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Chapter 2

Modi�ed Detector

Tomography Technique

Applied to a

Superconducting

Multiphoton Nanodetector

We present a complete method to characterize multiphoton de-
tectors with a small overall detection e�ciency. We do this
by separating the nonlinear action of the multiphoton detection
event from linear losses in the detector. Such a characteriza-
tion is a necessary step for quantum information protocols with
single and multiphoton detectors and can provide quantitative
information to understand the underlying physics of a given de-
tector. This characterization is applied to a superconducting
multiphoton nanodetector, consisting of an NbN nanowire with
a bow-tie shaped subwavelength constriction. Depending on the
bias current, this detector has regimes with single and multi-
photon sensitivity. We present the �rst full experimental charac-
terization of such a detector1.

2.1 Introduction

Multiphoton detection is a vital tool for optical quantum computing [45].
Such multiphoton detection can take many forms, two important examples

1This chapter is based on J.J. Renema et al., Opt. Exp. 20 (3), 2806-2813 (2012).
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16 CHAPTER 2. MODIFIED DETECTOR TOMOGRAPHY

of which are photon-number resolved detection, where the detector is able to
distinguish precisely the number of photons, and threshold detection, where
the detector is merely able to distinguish between the cases 'N photons or
more' and 'fewer than N photons' [37].

The common factor in all multiphoton detectors is that they are based
on a nonlinear mechanism such that the response of the detector depends in
some nontrivial way on the number of photons impinging on the detector.
There is typically also a �nite probability that a photon impinging on the
detector does not participate in the detection process at all. Such losses
can be modeled as attenuation of the input state impinging on an ideal (i.e.
100% e�cient) detector [37].

A well-established tool to characterize any quantum detector is detector
tomography, for which the mathematical framework is that of Positive Op-
erator Valued Measures (POVM) [36, 37, 43]. In this characterization tech-
nique, the goal is to �nd the probability that the detector clicks, given that N
photons are incident on the detector. These probabilities can be determined
by illuminating the detector with a set of coherent states, and measuring
the probability that the detector clicks as function of the input power. The
power of detector tomography is that it allows us to characterize the detector
using only coherent states as a probe. To do this, it takes into account the
distribution of photon numbers in a coherent state and gives the probability
of the detector responding to N photons.

Without introducting further assumptions, detector tomography is not
immediately applicable in the situation where there is a large and unknown
loss component in the detector. In this regime, the outcome would be heavily
in�uenced by the probabilities dictated by the linear losses. To characterize
the multiphoton behaviour of the nonlinear detection mechanism, the range
of test states would have to be large (of the order η−1

sde, where ηsde is the
system detection e�ciency), which would result in an overwhelming number
of free parameters leading to a strongly overdetermined system.

In this work, we present a method to separate the nonlinear detection
mechanism from the linear loss. We apply this method to the case of an NbN
nanodetector, where we obtain the �rst full experimental characterization of
such a detector.

This characterization has two applications. First of all, it gives the
complete statistics of the response of the detector to any incoming state,
which is of interest when a detector is used in a quantum communication
or quantum information experiment. Secondly, since this characterization is
model-independent, it can be used to investigate the physics of the detec-
tion mechanism. This latter application is especially important in detectors
where the detection mechanism is not fully understood, as is the case for an
NbN nanodetector [8].
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Figure 2.1: SEM image of the NbN nanodetector. The smooth gray area is
the NbN, with the constriction in the middle. From this image, the width
of the constriction was estimated to be 150 nm.

2.2 NbN Nanodetectors

NbN nanodetectors consist of a bow-tie shaped constriction in an NbN
nanowire [39]. The width of this constriction can be as small as 50 nm.
This detector functions on the same detection principle as the well-known
NbN meanders [1]. A detection event happens when one or more photons in-
duce a break in the superconductivity and cause the formation of a resistive
bridge across the detector [8], causing a voltage pulse which is detected by
the readout electronics. In the nanodetector, since the bias current density
is only high around the constriction, this detector has subwavelength res-
olution [39]. Furthermore, it is possible to lower the bias current to such
a value that multiple photons are required to provide a perturbation that
is strong enough to break the superconductivity. Operation in this regime
results in a subwavelength multiphoton detector. Such a detector may allow
for subwavelength mapping of optical �elds and high-resolution near-�eld
multiphoton microscopy.

The operation of the NbN nanodetector di�ers from that of an ideal
N-photon threshold detector, as was already observed in the �rst paper an-
nouncing the construction of such a device [39]. In order for these detectors
to be used in e.g. subwavelength mapping of N-photon optical �elds, it is
vital that their response to di�erent photon numbers is well understood [46].

A complete characterization of the detector may also be of fundamental
interest for the study of the more well-known NbN nanowire meander de-
tectors [1]. Due to the well-localized sensitive area of the detector, the
multiphoton regime is more apparent and more easily understood in a nan-
odetector as compared to an NbN meander, where two impinging photons
are most likely absorbed in di�erent areas of the detector. Furthermore, it
has been suggested that unintended constrictions form an important limit-
ation on the performance of an NbN meander [41]. In these respects, NbN
nanodetectors may serve as models for the response of NbN meanders.
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2.3 Experimental Setup

The NbN nanodetector used in this experiment was manufactured on an
NbN �lm deposited by DC magnetron sputtering on a GaAs substrate [47].
A nanodetector was patterned out of the NbN �lm by means of electron
beam lithography (EBL) and reactive ion etching (RIE). The width of the
constriction was estimated to be 150 nm (see Figure 2.1). The detector was
cooled in a VeriCold cryocooler with a �nal Joule-Thompson stage to 1.17
K. The detector critical current was measured to be 29 µA.

We illuminate the sample with a Fianium supercontinuum laser with a
repetition rate of 20 MHz and a pulse width of 6 ps, which was �ltered
to have a center wavelength of 1500 nm, with a spectral width of 10 nm.
The detector was illuminated through a single-mode lensed �ber producing
a nominal spot size of 3 µm at 1500 nm. The readout electronics consist
of a bias-tee (Minicircuits ZNBT-60-1W+), an ampli�er chain and a pulse
counter.

Each experiment consists of a large series (>20) of experimental runs,
each at constant light power, where the current through the detector is
swept by means of voltage biassing, resulting in steps of 0.2 µA, up to the
critical current. Power stability during each run was monitored by a power
meter which receives a pick-o� beam from a beam splitter in the �ber leading
to the experiment. Finally, the 2-dimensional set of count rates C(Ib, N) is
rearranged and normalized by the repetition rate of the laser to yield the
detection probability per pulse R(N) at �xed bias current Ib.

For each experiment, the power was varied so as to obtain the complete
detector response curve from detection probability R = 10−6 to R = 1. This
required varying the input power over 5 orders of magnitude, typically from
20 pW to 5 µW input power into the cryostat. At a repetition rate of 20
MHz the largest input power corresponds to N = 2 ∗ 106 incident photons
per pulse. Since the detection e�ciency of our detector is low (order 10−4),
it was not necessary to introduce further attenuation, as is usually done in
detector tomography experiments [37].

2.4 E�ective Photon Detector Characterization

To understand the optical response of the NbN nanodetector, our starting
point is detector tomography, which has been developed in [36, 37, 48] in the
framework of the POVM formalism. This technique provides an assumption-
free method to characterize the response of an unknown detector system
using a set of coherent states as inputs. We limit ourselves to the case
where there are only two possible responses: click or no click. The idea is
to translate the response of the detector from the basis in which it can be
measured (the coherent state basis) into the basis in which we want to know
it, which is the Fock (number) state basis [36] . For an input state described
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by a density matrix ρ, the probability R to observe a detection event is:

Rclick = Tr(Πclickρ) (2.1)

Πclick =
∑
i=0

pi|i >< i|, (2.2)

where Πclick is the POVM of having a detection event, and pi is the prob-
ability of a detection event occuring given a Fock state with i photons as
input.

Keeping in mind that for coherent states, the probability distribution of
photon numbers is completely determined by the mean photon number of
the state, we can write:

Rclick(N) =
∑
i=0

pici(N), (2.3)

where ci = e−N Ni

i! is the weight of the i-th basis state in the probe coherent
state and N is the mean photon number. By measuring the detection prob-
ability R as a function of the input mean photon number N of the coherent
state, we can use ci(N) to reconstruct the set of probabilities pi, either by
a maximum likelyhood algorithm [37] or a simple curve �t [49]. Since we
are dealing with a detector that saturates, i.e. that always has a detection
event at high input power, the problem is simpli�ed by reasoning from the
case that the detector doesn't have a detection event [50]. Since there are
only two possible outcomes, this gives:

Rclick(N) = 1−Rno click(N) (2.4)

= 1− e−N
∑
i=0

(1− pi)
N i

i!
, (2.5)

where N is the mean photon number. The case p0 = 0, pi>0 = 1 is applicable
to any one-photon threshold detector, such as an APD with unity detection
e�ciency [37].

In this chapter, we introduce an extension of detector tomography de-
signed for use in situations where there is a large linear loss, as is the case
with NbN nanodetectors. The goal of this model, which we call E�ective
Photon Detector Characterization (EPDC), is to separate linear losses from
the nonlinear action of the detector, which is of physical interest. To ac-
count for this loss, we introduce a linear loss parameter η that describes the
probability of for each photon to participate in the nonlinear process. Since
coherent states remain coherent under attenuation, the EPDC function then
becomes:

Rclick,EPDC(N) = 1− e−ηN
∑
i=0

(1− pi)
(ηN)i

i!
, (2.6)
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where {pi} and η are the free parameters2. Since the POVM description
is complete [36, 50] and we have added a parameter, we have now cre-
ated a function that is overdetermined by one parameter. However, we can
choose a solution based on physical grounds. Since we know our detector
has threshold-like behaviour, it is reasonable to assume that for some large
number of photons imax the probability pimax

with which the detector will
have a detection event is arbitrarily close to 1. Furthermore, once we have
found such an imax, we can assume that pj>imax = 1 for all j > imax, since
otherwise we would have the unphysical case that adding photons makes
it less likely that a detection event occurs. We can then create a series of
candidate solutions by �tting equation 2.6 to our measured count rates as a
function of input photon number, truncating the sum at various values imax.
This gives a series of candidate solutions parameterized by {η, p0...pimax}.
The solution we pick is the one that �ts our data and has the minimum
imax, since this is the one that requires the fewest parameters to explain our
data3.

The big advantage of this approach is that we describe the entire linear
loss with a single parameter, thereby separating the linear losses from the
nonlinear action of the detector, and drastically reducing the number of �t
parameters. Typically, the nonlinear action of the detector, quanti�ed by
the pi, is the quantity of interest for multiphoton detection. This approach
is particularly relevant for detectors with a large linear loss component, since
if this loss is not taken into account separately it would dominate the char-
acterization of the detector.

2.5 Result

The points in Figure 2.2 show the measued count rate points as a function
of input power from our NbN nanodetector at three di�erent bias currents.
The lines represent the �ts, with the colour indicating the value of imax
(see legend). For each �t the reduced χ2 are shown in the bar diagrams
in the insets of the �gure. We take the �t that explains the data with
the smallest number of parameters as the most physically realistic solution.
This choice is indicated by the arrows in the bar diagrams. By repeating
this algorithm over a range of bias currents, we can completely characterize
how the response of the detector to a given number of photons varies with
the bias current.

In Figure 2.3, the results from the E�ective Photon Detector Character-
isation are shown as a function of bias current. At each bias current, the
obtained pi and η describe the operation of the detector, independent of

2We note that we have made the implicit assumption that RN→∞ = 1. This is not
always the case, but equation 2.6 can be rewritten to accomodate this.

3We will see in Chapter 4, Appendix I that the notion of '�ts the data with minimal
parameters' can be formalized by means of the Akaike Information Criterion.
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power. We therefore conclude that we have obtained a complete description
of the detector behaviour.

2.6 Discussion

The pi obtained from the �t represent the nonlinear action of our detection
system, which is the physical property of interest. Since there are no other
nonlinear elements in the detection system, we can unambiguously attribute
the behaviour of the pi to the NbN nanodetector. It should be noted that
the result presented here is consistent with earlier results on these detectors
[39], e.g. we reproduce the �nding that the transitions between the various
detection regimes (where the detector behaves approximately as an N-photon
detector) are equally spaced in the current domain.

From equation 2.3, we can see that the response of the detector is given
by terms of the form pici(N), where ci(N) is the probability of having N
photons. From this we can see that each pi will be most dominant in the
range of powers where the probability of having the corresponding number
of photons is highest. For example, at 17 µA the detector has p1= 0.06 and
p2= 0.37, meaning that at low powers (ηN < 0.16), where the one-photon
contribution from the state is dominant, the detector will respond mostly
to single photons, but at higher powers (ηN > 0.16) the response will be
dominated by the two-photon events. This quanti�es the change of detection
regimes reported in measurements of count rate as a function of power [39].

The �tted linear detection e�ciency η �uctuates between (9.6±0.2)∗10−5

and (14.7 ± 0.6) ∗ 10−5. Normalizing to the estimated e�ective area of the
detector of 100 nm by 150 nm and the beam size, we obtain an intrinsic
detection e�ciency of 8%. While it should be noted that this is only a rough
estimate, it is higher than the value of 1% reported in [39]. We this attribute
to the lower temperature of the experiment, at which NbN detectors are
known to be more e�cient [8].

It should be noted that since we combine all linear losses into a single
parameter, we are unable to distinguish losses after the absorption event
from those before the absorption event, provided they are linear. It is known
for NbN meanders that not every absorbed photon causes a detection event
[41]. However, since our measured linear loss does not depend on the bias
current, it is reasonable to attribute it to optical loss and not to losses inside
the detector. With the caveat that there may be a constant linear loss
inside the detector, we can therefore conclude that the set of pi completely
describes the behaviour of the detector.
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Figure 2.2: Measurement of the NbN nanodetector count rate as function
of input power at Ib = 20 µA, Ib = 17 µA and Ib = 14 µA, �tted with
the EPDC model (equation 2.6). The black squares represents the data
points with error bars, the other lines represent �ts, with the number of free
parameters represented by the color of the line (see legend). Note that many
of these lines overlap with each other and with the data. Insert: reduced χ2

of the �ts as a function of number of parameters. For Ib = 14µA we have
omitted the case i = 1, where χ2

reduced > 104. The arrows indicate the best
�t. Note that in all three cases there are multiple �ts which have similar
reduced χ2, we reject the ones with super�uous free parameters for physical
reasons.
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Figure 2.3: Nonlinear parameters and linear detection e�ciency as function
of bias current. This �gure was obtained by repeatedly applying the method
outlined in Section 2.4 at various bias currents. The three dashed lines
indicate the bias currents from Figure 2.2.

2.7 Conclusion

We have introduced an extension of detector tomography which is applic-
able in the presence of a large linear loss. This detector characterization is
of interest when using a quantum detector in a quantum optics or quantum
communication experiment, since it gives a full prediction of the response
of the detector to any incoming state. Furthermore, we have completely
characterized the response of a superconducting nanodetector, over several
operating regimes of the detector. This represents the �rst complete char-
acterization of this type of detector, which is necessary for the use of this
detector in the context of multiphoton subwavelength detection.

A second application of this characterization method is that it provides
quantitative information about the response of the detector. Such a quantit-
ative characterization can also be used to test theoretical predictions of the
response of the detector as a function of bias current [18], enabling further
insight into the physics of the detection event in NbN photodetectors.

The idea of our formalism is to separate this linear loss from the nonlinear
action of the detector. For the detector under study in this chapter, this
formalism completely describes the response of the detector. In contrast to
earlier methods [44, 51] that assume a priori knowledge of the underlying
detector physics, detector characterization based on the POVM formalism
can be applied to any detector system without making assumptions about
the operating principle of the detector [36, 43]. Therefore, the strength of
the characterization applied here is that we can extract model-independent
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parameters that can be used to gain insight in the physics of photon detection
with NbN detectors.

Finally, we comment on the applicability of our algorithm to other de-
tectors: E�ective Photon Detector Characterization shares the feature with
detector tomography that it is as assumption-free as possible; making it pos-
sible to characterize a detector without any prior knowledge or model of the
operational mechanism of the detector. The EPDC method has the added
requirement that the detector saturates (i.e. always produces the same out-
come) at some high input photon number. To our knowledge, this behaviour
is generic to all quantum detectors constructed to date [2, 51, 52, 53, 54]. It
therefore does not represent an practical limitation.


