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Chapter 4

Experimental Test of the

Detection Models in

Nanowire Superconducting

Single-Photon Detectors

We report an experimental test of the photodetection mechanism
in a nanowire Superconducting Single-Photon Detector (SSPD).
Detector tomography allows us to explore the 0.8-8 eV energy
range via multiphoton excitations. High accuracy results enable
detailed comparison of the experimental data with theories for
the mechanism of photon detection. We show that the temper-
ature dependence of the e�ciency of the SSPD is determined not
by the critical current but by the current associated with vortex
unbinding. We �nd that both quasiparticle di�usion and vortices
play a role in the detection event1.

4.1 Introduction

Superconducting nanowire single-photon detectors (SSPDs or SNSPDs) [1, 2]
are currently the most promising detection systems in the infrared, achieving
detection e�ciencies of up to 93% at 1550 nm [55]. Despite these techno-
logical advances, the fundamentals of the working principle of these detect-
ors are poorly understood and under active investigation, both theoretically
[18, 24, 25, 33, 70, 71, 73, 74] and experimentally [8, 16, 15, 23, 56, 75, 76,
77, 78, 79, 80, 81].

1This chapter is based on J.J. Renema et al. Phys. Rev. Lett., 112 (11), 117604
(2014).
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38 CHAPTER 4. TEST OF THE SSPD DETECTION MECHANISM

A typical SSPD consists of a �lm of a superconducting material such as
NbN orWSi, a few nm thin, nanofabricated into a meandering wire geometry.
When biased su�ciently close to the critical current of the superconductor,
the energy of one or several photons can be enough to trigger a local trans-
ition to the resistive state, resulting in a detection event. The energy of the
absorbed photon is distributed through an avalanche-like process, creating
a nonequlibrium population of quasiparticles. This quasiparticle population
then disrupts the supercurrent �ow, resulting eventually in a detection event.

In this chapter, we adress the nature of this disruption, which lies at
the heart of the photodetection mechanism in SSPDs. At present, there are
three important open questions. First: it is unknown whether the detection
event occurs when the energy of the incident photon causes a cylindrical
volume inside the wire to transition to the normal state (see Figure 4.1a)
[1], or whether it is enough for the superconductivity to be weakened but
not destroyed by the depletion of Cooper pairs over a more extended region
(see Figure 4.1b) [18].

The second open question is whether magnetic vortices play any role
in the detection mechanism. There are two varieties of vortex-based mod-
els. The �rst is an extension of the normal-core model, in which a vortex-
antivortex pair forms at the point where the photon is absorbed (Figure
4.1c) [33]. In the second, the weakening of superconductivity lowers the en-
ergy barrier for either a vortex crossing [24, 82] or a vortex-antivortex pair
crossing (Figure 4.1d).

The last open question pertains to the temperature dependence of the
photoresponse of SSPDs. Intuitively, one would expect the SSPD to be less
e�cient at lower temperatures, as the detector works by breaking supercon-
ductivity and the energy gap of a superconductor decreases with increasing
temperature. However, the opposite e�ect is consistently observed [8]. Apart
from a study of the temperature dependence of the di�usion constant [73],
no real headway has been made in this problem.

Our experimental results provide answers to all three questions. In short,
we show that both quasiparticle di�usion and vortices play a role in the
detection event. We achieve the �rst result by measuring the functional
dependence between the bias current and the photon energy required for a
constant detection probability. The observed linear functional dependence is
incompatible with the original hotspot model and demonstrates the import-
ance of di�usion. Our evidence for the role of vortices lies in the observation
of a reference current which sets the e�ciency of the detection mechanism
and which is unequal to the critical current and also has a di�erent temper-
ature dependence. At the temperature where the reference current crosses
the critical current, the e�ciency of the detector degrades. We �nd that the
temperature dependence of the reference current matches that of the current
at which vortices can unbind from the sides of the detector.
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Figure 4.1: Sketches of the four main detection models. a) In the normal
core-hotspot model, the photon energy creates a normal domain inside the
superconductor, which the current has to bypass. b) In the di�usion-based
hotspot model, the quasiparticles di�use outward from the point of absorp-
tion, creating a band of depleted superconductivity. c) In the vortex nuc-
leation model, a vortex-antivortex pair is formed in the hotspot. d) In the
vortex crossing model, either a vortex or a vortex-antivortex pair (pictured)
uses an area of weakened superconductivity to cross the wire and annihilate.
Picture is not to scale.

4.2 Experiment

We perform the majority of our experiments on a 220 nm wide bow-tie
nanodetector [39]. The detector is patterned from a 5 nm thick NbN �lm
deposited on a GaAs substrate. The detector is fabricated by electron beam
lithography and reactive ion etching. Photodetection takes place in the
narrow (w0 = 220 nm wide) part of the bow tie, where the current density
is highest.

Compared to Chapter 3 and previous experiments [8, 16], we signi�cantly
extend the energy range over which we probe the detector. The energy
range in our experiment runs from 0.75 eV to 8.26 eV, corresponding to
λeff = 1650 nm - 130 nm, whereas the energy range in Chapter 3 ran
from 1500 nm - 325 nm. We achieve this extension of the energy range by
using multiphoton excitations, which are resolved by detector tomography
[36, 49, 67, 83]. Detector tomography is a method of quantum detector
characterization that relies on illuminating a photon detector with a series of
known quantum states and observing the photoresponse. In our case, we use
coherent states from a broadband supercontinuum laser, which is spectrally
�ltered2. These states have known photon number distributions which are
set by the classical laser intensity, which can be easily varied. From this, we
determine the response to each individual number of photons, i.e. the Fock-

2More details may be found in the Appendix to this chapter.
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basis response3. The strength of our modi�ed detector tomography is that
it allows us to separate the incoupling and absorption e�ciency η, i.e. the
probability to absorb a photon, from the internal detection probability pn,
i.e. the probability of a detection event given the absorption of n photons.
A detailed description of our method can be found in Chapter 2, and in the
Appendix to this chapter.

4.3 Results and Discussion

Figure 4.2 shows the measured combinations of bias current Ib and photon
energy E = n(hc/λ) for which the detection probability equals 1% after
absorption of n photons. We achieve this result by performing detector
tomography at twelve di�erent wavelengths, and �nding the current at which
n photons (indicated in the legend) have the required probability to cause a
detection event.

To validate our experimental method of using multiphoton excitations to
probe the detection mechanism, we measured at wavelengths that are har-
monics (e.g. λ = 1500 nm and λ = 500 nm). We consistently �nd that the
results of these measurements overlap over the entire measurement range,
and have indicated these points with arrows in Figure 4.2. This demon-
strates that, irrespective of which detection model is correct, the observed
probabilities pn depend only on bias current and overall excitation energy
E = n(hc/λ). This is an independent justi�cation of the use of multiphoton
excitations to test the detection mechanism.

We can parametrize our complete set of measurements by the expression
I = I0 − γE, where I is the observed current required to achieve pn = 0.01,
and E is the overall energy of the excitation. The slope γ describes the
interchange between bias current and photon energy. By extrapolating to
E = 0, we �nd a current I0 that is unequal to the critical current Ic and
which we name the reference current , since it functions as the baseline from
which the detector response may be determined. At T = 3.2 K, we �nd
I0/Ic = 0.75. This experimental result does not change signi�cantly with
the choice of threshold criterion. The linear relation persists; a 10% threshold
criterion4 gives I0/Ic = 0.79.

In the regime I0 < Ib < Ic, all multiphoton detection probabilities pn
of the detector are constant. However, we �nd that the linear e�ciency
η increases in this regime. We attribute this to the fact that in our bow-
tie structure, a larger area of the detector is above I0. It is known that
for e�cient meander detectors, there is a plateau region where the detector
response is constant with current [55]. We note that dark counts occur in

3See Chapter 2 for extensive discussion
4With the results presented in Chapter 5, we will be able to investigate in Appendix II

of that chapter what the precise consequences are of choosing a threshold criterion pn � 1
on the observed energy-current relation.
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Figure 4.2: Quantum tomography of superconducing single-photon detect-
ors. We plot the bias current required to obtain a 1% probability of a given
detection event, as a function of the overall energy of the multiphoton excit-
ation. The points are the experimental data; their shape and colour indicate
the number of photons associated with each excitation. The arrows indicate
those points where two photon energies coincide. The line shows a linear
interchange between bias current and excitation energy. The shaded area
indicates the regime that is only accesible with multiphoton excitations. In-
set : comparison of a nanodetector, a short (200 nm) wire, and a meander.
We �nd that the response of the wire and meander coincides with that of
the nanodetector, taking into account the di�erence in width between these
three detectors by normalization to the width w0 of the nanodetector.
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our system when Ib ≈ Ic. Around I0, we do not measure any dark counts in
a 30 s interval. This demonstrates - suprisingly enough - that extrapolation
to E = 0 does not yield the dark count rate.

Figure 4.2 demonstrates that the relation between bias current and photon
energy required to have a constant detection probability is linear over one
order of magnitude in energy. This result demonstrates that the detection
process is not associated with any normal-state region that is formed in the
SSPD. For a normal-core model, the energy dependence would be quadratic,
as can be seen from a simple geometric argument that relates the lateral size
of the obstruction made by the normal core to the photon energy [16]. For
a model in which there is no normal state, the current-carrying capacity of
the wire is linearly dependent on the number of remaining Cooper pairs and
therefore on the photon energy.

We will now demonstrate that we can use our nanodetector as a model
system of an SSPD. We compare our results with those on a w = 150 nm
wide, 400 nm long wire and a conventional w = 100 nm meander detector5.
The inset of Figure 4.2 shows a comparison of our three detectors. We take
into account the width w of the detector by normalizing the energy scale
to the width of the nanodetector, which enters through both the critical
current and through the intrinsic 1/w scaling of the detection mechanism
[16]. For our nanodetector, wire, and meander, the results superimpose.
This demonstrates that our nanodetector functions as a model of an SSPD.

Figure 4.3 shows the experimental observations at λ = 600 nm, for the
n = 1 to n = 4 photon regime. By restricting ourselves to one wavelength,
we can improve the accuracy of our experiment by removing all systematic
errors associated with changing wavelength6. This data is representative for
the accuracy of our experimental runs at other wavelengths. We �t a general
expression I = I0−γEα to this selection. As noted above, we expect to �nd
α = 0.5 for the normal-core hotspot model and α = 1 for a di�usion-type
model. For the vortex-based models, the expressions are more complex, but
can be approximated by α = 0.5 for the vortex nucleation model7, and by
equation 1.6 for the vortex crossing model8[16, 24, 25, 33].

We �nd experimentally α = 1.00 ± 0.06, indicating good agreement with
the di�usion model. We note, however, that since the most straightforward
variant of the di�usion model predicts I0 = Ic, this cannot be the whole
story. We must therefore look for additional e�ects to explain the detection
mechanism in SSPDs.

5More details may be found in the Appendix to this chapter.
6We will see in Appendix II of this chapter that at least some of those systematic errors

may be associated with crossing the GaAs bandgap at λ = 816 nm.
7For the vortex nucleation model, we have set γ = 0 in the terminology of [16] through-

out. This is a reasonable approximation for our experimental situation.
8In our original article, we claimed that the vortex nucleation model can be approxim-

ated as α = 0.75. This is incorrect. We present here both the original �t for (α = 0.75)
and the �t to equation 1.6, which is the correct function. We note that this error does
not alter the conclusions of this chapter.
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Figure 4.3: Experimental results on quantum detector tomography at λ =
600 nm. We show a single run of the experiment from Figure 4.2. To
this data, which is free of the systematic error associated with changing
wavelength, we �t a general expression I = I0 − γEα, where the value of
α determines which model we are in. We �nd α = 1.00 ± 0.06, indicating
good agreement with the linear (di�usion) model. We plot �ts to α = 0.5
and α = 0.75 for comparison, as well as to equation 1.6. Inset: χ2 of the
four �ts. We �nd that scenarios with a nonlinear energy-current relation are
strongly inconsistent with our experimental data.
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Figure 4.4: Temperature dependence of the fundamental current I0 in the
nanodetector, relative to the critical current. The red curve shows the tem-
perature dependence of the ratio of the current associated with the vortex
energy barrier (the barrier that a vortex has to overcome to enter the device),
and the Ginzburg-Landau critical current [24, 25]. Top inset : Temperature
dependence of the energy-current interchange ratio γ. This parameter, and
the overall linear e�ciency η are both temperature independent to within our
experimental accuracy. Bottom inset: Temperature dependence of I0 and Ic,
separately. Ic follows the temperature dependence of the Ginzburg-Landau
depairing current.

In Figure 4.4, we show the temperature dependence of the observed ref-
erence current I0, measured on the nanodetector, normalized to the exper-
imental critical current. We obtain this plot by performing an experiment
as shown in Figure 4.2 at various temperatures. We �nd experimentally
that only the current scale I0 is temperature dependent; the incoupling ef-
�ciency η and energy-current slope γ are independent of temperature. The
temperature dependence of I0 therefore completely describes the temperat-
ure behaviour of the device. Ic follows the Ginzburg-Landau temperature
dependence, which is consistent with the result found on Nb bridges [84].
The key result from Figure 4.4 is that the temperature dependence of the
reference current is di�erent from that of the critical current.

We �rst discuss the implications of our results for the practical use of
SSPDs. Around T = 5.5 K, we �nd I0 ≈ IC . This means that above this
temperature, there are energies for which the detector no longer operates
fully as a single-photon detector. This observation explains the strong re-
duction in performance that detectors experience around this temperature.
Note that with the usual semiclassical characterization, one can always �nd
a regime where measured count rates are linear with input power by going
to su�ciently low power, even at p1 � 1. The transition from single to
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multiphoton detection that we have found can therefore only be observed by
the use of detector tomography.

Our experimental Ic follows the Ginzburg-Landau Ic(T ) = Ic(0)(1 −
T/Tc)

3/2 dependence of the depairing current, i.e. the current at which the
Cooper pair binding energy is reduced to zero. The reference current I0 has
a di�erent temperature dependence. As vortices are the other major e�ect
in type-II superconductors, it is natural to consider whether the observed
current scale pertains to vortices. Vortices are a�ected by the Lorentz force,
and an unpinned vortex would be driven across the width of the strip by the
bias current. We must therefore consider dynamic vortex scenarios.

Based on the above considerations, we compare the reference current to
the current scale that governs the height of the energy barrier for a vortex
crossing [24, 25]. The ratio I0/Ic contains an explicit temperature depend-
ence through the superconducting coherence length ξ(T ) ∼ (1 − T/Tc)−0.5

(Tc = 9.6 K). In Figure 4.4, we plot this temperature dependence. The exist-
ence of an alternate current I0 6= Ic in SSPDs, and the observation that the
temperature dependence of this current follows the temperature dependence
of the binding energy of a vortex is evidence for the fact that the detection
mechanism is vortex-based and that the temperature dependence is set by
this energy.

SSPDs can also be used in the keV regime, either for detecting X-ray
photons [85] or for detecting ions. The experiment by Suzuki et al. [75] on
ion detection in 800 nm wide, 10 nm thick detectors has clearly demonstrated
that the normal-core hotspot model is correct in the keV range. This is
understandable, as a single injection of a large amount of energy will be
enough to break all the Cooper pairs at a single position along the wire,
leading to a normal-core scenario. There must therefore be a typical energy
where the di�usion-based scenario gives way to a normal-core scenario. By
�tting only low-energy events and extrapolation to high energies, we can
check whether all our results are described by a single model. We �nd that
this is the case, and therefore conclude that this transition occurs at an
energy higher than 8 eV, for our system.

The overall conclusions which may be drawn from our results are that
both vortices and di�usion play a role in the detection event. Returning
to Figure 4.1, we may therefore conclude that scenario d) is the one that
corresponds closest to reality. We note, however, that the particular vortex
crossing model proposed by Bulaevskii et al. has a energy-current depend-
ence that does not correspond to our experimental observations. This point
was adressed in a recent article by Engel et al. [28], which combines di�usion
and vortex crossing in a numerical simulation. However, both the numerical
simulation and the theoretical work predict I0 = Ic for the limit T → 0.
More theoretical work is needed to explain our results.
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4.4 Conclusion

We have demonstrated experimentally that the dependence between the ex-
citation energy and bias current required to produce a detection event in a
superconducting single-photon detector is linear. The exact linear depend-
ence in the experiment is consistent with a detection model that relies on the
di�usion of quasiparticles produced by the initial excitation. Other models
produce behaviour that deviates signi�cantly from linear dependence.

We �nd a current scale which characterizes the response of the detector
which is unequal to the critical current of the device. When the temper-
ature is increased, we �nd that the observed current scale exceeds the crit-
ical current at the same temperature where the SSPD response degrades.
We observe no temperature dependence in the other observed parameters,
which together provide a complete description of the detector. We therefore
conclude that we have localized the problem of temperature dependence
of SSPDs to a single current scale. The observed temperature dependence
matches reasonably well with a theory describing the crossing of a single
vortex. From our results, it is clear that at optical frequencies, quasiparticle
di�usion and vortex unbinding are the two main ingredients in any model of
SSPD behaviour.
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4.i Appendix: Supplementary Material9

4.i.1 Detector Tomography

Detector tomography provides the probability of a detection event without
relying on any assumptions about the detector. We therefore do not need to
consider the inner workings of each model, but treat them agnostically, i.e.
no assumptions about the properties of the detector or the parameters of the
models go into our experimental results. This is particularly necessary in the
present situation, where there is no consensus on which physics is relevant
for the photodetection process.

Our method relies on observing nonlinearities in the detection probab-
ility of the device as a function of input power. For this reason, we are
completely insensitive to the amount of overlap between the light beam and
the active area of the detector [67]. This is a requirement, because our
detector is subwavelength, and therefore the spatial overlap between our de-
tector and the input mode is necessarily small. Detector tomography enables
us to simultaneously measure the fraction of detection events caused by each
multiphoton process. We model the detection e�ciency by:

Rclick = 1− e−ηN
nmax∑
n=0

(1− pn)
(ηN)n

n!
, (4.1)

where Rclick is the observed detection rate andN is the mean photon number
of the incident coherent state. nmax is the photon regime which the detector
is operating in, which is determined by model selection (see below). η is the
linear e�ciency (which is discarded in further analysis) and the pn are the
quantities of interest: they represent the probability of a detection event,
given that n photons are absorbed in the detector.

4.i.2 Determination of the Photon Regime

The parameter nmax in equation 4.1 sets the maximum number of photons
that is still participating in the detection process in some nontrivial way,
i.e. which photon regime the detector is in. We determine nmax by making
a series of �ts to each n (up to n = 6) and computing the goodness-of-�t
statistic χ2 per degree of freedom. For a good �t, we should �nd χ2 ≈ 1.
First, we reject all �ts with χ2 � 1. Then, we pick the �t that has minimal
χ2. Based on model selection theory, we should use the Akaike Information
Criterion AIC = χ2 +2nmax to pick the model which describes the data with
fewest parameters [86]. In practice, we �nd that well-�tting models all have
the same χ2 and badly �tting models produce much larger χ2 . Therefore,

9This section is based on the Supplementary Material to J.J. Renema et al., Phys.
Rev. Lett., 112 (11), 117604 (2014).
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Figure 4.5: Goodness-of-�t parameter χ2 as a function of bias current. This
experiment was performed on the nanodetector. χ2 ≈ 1 indicates a good
�t. Each line corresponds to a model where the detector is in a particular
multiphoton regime. From this graph, we determine the multiphoton regime
which the detector is in. To �nd the appropriate photon regime, we select
the curve with minimal χ2 that has the lowest nmax.

minimizing the AIC is equivalent to �nding the �rst model with a low χ2,
which is the procedure that we described in Chapter 2.

Figure 4.5 shows a typical result (in this case for a measurement at λ =
600 nm) of χ2 for the various models as a function of bias current. The top
curve (black squares) shows the detector modelled as a one-photon detector,
i.e. pi = 1 for i ≥ 1 (i.e. nmax = 0). For currents above 28.5 µA, the
detector can be described by a model with pi = 1 for i ≥ 2 (i.e. nmax = 1).
When we decrease the current below 28.5 µA, the detector is well described
by a model with pi = 1 for i ≥ 3 (i.e. nmax = 2), and so on.

4.i.3 Experiment

The detectors were illuminated with a Fianium broadband laser, with a spe-
ci�ed pulse duration of 7 ps and a repetition rate of 20 MHz. In the present
experiment, we used optical wavelengths from 460 nm to 1650 nm. For each
experimental run, we selected a band of ∆λ = 10 nm via dichroic mirrors,
high and low edgepass �ltering and bandpass �ltering with a dielectric �lter.

It was reported that operating the detector at high count rates compared
to its intrinsic reset time can result in a spurious nonlinear response [87]. To
avoid this issue, we discard all data where the fraction of pulses that results
in a detection event is higher than e−2 ≈ 0.14.
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Figure 4.6: Raw experimental data for a single measurement run at 1400
nm. We plot the observed detection probability per pulse as a function of
bias current, for various laser intensities. Note that the laser powers are not
spaced uniformly.

4.i.4 Example

To illustrate our measurement procedure, we demonstrate our data pro-
cessing on the experimental run at λ =1400 nm. In Figure 4.6, we plot our
raw data. We measure the detection probability as a function of bias current
at various laser powers.

This �gure is best understood by reasoning outwards from the low-power
graph at the bottom-right. At low powers, we measure the usual response
which is also seen in SSPDs: at low currents, we �nd a region where the
detection rate increases rapidly when the bias current is increased, whereas
at high currents the response is more or less independent of bias current.
For SSPDs, the �atness of this plateau is sometimes taken as an informal
measure of the quality of the device. In our case, this rule of thumb is not
applicable since we have an intrinsicly nonuniform geometry. We discuss this
point further in a separate section of this Appendix.

When we increase the laser power, two e�ects occur. At low currents, we
observe detection events with a superlinear dependence on power, indicating
that we are in a multiphoton regime. Secondly, at high currents we observe
saturation of the detector.

Figure 4.7 shows the data processing. We convert the bias-current de-
pendent curves into power-dependent curves. The arrow indicates the direc-
tion of increasing bias current. We �t equation 4.1 to these curves, and then
apply model selection as described above. We consistently �nd that we are
able to �t our entire data set with equation 4.1, obtaining values for η, and
pi for each bias current.



50 CHAPTER 4. APPENDIX I

Figure 4.7: Experimental data as a function of mean photon number per
pulse. The black points show the experimental data from �gure 4.6, but
plotted as a function of photon number. The black curves show �ts to
equation 4.1. We select the optimal �t via model selection.

In Figure 4.8, we plot the measured values of pi as a function of bias
current. Furthermore, as a comparison, we plot the scaled low-power de-
tection probability. The fact that the low-power count rate and p1 have
very similar functional dependencies on Ib serves as a consistency check. At
higher photon numbers, the relation between observed count rates and pi is
nonlinear, as can be seen from equation 4.1.

The dashed line represents the threshold criterion used for the �gures in
the main text. We note that the threshold criterion is far away in current
from the current where our model selection switches from one model to the
next. Therefore, the accuracy with which we can determine the threshold
current is independent of the precise method of model selection.

4.i.5 Error Analysis

The accuracy with which we can measure pi is crucial to our argument
regarding the linearity of the energy versus bias current relation at constant
pi. We perform error analysis in three di�erent ways. First, we obtain
estimated errors from the �t to equation 4.1, which give us errors on the
point pi = 0.01 through standard error propagation techniques. We validate
these errors in two ways. First, we perform a calculation where we split
a data set where we integrated for 30 s at each measurement setting into
three blocks of 10 s. We analyze these blocks separately and compare the
spread in observed pi. Secondly, we perform several subsequent experiments
under exactly the same conditions, and compare the spread in pi. From
this analysis, we conclude that ∆Ib = 50 nA is a reasonable estimate of our
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Figure 4.8: Detection probabilities for absorbed photons as a function of
bias current.

error in determining the point where pi = 0.01. The fact that the error
on subsequent experiments is not larger than that of a series of interleaved
measurements is proof that our setup is stable over the required measurement
times.

4.i.6 Samples

The properties of our three samples at 3.2 K are:

nanodetector wire meander
Width w (nm) 220 150 100
Thickness (nm) 5 4.7 5

Length - 200 nm 105 µm
Ic(µA) 44 28 23
I0(µA) 33.9 21.5 17.6

γ (µA/eV) 1.6 2.7 4.4

4.i.7 Localization of the Detection Response10

Since our detector is inherently inhomogeneous in width, it is necessary to
consider whether photon absorption events in the areas far away from the
center of our detector can be responsible for detection events. We demon-
strate that this is not the case by estimating �rst the size of an excitation
at the center of the detector, and then demonstrating that excitations which
are further away than that do not cause detection events.

10See also Chapter 7.
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Figure 4.9: SEM image of a detector nominally identical to the one used in
this experiment. The active area of this device is in the very center of this
image. The white bar represents a distance of 1 µm.

First, estimates of the timescale involved in the detection process range
from τ = 2.7 ps [28] to τ = 20 ps [40]. Combined with a di�usion coe�cient
of D = 0.5 cm2/ s, this gives an excitation size of x = 10-30 nm. We note
that the lower estimate is close to the resolution with which our constriction
is de�ned. For photons which are absorbed further away than that, the
current density is much lower due to the large taper angle of 45 degrees. For
example, if the detector is operated at Ib/Ic = 0.75 at the constriction, the
current density 50 nm away from the constriction will be only Ib/Ic = 0.5.
Moreover, the additional width of the detector at that point means that the
detection probability is correspondingly lower.

From the scaling demonstrated in the inset in Figure 4.2, we can estimate
that when the detector is in the 1-photon regime for 400 nm photons on the
constriction, it will be in the 4-5 photon regime for photons absorbed 50
nm away from the constriction. The orders of magnitude discrepancy in
count rate associated with such a di�erence in photon regimes means that
the contribution from areas outside the narrowest part of the constriction
is negligible. This demonstrates that we are justi�ed in considering our
detector as a single line-segment.

4.i.8 Temperature Dependence of λc

As a consistency check, we demonstrate that our work reproduces previous
experimental results that were obtained without the use of tomography. In
previous work [73], the temperature dependence of the SSPD was described
in terms of a cuto� wavelength λc, in the form of an empirical formula for
the detection rate R(λ) = 1/(1 + (λ/λc)

n). This cuto� wavelength was
observed to be both temperature and current-dependent. At high currents,
the temperature dependence is stronger.
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Figure 4.10: Temperature dependence of the cuto� wavelength as a function
of relative bias current.

We compare our results to those of [73] by converting our energy-current
dependence into a cuto� wavelength. The criterion for λc is equivalent to
pi = 0.5. We solve the equation αIc = I0 − γE for E = hc/λc, where
α = Ib/Ic is the bias current ratio. In Figure 4.10, we plot the result of
this computation. We �nd that we are able to reproduce the experimental
result from [73]: the observed current scale reproduces the behaviour that
was observed for a TaN SSPD. In particular, at low currents, the cuto�
wavelength is small (high energy) and barely dependent on temperature. At
high currents and low temperatures, the cuto� wavelength increases and is
in the infrared. This reproduces the earlier experimental observation that it
is the IR response of the detector that is most strongly a�ected by elevated
temperatures.
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4.ii Appendix: Wavelength Measurements with

an SSPD

The observation that a superconducting single-photon detector is sensitive
to the overall energy of the excitation naturally gives rise to the question
whether this e�ect can be used to measure the wavelength of an incident
beam, and if so how accurately. Motivated by this question, we performed
quantum detector tomography on a 150 nm wide superconducting single-
photon detector in a narrow wavelength range, from λ = 840 to 900 nm,
using a series ∆λ = 10 nm FWHM �lters in steps of 20 nm. We increased
the integration time in our experiment to 10 s per point, which leads to
increased accuracy in our measurements. Furthermore, we enhanced the
count rate somewhat (from � 1 MHz to ∼ 0.5 MHz) which increases the
overall accuracy with which we can determine p1.

The natural application of such a device would be as a spectrometer, as
was already proposed in 2007 by Reiger et al. [88]. The operating principle of
an SSPD-based spectrometer would be that the bias current is swept, and the
counts recorded. Using the fact that the threshold current (i.e. the current
at which one observes detection events) is di�erent for each wavelength, one
could in principle reconstruct the spectrum from the observed count rate
dependence on bias current.

There are several good reasons to be skeptical about the practicality of
such a device. First of all, it has energy resolution only in a statistical
sense. Unlike a grating-based spectrometer, there is no intrinsic information
gained about each photon individually, only about the whole in a statistical
sense. This means �rst of all that the amount of signal is abysmal (the
device operates by deliberately not detecting a large portion of the incident
photons) and secondly that sources which are varying in time cannot be
characterized. A second reason is that it is unclear how narrowly-spaced
wavelengths would be separated. The spectral width ∆λ of our illumination
in this experiment is already larger than the observed accuracy. While we will
show that we can measure the central wavelength of our incident laser beam
with an accuracy of a few nm, it is unclear how two adjacent wavelengths
would be separated. In [88], this was done for light of λ = 900 nm and
λ = 530 nm, but this resolution is far away from any practical signi�cance.

For these reasons, we include our results on this topic in this thesis more
as a demonstration of the abilities of our methods and as an exploration
of the ultimate accuracy of our system than as a concrete route to any
practical application. However, since SSPDs operate across a broad range of
wavelengths (from X-ray to mid-IR) and are robust for space applications,
we cannot exclude that there is some application, perhaps in astronomy, at
some exotic wavelength where the results presented here will prove useful.

We show the result of our quantum detector tomography experiment in
Figure 4.11. We report data for four wavelengths: 900 nm, 880 nm, 860 nm
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Figure 4.11: Quantum detector tomography of a superconducting single-
photon detector at a series of narrowly spaced wavelengths

and 840 nm. We �nd the usual e�ects for SSPDs: lower photon energy as
well as lower bias current lead to lower detection probability. In the inset of
Figure 4.11, we show a zoom-in on one experimental point, demonstrating
the observed values of p1 at a bias current of 22.0 µA. The error bars in the
�gure correspond to the error estimate from our tomographic �ts.

In Figure 4.12, we show the accuracy which is computed from the experi-
mental data presented in Figure 4.11. We de�ne this accuracy as 2(p1(λ1)−
p1(λ2))/(σp1(λ1) + σp1λ2), where σ is the error with which we determine the
value of p1 for a particular wavelength. That is: we measure how many error
bars away two adjactent points are. This is a measure of how accurately we
can determine the center wavelength of a particular quasi-monochromatic
light source.

We �nd that this accuracy depends on the applied bias current. This is
a consequence of our measurement technique: since we use the same range
of powers for the tomography experiment at each current, we achieve lower
count rates and hence higher errors when p1 is lower. However, in an applic-
ation where an unknown source has to be characterized, the intensity of that
source typically cannot be increased by the experimenter, and at any given
intensity the count rate at low bias currents will be lower. We therefore
conclude that these error estimates describe a reasonable scenario.

We note that we have improved on the result presented in [88] by more
than an order of magnitude. Two orders of magnitude (i.e. an accuracy
of a few Angstrom) could easily be reached by decreasing the width of the
wire, which makes the energy-current relation more steep, thereby improving
energy resolution at a given bias current resolution.

In the inset of Figure 4.12, we plot the extrapolated accuracy with which
we can determine a central wavelength as a function of that wavelength.
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Figure 4.12: Observed wavelength accuracy as a function of bias current.
We �nd that for higher bias currents the accuracy becomes better. The
high-accuracy plateau between 21.5 and 22.5 µA corresponds to a accuracy
of 1.4 nm. Inset: Extrapolated wavelength accuracy.

Since we expect our energy resolution to be constant, we obtain a wavelength
resolution proportional to 1/λ2 . We expect this wavelength resolution to
break down at the point where the excitation becomes energetic enough for
the normal state to start playing a role in the detection mechanism, which is
predicted to happen at a photon energy in the UV [28]. In this energy range,
the linear dependence will give way to a sub-linear dependence, reducing the
resolution.

Lastly, we note one additional e�ect which becomes visible when zoomed
in to this particular wavelength range: there is a step in the energy-current
relation between 840 and 800 nm. While more work is clearly needed to
explain this e�ect, it is intruiging that the �rst point which breaks the trend
occurs at 820 nm. We note that our 820 ± 5 nm light coincides with the
bandgap of GaAs at low temperatures, which is at 816 nm. We speculate
that this e�ect is related to the absorption of light in our substrate, but
note that this e�ect cannot be explained by invoking only the heating of
the sample due to the increased absorption: as noted in the main text, this
would decrease the amount of current required for a detection event rather
than increase it. Noting that perhaps this e�ect is responsible for some of
the spread between wavelengths ∆I = 250 µA in Figure 4.2, we pass over
this point without further interpretation.



Figure 4.13: Experimental observation of a step in the energy-current rela-
tion, around 820 nm. We speculate that this e�ect is due to crossing the
bandgap of GaAs at 816 nm.
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