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Chapter 1

Introduction

1.1 Superconducting Single-Photon Detectors

Superconducting single-photon detectors [1] are an important technology for
photodetection in the near infrared, with a wide range of applications. These
detectors consist of a thin layer of superconducting material, which is nan-
ofabricated into a wire. The typical wires which are used in applications
are 4 nm thick, 100 nm wide and some tens of µm long, folded in a me-
ander shape. Such photodetectors were �rst demonstrated at Moscow State
Pedagogical University in 2001.

This type of photodetector has many practical advantages [2, 3]. Con-
trary to semiconductor-based single-photon detectors, the wavelength of
photons which can be measured by the detector is not limited to the bandgap
of the material but by the thickness and width of the wire, enabling detec-
tion of photons of up to 5 µm [4]. The electrical pulses corresponding to

Figure 1.1: Scanning Electron Microscope image of a typical superconduct-
ing single-photon detector of the application-oriented meander type. Image
courtesy of NIST.
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2 CHAPTER 1. INTRODUCTION

Figure 1.2: The central question of this thesis: what happens at the question
mark?

a detection event have a rapidly rising �ank with timing jitter in the 20-30
ps range [5], which enables accurate determination of the arrival time of the
photon. These properties have many advantages in e.g. deep space commu-
nication applications, where bits are coded by the photon arrival time [6].
Moreover, these detectors have a very low dark count rate compared to ava-
lanche photodiodes operating in the same wavelength range, and a fast reset
time compared to transition edge sensors. The e�ciency of such detectors
can be enhanced strongly by embedding the detector inside a cavity [7].

These speci�cations make SSPDs excellent candidates for many technolo-
gical and scienti�c applications. However, the detection mechanism is poorly
understood. Though a considerable part of the working mechanism is well
understood, much is still unclear about the central part of the detection
process, where an absorbed photon is converted into a detection pulse [8].

The well-understood parts of the detection process are as follows: a
photon is absorbed into the wire. This creates a cloud of quasiparticles,
which obstructs the current �ow, leading to a normal cross-section in the
wire. This normal cross-section then grows under the in�uence of Joule
heating, producing a voltage pulse [9]. The initial and �nal parts of this
process are well understood: by solving Maxwell's equations for the appro-
priate geometry, we can investigate the absorption probability into the wire
[10, 11, 12, 13]. We also understand the coupled electronic and heat di�usion
equations which describe how the normal domain grows [9, 14].

The poorly understood step is how a single photon causes an obstruction
across the wire. This thesis deals with that central step of the detection
process, where an absorbed photon is converted into an excitation pulse.
We investigate this problem by using a combination of three elements in our
experiments: quantum detector tomography, multiphoton excitations and a
nanodetector (our experimental sample).

The structure of this thesis is as follows: in this introductory chapter, I
will set the stage by introducing the four main models of photodetection in
superconducting single-photon detectors, as well the experimental techniques
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used in this thesis. In Chapter 2, I will demonstrate quantum detector
tomography, the main experimental method used throughout most of this
thesis, which serves to accurately and completely characterize the response
of an SSPD to incoming light pulses. In Chapter 3 and 4, I will apply
this technique to investigate the physics of an SSPD. Chapter 3 presents
results on SSPD physics which are preparatory for Chapter 4. In Chapter
4, we arrive at the central result of this thesis: we use quantum detector
tomography to �nd which of the models of the detection event in SSPDs
conforms to our experimental data.

The rest of the thesis is concerned with investigating various implications
of this model. In Chapter 5, we combine experimental data and numerical
simulations to investigate the position-dependence of the properties of the
detection mechanism at the nanoscale level. Chapter 6 is somewhat separ-
ate from the rest of the thesis; in this chapter we investigate the e�ect of
magnetic �elds on the detection response. In Chapter 7, we investigate the
size of an excitation in the detector using a two-photon technique.

This thesis is structured as a series of scienti�c papers, some of which
have already been published. For articles already in press, we have aimed
to keep as close to the original text as possible. In places where insights of
earlier papers are expanded upon in later papers, we refer to the future work
in footnotes.

1.2 Detector Physics of SSPDs

Discussion about the exact detection mechanism in SSPDs began soon after
their invention [15]. Two key questions in the understanding of SSPDs are
whether there is a role for a section of normal-state material in the detection
event and whether magnetic vortices play a role. In this section, I will
introduce the four models of the SSPD detection mechanism. A particularly
crucial feature of these models is the energy-current relation, which describes
the combinations of bias current and photon energy required to produce a
detection event. The current required to obtain a detection event with a
particular probability is called the threshold current Ith. Measurements of
the energy-current relation are the primary method of investigation in SSPD
detector physics. An excellent, more extended introduction to the various
models is given in [16].

1.2.1 Normal-Core Hotspot Model

The earliest attempts to model the detection process in SSPDs focussed on
the observation that the energy of the photon rapidly drops to below the
level required to make any part of the wire normal after a photon absorption
event. Therefore, this model focussed on a small, sharply de�ned, normal-
state disruption of the wire, called a hotspot [1, 15] (see Figure 1.3 a). In
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Figure 1.3: Schematic overview of the four main theories of the detection
mechanism in SSPDs. (a) In the normal-core hotspot model, the photon en-
ergy creates a normal domain inside the superconductor, which the current
has to bypass. (b) In the di�usion-based hotspot model, the quasiparticles
di�use outward from the point of absorption, creating a band of depleted
superconductivity. (c) In the vortex nucleation model, a vortex-antivortex
pair is formed in the hotspot. (d) In the vortex crossing model, either a
vortex or a vortex-antivortex pair (pictured) uses an area of weakened su-
perconductivity to cross the wire and annihilate. Picture is not to scale.
From [17].

this model, the detection mechanism is as follows: after photon absorption,
a normal hotspot forms, and the current is diverted around the hotspot. If
the diameter of the hotspot is big enough, the critical current density will be
exceeded in the cross-section containing the widest part of the hotspot and
a detection event will occur through the suppression of superconductivity
across the wire.

This model is essentially based on an area argument: each unit of energy
contributes to making the hotspot larger, which serves to increase the dia-
meter of the obstacle that the current must overcome. Since the system is
2D, the size scales as

√
E, and the energy-current relation is quadratic:

E = E0(1− Ith/Ic)2, (1.1)

where E is the energy of the incident photon, Ith is the threshold current,
Ic is the critical (depairing) current and E0 is some energy scale.

1.2.2 Di�usion-Based Hotspot Model

A more sophisticated model was put forward in 2005 by Semenov et al. [18],
who computed the number of Cooper pairs destroyed by the initial excitation
and their subsequent spatial distribution due to di�usion and recombination
(see Figure 1.3 b). In this model, there is no role for the normal state
in a detection event. Instead, the number of Cooper pairs in a section of
the wire with a length equal to the coherence length - called a ξ-slab - is
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considered. These Cooper pairs, which are reduced in number compared
to the unperturbed superconductor, must still carry the current which was
carried by the original number of pairs. Therefore, they must speed up. If
the Cooper pairs exceed the critical velocity vc, they break up and the wire
transitions to the normal state.

This model (also called the re�ned hotspot model in literature) consists
essentially of counting Cooper pairs: the e�ect of the presence of quasi-
particles on the energy gap is neglected, for example, and all Cooper pairs
in the ξ-slab are equivalent. Since the current carrying capacity of the wire
is proportional to the number of remaining Cooper pairs, the energy-current
relation is therefore of the form:

E = E0(1− Ith/Ic), (1.2)

with all quantities having the same interpretation as in equation 1.1. In this
model, a precise computation of E0 is possible, which was found to be [18]:

E0 = (N0∆2wd/ς)
√
πDτ, (1.3)

where N0 is the density of states at the Fermi level, ∆ the superconducting
energy gap, w the width of the wire, d the thickness, D the di�usion coe�-
cient of the material for quasiparticles and τ the timescale for quasiparticle
multiplication. The dimensionless parameter ς represents the e�ciency with
which a photon is converted from an initial excitation in the material to
quasiparticles at the superconducting band-edge. It captures, for example,
losses to the phonon bath. Since the value of this parameter could in prin-
ciple di�er from �lm to �lm, it serves essentially as a �t parameter for each
set of experimental observations.

This model achieved agreement with the experimental data on some as-
pects. In particular, the threshold currents computed with this model show
reasonable agreement with experimental results. Moreover, equation 1.3
gives direction for experiments on the dependence of the detectable photon
energy on various material parameters. However, this model still has lim-
itations. In particular, the combined temperature dependence of equations
1.2 and 1.3 has the wrong sign [8]: if the temperature is increased, the main
e�ect is the decrease of ∆, which would imply a decrease of the energy which
can be detected at a constant value of Ib/Ic. This has the interpretation that
as the energy of each Cooper pair decreases, a photon of a given energy will
break more of them, resulting in a more e�cient detection process. However,
the opposite trend (i.e. less e�cient photodetection at higher temperatures)
is consistently observed in experiments.

A further weakness of both the normal-core hotspot model and the
di�usion-based hotspot model is that they both predict a deterministic,
threshold-like response: the detector responds to all photons of a partic-
ular energy, or it doesn't. In contrast, experimentally (see Figure 1.4), it is
observed that there is a slow roll-o� when the bias current through the device
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Figure 1.4: Typical count rate curves for an SSPD as a function of the
applied bias current (taken from [20] of Engel et al.). The graph shows
the detection e�ciency of a TaN SSPD to three di�erent wavelengths. At
short wavelengths, the SSPD response consists of three regimes: a regime
where the detection probability is exponential in the applied bias current,
followed by an intermediate regime, and then a regime in which the detection
probability is more or less independent of applied bias current. As the photon
energy is decreased, the transition points between these regimes shift to
higher bias current.

is decreased. This points to a regime in which some sort of �uctuation, either
thermal or quantum mechanical in nature, occasionaly assists in producing
a detection event. Magnetic vortices [19] are a natural candidate for this
phenomenon. We �rst give an extremely succinct overview of the physics of
vortices in thin �lms, before returning to the SSPD detection models which
contain vortices.

1.2.3 Vortices

Vortices are structures that can occur within a type-II superconductor, i.e.
one which has λ > ξ/

√
2 , with λ the penetration length and ξ the coher-

ence length. These structures encompass a single magnetic �ux quantum
Φ0. They consist of a ring current, which if unobstructed extends over the
penetration length λ, as well as a normal-state core, which has a size of
the order of the coherence length ξ. Depending on the orientation of the
ring current, one speaks of a vortex or an antivortex. Vortices have a mag-
netic interaction with their environment: vortices of equal orientation repel
one another, whereas a vortex and an antivortex attract one another. A
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vortex moving through a superconductor experiences friction and therefore
dissipates energy into the wire.

For the present discussion, two forces which vortices can experience are
relevant. First, vortices respond to the Lorentz force caused by an applied
bias current. Second, in narrow wires, vortices experience an attractive force
towards the edge of the wire. This is due to the fact that the ring current
which surrounds the vortex cannot form without encountering the edge of
the wire. In our system, the e�ective penetration length is di�erent from the
bulk value because d� λ, so we have Λ⊥ = λ2/d ≈ 50 µm, with λ the bulk
magnetic penetration length of 500 nm [21]. Since the width of the wire is
typically 100-200 nm, this e�ect is prominent in our system.

We can �nd the forces resulting from this e�ect by considering the method
of mirror charges from electrostatics. A charge above a grounded surface
is attracted to that surface because of the induced charge on the surface,
which we can model as the opposite charge at the point of the mirror image
of the original charge. In the same way, we can represent the e�ects of the
boundary conditions on a vortex in a thin wire by considering a mirror-
antivortex outside the wire. In the case of a very thin wire, we must also
consider the mirror-image of the mirror-image on the other side of the wire,
and so on. Summing up all these forces results in an e�ective attractive force
towards the edge of the wire, called an edge barrier [22].

1.2.4 Di�usion-Based Vortex Model

In 2008, Semenov et al. [23] put forward the notion that vortex-antivortex
pairs (VAP) are responsible for the slow roll-o� of the detection e�ciency
at longer wavelengths and lower currents. In 2011, Bulaevskii et al. sug-
gested that vortices are responsible for all detection events, including those
at high current (see Figure 1.3 d) [24, 25]. In this model, the arrival of the
photon decreases the entry barrier for vortices, which enables a vortex cross-
ing. Bulaevskii et al. also calculated the current which is required to have
su�cient dissipation to cause a transition to the normal state; they showed
that this current is much less than the typical operating currents of SSPDs.
In this model, the functional dependence of the detection probability R in
the regime R� 1 is of the form [25]:

R ∝ Iνh+1
b , (1.4)

where νh is a parameter that measures the reduction of the energy barrier for
vortex entry to the absorption of a photon. Following [16, 25, 26], we apply
the assumption that the energy is divided equally over the area of interest.
This results in a value of νh of:

νh = ν − 4πςE/(kbT )(ξ/w)2, (1.5)
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where ν = ε0/(kbT ) is the value in the absence of photon absorption, which
was found to be 40-110 for dark counts [25] and 3-8 for photon counts [26],
and kbT is the Boltzman energy. The two expressions above imply an energy-
current relation of the form

I/I0 = exp(C/(ν − E/E0 + 1)), (1.6)

with C some constant. For comparison with the other models, this can
be cast in an approximate form which is similar to the equations given above
[27]:

E/E0 = (1− (I/Ic)
4/3). (1.7)

A more advanced version of this model was producd by Engel and Schilling
[28], who considered both the vortex physics described above and the di�u-
sion of quasiparticles from the inital absorption spot. The complex nature of
the model means that at this point, numerical simulations are the only way
to obtain experimentally veri�able results. Engel and Schilling implemented
a numerical simulation of quasiparticle di�usion and recombination, as well
as current �ow, and computed the entry energy for vortices. They showed
that in this model, the energy-current relation is linear, i.e. follows equa-
tion 1.2. The fact that the energy-current relation depends on the shape of
the quasiparticle cloud points - incidentally - to the importance which the
quasiparticle distribution has for the detection mechanism.

One crucial di�erence between the di�usion-based vortex model and
the two hotspot models is that the critical current in the vortex model
is no longer the depairing current but the current at which vortices un-
bind from the edge of the wire. This current has a value of approximately
Ic ≈ 0.8Ic,dep.Whereas the di�erence between these currents might seem like
a natural way of testing which of the models is correct, unfortunately these
two quantities have the same temperature dependence I ∝ 1/t3/2 [24, 25],
with t ≡ (1−T/Tc), with T the temperature and Tc the critical temperature,
which precludes this route1.

The �rst version of the di�usion-based vortex model [28] did not im-
plement current continuity; at each cross-section of the device the current
density was simply assumed to be locally proportional to the number of
available Cooper pairs, normalized in such a way as to have the same cur-
rent in each cross-section of the device. That is: the current was assumed to
go where the Cooper pairs were, which amounts to neglecting the terms in
∂j/∂x, where x is the coordinate along the cross-section of the wire. How-
ever, current crowding [29], i.e. the e�ect that even in a homogeneous wire,
the current �ows around obstacles in a non-homogeneous way, was known
to be a signi�cant e�ect in SSPDs [30, 31]. Implementing full current con-
tinuity as well as suppression of the superconductivity due to the presence

1Using the Ginzburg-Landau temperature dependence
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of a bias current leads to a more complete set of predictions [32], which will
be the subject of Chapter 5 of this thesis.

1.2.5 Normal-State Vortex Model

A fourth model was formulated by Zotova and Vodolazov [33] (see Figure
1.3 c), who approached the problem in the context of the time-dependent
Ginzburg-Landau equation. The starting point of this study was a normal-
core hotspot, around which a vortex antivortex pair forms, which are then
driven to the edges of the wire, causing a transition to the normal state in a
manner similar to the di�usion-based scenario.

This model was revised several times. In the initial version of this model,
the energy-current relation was almost equivalent to that of the normal-
state hotspot model. Later [16], a correction term was added which takes
into account the fact that the superconductivity inside the hotspot is not
entirely surpressed. This produces deviations from the normal-core relation,
which �atten the energy-current relation, bringing the model more in line
with experimental results. After this, further corrections [34, 35] were added
which pertain to the proximity e�ect induced by the normal-state region
into the surrounding superconducting material. With these corrections, the
normal-state vortex model predicts an almost linear energy-current relation
in the regime which has been accessible to experiments so far.

The normal-state vortex model and the di�usion-based vortex model dif-
fer in three crucial aspects. First, in the di�usion-based model, vortices
always enter the wire via the sides. In the normal-state model, in constrast,
vortices can also enter from the edges of the normal-state hotspot, and it is
predicted that for some cases, this is the energetically more favorable route.
Secondly in the normal-state vortex model, the critical current of the wire is
the depairing current. This means that the energy-current relation contains
a strongly nonlinear part at photon energies of the order of a hundred meV,
i.e. in the mid-infrared. Neither of these predictions has yet been subjected
to experiment [16].

Third, the two models di�er in their predictions on the in�uence of a
magnetic �eld on the detection e�ciency. In the di�usion-based model this
dependence is strong, since vortices enter from the sides of the wire, where
the current is most a�ected by the applied �eld. In the normal-state vortex
model, in contrast, this dependence is weak, especially at high detection
probabilities, since for most detection events the vortices nucleate near the
center of the wire, where the current density is not a�ected by the applied
�eld.

However, since both models contain essentially similar physics, approached
in two di�erent theoretical frameworks, it is conceivable that the two models
will eventually both be re�ned to the point where they produce the same
results.
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1.2.6 Other Features of the Detection Process

In the meantime, other aspects of the detection mechanism were elucidated.
The electro-thermal mechanism by which the detector resets after a detection
event was investigated by Kerman et al. [9], who pointed out the role of
kinetic inductance in the modelling of the eletrical properties of this system.
In a seminal work by Clem and Berggren [29], current crowding in the bends
of the meander was identi�ed as the major limitation on the critical current
[31] in meander-type detectors. The photo-absorption into the wire was also
investigated. It was demonstrated that the detector is polarization-sensitive:
the electric �eld parallel to the wires is absorbed preferentially compared to
�eld perpendicular to the wires [10, 11, 12, 13].

1.3 Experimental Techniques

In this section, I will introduce the three main features of our experiment:
quantum detector tomography, multiphoton detection and the nanodetector.

1.3.1 Quantum Detector Tomography

Quantum detector tomography is an experimental procedure to measure the
detection statistics of a photodetector whose response is unknown2. The goal
is to �nd the response of the detector in the number state (Fock) basis, i.e. to
�nd out what would happen if the detector were to receive exactly n photons
as an input. This experiment was �rst demonstated by Lundeen et al. [36,
37], who performed detector tomography on an avalanche photodiode.

It would be most straightforward to probe the detection statistics directly
in the Fock basis, but these states are not easily experimentally available.
Therefore, it is much easier to use states which are some superposition in
the number state basis, which are produced by conventional light sources.
Since the detector is not sensitive to the phase of the incoming photon, we
may adopt a classical picture in which we consider only the photon number
probability distribution, i.e. we restrict ourselves to the diagonal elements of
the density matrix. The strategy is then to measure the detection probability
for many di�erent photon number probability distributions, and apply a
transformation to convert these results into the response in the number state
basis.

The most convenient set of states to use for quantum detector tomo-
graphy is the set of coherent states. These states, which are produced by a
laser, have the convenient property that an attenuated coherent state still
remains coherent. This means that it is possible to create the desired set of
photon number probability distributions simply by attenuation.

2The quantum detector tomography code used throughout this thesis is available on
request from the author.
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The experiment is then to take a pulsed laser with a well-de�ned pulse
energy and apply �xed attenuation and measure the detection probability.
If we have su�cient statistics for this attenuation, we go to the next attenu-
ation, and so on. By repeating this process for su�ciently many attenuations
it becomes possible to �nd the response of the detector in the Fock basis.

It should be noted that the transformation that converts the experi-
mental results into a description in the number state basis is not necessarily
simple. The transformation can strongly amplify measurement noise, or even
produce nonphysical results. In fact, a branch of mathematics is dedicated
precisely to �nding convenient transformations for various types of problems
of this nature [38]. The usual strategy is to restrict the transformation on the
basis of some additional information which was not previously considered. In
the case of quantum detector tomography, this is usually done by assuming
that the response to di�erent numbers of photons doesn't change strongly
for adjacent photon numbers, i.e. if we know the detection probability of n
photons pn, then our zeroth-order guess for pn+1 ≈ pn. This restriction can
by applied in various mathematical guises, and turns out to be su�cient to
'tame' the transformation.

1.3.2 Multiphoton Detection

Multiphoton detection refers to the phenomenon that two photons absorbed
simultaneously in the detector can lead to a detection event. These detection
events occur at lower currents than single-photon detection events, even
when a single photon does not. This e�ect was noticed early on in the
development of SSPDs [1] (see Figure 1.5), but didn't �nd any applications
until Bitauld et al. [39] showed multiphoton nanoscale imaging and Zhou
et al. [40] showed that this e�ect could be used to build an ultrasensitive
higher-order autocorrelator.

We use multiphoton detection as a tool for probing the detection mechan-
ism. Multiphoton detection has two strong advantages compared to single-
photon detection when it comes to experiments into the physics of the de-
tection mechanism.

The �rst advantage is that it enables the experimenter to excite the de-
tector with a range of energies in a single experiment, at a single wavelength.
This means that the relation between bias current and photon energy can
be measured in a single experimental con�guration, without changing the
wavelength of the incident light. Changing the wavelength of the incident
light usually means changing the intensity, and the size of the illumination
spot, leading to di�erent illumination conditions [16]. Using multiphoton
excitation sidesteps this problem.

The second advantage is that multiphoton excitation allows for a much
larger range of photon energies to be used than in single-photon excitation.
Typically, a source is only tunable in a particular wavelength range, and this
dynamic range can be hugely extended by using multiphoton excitations.
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Figure 1.5: The earliest measurement on two-photon processes in SSPDs.
The solid black squares represent the detector operating in a two-photon
mode, which occurs at lower bias current. The quadratic dependence of
the count rate on the input photon number is a signature of a two-photon
process. From [1].

Also, the sample substrate, the windows of the cryostat, or even the air of
the laboratory may all be absorbing at particular energies of interest. Using
multiphoton excitations solves this issue.

1.3.3 Nanodetector

The nanodetector is a particular geometry for SSPDs (see Figure 1.6), �rst
developed by Bitault et al. [39], which is convenient for experiments on
SSPD physics. In this geometry, the usual meander is reduced to a single
line contact between two tapered banks. In a variant of this design, there
is a short (a few hundred nm) bridge between the two banks. Only the
central part of this device (the line contact or the bridge) is photodetecting,
the banks merely serve as contact points for the bias current. An inductor
which serves to balance the reset time of the detector with its cooling time
is connected in series to the detector, to prevent latching [9].

For fundamental studies, this geometry has three main advantages: ro-
bustness, simplicity and enhanced multiphoton response. First, this geo-
metry is less sensitive to fabrication errors. It is di�cult to make a long wire
with uniform edges. Any notch, bulge or other imperfection in the wire (the
phenomenological term for such imperfections is constrictions [41]) will be
more strongly photodetecting than the rest of the wire, leading to experi-
mental results which are di�cult to interpret.

Secondly, the nanodetector doesn't contain any bends. In previous exper-
iments, indications were found that bends behave di�erently than straight
sections of wire [26, 42]. Normally, samples are considered which contain
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Figure 1.6: False-colour SEM image of our detector. The blue area indicates
the NbN layer, the red areas indicate places where the layer has been etched
away. The two thick arrows indicate the active part of the detector. The
vertical arrow indicates the direction of the current �ow. The horizontal
while line is a 1 µm scale bar. Image courtesy of Döndü Sahin.

both bends and straight sections. It can be unclear whether photodetection
results from the bends or not. Moreover, for phenomena such as the critical
current of an SSPD, the bends are the dominant feature [31], obscuring the
intrinsic response of the wire.

A third advantage of a nanodetector is that it has a relatively enhanced
multiphoton response. In a meander geometry, it is necessary for two photons
to be absorbed within some distance from each other in order to trigger a
two-photon detection event [43, 44]. However, each photon individually will
also have a �nite, but strongly reduced possibility of triggering the detector.
For a su�ciently long wire, however, this e�ect will dominate over the two-
photon e�ect. In a more compact geometry, all absorbed photons contribute
to photodetection. This is therefore a suitable geometry in which to study
multiphoton detection events.
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