure, we conclude that the energy-current relation depends on
the choice of threshold criterion. However, below a threshold criterion of p1=
0.3 this dependence is very weak. This is consistent with our observations
at low detection probabilities, where we observed no e�ect of changing the
threshold criterion on the measured value of γ.

We observe that the point at which the threshold current intercepts the
y-axis when extrapolated to zero energy is smaller than Ic. To compute
these graphs we used a value of I0 = Ic, in the threshold current formula
Ith = I0 − γE, but our extrapolated values of I0 are lower than Ic. This
resolves an important discrepancy between experimental results and theory.
In theoretical work, the current at which vortex crossings are possible is
identi�ed as the experimental critical current, whereas experimentally, I0 ≈
0.8Ic,exp was found at T = 3.1 K. Our computation demonstrates that both
are true at the same time: the position-dependence of the detection e�ciency
gives rise to an e�ective value of I0 that is lower than its actual value.

This e�ect is due to the fact that, at high photon energies, the detection
probability is set almost exclusively by the single point which is most strongly
photodetecting. As the photon energy is decreased, however, other parts of
the wire start to participate. This means that the detection probability
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Figure 5.23: Internal detection probability for three combinations of bias
currents and photon wavelengths. This �gure illustrates why the overall
γ(x) measured in macroscopic experiments is smaller than the maximum
value of γ′(x). The black curve shows the detection probabilty pro�le that
has an overall detection probabilty of 1% for light with λ = 500 nm. The
red curve shows the equivalent curve for light with λ = 1500 nm. The
blue curve shows the detection probability for λ = 1500 at the current at
which the most strongly photodetecting point is equally e�cient as in the
case of 1% detection probability at 500 nm. In this last case, the overall
photodetection probability is 2.2%.

in the most strongly photodetecting point in the wire actually becomes less
when we go to lower photon energies and higher currents, keeping the overall
detection probability constant.

E�ectively, the macroscopic γ which is measured is a weighted average
of the γ′(x) curve, where obviously points with high detection probability
count more strongly. This can be seen by comparing Figures 5.17 and 5.20;
the value of γ′(x) has its maximum at γ′(40 nm) = 3.2 µA/eV but the wire
as a whole has γ = 2.9 µA/eV. This e�ect is illustrated in Figure 5.23, where
the internal detection probability is plotted for a number of combinations of
photon energy and bias current which all satisfy the 1% detection probability
criterion.

The dashed lines in Figure 5.22 show computed threshold currents at very
low values of excitation energy. At low values of excitation energy, the linear
relation between bias current and photon energy breaks down. The detection
probability at E = 0 has an exponential dependence on the threshold current
R(I, E = 0) ∝ exp(Ib− Ic). It is tempting to think that in this way, we have
naturally accounted for dark counts in our model. However, experimentally
we �nd that the extrapolated values of our linear energy-current relation are
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far away from the currents at which we observe any dark counts15. E.g. for
the device presented in Chapter 4, we �nd I0 = 33.8 µA, for a threshold value
of p1 = 0.01, whereas we don't observe any dark counts until we approach the
critical current Ic = 44µA. We therefore conclude that this e�ect represents
at best a partial solution of the dark count problem: the assumption that
dark counts can be understood as photon counts at energy E = 0 is a natural
feature of the kind of model which we present here, but is in disagreement
with experimental data.

15See Chapters 3 & 4.


