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Chapter 1

Introduction

1.1 Superconducting Single-Photon Detectors

Superconducting single-photon detectors [1] are an important technology for
photodetection in the near infrared, with a wide range of applications. These
detectors consist of a thin layer of superconducting material, which is nan-
ofabricated into a wire. The typical wires which are used in applications
are 4 nm thick, 100 nm wide and some tens of µm long, folded in a me-
ander shape. Such photodetectors were �rst demonstrated at Moscow State
Pedagogical University in 2001.

This type of photodetector has many practical advantages [2, 3]. Con-
trary to semiconductor-based single-photon detectors, the wavelength of
photons which can be measured by the detector is not limited to the bandgap
of the material but by the thickness and width of the wire, enabling detec-
tion of photons of up to 5 µm [4]. The electrical pulses corresponding to

Figure 1.1: Scanning Electron Microscope image of a typical superconduct-
ing single-photon detector of the application-oriented meander type. Image
courtesy of NIST.
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2 CHAPTER 1. INTRODUCTION

Figure 1.2: The central question of this thesis: what happens at the question
mark?

a detection event have a rapidly rising �ank with timing jitter in the 20-30
ps range [5], which enables accurate determination of the arrival time of the
photon. These properties have many advantages in e.g. deep space commu-
nication applications, where bits are coded by the photon arrival time [6].
Moreover, these detectors have a very low dark count rate compared to ava-
lanche photodiodes operating in the same wavelength range, and a fast reset
time compared to transition edge sensors. The e�ciency of such detectors
can be enhanced strongly by embedding the detector inside a cavity [7].

These speci�cations make SSPDs excellent candidates for many technolo-
gical and scienti�c applications. However, the detection mechanism is poorly
understood. Though a considerable part of the working mechanism is well
understood, much is still unclear about the central part of the detection
process, where an absorbed photon is converted into a detection pulse [8].

The well-understood parts of the detection process are as follows: a
photon is absorbed into the wire. This creates a cloud of quasiparticles,
which obstructs the current �ow, leading to a normal cross-section in the
wire. This normal cross-section then grows under the in�uence of Joule
heating, producing a voltage pulse [9]. The initial and �nal parts of this
process are well understood: by solving Maxwell's equations for the appro-
priate geometry, we can investigate the absorption probability into the wire
[10, 11, 12, 13]. We also understand the coupled electronic and heat di�usion
equations which describe how the normal domain grows [9, 14].

The poorly understood step is how a single photon causes an obstruction
across the wire. This thesis deals with that central step of the detection
process, where an absorbed photon is converted into an excitation pulse.
We investigate this problem by using a combination of three elements in our
experiments: quantum detector tomography, multiphoton excitations and a
nanodetector (our experimental sample).

The structure of this thesis is as follows: in this introductory chapter, I
will set the stage by introducing the four main models of photodetection in
superconducting single-photon detectors, as well the experimental techniques
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used in this thesis. In Chapter 2, I will demonstrate quantum detector
tomography, the main experimental method used throughout most of this
thesis, which serves to accurately and completely characterize the response
of an SSPD to incoming light pulses. In Chapter 3 and 4, I will apply
this technique to investigate the physics of an SSPD. Chapter 3 presents
results on SSPD physics which are preparatory for Chapter 4. In Chapter
4, we arrive at the central result of this thesis: we use quantum detector
tomography to �nd which of the models of the detection event in SSPDs
conforms to our experimental data.

The rest of the thesis is concerned with investigating various implications
of this model. In Chapter 5, we combine experimental data and numerical
simulations to investigate the position-dependence of the properties of the
detection mechanism at the nanoscale level. Chapter 6 is somewhat separ-
ate from the rest of the thesis; in this chapter we investigate the e�ect of
magnetic �elds on the detection response. In Chapter 7, we investigate the
size of an excitation in the detector using a two-photon technique.

This thesis is structured as a series of scienti�c papers, some of which
have already been published. For articles already in press, we have aimed
to keep as close to the original text as possible. In places where insights of
earlier papers are expanded upon in later papers, we refer to the future work
in footnotes.

1.2 Detector Physics of SSPDs

Discussion about the exact detection mechanism in SSPDs began soon after
their invention [15]. Two key questions in the understanding of SSPDs are
whether there is a role for a section of normal-state material in the detection
event and whether magnetic vortices play a role. In this section, I will
introduce the four models of the SSPD detection mechanism. A particularly
crucial feature of these models is the energy-current relation, which describes
the combinations of bias current and photon energy required to produce a
detection event. The current required to obtain a detection event with a
particular probability is called the threshold current Ith. Measurements of
the energy-current relation are the primary method of investigation in SSPD
detector physics. An excellent, more extended introduction to the various
models is given in [16].

1.2.1 Normal-Core Hotspot Model

The earliest attempts to model the detection process in SSPDs focussed on
the observation that the energy of the photon rapidly drops to below the
level required to make any part of the wire normal after a photon absorption
event. Therefore, this model focussed on a small, sharply de�ned, normal-
state disruption of the wire, called a hotspot [1, 15] (see Figure 1.3 a). In
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Figure 1.3: Schematic overview of the four main theories of the detection
mechanism in SSPDs. (a) In the normal-core hotspot model, the photon en-
ergy creates a normal domain inside the superconductor, which the current
has to bypass. (b) In the di�usion-based hotspot model, the quasiparticles
di�use outward from the point of absorption, creating a band of depleted
superconductivity. (c) In the vortex nucleation model, a vortex-antivortex
pair is formed in the hotspot. (d) In the vortex crossing model, either a
vortex or a vortex-antivortex pair (pictured) uses an area of weakened su-
perconductivity to cross the wire and annihilate. Picture is not to scale.
From [17].

this model, the detection mechanism is as follows: after photon absorption,
a normal hotspot forms, and the current is diverted around the hotspot. If
the diameter of the hotspot is big enough, the critical current density will be
exceeded in the cross-section containing the widest part of the hotspot and
a detection event will occur through the suppression of superconductivity
across the wire.

This model is essentially based on an area argument: each unit of energy
contributes to making the hotspot larger, which serves to increase the dia-
meter of the obstacle that the current must overcome. Since the system is
2D, the size scales as

√
E, and the energy-current relation is quadratic:

E = E0(1− Ith/Ic)2, (1.1)

where E is the energy of the incident photon, Ith is the threshold current,
Ic is the critical (depairing) current and E0 is some energy scale.

1.2.2 Di�usion-Based Hotspot Model

A more sophisticated model was put forward in 2005 by Semenov et al. [18],
who computed the number of Cooper pairs destroyed by the initial excitation
and their subsequent spatial distribution due to di�usion and recombination
(see Figure 1.3 b). In this model, there is no role for the normal state
in a detection event. Instead, the number of Cooper pairs in a section of
the wire with a length equal to the coherence length - called a ξ-slab - is
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considered. These Cooper pairs, which are reduced in number compared
to the unperturbed superconductor, must still carry the current which was
carried by the original number of pairs. Therefore, they must speed up. If
the Cooper pairs exceed the critical velocity vc, they break up and the wire
transitions to the normal state.

This model (also called the re�ned hotspot model in literature) consists
essentially of counting Cooper pairs: the e�ect of the presence of quasi-
particles on the energy gap is neglected, for example, and all Cooper pairs
in the ξ-slab are equivalent. Since the current carrying capacity of the wire
is proportional to the number of remaining Cooper pairs, the energy-current
relation is therefore of the form:

E = E0(1− Ith/Ic), (1.2)

with all quantities having the same interpretation as in equation 1.1. In this
model, a precise computation of E0 is possible, which was found to be [18]:

E0 = (N0∆2wd/ς)
√
πDτ, (1.3)

where N0 is the density of states at the Fermi level, ∆ the superconducting
energy gap, w the width of the wire, d the thickness, D the di�usion coe�-
cient of the material for quasiparticles and τ the timescale for quasiparticle
multiplication. The dimensionless parameter ς represents the e�ciency with
which a photon is converted from an initial excitation in the material to
quasiparticles at the superconducting band-edge. It captures, for example,
losses to the phonon bath. Since the value of this parameter could in prin-
ciple di�er from �lm to �lm, it serves essentially as a �t parameter for each
set of experimental observations.

This model achieved agreement with the experimental data on some as-
pects. In particular, the threshold currents computed with this model show
reasonable agreement with experimental results. Moreover, equation 1.3
gives direction for experiments on the dependence of the detectable photon
energy on various material parameters. However, this model still has lim-
itations. In particular, the combined temperature dependence of equations
1.2 and 1.3 has the wrong sign [8]: if the temperature is increased, the main
e�ect is the decrease of ∆, which would imply a decrease of the energy which
can be detected at a constant value of Ib/Ic. This has the interpretation that
as the energy of each Cooper pair decreases, a photon of a given energy will
break more of them, resulting in a more e�cient detection process. However,
the opposite trend (i.e. less e�cient photodetection at higher temperatures)
is consistently observed in experiments.

A further weakness of both the normal-core hotspot model and the
di�usion-based hotspot model is that they both predict a deterministic,
threshold-like response: the detector responds to all photons of a partic-
ular energy, or it doesn't. In contrast, experimentally (see Figure 1.4), it is
observed that there is a slow roll-o� when the bias current through the device
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Figure 1.4: Typical count rate curves for an SSPD as a function of the
applied bias current (taken from [20] of Engel et al.). The graph shows
the detection e�ciency of a TaN SSPD to three di�erent wavelengths. At
short wavelengths, the SSPD response consists of three regimes: a regime
where the detection probability is exponential in the applied bias current,
followed by an intermediate regime, and then a regime in which the detection
probability is more or less independent of applied bias current. As the photon
energy is decreased, the transition points between these regimes shift to
higher bias current.

is decreased. This points to a regime in which some sort of �uctuation, either
thermal or quantum mechanical in nature, occasionaly assists in producing
a detection event. Magnetic vortices [19] are a natural candidate for this
phenomenon. We �rst give an extremely succinct overview of the physics of
vortices in thin �lms, before returning to the SSPD detection models which
contain vortices.

1.2.3 Vortices

Vortices are structures that can occur within a type-II superconductor, i.e.
one which has λ > ξ/

√
2 , with λ the penetration length and ξ the coher-

ence length. These structures encompass a single magnetic �ux quantum
Φ0. They consist of a ring current, which if unobstructed extends over the
penetration length λ, as well as a normal-state core, which has a size of
the order of the coherence length ξ. Depending on the orientation of the
ring current, one speaks of a vortex or an antivortex. Vortices have a mag-
netic interaction with their environment: vortices of equal orientation repel
one another, whereas a vortex and an antivortex attract one another. A
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vortex moving through a superconductor experiences friction and therefore
dissipates energy into the wire.

For the present discussion, two forces which vortices can experience are
relevant. First, vortices respond to the Lorentz force caused by an applied
bias current. Second, in narrow wires, vortices experience an attractive force
towards the edge of the wire. This is due to the fact that the ring current
which surrounds the vortex cannot form without encountering the edge of
the wire. In our system, the e�ective penetration length is di�erent from the
bulk value because d� λ, so we have Λ⊥ = λ2/d ≈ 50 µm, with λ the bulk
magnetic penetration length of 500 nm [21]. Since the width of the wire is
typically 100-200 nm, this e�ect is prominent in our system.

We can �nd the forces resulting from this e�ect by considering the method
of mirror charges from electrostatics. A charge above a grounded surface
is attracted to that surface because of the induced charge on the surface,
which we can model as the opposite charge at the point of the mirror image
of the original charge. In the same way, we can represent the e�ects of the
boundary conditions on a vortex in a thin wire by considering a mirror-
antivortex outside the wire. In the case of a very thin wire, we must also
consider the mirror-image of the mirror-image on the other side of the wire,
and so on. Summing up all these forces results in an e�ective attractive force
towards the edge of the wire, called an edge barrier [22].

1.2.4 Di�usion-Based Vortex Model

In 2008, Semenov et al. [23] put forward the notion that vortex-antivortex
pairs (VAP) are responsible for the slow roll-o� of the detection e�ciency
at longer wavelengths and lower currents. In 2011, Bulaevskii et al. sug-
gested that vortices are responsible for all detection events, including those
at high current (see Figure 1.3 d) [24, 25]. In this model, the arrival of the
photon decreases the entry barrier for vortices, which enables a vortex cross-
ing. Bulaevskii et al. also calculated the current which is required to have
su�cient dissipation to cause a transition to the normal state; they showed
that this current is much less than the typical operating currents of SSPDs.
In this model, the functional dependence of the detection probability R in
the regime R� 1 is of the form [25]:

R ∝ Iνh+1
b , (1.4)

where νh is a parameter that measures the reduction of the energy barrier for
vortex entry to the absorption of a photon. Following [16, 25, 26], we apply
the assumption that the energy is divided equally over the area of interest.
This results in a value of νh of:

νh = ν − 4πςE/(kbT )(ξ/w)2, (1.5)
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where ν = ε0/(kbT ) is the value in the absence of photon absorption, which
was found to be 40-110 for dark counts [25] and 3-8 for photon counts [26],
and kbT is the Boltzman energy. The two expressions above imply an energy-
current relation of the form

I/I0 = exp(C/(ν − E/E0 + 1)), (1.6)

with C some constant. For comparison with the other models, this can
be cast in an approximate form which is similar to the equations given above
[27]:

E/E0 = (1− (I/Ic)
4/3). (1.7)

A more advanced version of this model was producd by Engel and Schilling
[28], who considered both the vortex physics described above and the di�u-
sion of quasiparticles from the inital absorption spot. The complex nature of
the model means that at this point, numerical simulations are the only way
to obtain experimentally veri�able results. Engel and Schilling implemented
a numerical simulation of quasiparticle di�usion and recombination, as well
as current �ow, and computed the entry energy for vortices. They showed
that in this model, the energy-current relation is linear, i.e. follows equa-
tion 1.2. The fact that the energy-current relation depends on the shape of
the quasiparticle cloud points - incidentally - to the importance which the
quasiparticle distribution has for the detection mechanism.

One crucial di�erence between the di�usion-based vortex model and
the two hotspot models is that the critical current in the vortex model
is no longer the depairing current but the current at which vortices un-
bind from the edge of the wire. This current has a value of approximately
Ic ≈ 0.8Ic,dep.Whereas the di�erence between these currents might seem like
a natural way of testing which of the models is correct, unfortunately these
two quantities have the same temperature dependence I ∝ 1/t3/2 [24, 25],
with t ≡ (1−T/Tc), with T the temperature and Tc the critical temperature,
which precludes this route1.

The �rst version of the di�usion-based vortex model [28] did not im-
plement current continuity; at each cross-section of the device the current
density was simply assumed to be locally proportional to the number of
available Cooper pairs, normalized in such a way as to have the same cur-
rent in each cross-section of the device. That is: the current was assumed to
go where the Cooper pairs were, which amounts to neglecting the terms in
∂j/∂x, where x is the coordinate along the cross-section of the wire. How-
ever, current crowding [29], i.e. the e�ect that even in a homogeneous wire,
the current �ows around obstacles in a non-homogeneous way, was known
to be a signi�cant e�ect in SSPDs [30, 31]. Implementing full current con-
tinuity as well as suppression of the superconductivity due to the presence

1Using the Ginzburg-Landau temperature dependence
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of a bias current leads to a more complete set of predictions [32], which will
be the subject of Chapter 5 of this thesis.

1.2.5 Normal-State Vortex Model

A fourth model was formulated by Zotova and Vodolazov [33] (see Figure
1.3 c), who approached the problem in the context of the time-dependent
Ginzburg-Landau equation. The starting point of this study was a normal-
core hotspot, around which a vortex antivortex pair forms, which are then
driven to the edges of the wire, causing a transition to the normal state in a
manner similar to the di�usion-based scenario.

This model was revised several times. In the initial version of this model,
the energy-current relation was almost equivalent to that of the normal-
state hotspot model. Later [16], a correction term was added which takes
into account the fact that the superconductivity inside the hotspot is not
entirely surpressed. This produces deviations from the normal-core relation,
which �atten the energy-current relation, bringing the model more in line
with experimental results. After this, further corrections [34, 35] were added
which pertain to the proximity e�ect induced by the normal-state region
into the surrounding superconducting material. With these corrections, the
normal-state vortex model predicts an almost linear energy-current relation
in the regime which has been accessible to experiments so far.

The normal-state vortex model and the di�usion-based vortex model dif-
fer in three crucial aspects. First, in the di�usion-based model, vortices
always enter the wire via the sides. In the normal-state model, in constrast,
vortices can also enter from the edges of the normal-state hotspot, and it is
predicted that for some cases, this is the energetically more favorable route.
Secondly in the normal-state vortex model, the critical current of the wire is
the depairing current. This means that the energy-current relation contains
a strongly nonlinear part at photon energies of the order of a hundred meV,
i.e. in the mid-infrared. Neither of these predictions has yet been subjected
to experiment [16].

Third, the two models di�er in their predictions on the in�uence of a
magnetic �eld on the detection e�ciency. In the di�usion-based model this
dependence is strong, since vortices enter from the sides of the wire, where
the current is most a�ected by the applied �eld. In the normal-state vortex
model, in contrast, this dependence is weak, especially at high detection
probabilities, since for most detection events the vortices nucleate near the
center of the wire, where the current density is not a�ected by the applied
�eld.

However, since both models contain essentially similar physics, approached
in two di�erent theoretical frameworks, it is conceivable that the two models
will eventually both be re�ned to the point where they produce the same
results.
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1.2.6 Other Features of the Detection Process

In the meantime, other aspects of the detection mechanism were elucidated.
The electro-thermal mechanism by which the detector resets after a detection
event was investigated by Kerman et al. [9], who pointed out the role of
kinetic inductance in the modelling of the eletrical properties of this system.
In a seminal work by Clem and Berggren [29], current crowding in the bends
of the meander was identi�ed as the major limitation on the critical current
[31] in meander-type detectors. The photo-absorption into the wire was also
investigated. It was demonstrated that the detector is polarization-sensitive:
the electric �eld parallel to the wires is absorbed preferentially compared to
�eld perpendicular to the wires [10, 11, 12, 13].

1.3 Experimental Techniques

In this section, I will introduce the three main features of our experiment:
quantum detector tomography, multiphoton detection and the nanodetector.

1.3.1 Quantum Detector Tomography

Quantum detector tomography is an experimental procedure to measure the
detection statistics of a photodetector whose response is unknown2. The goal
is to �nd the response of the detector in the number state (Fock) basis, i.e. to
�nd out what would happen if the detector were to receive exactly n photons
as an input. This experiment was �rst demonstated by Lundeen et al. [36,
37], who performed detector tomography on an avalanche photodiode.

It would be most straightforward to probe the detection statistics directly
in the Fock basis, but these states are not easily experimentally available.
Therefore, it is much easier to use states which are some superposition in
the number state basis, which are produced by conventional light sources.
Since the detector is not sensitive to the phase of the incoming photon, we
may adopt a classical picture in which we consider only the photon number
probability distribution, i.e. we restrict ourselves to the diagonal elements of
the density matrix. The strategy is then to measure the detection probability
for many di�erent photon number probability distributions, and apply a
transformation to convert these results into the response in the number state
basis.

The most convenient set of states to use for quantum detector tomo-
graphy is the set of coherent states. These states, which are produced by a
laser, have the convenient property that an attenuated coherent state still
remains coherent. This means that it is possible to create the desired set of
photon number probability distributions simply by attenuation.

2The quantum detector tomography code used throughout this thesis is available on
request from the author.
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The experiment is then to take a pulsed laser with a well-de�ned pulse
energy and apply �xed attenuation and measure the detection probability.
If we have su�cient statistics for this attenuation, we go to the next attenu-
ation, and so on. By repeating this process for su�ciently many attenuations
it becomes possible to �nd the response of the detector in the Fock basis.

It should be noted that the transformation that converts the experi-
mental results into a description in the number state basis is not necessarily
simple. The transformation can strongly amplify measurement noise, or even
produce nonphysical results. In fact, a branch of mathematics is dedicated
precisely to �nding convenient transformations for various types of problems
of this nature [38]. The usual strategy is to restrict the transformation on the
basis of some additional information which was not previously considered. In
the case of quantum detector tomography, this is usually done by assuming
that the response to di�erent numbers of photons doesn't change strongly
for adjacent photon numbers, i.e. if we know the detection probability of n
photons pn, then our zeroth-order guess for pn+1 ≈ pn. This restriction can
by applied in various mathematical guises, and turns out to be su�cient to
'tame' the transformation.

1.3.2 Multiphoton Detection

Multiphoton detection refers to the phenomenon that two photons absorbed
simultaneously in the detector can lead to a detection event. These detection
events occur at lower currents than single-photon detection events, even
when a single photon does not. This e�ect was noticed early on in the
development of SSPDs [1] (see Figure 1.5), but didn't �nd any applications
until Bitauld et al. [39] showed multiphoton nanoscale imaging and Zhou
et al. [40] showed that this e�ect could be used to build an ultrasensitive
higher-order autocorrelator.

We use multiphoton detection as a tool for probing the detection mechan-
ism. Multiphoton detection has two strong advantages compared to single-
photon detection when it comes to experiments into the physics of the de-
tection mechanism.

The �rst advantage is that it enables the experimenter to excite the de-
tector with a range of energies in a single experiment, at a single wavelength.
This means that the relation between bias current and photon energy can
be measured in a single experimental con�guration, without changing the
wavelength of the incident light. Changing the wavelength of the incident
light usually means changing the intensity, and the size of the illumination
spot, leading to di�erent illumination conditions [16]. Using multiphoton
excitation sidesteps this problem.

The second advantage is that multiphoton excitation allows for a much
larger range of photon energies to be used than in single-photon excitation.
Typically, a source is only tunable in a particular wavelength range, and this
dynamic range can be hugely extended by using multiphoton excitations.
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Figure 1.5: The earliest measurement on two-photon processes in SSPDs.
The solid black squares represent the detector operating in a two-photon
mode, which occurs at lower bias current. The quadratic dependence of
the count rate on the input photon number is a signature of a two-photon
process. From [1].

Also, the sample substrate, the windows of the cryostat, or even the air of
the laboratory may all be absorbing at particular energies of interest. Using
multiphoton excitations solves this issue.

1.3.3 Nanodetector

The nanodetector is a particular geometry for SSPDs (see Figure 1.6), �rst
developed by Bitault et al. [39], which is convenient for experiments on
SSPD physics. In this geometry, the usual meander is reduced to a single
line contact between two tapered banks. In a variant of this design, there
is a short (a few hundred nm) bridge between the two banks. Only the
central part of this device (the line contact or the bridge) is photodetecting,
the banks merely serve as contact points for the bias current. An inductor
which serves to balance the reset time of the detector with its cooling time
is connected in series to the detector, to prevent latching [9].

For fundamental studies, this geometry has three main advantages: ro-
bustness, simplicity and enhanced multiphoton response. First, this geo-
metry is less sensitive to fabrication errors. It is di�cult to make a long wire
with uniform edges. Any notch, bulge or other imperfection in the wire (the
phenomenological term for such imperfections is constrictions [41]) will be
more strongly photodetecting than the rest of the wire, leading to experi-
mental results which are di�cult to interpret.

Secondly, the nanodetector doesn't contain any bends. In previous exper-
iments, indications were found that bends behave di�erently than straight
sections of wire [26, 42]. Normally, samples are considered which contain



1.3. EXPERIMENTAL TECHNIQUES 13

Figure 1.6: False-colour SEM image of our detector. The blue area indicates
the NbN layer, the red areas indicate places where the layer has been etched
away. The two thick arrows indicate the active part of the detector. The
vertical arrow indicates the direction of the current �ow. The horizontal
while line is a 1 µm scale bar. Image courtesy of Döndü Sahin.

both bends and straight sections. It can be unclear whether photodetection
results from the bends or not. Moreover, for phenomena such as the critical
current of an SSPD, the bends are the dominant feature [31], obscuring the
intrinsic response of the wire.

A third advantage of a nanodetector is that it has a relatively enhanced
multiphoton response. In a meander geometry, it is necessary for two photons
to be absorbed within some distance from each other in order to trigger a
two-photon detection event [43, 44]. However, each photon individually will
also have a �nite, but strongly reduced possibility of triggering the detector.
For a su�ciently long wire, however, this e�ect will dominate over the two-
photon e�ect. In a more compact geometry, all absorbed photons contribute
to photodetection. This is therefore a suitable geometry in which to study
multiphoton detection events.
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Chapter 2

Modi�ed Detector

Tomography Technique

Applied to a

Superconducting

Multiphoton Nanodetector

We present a complete method to characterize multiphoton de-
tectors with a small overall detection e�ciency. We do this
by separating the nonlinear action of the multiphoton detection
event from linear losses in the detector. Such a characteriza-
tion is a necessary step for quantum information protocols with
single and multiphoton detectors and can provide quantitative
information to understand the underlying physics of a given de-
tector. This characterization is applied to a superconducting
multiphoton nanodetector, consisting of an NbN nanowire with
a bow-tie shaped subwavelength constriction. Depending on the
bias current, this detector has regimes with single and multi-
photon sensitivity. We present the �rst full experimental charac-
terization of such a detector1.

2.1 Introduction

Multiphoton detection is a vital tool for optical quantum computing [45].
Such multiphoton detection can take many forms, two important examples

1This chapter is based on J.J. Renema et al., Opt. Exp. 20 (3), 2806-2813 (2012).
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of which are photon-number resolved detection, where the detector is able to
distinguish precisely the number of photons, and threshold detection, where
the detector is merely able to distinguish between the cases 'N photons or
more' and 'fewer than N photons' [37].

The common factor in all multiphoton detectors is that they are based
on a nonlinear mechanism such that the response of the detector depends in
some nontrivial way on the number of photons impinging on the detector.
There is typically also a �nite probability that a photon impinging on the
detector does not participate in the detection process at all. Such losses
can be modeled as attenuation of the input state impinging on an ideal (i.e.
100% e�cient) detector [37].

A well-established tool to characterize any quantum detector is detector
tomography, for which the mathematical framework is that of Positive Op-
erator Valued Measures (POVM) [36, 37, 43]. In this characterization tech-
nique, the goal is to �nd the probability that the detector clicks, given that N
photons are incident on the detector. These probabilities can be determined
by illuminating the detector with a set of coherent states, and measuring
the probability that the detector clicks as function of the input power. The
power of detector tomography is that it allows us to characterize the detector
using only coherent states as a probe. To do this, it takes into account the
distribution of photon numbers in a coherent state and gives the probability
of the detector responding to N photons.

Without introducting further assumptions, detector tomography is not
immediately applicable in the situation where there is a large and unknown
loss component in the detector. In this regime, the outcome would be heavily
in�uenced by the probabilities dictated by the linear losses. To characterize
the multiphoton behaviour of the nonlinear detection mechanism, the range
of test states would have to be large (of the order η−1

sde, where ηsde is the
system detection e�ciency), which would result in an overwhelming number
of free parameters leading to a strongly overdetermined system.

In this work, we present a method to separate the nonlinear detection
mechanism from the linear loss. We apply this method to the case of an NbN
nanodetector, where we obtain the �rst full experimental characterization of
such a detector.

This characterization has two applications. First of all, it gives the
complete statistics of the response of the detector to any incoming state,
which is of interest when a detector is used in a quantum communication
or quantum information experiment. Secondly, since this characterization is
model-independent, it can be used to investigate the physics of the detec-
tion mechanism. This latter application is especially important in detectors
where the detection mechanism is not fully understood, as is the case for an
NbN nanodetector [8].



2.2. NBN NANODETECTORS 17

Figure 2.1: SEM image of the NbN nanodetector. The smooth gray area is
the NbN, with the constriction in the middle. From this image, the width
of the constriction was estimated to be 150 nm.

2.2 NbN Nanodetectors

NbN nanodetectors consist of a bow-tie shaped constriction in an NbN
nanowire [39]. The width of this constriction can be as small as 50 nm.
This detector functions on the same detection principle as the well-known
NbN meanders [1]. A detection event happens when one or more photons in-
duce a break in the superconductivity and cause the formation of a resistive
bridge across the detector [8], causing a voltage pulse which is detected by
the readout electronics. In the nanodetector, since the bias current density
is only high around the constriction, this detector has subwavelength res-
olution [39]. Furthermore, it is possible to lower the bias current to such
a value that multiple photons are required to provide a perturbation that
is strong enough to break the superconductivity. Operation in this regime
results in a subwavelength multiphoton detector. Such a detector may allow
for subwavelength mapping of optical �elds and high-resolution near-�eld
multiphoton microscopy.

The operation of the NbN nanodetector di�ers from that of an ideal
N-photon threshold detector, as was already observed in the �rst paper an-
nouncing the construction of such a device [39]. In order for these detectors
to be used in e.g. subwavelength mapping of N-photon optical �elds, it is
vital that their response to di�erent photon numbers is well understood [46].

A complete characterization of the detector may also be of fundamental
interest for the study of the more well-known NbN nanowire meander de-
tectors [1]. Due to the well-localized sensitive area of the detector, the
multiphoton regime is more apparent and more easily understood in a nan-
odetector as compared to an NbN meander, where two impinging photons
are most likely absorbed in di�erent areas of the detector. Furthermore, it
has been suggested that unintended constrictions form an important limit-
ation on the performance of an NbN meander [41]. In these respects, NbN
nanodetectors may serve as models for the response of NbN meanders.
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2.3 Experimental Setup

The NbN nanodetector used in this experiment was manufactured on an
NbN �lm deposited by DC magnetron sputtering on a GaAs substrate [47].
A nanodetector was patterned out of the NbN �lm by means of electron
beam lithography (EBL) and reactive ion etching (RIE). The width of the
constriction was estimated to be 150 nm (see Figure 2.1). The detector was
cooled in a VeriCold cryocooler with a �nal Joule-Thompson stage to 1.17
K. The detector critical current was measured to be 29 µA.

We illuminate the sample with a Fianium supercontinuum laser with a
repetition rate of 20 MHz and a pulse width of 6 ps, which was �ltered
to have a center wavelength of 1500 nm, with a spectral width of 10 nm.
The detector was illuminated through a single-mode lensed �ber producing
a nominal spot size of 3 µm at 1500 nm. The readout electronics consist
of a bias-tee (Minicircuits ZNBT-60-1W+), an ampli�er chain and a pulse
counter.

Each experiment consists of a large series (>20) of experimental runs,
each at constant light power, where the current through the detector is
swept by means of voltage biassing, resulting in steps of 0.2 µA, up to the
critical current. Power stability during each run was monitored by a power
meter which receives a pick-o� beam from a beam splitter in the �ber leading
to the experiment. Finally, the 2-dimensional set of count rates C(Ib, N) is
rearranged and normalized by the repetition rate of the laser to yield the
detection probability per pulse R(N) at �xed bias current Ib.

For each experiment, the power was varied so as to obtain the complete
detector response curve from detection probability R = 10−6 to R = 1. This
required varying the input power over 5 orders of magnitude, typically from
20 pW to 5 µW input power into the cryostat. At a repetition rate of 20
MHz the largest input power corresponds to N = 2 ∗ 106 incident photons
per pulse. Since the detection e�ciency of our detector is low (order 10−4),
it was not necessary to introduce further attenuation, as is usually done in
detector tomography experiments [37].

2.4 E�ective Photon Detector Characterization

To understand the optical response of the NbN nanodetector, our starting
point is detector tomography, which has been developed in [36, 37, 48] in the
framework of the POVM formalism. This technique provides an assumption-
free method to characterize the response of an unknown detector system
using a set of coherent states as inputs. We limit ourselves to the case
where there are only two possible responses: click or no click. The idea is
to translate the response of the detector from the basis in which it can be
measured (the coherent state basis) into the basis in which we want to know
it, which is the Fock (number) state basis [36] . For an input state described
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by a density matrix ρ, the probability R to observe a detection event is:

Rclick = Tr(Πclickρ) (2.1)

Πclick =
∑
i=0

pi|i >< i|, (2.2)

where Πclick is the POVM of having a detection event, and pi is the prob-
ability of a detection event occuring given a Fock state with i photons as
input.

Keeping in mind that for coherent states, the probability distribution of
photon numbers is completely determined by the mean photon number of
the state, we can write:

Rclick(N) =
∑
i=0

pici(N), (2.3)

where ci = e−N Ni

i! is the weight of the i-th basis state in the probe coherent
state and N is the mean photon number. By measuring the detection prob-
ability R as a function of the input mean photon number N of the coherent
state, we can use ci(N) to reconstruct the set of probabilities pi, either by
a maximum likelyhood algorithm [37] or a simple curve �t [49]. Since we
are dealing with a detector that saturates, i.e. that always has a detection
event at high input power, the problem is simpli�ed by reasoning from the
case that the detector doesn't have a detection event [50]. Since there are
only two possible outcomes, this gives:

Rclick(N) = 1−Rno click(N) (2.4)

= 1− e−N
∑
i=0

(1− pi)
N i

i!
, (2.5)

where N is the mean photon number. The case p0 = 0, pi>0 = 1 is applicable
to any one-photon threshold detector, such as an APD with unity detection
e�ciency [37].

In this chapter, we introduce an extension of detector tomography de-
signed for use in situations where there is a large linear loss, as is the case
with NbN nanodetectors. The goal of this model, which we call E�ective
Photon Detector Characterization (EPDC), is to separate linear losses from
the nonlinear action of the detector, which is of physical interest. To ac-
count for this loss, we introduce a linear loss parameter η that describes the
probability of for each photon to participate in the nonlinear process. Since
coherent states remain coherent under attenuation, the EPDC function then
becomes:

Rclick,EPDC(N) = 1− e−ηN
∑
i=0

(1− pi)
(ηN)i

i!
, (2.6)
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where {pi} and η are the free parameters2. Since the POVM description
is complete [36, 50] and we have added a parameter, we have now cre-
ated a function that is overdetermined by one parameter. However, we can
choose a solution based on physical grounds. Since we know our detector
has threshold-like behaviour, it is reasonable to assume that for some large
number of photons imax the probability pimax

with which the detector will
have a detection event is arbitrarily close to 1. Furthermore, once we have
found such an imax, we can assume that pj>imax = 1 for all j > imax, since
otherwise we would have the unphysical case that adding photons makes
it less likely that a detection event occurs. We can then create a series of
candidate solutions by �tting equation 2.6 to our measured count rates as a
function of input photon number, truncating the sum at various values imax.
This gives a series of candidate solutions parameterized by {η, p0...pimax}.
The solution we pick is the one that �ts our data and has the minimum
imax, since this is the one that requires the fewest parameters to explain our
data3.

The big advantage of this approach is that we describe the entire linear
loss with a single parameter, thereby separating the linear losses from the
nonlinear action of the detector, and drastically reducing the number of �t
parameters. Typically, the nonlinear action of the detector, quanti�ed by
the pi, is the quantity of interest for multiphoton detection. This approach
is particularly relevant for detectors with a large linear loss component, since
if this loss is not taken into account separately it would dominate the char-
acterization of the detector.

2.5 Result

The points in Figure 2.2 show the measued count rate points as a function
of input power from our NbN nanodetector at three di�erent bias currents.
The lines represent the �ts, with the colour indicating the value of imax
(see legend). For each �t the reduced χ2 are shown in the bar diagrams
in the insets of the �gure. We take the �t that explains the data with
the smallest number of parameters as the most physically realistic solution.
This choice is indicated by the arrows in the bar diagrams. By repeating
this algorithm over a range of bias currents, we can completely characterize
how the response of the detector to a given number of photons varies with
the bias current.

In Figure 2.3, the results from the E�ective Photon Detector Character-
isation are shown as a function of bias current. At each bias current, the
obtained pi and η describe the operation of the detector, independent of

2We note that we have made the implicit assumption that RN→∞ = 1. This is not
always the case, but equation 2.6 can be rewritten to accomodate this.

3We will see in Chapter 4, Appendix I that the notion of '�ts the data with minimal
parameters' can be formalized by means of the Akaike Information Criterion.
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power. We therefore conclude that we have obtained a complete description
of the detector behaviour.

2.6 Discussion

The pi obtained from the �t represent the nonlinear action of our detection
system, which is the physical property of interest. Since there are no other
nonlinear elements in the detection system, we can unambiguously attribute
the behaviour of the pi to the NbN nanodetector. It should be noted that
the result presented here is consistent with earlier results on these detectors
[39], e.g. we reproduce the �nding that the transitions between the various
detection regimes (where the detector behaves approximately as an N-photon
detector) are equally spaced in the current domain.

From equation 2.3, we can see that the response of the detector is given
by terms of the form pici(N), where ci(N) is the probability of having N
photons. From this we can see that each pi will be most dominant in the
range of powers where the probability of having the corresponding number
of photons is highest. For example, at 17 µA the detector has p1= 0.06 and
p2= 0.37, meaning that at low powers (ηN < 0.16), where the one-photon
contribution from the state is dominant, the detector will respond mostly
to single photons, but at higher powers (ηN > 0.16) the response will be
dominated by the two-photon events. This quanti�es the change of detection
regimes reported in measurements of count rate as a function of power [39].

The �tted linear detection e�ciency η �uctuates between (9.6±0.2)∗10−5

and (14.7 ± 0.6) ∗ 10−5. Normalizing to the estimated e�ective area of the
detector of 100 nm by 150 nm and the beam size, we obtain an intrinsic
detection e�ciency of 8%. While it should be noted that this is only a rough
estimate, it is higher than the value of 1% reported in [39]. We this attribute
to the lower temperature of the experiment, at which NbN detectors are
known to be more e�cient [8].

It should be noted that since we combine all linear losses into a single
parameter, we are unable to distinguish losses after the absorption event
from those before the absorption event, provided they are linear. It is known
for NbN meanders that not every absorbed photon causes a detection event
[41]. However, since our measured linear loss does not depend on the bias
current, it is reasonable to attribute it to optical loss and not to losses inside
the detector. With the caveat that there may be a constant linear loss
inside the detector, we can therefore conclude that the set of pi completely
describes the behaviour of the detector.
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Figure 2.2: Measurement of the NbN nanodetector count rate as function
of input power at Ib = 20 µA, Ib = 17 µA and Ib = 14 µA, �tted with
the EPDC model (equation 2.6). The black squares represents the data
points with error bars, the other lines represent �ts, with the number of free
parameters represented by the color of the line (see legend). Note that many
of these lines overlap with each other and with the data. Insert: reduced χ2

of the �ts as a function of number of parameters. For Ib = 14µA we have
omitted the case i = 1, where χ2

reduced > 104. The arrows indicate the best
�t. Note that in all three cases there are multiple �ts which have similar
reduced χ2, we reject the ones with super�uous free parameters for physical
reasons.
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Figure 2.3: Nonlinear parameters and linear detection e�ciency as function
of bias current. This �gure was obtained by repeatedly applying the method
outlined in Section 2.4 at various bias currents. The three dashed lines
indicate the bias currents from Figure 2.2.

2.7 Conclusion

We have introduced an extension of detector tomography which is applic-
able in the presence of a large linear loss. This detector characterization is
of interest when using a quantum detector in a quantum optics or quantum
communication experiment, since it gives a full prediction of the response
of the detector to any incoming state. Furthermore, we have completely
characterized the response of a superconducting nanodetector, over several
operating regimes of the detector. This represents the �rst complete char-
acterization of this type of detector, which is necessary for the use of this
detector in the context of multiphoton subwavelength detection.

A second application of this characterization method is that it provides
quantitative information about the response of the detector. Such a quantit-
ative characterization can also be used to test theoretical predictions of the
response of the detector as a function of bias current [18], enabling further
insight into the physics of the detection event in NbN photodetectors.

The idea of our formalism is to separate this linear loss from the nonlinear
action of the detector. For the detector under study in this chapter, this
formalism completely describes the response of the detector. In contrast to
earlier methods [44, 51] that assume a priori knowledge of the underlying
detector physics, detector characterization based on the POVM formalism
can be applied to any detector system without making assumptions about
the operating principle of the detector [36, 43]. Therefore, the strength of
the characterization applied here is that we can extract model-independent
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parameters that can be used to gain insight in the physics of photon detection
with NbN detectors.

Finally, we comment on the applicability of our algorithm to other de-
tectors: E�ective Photon Detector Characterization shares the feature with
detector tomography that it is as assumption-free as possible; making it pos-
sible to characterize a detector without any prior knowledge or model of the
operational mechanism of the detector. The EPDC method has the added
requirement that the detector saturates (i.e. always produces the same out-
come) at some high input photon number. To our knowledge, this behaviour
is generic to all quantum detectors constructed to date [2, 51, 52, 53, 54]. It
therefore does not represent an practical limitation.



Chapter 3

Universal Response Curve

for Nanowire

Superconducting

Single-Photon Detectors

Using detector tomography, we investigate the detection mechan-
ism in NbN-based superconducting single-photon detectors (SSPDs).
We demonstrate that the detection probability uniquely depends
on a particular linear combination of bias current and energy, for
a large variation of bias currents, input energies and detection
probabilities, producing a universal detection curve. We obtain
this result by studying multiphoton excitations in a nanodetector
with a sparsity-based tomographic method that allows factoring
out of the optical absorption. We discuss the implication of our
model system for the understanding of meander-type SSPDs1.

3.1 Introduction

Nanowire Superconducting Single-Photon Detectors (SSPDs) [1] have high
detection e�ciency [55], low dark counts, low jitter and a broadband ab-
sorption spectrum [56]. This makes them suitable for many applications
including quantum optics [57, 58, 59, 60], quantum key distribution [5, 61],
optical coherence domain re�ectometry [62] and interplanetary communica-
tion [6]. These detectors typically consist of a thin nanowire (∼4 nm x 100
nm) of superconducting material, such as NbN [1], TaN [20], NbTiN [63], Nb

1This chapter is based on J.J. Renema et al., Phys. Rev. B 87 (17), 174526 (2013).
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[64], or WSi [55], which is typically fabricated in a meander shape to cover
an active area of 25-1600 µm2 [65]. The absorption of a single photon in the
nanowire results in the creation of a a region with a non-equilibrium concen-
tration of quasiparticles. When the nanowire is biased close to the critical
current, this perturbation causes a transition from the superconducting to
the resistive state, producing a voltage pulse in the external circuit.

While progress has been made in understanding the detection process,
many crucial features of the process are still unknown. In this chapter, we
investigate the detection process by means of a model system: an NbN nano-
detector [39] (see Figure 3.1). This detector has a single cross section of wire
as its active element, de�ned by a bow-tie shaped constriction. We investig-
ate this system with sparsity-based detector tomography. The tomographic
method does not require a model of the device, which makes it ideally suited
as a tool for investigating the working principle of a detector of which the
working mechanism is not fully understood yet.

It has long been known that at lower bias current, the detector operates
in a regime where multiple photons are necessary to break the superconduct-
ivity [1, 66]. In a nanodetector, the geometry is such that many multiphoton
processes play a strong role [39, 67]. This enables us to probe the response
of the device to excitations at di�erent energies simultaneously. The role
of detector tomography is to extract the e�ects of the various multiphoton
excitations.

In this chapter, we investigate the detection process by combining tomo-
graphy and a nanodetector. With this combination, we can probe the sys-
tem in a way that is independent of the incoupling e�ciency of light into
the detector. Moreover, because we tune the energy of the excitation via the
number of photons at the same wavelength, we are insensitive to wavelength-
dependent e�ects in the setup. This combination allows us to focus on the
fundamentals of the detection process. We demonstrate that for intrinsic
detection probabilities ranging from 0.3 to 10−4, the detection probability
depends only on a speci�c linear combination of bias current and excitation
energy. Thus, we obtain a universal detection curve for our model system
of an SSPD: for each bias current and excitation (photon) energy, the de-
tection probability is given by a point on this single curve. This universal
curve stretches from the regime where photodetection is almost deterministic
(given that the photon is absorbed into the active area) to the regime where
�uctuations in the wire are thought to play a role in assisting the detection
process.

3.2 Experiment

All experiments in this work were performed on a nanodetector (see Figure
3.1). The nanodetector consists of 4 nm thin NbN wire on a GaAs substrate,
shaped into a 150 nm wide bow-tie geometry. The device was fabricated via
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a combination of DC magnetron sputtering [47], electron-beam litography,
reactive ion etching and evaporation of the metal contacts [39]. In Chapter 2
and ref. [39] it was shown that such a detector has multiphoton regimes based
on the bias current. The physical mechanism behind these multiphoton
regimes is that at relatively low bias currents, multiple photons are required
to supply a su�cient perturbation for the superconductivity to be broken.

The device was cooled in a two-stage pulse-tube / Joule-Thompson cryo-
cooler to a temperature of approximately 1.2K. The nanodetector was illu-
minated using a lensed �ber mounted on cryogenic nanomanipulators. At
this temperature, the overall system detection e�ciency for single photons
was 1.5× 10−4 around our working point at Ib = 20 µA (Ic = 29 µA) . This
low e�ciency is attributable to the mismatch between the device active area
and the size of the illumination spot. The device was operated in a voltage
bias regime, using a low-noise voltage source (Yokogawa GS200) in series
with a 10 Ω resistor. The detector was biased through the DC port of a bias
tee, and the RF signal was ampli�ed in a 45 dB ampli�er chain.

The device was illuminated with a Fianium Supercontinuum laser, whose
pulse duration was speci�ed to be 7 ps. It is crucial for this experiment
that the pulse duration is shorter than the lifetime of an excitation, which
was measured to be several tens of picoseconds [40, 68, 69]. If the pulse
duration is longer than that, it is possible to have a pulse which produces
two excitations which are far enough apart in time that one has died out
before the second is created; this will therefore not result in a multiphoton
excitation.

We con�rmed that our laser produces coherent states, measuring g(2)(τ =
0) = 0.98 ± 0.01 in a separate experiment. Furthermore, we measured that
the intensity �uctuations in the laser are below 2%. Hence, the laser is
suitable for tomography [37]. The detector was illuminated with narrowband
light at wavelengths of 1000 nm, 1300 nm and 1500 nm (∆λ= 10 nm). In
our experiment, we vary the intensity and wavelength of the input light, at
various bias currents. At each of these settings, we record the count rates in
a 0.1 s time window and repeat the experiment 10 times per measurement
setting. In the current regime investigated in the present experiment, the
detector has negligible dark counts (< 1 / s).

3.3 Tomography of Multiphoton Excitations

In order to distinguish the e�ects of the various photon numbers in the laser
pulses, we make use of a sparsity-based tomographic protocol. We give here
a brief summary of this protocol (for a full description, see Chapter 2, where
we introduced this technique). We illuminate the detector with a range
of coherent states, and record the detection probability Rclick. We make
use of two properties of coherent states: �rst, that a coherent state under
attenuation remains coherent, second that the decomposition of the coherent
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Figure 3.1: False-color SEM image of the detector. The active part of the
detector is the narrow bridge in the centre of the image. The blue parts
represent the thin layer of NbN, the red parts are the GaAs substrate. The
scale bar has a length of 1 µm.

state in the Fock basis is completely determined by the mean photon number,
which can be determined by measuring the intensity2.

Each illumination intensity probes the detector with a di�erent linear
combination of photon number states, introducing di�erent combinations of
multiphoton excitations. In particular, we model the detection probability
Rclick by:

Rclick = 1− e−ηN
∞∑
n=0

(1− pn)
(ηN)n

n!
, (3.1)

where η is the incoupling e�ciency (linear loss) and N is the mean photon
number of the incident coherent state. The linear e�ciency appears separ-
ately, since our protocol enables us to distinguish linear processes - such as
incoupling to the NbN �lm - from nonlinear processes [67]. The pn are the
quantities of interest in further analysis: they describe the probability of a
detection event, given the absorption of n photons in the active area of the
detector.

Figure 3.2 illustrates this protocol as applied to a single experimental run
for a given bias current. We vary the incident power, observe the detection
probability, and apply the tomographic protocol to �nd the contributions
from the various multiphoton excitations. The black squares indicate the
measured count probability, approaching 1 as the detector saturates. The
red, green and blue lines indicate the contribution from one photon, two
photons and higher photon numbers, respectively. Only a limited number
of multiphoton excitations are resolvable, and this number depends on bias
current. The rest is lumped into a remainder term containing the limit of
high photon numbers and is not used in further analysis. The fact that at
various powers di�erent multiphoton processes are dominant enables us to
recover them all from a single experiment. Furthermore, since the linear

2Since we have a phase-insenstive detector, the phase of the coherent state amplitude
is irrelevant, and we set it to zero throughout this chapter for simplicity.
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Figure 3.2: Illustration of the tomographic protocol. The black squares in-
dicate the measured count rate as a function of input power, at λ = 1500 nm
and Ib = 17µA. The red (solid) and green (dashed) lines show the contribu-
tion to the count rate of single photons and photon pairs, respectively. The
blue (dotted) line shows the contribution of higher numbers of photons. The
black line shows the sum of all the photon contributions, indicating that
our tomographic reconstruction succesfully reproduces the observed count
rates. From this �t, we reconstruct the set of detection probabilities pn and
the linear e�ciency η, which together fully describe the behaviour of the
detector.

e�ciency η only rescales the e�ective incident photon number, but does not
alter its shape (corresponding to a simple shift in Figure 3.2), we are also
able to distinguish �nite incoupling e�ects from e�ects due to multiphoton
excitations.

3.4 Results

Figure 3.3 shows the reconstructed detection probabilities pn, as a function
of bias current and three di�erent wavelengths. For each wavelength and
current, we independently perform the tomographic procedure outlined in
Section 3.3 and obtain a full set of parameters pn. We observe that as the
current is lowered, the detector makes a transition from being a one-photon
threshold detector to a two-photon threshold detector, and so on. Further-
more, we observe that the response curves at di�erent photon numbers and
wavelengths have the same shape. We note that as the excitation energy
becomes higher and the photon number larger, the points on our curves
become more scattered, indicating that the tomography procedure becomes
less accurate.
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Figure 3.3: Current dependence of the nonlinear parameters pn , as a func-
tion of wavelength and photon number. The probability pn of a detection
event at a given wavelength and photon number is plotted as a function of
the current. The plots are color-coded by wavelength. The shape of the
symbols indicates the photon number (see legend). The connecting lines are
a guide to the eye. The dotted line indicates the threshold level (p = 0.1)
used to obtain Figure 3.4.

Figure 3.4 shows the bias current required to reach a detection probability
of 10%, as a function of total excitation energy. In order to obtain this �gure,
we took a surface of constant pn(E, Ib) = 0.1 in Figure 3.3 (indicated by a
dotted line), and plotted the bias current at which the detector has 10%
probability of responding to an energy E, where E = nhν is the total energy
of the n photons absorbed by the detector. This �gure demonstrates that
there is a scaling law between bias current and overall excitation energy.
We determine the scaling constant γ to be γ = -2.9 ± 0.1 µA/eV (= −1.8×
1013 Wb−1 in SI units) for our detector. Furthermore, this �gure shows that
the detection probability is independent of the way in which the excitation
is composed of di�erent photons: only the overall energy determines the
detection probability. We note that we have used only a small fraction of
the data present in Figure 3.3 to obtain the data presented in Figure 3.4.

We compare three models from literature to our data. We �nd that
over the range of the experiment, all three models are consistent with our
data. The three models are a hotspot-based model, a hotspot-based model
in which di�usion plays a large role and a �uctiation-assisted model. These
models distinguish themselves not only by di�erent detection mechanisms,
but also by di�erent scaling between bias current and energy at constant
detection e�ciency.

Figure 3.5 presents the main result of this chapter: a universal detection
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Figure 3.4: Scaling law for the nanodectector. From the data in Figure 3.3,
we �nd all points that have pn(E, Ib) = 0.1 (indicated by the dotted line
in that �gure), where E is the overall excitation energy. In this graph, we
plot the values of Ib and E that satisfy this condition. This graph shows
that bias current and overall excitation energy have an approximately linear
dependence. The fact that points at various photon numbers all fall on
the same line demonstrates that the nanodetector is only sensitive to the
overall energy of the excitation. The three lines show the �ts of the three
microscopic models to the data. Apart from the two rightmost points, the
errors on these data points are ∼ 100 nA.

curve for a single line-segment of an NbN SSPD. In Figure 3.5, we apply
the scaling law, which was derived from the points around p = 0.1 to the
entire data set. We �nd that all the curves of detection probability as a
function of rescaled bias current superimpose over more than 3 orders of
magnitude in the detection probability. This shows that the photoresponse
of our detector depends only on this speci�c combination Ib + γE of bias
current and excitation energy. We stress that this universal curve can only
be obtained through detector tomography, which allows separation of the
e�ects of multiphoton excitation and �nite linear e�ciency.

The data presented in Figure 3.5 shows that the scaling behaviour which
we obtained at pi = 0.1 in Figure 3.4 is universal for all values of p. Since
we have used only the points in Figure 3.3 which lie around to obtain the
result in Figure 3.4, we do not a priori expect the curves to superimpose
when we apply the scaling law to the entire dataset. In such a procedure,
only the points which are used to obtain the scaling factor are guaranteed to
superimpose. Since the curve is universal over more than 4 orders of mag-
nitude in the detection probability, we have demonstrated that our results
are independent of the arbitrary choice of the 10% criterion. The criterion
only matters for the accuracy with which the curves can be superimposed:
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Figure 3.5: Universal response curve for the nanodetector. To obtain these
curves, we rescale the curves reported in Figure 3.3 by the scaling law demon-
strated in Figure 3.4.

we �nd from theoretical simulations that the tomographic reconstruction is
most accurate between pn = 0.1 and pn = 10−4. This justi�es the choice of
our criterion.

3.5 Discussion

In this section, we �rst compare our experimental method with that of pre-
vious studies on SSPDs. Then, we discuss our experimental �ndings on the
universal curve, quasiparticle conversion e�ciency. Lastly, we discuss the
phenomenon of dark counts in our detector.

3.5.1 Comparison with Previous Work

Previous investigations of the SSPDs detection mechanism were of a semi-
classical nature, where only the e�ciency and dark count rate were measured.
By observing the exponent of the power-law dependence of count rate on in-
put power, one can also infer the photon number detection regime semiclas-
sically. However, such a characterization is limited to the observation that
the detector is operating in a particular detection regime; a measurement of
pi (i.e. how strongly the detector is in a particular regime) requires detector
tomography. Since the width of each multiphoton regime is ∼ 2 µA for our
experiment, the accuracy of the semiclassical method is rather limited. In
order to characterize multiphoton processes beyond that resolution, detector
tomography is an absolute requirement.

Most previous work focussed on meander detectors, which is the geometry
that is normally used in practical applications of SSPDs. In a meander,
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two photons that are absorbed in di�erent places along the wire do not
constitute a two-photon event, yet they may still produce one-photon events
individually. By using a nanodetector, we sidestep any question of how the
photons distribute themselves along the length of the wire, which was a major
issue in measuring multiphoton e�ects in meander-type SSPDs [43, 44].

Our present work probes the detection mechanism at various energies
simultaneously. We are insensitive to incoupling losses, since they a�ect
the various multiphoton processes equally. Furthermore, since we can per-
form excitations at di�erent energies with the same wavelength, we are in-
sensitive to any wavelength-dependent e�ects in the experiment, including
wavelength-dependent absorption in the NbN layer.

3.5.2 Universal Curve

The universal curve which we demonstrate in Figure 3.5 is not predicted by
any of the current SSPD photodetection models. Typically, such models fo-
cus on calculating a single threshold bias current Ith, above which the energy
of a photon is large enough to deterministically break the superconductivity.
Above that current, the e�ciency of the detector should be constant. We
have shown in the present work that scaling behaviour extends not just to
a single threshold current, but to all combinations of currents and excita-
tions in the present experiment. Scaling behaviour applies whether one is
in the regime of high e�ency or not. This points to the fact that a single
theory should describe detection events in SSPDs, both in the high- and
low-e�ciency regimes.

3.5.3 Quasiparticle Conversion E�ciency

The fact that only the overall energy of the excitation determines the re-
sponse of the photodetector can be interpreted in terms of the cascade pro-
cess that is generated by the initial excitation. This process, which is thought
to involve both electrons and phonons in the �lm, and in which the mutual
exchange of energy between the electron and phonon subsystem plays a key
role, is still poorly understood. In the present work, we probe this cascade
process with di�erent initial excitations, and show that it is only the overall
energy which determines the total number of quasiparticles which are pro-
duced at the superconducting band-edge. The fact that four excitations of a
quarter of the energy produce the same number of quasiparticles as a single
excitation with the full energy is evidence that the conversion e�ciency by
which the energy of the �rst quasiparticles is distributed over many others
is independent of the initial energy.
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3.5.4 Dark Counts

We now turn to the phenomenon of dark counts. The most straightforward
model is the following: one simply considers a dark count as an excitation
with E = 0. Extrapolating the linear scaling law from Figure 3.4 to E = 0
yields a current of 19 µA. However, at this current we do not observe a dark
count probability of 10% as one would expect from the simple model; we
only observe appreciable dark counts around the critical current of 29 µA.
The same discrepancy applies to the other two models. We can therefore
say that the picture of a dark count as a zero-energy photodetection event is
not supported by our data for any current detection model of SSPDs. The
anomalous behaviour of dark counts is a reminder of the danger of assuming
a detection model, further demonstrating the relevance of our tomographic
method. In particular in this case, the tomographic method gives the �rst
hints of substantial di�erences in detection mechanism between dark counts
and photon counts. We note that the nature of dark counts is still open to
debate [24, 70, 71].

3.5.5 Outlook

The present work opens up the possibility of testing the various models of
photodetection. This could be done by performing the present experiment
in the mid-infrared. For this energy range the predictions of the various
models di�er signi�cantly (see Figure 3.4). For example, at an excitation
wavelength of 5 µm, corresponding to 0.25 eV, the di�erence between the
predictions of the various models is easily measurable; it is of the order of 1
µA.

Multiphoton excitation has the practical advantage that the bandwidth
of energy excitations which is o�ered can be extended by a factor equal to
the number of photons in the highest excitation (in our case, 4). This has
applications in the situation where light of a particular wavelength is di�cult
to couple onto a cryogenic sample. In particular, the present work opens up
the possibility of studying NbN detector behaviour in an energy range that
corresponds to the near and medium UV range, using visible and NIR optics.

In a previous publication [40], we have introduced the notion of the non-
linear response function (NRF) η(Ib, C), which measures the instantaneous
detection probability, given that a bias current of Ib is present, and that
there are C quasiparticles in the detector. The overall detection probability
is then given by R =

´
t
η(t)I(t)dt, where I is the instantaneous intensity.

This function can be probed by various means such as a pump-probe exper-
iment. The description in terms of a NRF is well-matched to a tomographic
experiment, as both are model-independent descriptions.

The holy grail of tomographic research on SSPDs would be to �nd the
instantaneous detection probability as a function of the number of quasi-
particles present at that instant. In the present experiment, we have achieved
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a step towards this goal: we have demonstrated the NRF to be of the form
η(Ib + γE) over the energy range of the experiment, for short-pulse excita-
tions.

3.6 Conclusion

In conclusion, we have studied the physics of photodetection in a super-
conducting single-photon detector. We have shown that the probability of
detection is based on the overall energy of the excitation. Furthermore, we
have demonstrated a scaling law between overall excitation energy and bias
current. From this, we �nd a universal response curve that depends only
on a given combination of bias current and excitation energy. Thereby, we
have shown that the known behaviour of the detector extends into the mul-
tiphoton range. These results demonstrate that the tomographic method is
a useful tool for investigating the fundamental physics of detection events in
NbN SSPDs.
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3.i Appendix: Comparison of Experimental Data

with Detection Models3

We compare our experimental results to the various detection models of
superconducting single-photon detectors. We consider three models: the
normal-core model, the di�usion-based model and an early version of a
vortex-based model, namely the VAP model of Semenov et al4. We paramet-
erize these models as: E = w2/C2(1 − Ib/Ic)2 for the normal-core hotspot
model, I = I0 − γE for the di�usion model and A = (∆ − α

√
E)(I0 − βIb)

[72] for the VAP model, to maintain consistency with the literature.
We apply these three detection models to the results in Figure 3.4, and

compare the results with the values from the literature. For the normal-core
hotspot model, we �nd C = 47 ± 1 eV−1/2/ nm, which should be compared
to the values of C = 11−20 eV−1/2/ nm found in other experiments [56]. For
the di�usion hotspot model, we apply the expression from Ref. [8], to �nd a
theoretical value of γ = -2.5 µA/eV for our sample and γ = -3.5 µA/eV for the
samples in that reference, which should be compared with the value of γ = -
2.9 ± 0.1 µA/eV obtained experimentally. For the �uctuation model, we �nd
α = 2.8× 10−4± 0.05× 10−4

√
eV, which should be compared to a literature

value of α = 6×10−4
√

eV, for the experiment reported in Ref. [23]. We note,
however, that comparisons between di�erent detectors are problematic. In
particular, the conversion e�ciency of the initial excitation to quasiparticles
at the gap edge is a free parameter which varies from detector to detector
[8].

The error analysis on the quantities given in the previous paragraph was
based on the 50 nA accuracy of the current readout of our experiment, com-
bined with error propagation on the interpolation formula used to obtain the
intersection with the line pi = 0.1. For low i, the former error dominates.
At higher i, we are limited by the quality of our tomographic reconstruc-
tion. We calculate χ(2) per degree of freedom to be 2.2, 2.9, and 2.1 for the
normal-core hotspot, di�usion hotspot and VAP models, respectively. These
numbers do not enable us to conclusively rule out any of the models.

3This material is based on the appendix to J.J. Renema et al., Phys. Rev. B 87 (17),
174526 (2013).

4We retain the comparison with the VAP model for historical consistency with the
article on which this chapter is based. Since we will see that this dataset is of insu�cient
dynamic range to rule out any of the models, comparison with more advanced vortex
models will not provide additional information and is postponed to Chapter 4.



Chapter 4

Experimental Test of the

Detection Models in

Nanowire Superconducting

Single-Photon Detectors

We report an experimental test of the photodetection mechanism
in a nanowire Superconducting Single-Photon Detector (SSPD).
Detector tomography allows us to explore the 0.8-8 eV energy
range via multiphoton excitations. High accuracy results enable
detailed comparison of the experimental data with theories for
the mechanism of photon detection. We show that the temper-
ature dependence of the e�ciency of the SSPD is determined not
by the critical current but by the current associated with vortex
unbinding. We �nd that both quasiparticle di�usion and vortices
play a role in the detection event1.

4.1 Introduction

Superconducting nanowire single-photon detectors (SSPDs or SNSPDs) [1, 2]
are currently the most promising detection systems in the infrared, achieving
detection e�ciencies of up to 93% at 1550 nm [55]. Despite these techno-
logical advances, the fundamentals of the working principle of these detect-
ors are poorly understood and under active investigation, both theoretically
[18, 24, 25, 33, 70, 71, 73, 74] and experimentally [8, 16, 15, 23, 56, 75, 76,
77, 78, 79, 80, 81].

1This chapter is based on J.J. Renema et al. Phys. Rev. Lett., 112 (11), 117604
(2014).

37



38 CHAPTER 4. TEST OF THE SSPD DETECTION MECHANISM

A typical SSPD consists of a �lm of a superconducting material such as
NbN orWSi, a few nm thin, nanofabricated into a meandering wire geometry.
When biased su�ciently close to the critical current of the superconductor,
the energy of one or several photons can be enough to trigger a local trans-
ition to the resistive state, resulting in a detection event. The energy of the
absorbed photon is distributed through an avalanche-like process, creating
a nonequlibrium population of quasiparticles. This quasiparticle population
then disrupts the supercurrent �ow, resulting eventually in a detection event.

In this chapter, we adress the nature of this disruption, which lies at
the heart of the photodetection mechanism in SSPDs. At present, there are
three important open questions. First: it is unknown whether the detection
event occurs when the energy of the incident photon causes a cylindrical
volume inside the wire to transition to the normal state (see Figure 4.1a)
[1], or whether it is enough for the superconductivity to be weakened but
not destroyed by the depletion of Cooper pairs over a more extended region
(see Figure 4.1b) [18].

The second open question is whether magnetic vortices play any role
in the detection mechanism. There are two varieties of vortex-based mod-
els. The �rst is an extension of the normal-core model, in which a vortex-
antivortex pair forms at the point where the photon is absorbed (Figure
4.1c) [33]. In the second, the weakening of superconductivity lowers the en-
ergy barrier for either a vortex crossing [24, 82] or a vortex-antivortex pair
crossing (Figure 4.1d).

The last open question pertains to the temperature dependence of the
photoresponse of SSPDs. Intuitively, one would expect the SSPD to be less
e�cient at lower temperatures, as the detector works by breaking supercon-
ductivity and the energy gap of a superconductor decreases with increasing
temperature. However, the opposite e�ect is consistently observed [8]. Apart
from a study of the temperature dependence of the di�usion constant [73],
no real headway has been made in this problem.

Our experimental results provide answers to all three questions. In short,
we show that both quasiparticle di�usion and vortices play a role in the
detection event. We achieve the �rst result by measuring the functional
dependence between the bias current and the photon energy required for a
constant detection probability. The observed linear functional dependence is
incompatible with the original hotspot model and demonstrates the import-
ance of di�usion. Our evidence for the role of vortices lies in the observation
of a reference current which sets the e�ciency of the detection mechanism
and which is unequal to the critical current and also has a di�erent temper-
ature dependence. At the temperature where the reference current crosses
the critical current, the e�ciency of the detector degrades. We �nd that the
temperature dependence of the reference current matches that of the current
at which vortices can unbind from the sides of the detector.
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Figure 4.1: Sketches of the four main detection models. a) In the normal
core-hotspot model, the photon energy creates a normal domain inside the
superconductor, which the current has to bypass. b) In the di�usion-based
hotspot model, the quasiparticles di�use outward from the point of absorp-
tion, creating a band of depleted superconductivity. c) In the vortex nuc-
leation model, a vortex-antivortex pair is formed in the hotspot. d) In the
vortex crossing model, either a vortex or a vortex-antivortex pair (pictured)
uses an area of weakened superconductivity to cross the wire and annihilate.
Picture is not to scale.

4.2 Experiment

We perform the majority of our experiments on a 220 nm wide bow-tie
nanodetector [39]. The detector is patterned from a 5 nm thick NbN �lm
deposited on a GaAs substrate. The detector is fabricated by electron beam
lithography and reactive ion etching. Photodetection takes place in the
narrow (w0 = 220 nm wide) part of the bow tie, where the current density
is highest.

Compared to Chapter 3 and previous experiments [8, 16], we signi�cantly
extend the energy range over which we probe the detector. The energy
range in our experiment runs from 0.75 eV to 8.26 eV, corresponding to
λeff = 1650 nm - 130 nm, whereas the energy range in Chapter 3 ran
from 1500 nm - 325 nm. We achieve this extension of the energy range by
using multiphoton excitations, which are resolved by detector tomography
[36, 49, 67, 83]. Detector tomography is a method of quantum detector
characterization that relies on illuminating a photon detector with a series of
known quantum states and observing the photoresponse. In our case, we use
coherent states from a broadband supercontinuum laser, which is spectrally
�ltered2. These states have known photon number distributions which are
set by the classical laser intensity, which can be easily varied. From this, we
determine the response to each individual number of photons, i.e. the Fock-

2More details may be found in the Appendix to this chapter.
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basis response3. The strength of our modi�ed detector tomography is that
it allows us to separate the incoupling and absorption e�ciency η, i.e. the
probability to absorb a photon, from the internal detection probability pn,
i.e. the probability of a detection event given the absorption of n photons.
A detailed description of our method can be found in Chapter 2, and in the
Appendix to this chapter.

4.3 Results and Discussion

Figure 4.2 shows the measured combinations of bias current Ib and photon
energy E = n(hc/λ) for which the detection probability equals 1% after
absorption of n photons. We achieve this result by performing detector
tomography at twelve di�erent wavelengths, and �nding the current at which
n photons (indicated in the legend) have the required probability to cause a
detection event.

To validate our experimental method of using multiphoton excitations to
probe the detection mechanism, we measured at wavelengths that are har-
monics (e.g. λ = 1500 nm and λ = 500 nm). We consistently �nd that the
results of these measurements overlap over the entire measurement range,
and have indicated these points with arrows in Figure 4.2. This demon-
strates that, irrespective of which detection model is correct, the observed
probabilities pn depend only on bias current and overall excitation energy
E = n(hc/λ). This is an independent justi�cation of the use of multiphoton
excitations to test the detection mechanism.

We can parametrize our complete set of measurements by the expression
I = I0 − γE, where I is the observed current required to achieve pn = 0.01,
and E is the overall energy of the excitation. The slope γ describes the
interchange between bias current and photon energy. By extrapolating to
E = 0, we �nd a current I0 that is unequal to the critical current Ic and
which we name the reference current , since it functions as the baseline from
which the detector response may be determined. At T = 3.2 K, we �nd
I0/Ic = 0.75. This experimental result does not change signi�cantly with
the choice of threshold criterion. The linear relation persists; a 10% threshold
criterion4 gives I0/Ic = 0.79.

In the regime I0 < Ib < Ic, all multiphoton detection probabilities pn
of the detector are constant. However, we �nd that the linear e�ciency
η increases in this regime. We attribute this to the fact that in our bow-
tie structure, a larger area of the detector is above I0. It is known that
for e�cient meander detectors, there is a plateau region where the detector
response is constant with current [55]. We note that dark counts occur in

3See Chapter 2 for extensive discussion
4With the results presented in Chapter 5, we will be able to investigate in Appendix II

of that chapter what the precise consequences are of choosing a threshold criterion pn � 1
on the observed energy-current relation.
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Figure 4.2: Quantum tomography of superconducing single-photon detect-
ors. We plot the bias current required to obtain a 1% probability of a given
detection event, as a function of the overall energy of the multiphoton excit-
ation. The points are the experimental data; their shape and colour indicate
the number of photons associated with each excitation. The arrows indicate
those points where two photon energies coincide. The line shows a linear
interchange between bias current and excitation energy. The shaded area
indicates the regime that is only accesible with multiphoton excitations. In-
set : comparison of a nanodetector, a short (200 nm) wire, and a meander.
We �nd that the response of the wire and meander coincides with that of
the nanodetector, taking into account the di�erence in width between these
three detectors by normalization to the width w0 of the nanodetector.
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our system when Ib ≈ Ic. Around I0, we do not measure any dark counts in
a 30 s interval. This demonstrates - suprisingly enough - that extrapolation
to E = 0 does not yield the dark count rate.

Figure 4.2 demonstrates that the relation between bias current and photon
energy required to have a constant detection probability is linear over one
order of magnitude in energy. This result demonstrates that the detection
process is not associated with any normal-state region that is formed in the
SSPD. For a normal-core model, the energy dependence would be quadratic,
as can be seen from a simple geometric argument that relates the lateral size
of the obstruction made by the normal core to the photon energy [16]. For
a model in which there is no normal state, the current-carrying capacity of
the wire is linearly dependent on the number of remaining Cooper pairs and
therefore on the photon energy.

We will now demonstrate that we can use our nanodetector as a model
system of an SSPD. We compare our results with those on a w = 150 nm
wide, 400 nm long wire and a conventional w = 100 nm meander detector5.
The inset of Figure 4.2 shows a comparison of our three detectors. We take
into account the width w of the detector by normalizing the energy scale
to the width of the nanodetector, which enters through both the critical
current and through the intrinsic 1/w scaling of the detection mechanism
[16]. For our nanodetector, wire, and meander, the results superimpose.
This demonstrates that our nanodetector functions as a model of an SSPD.

Figure 4.3 shows the experimental observations at λ = 600 nm, for the
n = 1 to n = 4 photon regime. By restricting ourselves to one wavelength,
we can improve the accuracy of our experiment by removing all systematic
errors associated with changing wavelength6. This data is representative for
the accuracy of our experimental runs at other wavelengths. We �t a general
expression I = I0−γEα to this selection. As noted above, we expect to �nd
α = 0.5 for the normal-core hotspot model and α = 1 for a di�usion-type
model. For the vortex-based models, the expressions are more complex, but
can be approximated by α = 0.5 for the vortex nucleation model7, and by
equation 1.6 for the vortex crossing model8[16, 24, 25, 33].

We �nd experimentally α = 1.00 ± 0.06, indicating good agreement with
the di�usion model. We note, however, that since the most straightforward
variant of the di�usion model predicts I0 = Ic, this cannot be the whole
story. We must therefore look for additional e�ects to explain the detection
mechanism in SSPDs.

5More details may be found in the Appendix to this chapter.
6We will see in Appendix II of this chapter that at least some of those systematic errors

may be associated with crossing the GaAs bandgap at λ = 816 nm.
7For the vortex nucleation model, we have set γ = 0 in the terminology of [16] through-

out. This is a reasonable approximation for our experimental situation.
8In our original article, we claimed that the vortex nucleation model can be approxim-

ated as α = 0.75. This is incorrect. We present here both the original �t for (α = 0.75)
and the �t to equation 1.6, which is the correct function. We note that this error does
not alter the conclusions of this chapter.
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Figure 4.3: Experimental results on quantum detector tomography at λ =
600 nm. We show a single run of the experiment from Figure 4.2. To
this data, which is free of the systematic error associated with changing
wavelength, we �t a general expression I = I0 − γEα, where the value of
α determines which model we are in. We �nd α = 1.00 ± 0.06, indicating
good agreement with the linear (di�usion) model. We plot �ts to α = 0.5
and α = 0.75 for comparison, as well as to equation 1.6. Inset: χ2 of the
four �ts. We �nd that scenarios with a nonlinear energy-current relation are
strongly inconsistent with our experimental data.
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Figure 4.4: Temperature dependence of the fundamental current I0 in the
nanodetector, relative to the critical current. The red curve shows the tem-
perature dependence of the ratio of the current associated with the vortex
energy barrier (the barrier that a vortex has to overcome to enter the device),
and the Ginzburg-Landau critical current [24, 25]. Top inset : Temperature
dependence of the energy-current interchange ratio γ. This parameter, and
the overall linear e�ciency η are both temperature independent to within our
experimental accuracy. Bottom inset: Temperature dependence of I0 and Ic,
separately. Ic follows the temperature dependence of the Ginzburg-Landau
depairing current.

In Figure 4.4, we show the temperature dependence of the observed ref-
erence current I0, measured on the nanodetector, normalized to the exper-
imental critical current. We obtain this plot by performing an experiment
as shown in Figure 4.2 at various temperatures. We �nd experimentally
that only the current scale I0 is temperature dependent; the incoupling ef-
�ciency η and energy-current slope γ are independent of temperature. The
temperature dependence of I0 therefore completely describes the temperat-
ure behaviour of the device. Ic follows the Ginzburg-Landau temperature
dependence, which is consistent with the result found on Nb bridges [84].
The key result from Figure 4.4 is that the temperature dependence of the
reference current is di�erent from that of the critical current.

We �rst discuss the implications of our results for the practical use of
SSPDs. Around T = 5.5 K, we �nd I0 ≈ IC . This means that above this
temperature, there are energies for which the detector no longer operates
fully as a single-photon detector. This observation explains the strong re-
duction in performance that detectors experience around this temperature.
Note that with the usual semiclassical characterization, one can always �nd
a regime where measured count rates are linear with input power by going
to su�ciently low power, even at p1 � 1. The transition from single to
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multiphoton detection that we have found can therefore only be observed by
the use of detector tomography.

Our experimental Ic follows the Ginzburg-Landau Ic(T ) = Ic(0)(1 −
T/Tc)

3/2 dependence of the depairing current, i.e. the current at which the
Cooper pair binding energy is reduced to zero. The reference current I0 has
a di�erent temperature dependence. As vortices are the other major e�ect
in type-II superconductors, it is natural to consider whether the observed
current scale pertains to vortices. Vortices are a�ected by the Lorentz force,
and an unpinned vortex would be driven across the width of the strip by the
bias current. We must therefore consider dynamic vortex scenarios.

Based on the above considerations, we compare the reference current to
the current scale that governs the height of the energy barrier for a vortex
crossing [24, 25]. The ratio I0/Ic contains an explicit temperature depend-
ence through the superconducting coherence length ξ(T ) ∼ (1 − T/Tc)−0.5

(Tc = 9.6 K). In Figure 4.4, we plot this temperature dependence. The exist-
ence of an alternate current I0 6= Ic in SSPDs, and the observation that the
temperature dependence of this current follows the temperature dependence
of the binding energy of a vortex is evidence for the fact that the detection
mechanism is vortex-based and that the temperature dependence is set by
this energy.

SSPDs can also be used in the keV regime, either for detecting X-ray
photons [85] or for detecting ions. The experiment by Suzuki et al. [75] on
ion detection in 800 nm wide, 10 nm thick detectors has clearly demonstrated
that the normal-core hotspot model is correct in the keV range. This is
understandable, as a single injection of a large amount of energy will be
enough to break all the Cooper pairs at a single position along the wire,
leading to a normal-core scenario. There must therefore be a typical energy
where the di�usion-based scenario gives way to a normal-core scenario. By
�tting only low-energy events and extrapolation to high energies, we can
check whether all our results are described by a single model. We �nd that
this is the case, and therefore conclude that this transition occurs at an
energy higher than 8 eV, for our system.

The overall conclusions which may be drawn from our results are that
both vortices and di�usion play a role in the detection event. Returning
to Figure 4.1, we may therefore conclude that scenario d) is the one that
corresponds closest to reality. We note, however, that the particular vortex
crossing model proposed by Bulaevskii et al. has a energy-current depend-
ence that does not correspond to our experimental observations. This point
was adressed in a recent article by Engel et al. [28], which combines di�usion
and vortex crossing in a numerical simulation. However, both the numerical
simulation and the theoretical work predict I0 = Ic for the limit T → 0.
More theoretical work is needed to explain our results.
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4.4 Conclusion

We have demonstrated experimentally that the dependence between the ex-
citation energy and bias current required to produce a detection event in a
superconducting single-photon detector is linear. The exact linear depend-
ence in the experiment is consistent with a detection model that relies on the
di�usion of quasiparticles produced by the initial excitation. Other models
produce behaviour that deviates signi�cantly from linear dependence.

We �nd a current scale which characterizes the response of the detector
which is unequal to the critical current of the device. When the temper-
ature is increased, we �nd that the observed current scale exceeds the crit-
ical current at the same temperature where the SSPD response degrades.
We observe no temperature dependence in the other observed parameters,
which together provide a complete description of the detector. We therefore
conclude that we have localized the problem of temperature dependence
of SSPDs to a single current scale. The observed temperature dependence
matches reasonably well with a theory describing the crossing of a single
vortex. From our results, it is clear that at optical frequencies, quasiparticle
di�usion and vortex unbinding are the two main ingredients in any model of
SSPD behaviour.
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4.i Appendix: Supplementary Material9

4.i.1 Detector Tomography

Detector tomography provides the probability of a detection event without
relying on any assumptions about the detector. We therefore do not need to
consider the inner workings of each model, but treat them agnostically, i.e.
no assumptions about the properties of the detector or the parameters of the
models go into our experimental results. This is particularly necessary in the
present situation, where there is no consensus on which physics is relevant
for the photodetection process.

Our method relies on observing nonlinearities in the detection probab-
ility of the device as a function of input power. For this reason, we are
completely insensitive to the amount of overlap between the light beam and
the active area of the detector [67]. This is a requirement, because our
detector is subwavelength, and therefore the spatial overlap between our de-
tector and the input mode is necessarily small. Detector tomography enables
us to simultaneously measure the fraction of detection events caused by each
multiphoton process. We model the detection e�ciency by:

Rclick = 1− e−ηN
nmax∑
n=0

(1− pn)
(ηN)n

n!
, (4.1)

where Rclick is the observed detection rate andN is the mean photon number
of the incident coherent state. nmax is the photon regime which the detector
is operating in, which is determined by model selection (see below). η is the
linear e�ciency (which is discarded in further analysis) and the pn are the
quantities of interest: they represent the probability of a detection event,
given that n photons are absorbed in the detector.

4.i.2 Determination of the Photon Regime

The parameter nmax in equation 4.1 sets the maximum number of photons
that is still participating in the detection process in some nontrivial way,
i.e. which photon regime the detector is in. We determine nmax by making
a series of �ts to each n (up to n = 6) and computing the goodness-of-�t
statistic χ2 per degree of freedom. For a good �t, we should �nd χ2 ≈ 1.
First, we reject all �ts with χ2 � 1. Then, we pick the �t that has minimal
χ2. Based on model selection theory, we should use the Akaike Information
Criterion AIC = χ2 +2nmax to pick the model which describes the data with
fewest parameters [86]. In practice, we �nd that well-�tting models all have
the same χ2 and badly �tting models produce much larger χ2 . Therefore,

9This section is based on the Supplementary Material to J.J. Renema et al., Phys.
Rev. Lett., 112 (11), 117604 (2014).
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Figure 4.5: Goodness-of-�t parameter χ2 as a function of bias current. This
experiment was performed on the nanodetector. χ2 ≈ 1 indicates a good
�t. Each line corresponds to a model where the detector is in a particular
multiphoton regime. From this graph, we determine the multiphoton regime
which the detector is in. To �nd the appropriate photon regime, we select
the curve with minimal χ2 that has the lowest nmax.

minimizing the AIC is equivalent to �nding the �rst model with a low χ2,
which is the procedure that we described in Chapter 2.

Figure 4.5 shows a typical result (in this case for a measurement at λ =
600 nm) of χ2 for the various models as a function of bias current. The top
curve (black squares) shows the detector modelled as a one-photon detector,
i.e. pi = 1 for i ≥ 1 (i.e. nmax = 0). For currents above 28.5 µA, the
detector can be described by a model with pi = 1 for i ≥ 2 (i.e. nmax = 1).
When we decrease the current below 28.5 µA, the detector is well described
by a model with pi = 1 for i ≥ 3 (i.e. nmax = 2), and so on.

4.i.3 Experiment

The detectors were illuminated with a Fianium broadband laser, with a spe-
ci�ed pulse duration of 7 ps and a repetition rate of 20 MHz. In the present
experiment, we used optical wavelengths from 460 nm to 1650 nm. For each
experimental run, we selected a band of ∆λ = 10 nm via dichroic mirrors,
high and low edgepass �ltering and bandpass �ltering with a dielectric �lter.

It was reported that operating the detector at high count rates compared
to its intrinsic reset time can result in a spurious nonlinear response [87]. To
avoid this issue, we discard all data where the fraction of pulses that results
in a detection event is higher than e−2 ≈ 0.14.
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Figure 4.6: Raw experimental data for a single measurement run at 1400
nm. We plot the observed detection probability per pulse as a function of
bias current, for various laser intensities. Note that the laser powers are not
spaced uniformly.

4.i.4 Example

To illustrate our measurement procedure, we demonstrate our data pro-
cessing on the experimental run at λ =1400 nm. In Figure 4.6, we plot our
raw data. We measure the detection probability as a function of bias current
at various laser powers.

This �gure is best understood by reasoning outwards from the low-power
graph at the bottom-right. At low powers, we measure the usual response
which is also seen in SSPDs: at low currents, we �nd a region where the
detection rate increases rapidly when the bias current is increased, whereas
at high currents the response is more or less independent of bias current.
For SSPDs, the �atness of this plateau is sometimes taken as an informal
measure of the quality of the device. In our case, this rule of thumb is not
applicable since we have an intrinsicly nonuniform geometry. We discuss this
point further in a separate section of this Appendix.

When we increase the laser power, two e�ects occur. At low currents, we
observe detection events with a superlinear dependence on power, indicating
that we are in a multiphoton regime. Secondly, at high currents we observe
saturation of the detector.

Figure 4.7 shows the data processing. We convert the bias-current de-
pendent curves into power-dependent curves. The arrow indicates the direc-
tion of increasing bias current. We �t equation 4.1 to these curves, and then
apply model selection as described above. We consistently �nd that we are
able to �t our entire data set with equation 4.1, obtaining values for η, and
pi for each bias current.
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Figure 4.7: Experimental data as a function of mean photon number per
pulse. The black points show the experimental data from �gure 4.6, but
plotted as a function of photon number. The black curves show �ts to
equation 4.1. We select the optimal �t via model selection.

In Figure 4.8, we plot the measured values of pi as a function of bias
current. Furthermore, as a comparison, we plot the scaled low-power de-
tection probability. The fact that the low-power count rate and p1 have
very similar functional dependencies on Ib serves as a consistency check. At
higher photon numbers, the relation between observed count rates and pi is
nonlinear, as can be seen from equation 4.1.

The dashed line represents the threshold criterion used for the �gures in
the main text. We note that the threshold criterion is far away in current
from the current where our model selection switches from one model to the
next. Therefore, the accuracy with which we can determine the threshold
current is independent of the precise method of model selection.

4.i.5 Error Analysis

The accuracy with which we can measure pi is crucial to our argument
regarding the linearity of the energy versus bias current relation at constant
pi. We perform error analysis in three di�erent ways. First, we obtain
estimated errors from the �t to equation 4.1, which give us errors on the
point pi = 0.01 through standard error propagation techniques. We validate
these errors in two ways. First, we perform a calculation where we split
a data set where we integrated for 30 s at each measurement setting into
three blocks of 10 s. We analyze these blocks separately and compare the
spread in observed pi. Secondly, we perform several subsequent experiments
under exactly the same conditions, and compare the spread in pi. From
this analysis, we conclude that ∆Ib = 50 nA is a reasonable estimate of our
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Figure 4.8: Detection probabilities for absorbed photons as a function of
bias current.

error in determining the point where pi = 0.01. The fact that the error
on subsequent experiments is not larger than that of a series of interleaved
measurements is proof that our setup is stable over the required measurement
times.

4.i.6 Samples

The properties of our three samples at 3.2 K are:

nanodetector wire meander
Width w (nm) 220 150 100
Thickness (nm) 5 4.7 5

Length - 200 nm 105 µm
Ic(µA) 44 28 23
I0(µA) 33.9 21.5 17.6

γ (µA/eV) 1.6 2.7 4.4

4.i.7 Localization of the Detection Response10

Since our detector is inherently inhomogeneous in width, it is necessary to
consider whether photon absorption events in the areas far away from the
center of our detector can be responsible for detection events. We demon-
strate that this is not the case by estimating �rst the size of an excitation
at the center of the detector, and then demonstrating that excitations which
are further away than that do not cause detection events.

10See also Chapter 7.
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Figure 4.9: SEM image of a detector nominally identical to the one used in
this experiment. The active area of this device is in the very center of this
image. The white bar represents a distance of 1 µm.

First, estimates of the timescale involved in the detection process range
from τ = 2.7 ps [28] to τ = 20 ps [40]. Combined with a di�usion coe�cient
of D = 0.5 cm2/ s, this gives an excitation size of x = 10-30 nm. We note
that the lower estimate is close to the resolution with which our constriction
is de�ned. For photons which are absorbed further away than that, the
current density is much lower due to the large taper angle of 45 degrees. For
example, if the detector is operated at Ib/Ic = 0.75 at the constriction, the
current density 50 nm away from the constriction will be only Ib/Ic = 0.5.
Moreover, the additional width of the detector at that point means that the
detection probability is correspondingly lower.

From the scaling demonstrated in the inset in Figure 4.2, we can estimate
that when the detector is in the 1-photon regime for 400 nm photons on the
constriction, it will be in the 4-5 photon regime for photons absorbed 50
nm away from the constriction. The orders of magnitude discrepancy in
count rate associated with such a di�erence in photon regimes means that
the contribution from areas outside the narrowest part of the constriction
is negligible. This demonstrates that we are justi�ed in considering our
detector as a single line-segment.

4.i.8 Temperature Dependence of λc

As a consistency check, we demonstrate that our work reproduces previous
experimental results that were obtained without the use of tomography. In
previous work [73], the temperature dependence of the SSPD was described
in terms of a cuto� wavelength λc, in the form of an empirical formula for
the detection rate R(λ) = 1/(1 + (λ/λc)

n). This cuto� wavelength was
observed to be both temperature and current-dependent. At high currents,
the temperature dependence is stronger.



53

Figure 4.10: Temperature dependence of the cuto� wavelength as a function
of relative bias current.

We compare our results to those of [73] by converting our energy-current
dependence into a cuto� wavelength. The criterion for λc is equivalent to
pi = 0.5. We solve the equation αIc = I0 − γE for E = hc/λc, where
α = Ib/Ic is the bias current ratio. In Figure 4.10, we plot the result of
this computation. We �nd that we are able to reproduce the experimental
result from [73]: the observed current scale reproduces the behaviour that
was observed for a TaN SSPD. In particular, at low currents, the cuto�
wavelength is small (high energy) and barely dependent on temperature. At
high currents and low temperatures, the cuto� wavelength increases and is
in the infrared. This reproduces the earlier experimental observation that it
is the IR response of the detector that is most strongly a�ected by elevated
temperatures.



54 CHAPTER 4. APPENDIX II

4.ii Appendix: Wavelength Measurements with

an SSPD

The observation that a superconducting single-photon detector is sensitive
to the overall energy of the excitation naturally gives rise to the question
whether this e�ect can be used to measure the wavelength of an incident
beam, and if so how accurately. Motivated by this question, we performed
quantum detector tomography on a 150 nm wide superconducting single-
photon detector in a narrow wavelength range, from λ = 840 to 900 nm,
using a series ∆λ = 10 nm FWHM �lters in steps of 20 nm. We increased
the integration time in our experiment to 10 s per point, which leads to
increased accuracy in our measurements. Furthermore, we enhanced the
count rate somewhat (from � 1 MHz to ∼ 0.5 MHz) which increases the
overall accuracy with which we can determine p1.

The natural application of such a device would be as a spectrometer, as
was already proposed in 2007 by Reiger et al. [88]. The operating principle of
an SSPD-based spectrometer would be that the bias current is swept, and the
counts recorded. Using the fact that the threshold current (i.e. the current
at which one observes detection events) is di�erent for each wavelength, one
could in principle reconstruct the spectrum from the observed count rate
dependence on bias current.

There are several good reasons to be skeptical about the practicality of
such a device. First of all, it has energy resolution only in a statistical
sense. Unlike a grating-based spectrometer, there is no intrinsic information
gained about each photon individually, only about the whole in a statistical
sense. This means �rst of all that the amount of signal is abysmal (the
device operates by deliberately not detecting a large portion of the incident
photons) and secondly that sources which are varying in time cannot be
characterized. A second reason is that it is unclear how narrowly-spaced
wavelengths would be separated. The spectral width ∆λ of our illumination
in this experiment is already larger than the observed accuracy. While we will
show that we can measure the central wavelength of our incident laser beam
with an accuracy of a few nm, it is unclear how two adjacent wavelengths
would be separated. In [88], this was done for light of λ = 900 nm and
λ = 530 nm, but this resolution is far away from any practical signi�cance.

For these reasons, we include our results on this topic in this thesis more
as a demonstration of the abilities of our methods and as an exploration
of the ultimate accuracy of our system than as a concrete route to any
practical application. However, since SSPDs operate across a broad range of
wavelengths (from X-ray to mid-IR) and are robust for space applications,
we cannot exclude that there is some application, perhaps in astronomy, at
some exotic wavelength where the results presented here will prove useful.

We show the result of our quantum detector tomography experiment in
Figure 4.11. We report data for four wavelengths: 900 nm, 880 nm, 860 nm
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Figure 4.11: Quantum detector tomography of a superconducting single-
photon detector at a series of narrowly spaced wavelengths

and 840 nm. We �nd the usual e�ects for SSPDs: lower photon energy as
well as lower bias current lead to lower detection probability. In the inset of
Figure 4.11, we show a zoom-in on one experimental point, demonstrating
the observed values of p1 at a bias current of 22.0 µA. The error bars in the
�gure correspond to the error estimate from our tomographic �ts.

In Figure 4.12, we show the accuracy which is computed from the experi-
mental data presented in Figure 4.11. We de�ne this accuracy as 2(p1(λ1)−
p1(λ2))/(σp1(λ1) + σp1λ2), where σ is the error with which we determine the
value of p1 for a particular wavelength. That is: we measure how many error
bars away two adjactent points are. This is a measure of how accurately we
can determine the center wavelength of a particular quasi-monochromatic
light source.

We �nd that this accuracy depends on the applied bias current. This is
a consequence of our measurement technique: since we use the same range
of powers for the tomography experiment at each current, we achieve lower
count rates and hence higher errors when p1 is lower. However, in an applic-
ation where an unknown source has to be characterized, the intensity of that
source typically cannot be increased by the experimenter, and at any given
intensity the count rate at low bias currents will be lower. We therefore
conclude that these error estimates describe a reasonable scenario.

We note that we have improved on the result presented in [88] by more
than an order of magnitude. Two orders of magnitude (i.e. an accuracy
of a few Angstrom) could easily be reached by decreasing the width of the
wire, which makes the energy-current relation more steep, thereby improving
energy resolution at a given bias current resolution.

In the inset of Figure 4.12, we plot the extrapolated accuracy with which
we can determine a central wavelength as a function of that wavelength.
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Figure 4.12: Observed wavelength accuracy as a function of bias current.
We �nd that for higher bias currents the accuracy becomes better. The
high-accuracy plateau between 21.5 and 22.5 µA corresponds to a accuracy
of 1.4 nm. Inset: Extrapolated wavelength accuracy.

Since we expect our energy resolution to be constant, we obtain a wavelength
resolution proportional to 1/λ2 . We expect this wavelength resolution to
break down at the point where the excitation becomes energetic enough for
the normal state to start playing a role in the detection mechanism, which is
predicted to happen at a photon energy in the UV [28]. In this energy range,
the linear dependence will give way to a sub-linear dependence, reducing the
resolution.

Lastly, we note one additional e�ect which becomes visible when zoomed
in to this particular wavelength range: there is a step in the energy-current
relation between 840 and 800 nm. While more work is clearly needed to
explain this e�ect, it is intruiging that the �rst point which breaks the trend
occurs at 820 nm. We note that our 820 ± 5 nm light coincides with the
bandgap of GaAs at low temperatures, which is at 816 nm. We speculate
that this e�ect is related to the absorption of light in our substrate, but
note that this e�ect cannot be explained by invoking only the heating of
the sample due to the increased absorption: as noted in the main text, this
would decrease the amount of current required for a detection event rather
than increase it. Noting that perhaps this e�ect is responsible for some of
the spread between wavelengths ∆I = 250 µA in Figure 4.2, we pass over
this point without further interpretation.



Figure 4.13: Experimental observation of a step in the energy-current rela-
tion, around 820 nm. We speculate that this e�ect is due to crossing the
bandgap of GaAs at 816 nm.
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Chapter 5

Position-Dependent Internal

Detection Probability in a

Nanowire Superconducting

Single-Photon Detector

We probe the local nature of the detection probability in nanowire
superconducting single-photon detectors at the nanoscale. By
using detector tomography, we demonstrate that the detection
probability depends on the distance from the edge of the wire at
which a photon is absorbed. We probe this e�ect with a ∼10 nm
resolution. We �nd that there is qualitative agreement with the
di�usion-based vortex crossing model but not with other models.

5.1 Introduction

Nanowire superconducting single-photon detectors typically consist of a 60-
100 nm wide, current-carrying, thin, superconducting �lm [1]. These photo-
detectors have favourable properties such as high e�ciency, low dark count
rate and fast reset time [89], and are therefore a key resource for various
technologies, such as quantum key distribution [90], interplanetary commu-
nication [6] and cancer research [91]. Recently, large steps have been made
in the understanding of the internal working mechanism of such detectors.

While the picture is not yet complete, the current understanding of de-
tection events in superconducting single-photon detectors is as follows: an
absorbed photon breaks Cooper pairs through an avalanche process, causing
a cloud of quasiparticles a few tens of nm in size to form in the supercon-
ducting �lm. This in turn causes the current to be diverted through the
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una�ected parts of the wire. If the diverted current is su�ciently strong this
causes a magnetic vortex to unbind from the edge of the detector. Under
the in�uence of the Lorentz force, this vortex is pulled across the wire, dis-
sipating enough energy to cause a transition to the normal state, leading to
a detection event [17, 24, 25, 28, 33, 34, 72]1. One unexpected implication
of such models is a nanoscale variation of the internal detection e�ciency
(IDE), i.e. the probability that an absorbed photon is detected: the amount
of bias current required to detect a photon of a given energy depends on
the position in the cross section of the wire where the photon is absorbed
[32, 34].

To observe this e�ect, one must introduce a variation in the absorption
probability as function of position. This can be done by changing polariza-
tions of the light incident on the detector, since light polarized orthogonal to
the wire is preferentially absorbed in the center of the wire (see Figure 5.1).
However, this introduces a complication: apart from a possible di�erence in
internal e�ciency once a photon is absorbed, the two polarizations are also
not absorbed with equal e�ciency in the �rst place [10, 11, 12, 13, 92].

In this work, we investigate the local IDE by using a tomographic method
to separate the overall absorption probability from the IDE. We �nd and
quantify a polarization-dependent IDE. Our results are consistent with pre-
vious qualitative observations [10, 93, 94]. We conclude that the �eld distri-
bution inside the detector determines the position of the photon absorption
event and that the local IDE depends on where the photon is absorbed.

We explore this e�ect experimentally by measuring the polarization de-
pendence of the internal detection e�ciency as a function of wavelength and
bias current. From these data we reconstruct the position dependent in-
ternal detection e�ciency of a 150 nm wide NbN wire with ∼10 nm spatial
resolution. We compare these data to an ab initio numerical calculation in
the context of a di�usion-based vortex crossing model. From the good qual-
itative agreement with experimental data we conclude that, while this model
may require some re�nement, it contains the essential microscopic physics
of the photon detection event in SSPDs.

5.2 Experiment

To measure the internal detection probability of the detector, we use quantum
detector tomography (QDT)2 [17, 36, 37, 43, 44, 48, 49, 60, 67, 72, 95]. QDT
relies on illuminating the detector with a series of known quantum states of
light - in our case coherent states - which together function as a probe of the
detection statistics. By comparing the response of the detector to di�erent
photon numbers in the coherent light state, we can separate the one-photon
detection probability p1 from the overall probability η that a photon is ab-

1See Chapter 4.
2See Chapter 2.
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Figure 5.1: Sketch of our experiment. Top: Absorption as a function of
position in the wire for parallel (TE) and perpendicular (TM) polarizations,
calculated with an FDTD method (see text). Inset : Sketch showing the
TE and TM polarizations. The red arrow represents the polarization of the
electric �eld. Bottom: Experimental setup. Our laser pulses are tuned in
intensity by a variable attenuator consisting of two crossed polarizers and a
λ/2 wave plate. Polarization is set by an additional λ/2 wave plate. The
image is a SEM micrograph of a detector nominally identical to the one used
in this experiment.

sorbed3. From the fact that η is almost independent of bias current [67] and
that it corresponds to the area of our detector, we identify p1 with the IDE.

We perform our experiments on a 100 nm long, 150 nm wide NbN bridge
patterned on a 5 nm-thick NbN sputtered on a GaAs substrate [47]. We read
out the detector with the usual measurement setup based on a bias-tee to
separate high-frequency detection pulses from the DC bias current, followed
by a series of RF ampli�ers and a pulse counter. At each combination of
bias current, photon energy and polarization, we record the detector count
rate as a function of input intensity. Our probe states were prepared by
a broadband pulsed laser (Fianium, repetition rate 20 MHz) out of which
we select a narrow wavelength band with dielectric �lters4. We prepare
the desired intensity and polarization by �rst attenuating the light with a
combination of two crossed polarizers and a half-wave plate, and then setting
the polarization with an additional wave plate (see Figure 5.1)5.

3For more information, see Appendix I.
4For a more extensive description of our setup, see Chapter 4, Appendix I.
5While in principle it is possible to achieve the desired combination of polarizations
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Figure 5.2: Experimental results on the polarization dependence of the in-
ternal detection probability at an excitation wavelength of 1500 nm. a)
Internal detection probability p1 as a function of input polarization, for dif-
ferent bias currents (0.5 µA apart). b),c) Zoom-ins on two typical experi-
mental results (marked in thicker lines in a)) at di�erent bias currents. We
plot the internal detection probability p1 (squares) as well as the absorption
e�ciency η (circles). The red lines are sine �ts with a �xed period of 180
degrees. d) Visibilty of the observed oscillation in p1 as a function of bias
current. We �nd that our results are consistent with a constant visibility of
V = 0.09.



5.3. RESULTS 63

5.3 Results

Figure 5.2 shows that the internal detection probability of our device is
dependent on polarization. We plot the internal detection e�ciency p1 as a
function of the polarization of light with λ = 1500 nm. Each curve represents
a di�erent bias current, in steps of 0.5 µA. We �nd that over the current
range where our experiment has su�cient signal to noise ratio, the visibility
V = (pmax − pmin)/(pmax + pmin) is independent of bias current. For this
wavelength, we �nd V = 0.09. The error bars in Figure 5.2 are derived from
a series of repeated experiments which are analyzed independently, for which
we plot the mean and standard deviation6.

Our experiments show that the internal detection e�ciency and external
detection e�ciency oscilate in phase when the polarization is rotated, with
a minimum at TM polarization and a maximum at TE polarization. This
demonstrates that absorption of TM-polarized photons is less likely to result
in a detection. This polarization is absorbed in the middle of the wire. Our
result therefore con�rms the preliminary result of Anant et al. [10]: at a
given bias current, the edges of the detector are therefore more e�ciently
photodetecting than the center of the wire.

In order to quantify the variations in local IDE we must compute the IDE
as a function of polarization. We do this by multiplying the local optical
absorption probability with the local IDE. We do this for each wavelength
at which we measure the polarization-dependent detection probability.

Our strategy is to take the absorption pro�les as given - since they are
well studied - and to take the internal detection e�ciency (IDE) pro�le as a
free parameter and �t it to our experimental data. The rest of this chapter
is structured as follows: �rst, we will describe the computation of the two
pro�les, resulting in a �t to our experimental data. Then, we will compare
the resulting internal detection e�ciency pro�le to one that we calculated
from an ab initio theory.

To calculate the absorption distributions, we perform a series of numerical
simulations at the wavelengths at which we conducted our experiments of the
polarization-dependent absorption in the detector structure using a �nite-
di�erence time domain (FDTD) method (RSOFT Fullwave). We consider
a 2D model of a 150 nm wide, 5 nm thick NbN wire on a semi-in�nite
GaAs substrate and an 80 nm thick HSQ layer on top of the NbN wire. The
refractive index of NbN deposited �lm on GaAs is derived from spectroscopic
ellipsometry measurements [96]. In these calculations we neglect the e�ect
of the tapered parts of the bridge because they have little in�uence on the
absorption in the central, photodetecting section7. In Figure 5.1, the result

and intensities using two independently rotating polarizers, we found that the e�ects of
wedge in the polarizers preclude this solution.

6We will analyze the change in linear e�ciency from η = 1.6 ∗ 10−4 to η = 1.1 ∗ 10−4

in Chapter 7.
7See Appendix I for details.
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of this calculation is shown for λ = 1500 nm.

For the internal detection probability, we use the fact that the energy-
current relation was measured to be of the form Ith = I0 − γE, [28, 17, 72]
where Ith is the threshold current (i.e. the current where the detection
e�ciency is equal to some reference value), I0 is the reference current8, E
is the photon energy and γ is an experimental ratio which describes the
interchange between bias current and photon energy. We postulate that
this relation holds microscopically, i.e. jth(x) = j0 − γ′(x)E. Moreover, we
must posit a relation between threshold current and detection probability.
For this, we postulate the relation P (x) = min{1, exp(jb − jth)/j?}, with
P (x) the local detection probability, jb the bias current density,

9 and j? =
0.9 GA/m2 the low-detection probability scale which can be read o� from
the experimental data when converted to a bias current. This relation is
motivated by the idea that at P (x) < 1 the detection process consists of
tunneling through the energy barrier binding the vortices to the edge of
the wire [23, 33]. With this set of assumptions, we are able to compute
the polarization visibility for di�erent wavelengths, with the γ′(x) pro�le
speci�ed at 10 nm intervals as �t parameters.

Figure 5.3 shows the calculated and measured visibility of the polarization-
dependent internal e�ciency as a function of wavelength. We �nd that at
long wavelengths there is a greater di�erence between the measured IDE for
the two polarizations. The line in Figure 5.3 shows the result of our �t of the
internal detection pro�le to the data. From the local IDE and the optical
absorption probability, we compute the overall IDE. We �nd that we are able
to reproduce the observed internal e�ciencies with our �t. The left inset of
Figure 5.3 shows the dependence of the polarization-dependent IDE visibil-
ity on current. We �nd that theoretically, the IDE visibility is independent
of current, which is reasonable agreement with our experimental data.

The right inset shows the overall value of the single-photon internal de-
tection e�ciency, integrated across the wire. We observe that our curve
predicts the right current for the roll-o� at low detection probabilities, and
that it reproduces the slow saturation of the detector at high currents. In
this regime, parts of the detector are fully photodetecting, while other parts
are still in a �uctuation-assisted regime [35]. The variations between the
experimental data and the calculated values are less than a factor of 2. We
stress that the two insets of Figure 5.3 are direct results of the internal de-
tection e�ciency pro�le inferred from the polarization measurements. We
therefore conclude that our proposed internal detection probability pro�le is
consistent with all of the observed properties of our detector.

8see Chapter 4.
9Throughout this Chapter, we assume homogeneous current �ow, so the relation j =

Ib/(wd) holds.
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Figure 5.3: Wavelength-dependent visibility of the internal detection e�-
ciency (p1). The black squares show the experimental data. The line shows
a �t of the internal e�ciency pro�le, based on the di�usion-based vortex
crossing model. Left inset: Measured (squares) and computed (line) visib-
ility of the polarization-dependent oscilation as a function of bias current.
Right inset: Observed (squares) and computed (line) values the integrated
single-photon internal detection probability p1.
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5.4 Comparison to Theory

Figure 5.4 shows the internal threshold current pro�le which comes from the
�t to the wavelength-dependent polarization visibility data, for a wavelength
of 1000 nm (see also Figure 5.3). For comparison with other experiments, we
plot the overall bias current required to make a particular part of the wire
fully photodetecting. We estimate the systematic error on the threshold
current that is induced by uncertainty in the calculation of the optical ab-
sorption pro�les10, shown in Figure 5.4 as a grey band around our data,
which is particularly prominent around 50 nm. We �nd that this e�ect is
negligible compared to the statistical error. Moreover, it shows an inde-
pendent, ab initio calculation of the threshold current based on the model
described below. We �nd reasonably good agreement between our observed
experimental results and the theoretical values. From this, we conclude that
our model is su�ciently detailed to model the detection process in SSPDs.

Our ab initio calculations of the position-dependent detection probability
are based on a numerical model11 that allows one to determine the threshold
current for the detection of an absorbed photon of a given wavelength [28]
and a recently proposed extension [32]. Based on a simple model of qua-
siparticle generation and di�usion, we determine the local reduction of the
order parameter after the photon has been absorbed. Solving the continuity
equation for the applied bias current for this inhomogeneous situation, we
are then able to calculate the time evolution of the vortex-entry barrier. The
minimum bias current that leads to a vanishing barrier height is de�ned as
the threshold current for photon detection, as this will unavoidably lead to
a vortex entering the strip. Its subsequent movement across the strip un-
der the action of the bias current then leads to the formation of the initial
normal conducting domain triggering the detection event.

We compute the threshold current for various photon energies and ab-
sorption positions across the strip and we �nd a linear relation between
photon energy and threshold current for each position. This vindicates the
assumption that the linear relation between current and photon energy holds
on a microscopic level12.

Our ab initio calculation gives a physical explanation for the enhanced
e�ciency at the edges of the wire in terms of our microscopic model. Com-
paring a photon absorption in the center of the wire to one at the edge,
there are two di�erences. First, for an absorption event at the edge, the cur-
rent density at the edge of the wire is reduced, due to the reduction in the
number of superconducting electrons ns. However, this is more than com-
pensated by the reduction of the vortex self-energy, which is proportional to
ns. Vortices enter more easily when the superconductivity is weakened at
their entry point, and that makes the detector more e�cient at the edges.

10See Appendix I for details.
11These simulations were performed by Andreas Engel at the University of Zurich.
12See Appendix I for details.
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Figure 5.4: Top panel: Threshold current as a function of position across
the detector, for our �t and our ab initio calculation, for a wavelength of λ
= 1000 nm. The red curve shows the �t from Figure 5.3, the black curve
shows our ab initio calculation. The grey band shows the systematic error
coming from the uncertainty in the �lm thickness. The dashed line indicates
the critical current. Bottom panel: Calculated position-dependent detection
probability density as a function of bias current (1 µA intervals). At a bias
current where the edges of the wire are fully photodetecting, the detection
probability in the middle of the wire is less than 1%.
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The bottom panel of Figure 5.4 shows the consequences of the variation
of the internal detection e�ciency, evaluated for a photon with wavelength
λ = 1000 nm. We plot the detection probability as a function of position
for di�erent bias currents. The e�ect of the position-dependent detection
e�ciency is quite strong: for a current of 25 µA, photons absorbed at the
very edge of the detector have 100% probability of causing a detection event,
whereas photons absorbed at the center of the wire have only 3% probability.

5.5 Discussion and Conclusion

We note that there is some disagreement in literature about the shape of
the internal detection probability curve. The alternative model of Zotova
et al. [34], which is based on the Ginzburg-Landau formalism, naturally
takes into account vortex entry. However, it disregards quasiparticle dif-
fusion and implements a hotspot with hard boundaries. The results from
this model disagree qualitatively with our experimental results: there, a W-
shaped threshold current pro�le is predicted, with threshold currents at the
edges almost as high as in the center of the wire. The discrepancy between
their model and ours occurs precisely at the point where their 'hard' hotspot
touches the edge of the wire. We speculate that both models, if re�ned more,
will likely converge in their predictions.

In conclusion, we have demonstrated via detector tomography that the
internal detection probability of an SSPD depends on the distance from the
edge of the nanowire at which the photon is absorbed. We have probed this
e�ect with a resolution of approximately 10 nm. This e�ect occurs in addi-
tion to the well-known e�ect that photons of parallel polarization are more
e�ciently absorbed in the wire. From the wavelength dependence of this ef-
fect we have derived a spatial pro�le for the local internal detection e�ciency,
which is in good agreement with theoretical calculations done in the context
of the di�usion-based vortex crossing model. From this, we conclude that
this model contains the essential features for a complete microscopic picture
of the detection model in SSPDs. These results pave the way for quantitative
theoretical results on the detection mechanism in SSPDs.
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5.i Appendix: Supplementary Material

5.i.1 Quantum Detector Tomography

The purpose of this section is to review quantum detector tomograpy as
a technique, and to demonstrate that we can separate the change in in-
ternal detection probability associated with a change in polarization from
the change in overall e�ciency. This section consists of three parts. First,
we review the basics of quantum detector tomography. Then, we investigate
the input power dynamic range requirements of our experiment. Lastly, we
demonstrate that our experiment is accurate enough that we can reject the
alternate hypotheses that our results are entirely attributable to a change in
only either the internal or external detection e�ciency.

5.i.1.1 Tomography Basics13

The goal of quantum detector tomography is to �nd the photodetection
statistics of an unknown detector in the number state basis, i.e. to �nd
the probability of a particular detection outcome given that n photons are
incident on the detector. To probe these statistics, a collection of known
quantum states of light is used. The detector is probed su�ciently many
times with each state to accurately determine the probability of each pos-
sible experimental outcome (i.e. a detection event) for each input state.
Since the probability distribution of photons in the states is known and the
probability of each outcome has been measured, it is possible to determine
the probability of each outcome given a certain number of photons.

In experimental practice, it is convenient to use the coherent states
for this, which have a Poisson-distributed probability of photon numbers:
Πi(N) = e−NN i/i!, where N is the mean photon number, which can be
determined clasically, and i indexes the Fock states. These states are readily
produced by a laser, and the mean photon number can be adjusted by atten-
uation, giving straightforward access to a su�ciently large set of quantum
states. We denote the probability of the k-th experimental outcome to the
j-th test state Rk(Nj). The probability for i photons to produce the k-th
experimental outcome pk,i, which is the desired quantity, can then be found
by solving the matrix equation:

Rk(Nj) = Πi(Nj)pk,i. (5.1)

An SSPD has only two outcomes, a detection event (click) or the lack of
a detection event (no click), and because overall probabilities must sum to
1, it is su�cient to consider only one of these. In Chapter 2, we modi�ed
equation 5.1 to make it usable in the case where only a very small fraction of
the photons participates in the detection process. We did this by introducing

13See also Chapter 2.
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a separate quantity η which describes the overall linear e�ciency of the
detection process. We arrive at:

Rclick(N) = 1− e−ηN
n<nmax∑
n=0

(1− pn)
(ηN)n

n!
, (5.2)

where Rclick is the observed detection rate as a function of input power, η is
the overall e�ciency with which photons participate in the detection process,
and pn represents the probability that the n-photon absorption event results
in a photodetection event.

To �x the additional degree of freedom introduced by the linear e�ciency,
we must introduce an additional assumption. The essential assumption be-
hind our modi�ed version of quantum detector tomography is that there is
some unknown but large photon number for which the count rate tends to
a known, constant value14, in our case Rclick(N → ∞) = 1. For an SSPD,
the assumption is well justi�ed by the fact that high-energy excitations are
known to be more e�ciently detected than low-energy ones. It is therefore
not unreasonable to assume that we have pn = 1 for su�ciently large nmax.
At these powers, we can �x η, and �nd the nonunity pn<nmax

from the low
count rate values.

The resulting procedure is illustrated in Figure 5.5, where we plot a data
set from Chapter 2 to demonstrate the procedure. At high powers, we assume
pn = 1, which enables us to �x η. At lower light powers this discription
becomes inadequate, and we must adjust pn to �t our data. The threshold
value nmax for which pn≥nmax

= 1 can be found via model selection. In the
present experiment, we are working in the regime where only nonlinearities
at the single-photon level play a role, so nmax = 2 throughout. The only
exception is the multiphoton experiment reported on in Section 5.6.2.

5.i.1.2 Dynamic Range

From the discussion above, it is clear that su�cient dynamic range in input
powers is the essential requirement for quantum detector tomography. In
order for the procedure to work, su�ciently high powers must be taken into
account to obtain an adequate measurement of the saturation behaviour of
the detector. In order to ascertain whether this is the case in our experi-
ment, we perform the following numerical procedure: we carry out detector
tomography on our entire ensamble of data points. Then, we remove the
data point at highest power, perform tomography again, and repeat this
procedure. If we have su�cient dynamic range in our experiment, we expect
to �nd that our results are independent of the speci�c choice of probe states.

14We note that in Chapter 2 [67], we claimed that the requirement is saturation, i.e.
RN→∞ = 1. While this is by far the most natural case, in principle it is possible for
a detector to have RN→∞ 6= 1, for example the one-element detection probability of a
multi-element detector, which has RN→∞ = 0. Equation 5.1 can be trivially rewritten to
accomodate this case.
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Figure 5.5: Sketch of quantum detector tomography (data taken from
Chapter 2). We measure the response of an SSPD at various input powers.
The solid line shows the �t to equation 5.2 for this data set. The dashed
line shows the low-power extrapolation from the high-power data.

Figure 5.6 shows that this is indeed the case. We plot the internal detec-
tion probability p1 as a function of the dynamic range in our probe states, for
one data set of our experiment (1500 nm). We �nd that for dynamic ranges
> 150, our result is independent of which subset of our data we choose.
This data set is representative of our full set of experimental results; we
typically �nd values between 100 and 300 for the minimum dynamic range
requirement. This demonstrates the robustness of our result.

5.i.1.3 Constant p1 and Constant η

Lastly, we demonstrate that we are able to reject the alternative hypotheses
that our experimental results can be explained by only a polarization-induced
modulation in either p1 or η. To ascertain this, we perform the following
analysis: at each set of experimental settings (input wavelength, input power,
bias current, polarization) we record a series of independent measurements.
Then, we process these measurements separately. This gives us a measure
of the statistical spread of our results.

In Figure 5.7, we plot the result of this procedure for one data set at 826
nm. Each set of symbols of the same colour represents ten realizations of
the same experimental setting, and the spread within each colour is therefore
a measure of the statistical spread in our experiment. We �nd that there
is negative covariance between internal and external e�ciency. However,
the spread which this covariance causes is much smaller than the typical
polarization-induced shift in either p1 or η. The two dashed lines indicate the
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Figure 5.6: Quantum detector tomography at di�erent dynamic ranges in
the input power. We plot the internal detection probability as a function of
bias current for a given polarization at �xed bias current, at an excitation
wavelength of 1500 nm. The red curve shows the observed visibility for
the data set to which this polarization belongs as a function of dynamic
range. We �nd that for a dynamic range > 150, the observed visibility is
independent of the chosen range. This indicates that at su�cient dynamic
range, our results are independent of the choice of input powers.

alternative hypotheses in which only either p1 or η is polarization-dependent.
It can be seen that a large part of our data is far away from these two lines.
From this, we conclude that both internal and external e�ects are necessary
to explain our measurements.

5.i.2 Multiphoton Polarization E�ects

Detection events in SSPDs can also occur via multiphoton excitation [1, 67].
We performed an experiment at 826 nm where we illuminate the detector
with su�cient power to cause two-photon processes at lower bias current.
Figure 5.8 shows the results of this experiment. We �nd that also for mul-
tiphoton processes, the internal detection e�ciency is position-dependent.
We �nd that the visibility is a factor 2-3 higher for the 2-photon excitations
than for the single-photon excitations.

We can o�er two partial explanations for the enhanced visibility. First,
we demonstrated in Chapter 2 that multiphoton excitations are equivalent -
at least in their energy-current dependence - to single-photon excitations of
the same energy. From our simulations of the internal detection e�ciency,
we �nd that the di�erence in threshold current between the edges of the
wire and the center decreases with increasing photon energy. We therefore
expect two 826 nm photons to respond similarly to a single 413 nm photon
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Figure 5.7: Experimental test of the statistical relevance of our result. Each
set of symbols represents a single experimental setting, the spread between
them is a measure of the statistical uncertainty in our experiment. There is
a negative covariance between p1 and η within each experimental setting, as
expected.

Figure 5.8: Multiphoton polarization-dependent absorption. We plot the
two-photon detection probability p2 as a function of polarization angle. The
line shows a sine �t with a �xed period of 180 degrees to the data.
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and experience a greater di�erence in detection e�ciency. A second e�ect is
that, qualitatively, we expect the two-photon absorption probability to be
more sharply peaked at the edges of the wire. However, a full quantitative
investigation of this multiphoton e�ect would involve computation of the
internal detection e�ciency for each possible two-photon absorption scenario,
which is beyond the scope of the present work.

5.i.3 Numerical Detection Model

The simulation of the quasiparticle distribution after the absorption of a
photon is based on the model described in [28]. Here, we will repeat the
main features and assumptions of this model. It is assumed that the photon
excites one electron with energy hc/λ. This electron moves in the �lm with
a di�usion constant De. It thermalizes via inelastic scattering with other
electrons/Cooper-pairs and the lattice. Neglecting details of this thermaliza-
tion process, an exponential increase of excess quasiparticles is assumed with
a time constant τqp and an overall e�ciency ς [15]. The excess quasiparticles
themselves are also subject to di�usion with a temperature dependent dif-
fusion constant Dqp < De and eventually recombine to form Cooper-pairs
on a time-scale τr � τqp. This can be described by the following coupled
di�erential equations [28]:

∂Ce(r, t)

∂t
= De∇2Ce(r, t) (5.3)

∂Cqp(r, t)

∂t
= Dqp∇2Cqp(r, t)− Cqp/τr (5.4)

+
ςhν

∆τqp
exp(−t/τqp)Ce(r, t),

with ∆ the superconducting gap, Ce(r, t) the probability density to �nd the
excited electron at position r at time t after photon absorption and Cqp(r, t)
the quasiparticle density.

An estimation of the Ginzburg-Landau relaxation time results in τgp �
1 ps. Therefore, we assume the current redistribution due to the spatial
variation of the density of superconducting electrons nse − Cqp(r, t) to be
instantaneous on time scales > 1 ps. To obtain a more realistic current-
distribution than in [28], we now apply the relation that the velocity of
superconducting electrons can be calculated from the gradient of the phase
of the superconducting condensate [32]:

vS =
~
m
∇ϕ, (5.5)

and the current density then becomes

js = −ense
~
m
∇ϕ. (5.6)
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Figure 5.9: Variation of reduced current density at the edge j(w/2)/jb,
normalized density of superconducting electrons ns(w/2)/ns,0, and rescaled
threshold current for photon detection as a function of the distance of the
photon absorption position from the center of the wire. The variation of
the threshold current near the center of the wire is dominated by the vari-
ation of the current density at the edge. For absorption events closer to the
edge the reduction of the density of superconducting electrons becomes the
dominating e�ect. In the inset we show the variation of the current density
across the wire for di�erent absorption positions.

and we have to solve the continuity equation:

∇ · (−ense∇ϕ) = 0, (5.7)

where we use the previously calculated quasiparticle distribution to obtain
nse. Additionally, we take into account that the density of superconducting
electrons depends on the velocity vs [97].

nse ∝ 1− (vs/vc)
2/3, (5.8)

with vc the critical velocity at the critical-current density jc. Thus equation
5.7 becomes nonlinear. Once we know the current distribution, the potential
energy experienced by a vortex be can calculated as suggested in [29]. More
details about the re�ned numerical model can be found in [32].

In the inset of Figure 5.9 we plot reduced current densities j/jb across
the strip for some absorption positions. At �rst, current densities increase
with decreasing distance of the absorption position to the near edge. If the
distance becomes less than 20 nm to the edge the current density near the
edge is reduced, eventually below the equilibrium bias current-density jb.

In the main graph of Figure 5.9 the reduced current density at the edge
j(w/2)/jb is plotted as a function of absorption position, together with the
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density of superconducting electrons at the edge ns(w/2) normalized to their
equilibrium density ns,0, and the threshold current scaled by the threshold
current for absorption in the center Ith/Ith(0). For absorption events near
the center, the variation of the threshold current is mostly determined by
the variation of the current density at the edge, since the density of super-
conducting electrons at the edge remains approximately constant. At close
distances to the edge ns is signi�cantly reduced at the edge. This is the
reason for a reduced current density at the edge, but additionally leads to a
reduction of the vortex self-energy which is proportional to ns. This second
e�ect is stronger than the e�ect of the reduced current density and as a
result we obtain a monotonic reduction of the threshold current for vortex
entry as a function of the distance from the strip center.

We de�ne the threshold current as that value of the bias current for
which the maximum potential energy for a vortex becomes zero. In this case
we expect an internal detection e�ciency equal to one. With this criterion,
we obtain the energy dependence of the threshold current as a function of
position, which is plotted in Figure 5.10. The vortex-entry current without
photon absorption is also indicated by the horizontal line. This curve is
symmetric with respect to the center line of the wire due to the symmetry
between vortices and antivortices in zero applied magnetic �eld. There is a
signi�cant reduction of the threshold current for photons absorbed near the
edge of around 10% as compared to the center of the wire. We would like to
point out that for each position in the wire we �nd a linear relation between
threshold current and photon energy, consistent with previous experimental
results [18] reported in Chapters 3 and 4.

As the photon energy increases and as absorption occurs closer to the
edge, the relation between the density of superconducting electrons and the
current distribution (equations 5.7 and 5.8) becomes more nonlinear. For
absorptions very close to the edge, the nonlinear solver produces systematic
errors. For all wavelengths, we do not calculate the detection current for
absorption sites closer than one coherence length to the edge of the wire. For
short wavelengths, the area in which this occurs increases, to approximately
12 nm from each edge at 800 nm. In our calculations, we assume that the
detection current this close to the edge of the wire is weakly dependent on the
absorption position and set it constant, with a value equal to the threshold
current in the point closest to the edge that we can still reliably compute.

In our experiment, we are operating below this threshold current. To
convert the threshold current into a local detection probability, we assume
a functional dependence of the form p(Ib) = exp((jth − jb)/j?), where j? =
0.9 GA is an experimentally determined scaling current. In this way, we ob-
tain the variation of the internal detection e�ciency for a given bias current
as shown in the inset of Figure 5.4
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Figure 5.10: Calculated threshold current as a function of the distance of the
photon absorption position from the center of the wire for di�erent photon
wavelengths. The relative reduction of the threshold current for absorption
near the edge compared to absorption in the center increases with increasing
photon energy for the energy range considered in this study.

5.i.4 Absorption Calculations

In this section, we demonstrate two things: �rst, that the absorption in the
NbN wire is well approximated by considering only a 2D cross-section, i.e.
that the e�ect from the tapers of the bridge used in our experiment is small.
Second, we show that the uncertainty in the dielectric constant of our �lm
does not strongly a�ect the overall absorption pro�les.

We calculate the absorption of the detector for both polarizations using
a �nite-di�erence-time-domain (FDTD) programme (RSOFT Fullwave). To
test whether the e�ect of the taper is prominent, we perform a 3D simulation
at a wavelength of λ = 1500 nm, including the tapered parts and the central
wire, which is 150 nm wide, 200 nm long and 5 nm thick. The results of this
calculation are shown in Figure 1. The top plots of Figure 5.11 (a) and (b)
are 1D absorption distributions across the wire from the center (z = 0 nm)
to the ends of the wire, extracted from the 3D simulations. For the case of
both TE and TM, the absorption distributions across the wire have roughly
the same shape, irrespective of the position along the wire at which they are
taken.

We compare these 3D results with a 2D simulation, in which the detector
is modeled as an in�nite wire. The bottom panels of Figure 5.11 (a) and (b)
show the comparison of 2D (solid) and 3D (dashed) simulation, where the
3D absorption curve is the average of the absorption curves at di�erent z po-
sitions shown in the top part of Figure 5.11. Because we are only interested
in relative di�erences within each absorption pro�le, we normalized the 2D
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Figure 5.11: Absorption distribution in 2D and 3D, computed at a
wavelength of 1500 nm for TE (left) and TM (right). In each sub�gure,
the top panel shows the 1D absorption density across the wire at di�erent
positions on z axis, and the bottom panel shows the averaged absorption
(dashed line) of six curves on the top, as well as the result of the 2D simu-
lation, which does not consider the tapered parts.

and the averaged 3D curves to their maximal values individually. For both
the TE and TM case there is little di�erence between the 3D and 2D absorp-
tion pro�les, which means that we are justi�ed in using the computationally
e�cient 2D simulations in our main text.

The dielectric constant of NbN εNbN used throughout these calculations
is obtained from ellipsometry measurements. If we calculate εNbN from
these measurements, the result will depend on the assumed thickness of
the �lm. To assess the implications of this e�ect, our strategy is there-
fore to re-calculate ε for di�erent thicknesses, and observe the e�ect on the
absorption pro�les. In [96], the thickness of the �lm was estimated to be
4.9nm ± 0.1nm. We assume a more conservative error bar ± 0.3nm on the
thickness, based on the thickness of a single atomic layer. Then we compute
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Figure 5.12: Dielectric constant of NbN obtained by considering potential
errors in the thickness of the NbN �lm. (a) and (b) show the real and
imaginary part of εNbN . (c) and (d) show the absorption of the 2D NbN wire
with the three sets of dielectric constant of NbN, for TM and TE respectively.

the related epsilon εNbN(4.6 nm) and εNbN(5.2 nm) for thickness of 4.6 nm and
5.2 nm. These are shown in Figure 5.12 (a) (real part) and (b) (imagin-
ary part). Throughout Figure 5.12, red and blue lines indicate εNbN(4.6 nm)

and εNbN(5.2 nm) respectively. Then, we compute the absorption using these
two new sets of dielectric constants. We obtain the total absorption in the
NbN wire as a function of wavelength, which is shown in Figure 5.12 (c) for
TE and in Fig 5.12 (d) for TM. For most wavelengths (600nm � 1500 nm),
εNbN(4.6 nm) causes higher absorption, which is due to its larger imaginary
part of dielectric constant at small thickness (4.6 nm).

Variations in εNbN also a�ect the distribution of absorption across the
wire. To investigate this, we calculate the position-dependent absorption
with the three sets of εNbN for TE and TM polarization. The inset of Figure
5.13 shows these, for three representative wavelengths of 500nm (a), 1000nm
(b) and 1500nm (c). We plot the ratio between TE and TM, since this is
ultimately the quantity of interest. In Figure 5.13, the ratios of the TE
absorption over the TM absorption for each of the three wavelengths are
shown. The small variations indicate that any potential systematic error
in the dielectric constant due to a di�erent thickness of the �lm does not
signi�cantly in�uence our results in the main text.
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Figure 5.13: Position-dependent absorption ratio TE / TM at wavelengths
of 500 nm (a), 1000 nm (b) and 1500 nm (c). In each sub-�gure, three
dielectric constants (red for εNbN(4.6 nm), black for εNbN(4.9 nm) and blue
for εNbN(5.2 nm)) are plotted, corresponding to three di�erent thicknesses
of the �lm. The insets show the absorption distributions for TE and TM
illumination individually.
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5.i.5 Computation of Polarization-Dependent Visibility

In this section, we outline the algorithm which we use for computing the vis-
ibility of the polarization-dependent oscilation in p1 from a given microscopic
energy-current relation γ′(x).

� Interpolate γ′(x) on a 1 nm grid, from the points at which it is given.
We assume mirror symmetry around the point x = 0.

� Normalize each pair of absorption pro�les A(x)k, where k stands for
either TE or TM, such that their integrals are the same. This is done
to take out the dependence on overall absorption probability, which is
not measured in p1.

� For each wavelength, compute jth(x) = j0 − γ(x)E. We take j0 to
be jc,exp, in accordance with the theoretical predictions of the vortex
crossing model.

� For each current, for each wavelength, compute the detection probab-
ility density P (X) = min{1, exp(jb − jth)/j?}, with j? = 0.9 GA/m2.

� Compute p1,k(I, E) =
´ w/2
−w/2 P (x, I, E)A(x)kdx.

� Compute the average value of p1 = (p1,‖ + p1,⊥)/2

� Compute the visibilityVI,E = (p1,‖ − p1,⊥)/(p1,‖ + p1,⊥).

In order to �t the internal theshold current pro�le to the experimental data,
we use Tikhonov regularization [98]. That is, to the usual function that is
minimized in an inversion problem

g(x) =
∑
i

(Vi(γ
′(x))− Vi,exp)2/σ2

i , (5.9)

where V is the observed visibility and σ is the error on each visibility, we
add the extra term

g(x) =
∑
i

(Vi(γ
′(x))− Vi,exp)2/σ2

i + s
∑
j

(γ′(xj)− γ′(xj+1))2, (5.10)

which has the e�ect of penalizing solutions where the di�erence between ad-
jacent points in the curve is large. This is a standard way of regularizing (i.e.
making invertible) nearly ill-posed problems. We apply only weak regulariz-
ation such that the contribution to g(x) from the second term is approxim-
ately 20% of the �rst. Furthermore, we apply the constraint that the sum
γ′(x) should be comparable to the sum of the theoretical γ′(x) curve. We
�nd that we can �t our data if we set

∑
i γ
′(x)exp∆xi=1.15

∑
i γ
′(x)theo∆xi.

We varied the number of points and value of s and veri�ed that the solution
presented in the main text is robust.
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Figure 5.14: Residual sum of squares as a function of the number of points
at which we de�ne γ′(x), i.e. the number of free parameters in our �t.
We observe that beyond ∆x = 15 nm, there is only a slow decrease in our
goodness-of-�t parameter. This decrease stops at ∆x = 10 nm. From this,
we conclude that the resolution with which we can determine the local IDE
is around 10 nm.

5.i.6 Resolution

In this section we will justify the resolution claimed in the main text of
Chapter 5. To �nd the resolution with which we can reconstruct the local
IDE, we perform the procedure outlined in section 5.6.5 for various spacings
∆x of the points at which we specify γ′(x). We de�ne the resolution as that
spacing beyond which adding further points does not improve the �t to our
experimental data.

In Figure 5.14, we show the results of this procedure. We plot the RSS
(residual sum of squares) for both the unregularized and regularized version
of our �t (i.e. equations 5.9 and 5.10, respectively). We �nd (as expected)
that the RSS of the regularized �t typically lies above that of the unregular-
ized �t. We �nd that the value of the RSS decreases rapidly when increasing
the number of �t parameters, dropping to 1.3 (in arbitrary units) at a value
of ∆x = 15 nm. At ∆x = 9.3 nm, the unregularized RSS reaches a minimum
of 0.96. From this, we conclude that the resolution with which we can de-
termine the local IDE is in the range of 10 nm. In Figure 5.15, we show the
corresponding �ts to our experimental data, for a few representative values
of ∆x. It can be seen that the �ts at high values of ∆x do not �t the data.
Around ∆x = 10 nm, we achieve a good �t.

We conclude with two remarks. First, as can be seen from the top panel
of Figure 5.4, the accuracy with which we can determine the values of γ′(x) is
higher at the edges of the wire than in the center. The reason for this is that
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Figure 5.15: Fits of the regularized detection model to our experimental
data, for various values of ∆x.

the edges contribute much more to the e�ect of a polarization-dependent
internal detection e�cency, as these parts are preferentially excited by one
polarization. In the discussion above, we have largely assumed a constant
spacing between points. In principle, however, the resolution could also be a
function of the position along the wire. Our data is not of su�cient quality
to say anything quantitative about this, but we expect that the resolution
in the center would be lower than at the edges.

Second, we note that our experimental data has several outliers, which
are �tted by none of the models. For a model which completely describes the
data, we would be able to compute χ2 to determine which model describes
the data with the minimum number of free parameters. Unfortunately, the
presence of these outliers precludes this route since we would have χ2 � 1.

5.i.7 Detection Probability Pro�les

For completeness, we present all position-dependent quantities in our ana-
lysis combined, for three representative wavelengths. In Figures 5.16-5.18,
we plot the absorption for both polarizations A(x), internal detection prob-
ability P (x) and the detection probability density P (x)A(x) (dashed line)
for 1500 nm (Figure 5.16), 1000 nm (Figure 5.17) and 500 nm (Figure 5.18).
These graphs clearly illustrate why the visibility of our observed e�ect in-
creases with wavelength: for short wavelengths, the di�erence between the
two optical absorption probability densities is very small, and occurs only at
the outermost 10 nm or so. In contrast, at high wavelengths the di�erence in
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absorption probabilities is much larger, which makes the internal probability
distribution more visible.



85

Figure 5.16: Internal detection probability, TE and TM absorption, and TE
and TM detection probabilty, for 1500 nm illumination.

Figure 5.17: Internal detection probability, TE and TM absorption, and TE
and TM detection probabilty, for 1000 nm illumination.

Figure 5.18: Internal detection probability, TE and TM absorption, and TE
and TM detection probabilty, for 500 nm illumination.
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5.ii Appendix: Implications of the Position De-

pendence of the Threshold Current of SSPDs

Nanowire superconducting single-photon detectors [1] are a crucial resource
for high-e�ciency, low-dark count photodetection in the infrared [3]. Such
detectors are of great value for many applications, including cancer research
[91], and a variety of fundamental experiments [59]. The detection mechan-
ism of such devices is an ongoing �eld of study which has seen great steps in
recent years [17, 24, 25, 28, 32, 33, 34, 35, 72], in part driven by the develop-
ment of SSPDs made of novel materials such as MoGe [99], WSi [55], MoSi
[100] and MgB2 [101]. The current understanding is that when a photon is
absorbed, a cloud of quasiparticles is formed, which diverts the current from
the absorption spot. If the current is large enough, a vortex unbinds from
the edge of the wire, causing a detection event.

One crucial step in the theoretical understanding was the suggestion that
the threshold current of the detector, i.e. the current at which the detector
becomes fully e�cient, is dependent on the position along the cross-section
of the wire [34, 32] where the photon is absorbed. In Chapter 5, we demon-
strated a measurement of this position-dependent threshold current via a
di�erential measurement of two absorption probability pro�les induced by
parallel and orthogonal polarization. This con�rmed an earlier preliminary
result by Anant et al. [10] of a position-dependent internal threshold current.
Within our model, the position-dependent detection e�ciency is explained
by the fact that vortices enter more easily at the point where superconduct-
ivity is already weakened by the presence of quasiparticles.

We demonstrated a reconstruction of this internal threshold current with
a resolution around 10 nm. This is shown in Figure 5.19, where we plot
the �nal result from Chapter 5. We plot the position-dependent detection
e�ciency as established from our experiments, as well as a theoretical cal-
culation done in the vortex crossing model.

In this Appendix, we discuss the implications of a position-dependent
threshold current on other quantities which have been used to investigate
the detection mechanism. We take the result in Figure 5.17 as a point of
departure for our calculations. We will focus on two of them: the universal
curve of the detection probability and the energy-current relation. We �rst
review the main ingredients of our model. We then move on to discuss the
implications for the two quantities mentioned above.

5.ii.1 Ingredients of the Model

Our model of detection events in superconducting single-photon detectors is
inspired by previous experimental observations reported in Chapters 3 and 4
and by the numerical simulations described in [28, 32]. In these experiments,
we found that the threshold current required to achieve a constant detection
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Figure 5.19: Position dependent threshold current slope in a 150 nm wide
NbN SSPD. We have converted γ′(x) to macroscopic units for easy com-
parison with other experimental data. The dashed line shows the threshold
current which is observed for the entire wire, at low detection probabilities.

probability Ith = I0 − γE, where E is the photon energy, γ is a conversion
constant - which was found to be width-dependent - and I0 is a current scale,
which was found to be I0 ≈ 0.8Ic for a 1% detection probability at T = 3.1
K on a 220 nm wide nanodetector [17].

The numerical simulations consist of a series calculations of the threshold
current as a function of photon energy and absorption position. From these
calculations, we �nd that the linear energy-current relation extends micro-
scopically as well, that is: jth = j0 − γ′(x)E. In this way, we introduce a
position-dependent threshold current. We found in Chapter 5, however, that
in order to make our calculations agree with the observed experimental data,
we had to make a �t which resulted in slightly di�erent values for γ′(x) than
were predicted by theory.

A second component of our detection model is the assumption that the
detection probability decreases exponentially below the threshold current:
P (x) = min{1, exp((jb − jth)/j?)}, where Ib is the applied bias current, jth
is the threshold current calculated from the local energy-current relation and
j? is a current scale that describes the detection probability below threshold.
j? is in principle an unknown quantity, but it can easily be read o� from the
current dependence of the detection probability at very low current. This
proposed expression is justi�ed by the notion that low-detection probability
detection events are a tunneling process, similar to dark counts. Around
Ib = Ic, the relation between bias current and energy barrier is linear [24].
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Figure 5.20: Computed versus observed detection probability as a function
of bias current for 1000 nm and 1500 nm. The squares show experimental
data, and the solid lines show a detection probability computed as described
in the main text. The arrows indicate the point where the �rst sections of
the wire become fully photodetecting.

This serves as justi�cation of our proposed relation.

With these two ingredients, we can calculate the internal detection prob-
ability p1 as a function of bias current: we �rst compute jth for the photon
energy we are interested in, then compute the local detection probability.

We then compute the integral p1 =
´ w/2
−w/2 P (x)A(x)dx, where A(x) is the

absorption probability as a function of position.

We show the results of this computation in Figure 5.20 for two di�erent
wavelengths. We note that our calculated curves coincide with the experi-
mental data to within a factor of 2 while the measured count rate changes
over 2-4 orders of magnitude. Moreover, we note that the e�ciency im-
plied by these measurements (η ≈ 10−5) is in good agreement with the
geometry of our experiment, in which a free-space beam of a few tens of µm
is impinging on a 100 nm x 150 nm active area. We therefore conclude that
our calculations are in reasonable agreement with our measurements.

5.ii.2 Universal Curve

In Chapter 3, the idea was put forward that there is a universal curve for
photodetection in SSPDs. We observed that for photons with a wavelength
between 1000 nm and 1500 nm, the detection probability as a function of
bias current superimposes when they are rescaled as p1(I, E) = p1(I − γE).
In this section, we will demonstrate that this is only approximately true:
this relation holds only for photon states with su�ciently low energy or for
su�ciently low detection probability.

Figure 5.21 shows the calculated detection probability for various wavelengths,
calculated in the way described in Section 5.7.2. We clearly observe three re-
gimes: a regime where the detection probability increases exponentially with
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Figure 5.21: Computed detection probability as a function of bias current
and photon energy, for wavelengths from 500 nm (leftmost curve) to 1500
nm (rightmost curve). Insets: Detection probability distribution for two
wavelengths, at constant overall detection probability.

applied bias current, a regime where the detection probability increases, but
much more slowly, and a regime where the detection probability is saturated
at unity. These three regimes correspond to what is observed in experiments
[8]. With these results, we can therefore o�er an explanation of these three
regimes.

In the low-detection probability regime, only the edges of the detector
are photodetecting, and with low probability (see right inset of Figure 5.21).
As the current is increased, gradually the edges become more e�cient. Even-
tually, the edges of the detector saturate (see left inset of Figure 5.21) and
we enter the second regime. In this regime of slowly increasing detection
probability, the detection probability is increased because the area which is
fully photodetecting moves inward. Eventually, the third regime is reached
where the entire detector is operating with probability unity and the in-
ternal detection e�ciency is constant. This result provides an explanation
for the slow roll-o� of the detection e�ciency at low bias currents, which was
previously attributed to inhomogeneities in the detector. We note that our
explanation was put forward independently by Zotova and Vodolazov [34].

5.ii.3 Threshold Current

Measurements of the energy-current relation are a common way of invest-
igating the detection mechanism [8, 16, 17, 35, 20, 73, 72]. The proced-
ure is to take various excitation energies and bias currents and observe the
iso-detection probabiltiy lines, i.e. those combinations of bias current and
photon energy for which a particular prede�ned threshold detection probab-
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Figure 5.22: Calculated curves of constant overall detection probability for
various threshold probability levels for a 150 nm wide detector. The solid
lines indicate the wavelength range over which the experiment in Chapter
5 was conducted. The dashed lines indicate linear extrapolation to lower
currents; the dotted lines indicate the computed theshold current at lower
photon energies. The arrows and captions indicate the macroscopic values
of γ found at these threshold values.

ility is achieved. Usual values are 1% to 10%. Also in use is an empirical
rollo�-formula which is equivalent to a detection probability of 50% [73].

In Figure 5.22, we plot a series of computed energy-current relations.
From this �gure, we conclude that the energy-current relation depends on
the choice of threshold criterion. However, below a threshold criterion of p1=
0.3 this dependence is very weak. This is consistent with our observations
at low detection probabilities, where we observed no e�ect of changing the
threshold criterion on the measured value of γ.

We observe that the point at which the threshold current intercepts the
y-axis when extrapolated to zero energy is smaller than Ic. To compute
these graphs we used a value of I0 = Ic, in the threshold current formula
Ith = I0 − γE, but our extrapolated values of I0 are lower than Ic. This
resolves an important discrepancy between experimental results and theory.
In theoretical work, the current at which vortex crossings are possible is
identi�ed as the experimental critical current, whereas experimentally, I0 ≈
0.8Ic,exp was found at T = 3.1 K. Our computation demonstrates that both
are true at the same time: the position-dependence of the detection e�ciency
gives rise to an e�ective value of I0 that is lower than its actual value.

This e�ect is due to the fact that, at high photon energies, the detection
probability is set almost exclusively by the single point which is most strongly
photodetecting. As the photon energy is decreased, however, other parts of
the wire start to participate. This means that the detection probability



91

Figure 5.23: Internal detection probability for three combinations of bias
currents and photon wavelengths. This �gure illustrates why the overall
γ(x) measured in macroscopic experiments is smaller than the maximum
value of γ′(x). The black curve shows the detection probabilty pro�le that
has an overall detection probabilty of 1% for light with λ = 500 nm. The
red curve shows the equivalent curve for light with λ = 1500 nm. The
blue curve shows the detection probability for λ = 1500 at the current at
which the most strongly photodetecting point is equally e�cient as in the
case of 1% detection probability at 500 nm. In this last case, the overall
photodetection probability is 2.2%.

in the most strongly photodetecting point in the wire actually becomes less
when we go to lower photon energies and higher currents, keeping the overall
detection probability constant.

E�ectively, the macroscopic γ which is measured is a weighted average
of the γ′(x) curve, where obviously points with high detection probability
count more strongly. This can be seen by comparing Figures 5.17 and 5.20;
the value of γ′(x) has its maximum at γ′(40 nm) = 3.2 µA/eV but the wire
as a whole has γ = 2.9 µA/eV. This e�ect is illustrated in Figure 5.23, where
the internal detection probability is plotted for a number of combinations of
photon energy and bias current which all satisfy the 1% detection probability
criterion.

The dashed lines in Figure 5.22 show computed threshold currents at very
low values of excitation energy. At low values of excitation energy, the linear
relation between bias current and photon energy breaks down. The detection
probability at E = 0 has an exponential dependence on the threshold current
R(I, E = 0) ∝ exp(Ib− Ic). It is tempting to think that in this way, we have
naturally accounted for dark counts in our model. However, experimentally
we �nd that the extrapolated values of our linear energy-current relation are
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far away from the currents at which we observe any dark counts15. E.g. for
the device presented in Chapter 4, we �nd I0 = 33.8 µA, for a threshold value
of p1 = 0.01, whereas we don't observe any dark counts until we approach the
critical current Ic = 44µA. We therefore conclude that this e�ect represents
at best a partial solution of the dark count problem: the assumption that
dark counts can be understood as photon counts at energy E = 0 is a natural
feature of the kind of model which we present here, but is in disagreement
with experimental data.

15See Chapters 3 & 4.



Chapter 6

The E�ect of Magnetic Field

on the Intrinsic Detection

E�ciency of

Superconducting

Single-Photon Detectors

We experimentally investigate the e�ect of a magnetic �eld on
photon detection in superconducting single-photon detectors. At
low �elds, the e�ect of a magnetic �eld is through the direct
modi�cation of the quasiparticle density of states of the supercon-
ductor, and magnetic �eld and bias current are interchangable,
as is expected for homogeneous dirty-limit superconductors. At
the �eld where a �rst vortex enters the detector, the e�ect of the
magnetic �eld is reduced, up until the point where the critical
current of the detector starts to be determined by �ux �ow. From
this �eld on, increasing the magnetic �eld does not alter the de-
tection of photons anymore, whereas it does still change the rate
of dark counts. This result points at an intrinsic di�erence in
dark and photon counts, and also shows that no enhancement
of the intrinsic detection e�ciency of a straight SSPD wire is
achievable in a magnetic �eld1.

1This chapter has been submitted to Appl. Phys. Lett.
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6.1 Introduction

Nanowire superconducting single-photon detectors [1] are a crucial techno-
logy for single-photon detection in the infrared, since they can achieve de-
tection e�ciencies of up to 93% [55], with low dark count rate, low jitter,
and short reset time [3]. These detectors consist of a narrow and thin wire
of superconducting material, carrying a bias current.

While the broad outlines of the photodetection mechanism are known,
there is as yet no complete theory describing the response of such detectors.
The present understanding of photodetection in SSPDs is as follows [17,
24, 25, 28, 34, 35, 70, 72, 102]: when a photon is absorbed, a cloud of
quasiparticles is created which locally reduces the current-carrying capacity
of the wire. Current is expelled from the absorption spot. If this diverted
current is su�ciently strong, which depends on both the initial bias current
and the energy of the photon, the Lorentz force may cause the unbinding of
a vortex from the edge of the wire, leading to a measurable voltage pulse.
Therefore, experiments on SSPDs in a magnetic �eld are a natural way of
investigating the detection mechanism; one might even wonder whether the
e�ciency of the detector could be enhanced by applying a magnetic �eld.

In this chapter, we study how an applied magnetic �eld directly a�ects
the microscopic detection mechanism in a short section of wire. By using a
single narrow active area in a bridge-like con�guration, we avoid the ques-
tion of current �ow around curved sections of the device, which complicated
the interpretation of previous experiments [81, 103]. We �nd that it is the
direct modi�cation of the quasiparticle density of states in the supercon-
ductor that governs the magnetic �eld behaviour of SSPDs. In dirty-limit
superconductors (such as thin-�lm NbN), this density of states is modi�ed
by a bias current or a magnetic �eld [104]. The e�ect of a magnetic �eld is
therefore a homogeneous weakening of Cooper pairing, resulting in a higher
detection e�ciency at constant bias current. We identify three regimes. In
the low-�eld regime (up to ∼ 50 mT) the current �ow is su�ciently homo-
geneous. Bias current and magnetic �eld are completely interchangeable, as
described by the Usadel equations [105]. The relevant parameters of this
theory do not depend on the illumination wavelength or on temperature in
our measurement range, as is expected. In the intermediate regime (50 mT
- 200 mT) we still observe photon counts, but a higher current is required to
achieve photodetection than predicted by the homogeneous theory. In the
high-�eld regime (200 mT), �rst light and then dark counts are gradually
extinguished when the �eld is increased. We attribute this to the presence
of vortices in the wire.

We �nd that the enhancement of light and dark counts on a single active
spot obey di�erent �eld scales, pointing to a fundamental di�erence in the
nature of the two. The �eld scale for the reduction of the critical current
is smaller than the scale for the increase of the count rate. This leads us
to conclude that no intrinsic enhancement of the detection e�ciency of an
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SSPD under the in�uence of a magnetic �eld is possible.

6.2 Experiment

Our experiments were performed on two di�erent detectors: a 200 nm long
bridge with a width of 150 nm (sample A), and a bow-tie shaped nanode-
tector [39] with a width of 220 nm (sample B). The detectors were fabricated
on 5 nm thick NbN �lms, that were sputter-deposited on a GaAs substrate.
The detectors were patterned using conventional e-beam lithography and
reactive-ion etching in a SF6/ Ar plasma [47]. After patterning, detectors
had a critical temperature of 9.5 K, and a sheet resistance of R� = 600 Ω.

The samples were mounted in a Physical Properties Measurement System
(PPMS) in a custom insert that allows optical coupling and high-frequency
electronic readout2. We bias our device through a 100 Ω resistor, and meas-
ure the current and voltage over the device. We determine the critical cur-
rent with a 10 Ω resistance criterion. The noise from the room-temperature
broadband ampli�ers in our measurement circuit reduces the critical cur-
rent of our devices by approximately 1 µA. To facilitate comparison between
critical-current measurements and count rate measurements, all measure-
ments presented here were performed with these ampli�ers present in the
circuit.

The orientation of the applied magnetic �eld was perpendicular to the
�lm. In order to avoid hysteresis, all measurements were performed while
increasing the magnetic �eld. After a measurement run, the �eld was further
increased to 1 T, before ramping it down using the demagnetizing (degauss-
ing) option of the PPMS control software, which was found to be crucial for
obtaining reproducible results. The remanent �eld was estimated to be 1
mT, which is consistent with speci�cations [106].

We illuminate our detectors with a continuous-wave laser with a wavelength
of 826 nm, and an optical power of 12 mW. The illumination spot is approx-
imately 2 mm in diameter. We have no control over the polarization, but
it was kept constant during the experiment. We recorded the count rate
during a 1 s interval at each current.

6.3 Results

In Figure 6.1, we plot a typical experimental result. The magnetic �eld was
increased from 0 mT to 300 mT in steps of 30 mT. We observe an exponential
increase of the count rate with bias current, followed by saturation at higher
currents and a �nal exponential increase associated with dark counts, as is
usually observed for this kind of detector [89]. The presence of a magnetic

2We veri�ed that the temperature of this custom insert was identical to the temperature
measured on the block thermometer of the PPMS.
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Figure 6.1: Count rate of sample A, illuminated with 826 nm light at T = 1.8
K, for di�erent magnetic �elds ranging from 0 mT to 300 mT, in steps of 30
mT. This measurement was not corrected for dark counts. The dashed lines
are a guide to the eye indicating the part of the curve where dark counts are
dominant. Inset: False-colour SEM image of a detector (NbN coloured red)
nominally identical to sample A. The scale bar is 1 µm.

�eld shifts the curve towards lower currents3. We note that as the �eld is
increased, a larger part of the count rate curve is dominated by dark counts.
We conclude that photon counts and dark counts obey di�erent �eld scales,
even in our geometry where there is a single active area.

We have compared our results to the theory of Bulaevskii et al .[24, 25],
which considers the e�ect of a magnetic �eld on the entry barrier of vortices.
This theory predicts an exponential increase of count rate as a function of
applied �eld, at constant bias current. As in previous experiments [26, 103],
we �nd that the prediction which this theory gives for the rate of exponential
increase is an order of magnitude away from the experimental value.

In Figure 6.2, we plot those combinations of bias current and magnetic
�eld which are required to achieve a constant count rate, from 1/s to 105/s.
For low magnetic �elds B . 50 mT, the resulting iso-count rate curves lie on
a series of concentric ellipses, which we have plotted in Figure 6.2. For sample
B, we similarly �nd concentric elipses (not shown). In the measurement
regime reported here, the dark count rate is negligible (� 1 / s).

In Figure 6.3, we turn to the temperature dependence of the magnetic-
�eld response. We �nd that changing the temperature induces an overall
shift in the iso-count-rate curves, but that IΓ and BΓ are independent of
temperature. We have also veri�ed that these parameters are independent

3From the fact that the curves have the typical shape for 1-photon detection and from
the low count rate, we infer that multiphoton detection events do not play a role.
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Figure 6.2: Bias current at constant count rate as a function of magnetic
�eld for sample A. The di�erent colours and symbols correspond to di�erent
count rates, over �ve orders of magnitude. We �nd that for low magnetic
�elds (up to ∼ 50 mT) the required current to achieve a certain number of
counts depends quadratically on applied magnetic �eld. The grey lines are
equidistant elipses calculated using the Usadel formalism (see text).
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Figure 6.3: Magnetic �eld dependence of the count rate at di�erent temper-
atures for sample A. We plot the count rate required to obtain 1000 counts
/ s at di�erent temperatures. We �nd that IΓ and BΓ are independent of
temperature.

of illumination wavelength by repeating the experiment with light of 405
nm and 1300 nm (not shown). The shift in count rate as a function of
temperature at zero �eld is consistent with our previous results presented in
Chapter 4, where we showed that the temperature dependence of the SSPD
response is determined by the energy barrier for vortex entry.

6.4 Comparison to Theory

We analyze these observations in terms of the microscopic theory for dirty-
limit superconductivity, motivated by our analysis of the modi�cation of the
electronic state due to intrinsic pair breaking in similar �lms [107]. For our
�lm, λ⊥ � w, d, with λ⊥ the e�ective penetration length, and w and d the
width and thickness of the wire, respectively. Therefore, we assume a ho-
mogeneous current �ow through our wire. In this case, the superconducting
state is described by the homogeneous Usadel equation [105]:

iE sin θ + ∆ cos θ − Γ sin θ cos θ = 0, (6.1)

where E is the quasiparticle energy, θ is the pairing angle, ∆ the super-
conducting pairing potential and Γ the pair breaking energy, representing a
�nite momentum of the Cooper pairs. A bias current Ib and a perpendicular
magnetic �eld have a similar e�ect in weakening the superconducting state,
as was shown experimentally by Anthore et al. for one-dimensional alu-
minium wires [104]. In this case, the depairing energy can be approximated
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by:
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where IΓ =
√

2∆/eR(ξ) and BΓ =
√

6(~/ewξ) are characteristic current and
�eld scales, respectively, with R(ξ) the resistance of a section of the wire one
coherence length ξ long.

We note that the structure of these equations is compatible with our
experimental observations at low �elds: they de�ne a series of concentric
ellipses in the I−B plane, connecting points with equal value of Γ/∆. For a
more quantitative analysis of IΓ and BΓ, we have determined the coherence
length ξ = 3.9 nm from the slope of the upper critical �eld at the critical
temperature. To evaluate R(ξ) = 7.2 Ω, we have assumed a homogeneous
sheet resistance of our NbN �lm. We have determined the value of ∆ = 1.9
meV at T = 1.5 K using scanning tunnelling spectroscopy on a piece of the
same �lm that was used to fabricate the detectors. In the STM tunneling
spectra, we observe slightly rounded-o� coherence peaks, consistent with the
presence of an intrinsic pair breaker Γ ≈ 100 µeV , as was found previously
on NbTiN and TiN �lms with similar resistivity [107, 108]. The presence of
this pair breaker does not change the analysis that we present here. Using
these values, we estimate IΓ = 180 ± 20 µA, BΓ = 2.7 T for sample A,
and IΓ = 330 ± 20 µA, BΓ = 1.8 T for sample B. These values were used
in generating the elipses in Figure 6.2; the only remaining freedom is the
dependence between the count rate C and the normalized pair breaking
energy C(Γ/∆).

From the excellent agreement beween theory and experiment at magnetic
�eld values B. 50 mT, we conclude that in this regime the count rate of
the detector is determined only by a homogeneous weakening of the super-
conducting state, that can be described by the depairing energy Γ. This
implies that the only way in which the magnetic �eld a�ects the detection
mechanism is through the electronic state of the superconducting �lm before
a photon is absorbed. This picture is reenforced by the fact that the e�ects
of magnetic �eld and temperature are independent: the �eld response is set
by the �lm, whereas the temperature response is set by the barrier for a
vortex entering the wire when a detection event occurs.

6.5 High-Field E�ects

In Figure 6.4, we plot the �eld dependence of a representative count rate
(1000/s) and the �eld dependence of the critical current for a wider range
of magnetic �elds. We phenomenologically distinguish three regimes, inde-
pendent of the chosen count rate. In the �rst regime, up to B . 50 mT, our



100 CHAPTER 6. MAGNETIC FIELD EFFECTS

Figure 6.4: Critical current (top) and curve of constant count rate (bottom)
as a function of magnetic �eld for sample A. The black squares indicate
count rate under illumination (photon counts + dark counts), the red circles
indicate dark counts and the blue diamonds indicate critical current. The
asterisk marks the point where all observed counts are dark counts. The
solid line in the top panel is a guide to the eye. The red curve is a plot
of equation 6.2 for this count rate. We identify three regimes (see text),
demarcated by the two vertical lines. Inset: Critical current and 1000/s
dark count rate at low �elds.



6.5. HIGH-FIELD EFFECTS 101

data follows the prediction from the homogeneous theory. In the second re-
gime (50 mT < B < 200 mT), more current is required to produce detection
events with a given probability than predicted by the homogeneous theory.
In the third regime (B > 200 mT), the count rate is almost independent
of the applied �eld. However, the critical current continues to decrease and
we observe throughout our measurement range that the dark counts shift
with the critical current (see inset Figure 6.3). Eventually, there is a count-
rate dependent point where the observed count rate is entirely comprised of
dark counts, indicated in Figure 6.4. with an asterisk. At a magnetic �eld
of approximately 1 T, no detection events are observed any more in a 1s
interval.

To understand the physical meaning of the three regimes, we turn to the
critical current measurements, shown in the top panel of Figure 6.4. We
observe linear decay of the form Ic(B) = Ic(0)(1 − B/B0), with B0 = 375
mT, up to the point Ic(B) = 0.5Ic(0). At higher �elds, we obtain a power-
law behavior Ic ∝ Bα, with α ≈ −0.4. In this regime we observe that there
is no sharp transition to the normal state. We interpret these results in
the context of the extensive literature on the �eld dependence of the critical
current of superconducting strips, where the transition from linear to power-
law behaviour is interpreted as the transition from a regime of critical current
set by induced depairing to a regime where the critical current is set by �ux
�ow [22, 109, 84, 110]. The transition from induced depairing to �ux �ow
corresponds to the transition of regime II to regime III in Figure 6.4.

One important di�erence from previous results is the additional feature
indicated by an arrow in the critical current measurements around 80 mT,
where the critical current is enhanced relative to the linear dependence. We
interpret this feature as a single vortex which is pinned in our material. All
our measurements were done in a geometry that is intrinsically photodetect-
ing, and a photodetection event entails a transition of the wire to the normal
state and Joule heating. Therefore, in-�eld cooling occurs each time there is
a detection event. At 90 mT, we meet the criterion [111] for entry of the �rst
vortex B ≈ Φ0/w

2. We conclude that while there is still an edge barrier at
B = 80 mT, so that vortices cannot enter, apparently the pinning is strong
enough that a vortex which is already there is not expelled. We note that
Il'in et al. [112] have seen comparable enhancements of the critical current
that were due to vortices, albeit in the �ux-�ow regime.

From this, we infer the following explanation of our results: in regime
I, the current �ow is su�ciently homogeneous that the response can be ex-
plained by a homogeneous degradation of the superconducting state, de-
scribed by the homogeneous Usadel equation. At the beginning of regime
II, a vortex enters the detector and is pinned in the material. This destroys
the homogeneity. From the fact that the current which is required to ob-
tain a detection event is higher than expected from theory, we infer that the
presence of a vortex is detrimental to the detection process.

A full theory of regimes II and III is beyond the scope of the present work.
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It would have to take into account the direct e�ect of the magnetic �eld on
the vortex barrier, the current distribution in our sample in the presence of
vortices, and the associated local changes in ∆. Any full microscopic theory
of photodetection in SSPDs, even at zero magnetic �eld, would also need
to take into account the intrinsic inhomogeneity that has been observed in
similar �lms [113, 114], and the observed intrinsic pair breaker, as it has
been shown recently that these can give rise to an unexpected response to
electromagnetic radiation [115].

6.6 Conclusion and Discussion

We have demonstrated that for low �elds, the response of an SSPD to an
applied magnetic �eld is set entirely by the e�ect that the �eld has on the
electronic state of the material. In this regime, there is an interchange
between the bias current and the applied magnetic �eld, in agreement with
the homogeneous theory for dirty-limit superconductivity. Since the material
parameters that enter this theory (λ⊥, ρ) are similar for all SSPDs found in
literature, our results are not limited to NbN detectors. WSi, for example
has ρ = 200 µΩcm and λ = 1400 nm [55, 32]. For the intermediate and high-
�eld regimes, geometry and �ux pinning properties become more relevant.
Therefore a more diverse behaviour might be expected.

Our experiment proves that the di�erence between light and dark counts
in a magnetic �eld is not due to them originating from di�erent points in
the wire, as has been put forward by others [26, 42, 116]. We conclude
that there is a di�erence in the nature of light and dark counts in SSPDs:
photon counts scale with a �eld scale BΓ inherent to the material, whereas
dark counts scale with the change in critical current under the in�uence of
magnetic �eld, which depends on geometry. This di�erence between light
and dark counts is as of yet unexplained and carries implications for the
design of SSPDs: it means that the only way in which an SSPD can be
made more e�cient by an applied magnetic �eld is by choosing a geometry
where the critical current is not adversely a�ected by the applied �eld, such
as a spiral [117]. For a straight wire, we conclude that no enhancement of
the detection e�ciency can be achieved by applying a magnetic �eld.



Chapter 7

The Size of a Hotspot in

Superconducting

Single-Photon Detectors

We report on a preliminary set of data on a two-photon exper-
iment to measure the size of an excitation area inside a super-
conducting nanowire single-photon detector. We �nd a size of
the interaction area (i.e. 'hotspot size') of 22 ± 2 nm, which in-
creases strongly at lower applied bias current. We �nd that this
size is constant with photon energy. We �nd that in our tapered
samples, detection events also occur up to approximately 70 nm
away from the narrowest part of our wires.

7.1 Introduction

Superconducting single-photon detectors [1] are a crucial technology for a
variety of applications [89]. One such application is multiphoton detection.
In particular, superconducting bridges (called nanodetectors in this context)
can be used for multiphoton subwavelength imaging [39], near-�eld multi-
photon detection [118], and the measurement of ultrasensitive higher order
autocorrelations [40], when biased with a critical current which is lower than
the one used for single-photon detection. Simultaneous detection of up to
six photons has been reported in the literature [40, 17].

The current model of photodetection in such detectors is as follows (see
Chapters 1 and 4) [17, 28, 32, 72]: after the absorption of a photon, a cloud
of quasiparticles is created. This cloud di�uses, spreading over some area of
the wire. The redistribution of current towards the edges of the wire may
cause a vortex to unbind from the edge of the wire, if the applied bias current
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is su�cient. This causes a normal-state region to appear in the wire, which
grows under the in�uence of Joule heating from the bias current, leading to
a measureable voltage pulse and a detection event [9].

One of the earliest questions raised about the working mechanism of
SSPDs was the size of the excitation made by the impinging photon, known
as a hotspot. This question has particular relevance for multiphoton detec-
tion: if two photons are not absorbed su�ciently close to each other, no joint
photodetection event will occur [44]. Therefore, the question of the hotspot
size is crucial for interpreting multiphoton experiments, and for designing
detectors that have optimal multiphoton detection properties.

In earlier work, attempts were made to determine the size of this hotspot
by looking at the energy-current relation. Since the normal-core hotspot
model (which was in use at the time) is essentially a geometric model, at-
tempts were made to determine the size of the hotspot, by measuring the
amount of current required to produce a detection event [66, 76, 119, 120].
This way of reasoning is in clear disagreement with the role of di�usion in
the current models of the detection event, since the di�usion equation is
linear in the initial excitation, i.e. one would expect the hotspot size to be
independent of energy, whereas in the normal-core model this size increases
as the square root of the energy. Moreover, the inferred size of the hotspot
depends crucially on the assumed e�ciency with which the energy of the
initial photon is converted into quasiparticles.

In this chapter, we report preliminary work on determining the hotspot
size1 from a direct model-free measurement. Our strategy is to compare the
e�ciency of a detector in the one- and two photon regime. By comparing
these e�ciencies, we can �nd the distance which two photons have to be apart
in order to produce a detection event. Reasoning classically, our technique
relies on the fact that the �rst photon may be absorbed anywhere in the
wire, whereas the second photon must be absorbed within some distance shs
from the �rst. The hotspot size can therefore be extracted by comparing the
e�ciency in the one and two-photon regime.

We �nd a hotspot size which depends on the applied bias current. In
the limit of high detection probability, we �nd that the size shs becomes
constant at 22 ± 2 nm. We perform this experiment for four NbN detectors
of 0, 100, 200 and 400 nm in length. At lower currents, this size increases,
reaching a value of 200 nm for our two longest detectors. From this meas-
urement we are able to infer which part of our wire is photodetecting. We
�nd that the e�ective size of our detectors is 74 nm larger than their nom-
inal size. We attribute this to photodetection events in the tapers of the

1We retain the terminology 'hotspot size' for consistency with previous work, even
though this only has a meaning in the normal-state hotspot model, where the edges of the
hotspot are sharply de�ned. We de�ne the quantity which we are aiming to measure as
the maximal distance with which two photons can be absorbed and still jointly (i.e. with
a probability greater than they would have individually under the same circumstances)
cause a detection event.
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wire. This observation matches with previous results on the photodetect-
ing area of zero-length bridges. We interpret these observations in terms of
the di�usion-based vortex model. We discuss the implications of our results
on the engineering of SSPDs as well as on their application as multiphoton
detectors.

7.2 Experimental Setup

The detectors used in this experiment were patterned from a single �lm (5
nm NbN on GaAs) to ensure that the properties of the wires were as similar
as possible. The �lm is deposited under an ambient temperature of 400
C, which was found to give the optimal critical current for NbN on GaAs.
Under these conditions, the critical temperature of the �lm was 9.6 K, as
opposed to 11 K for detectors grown at 440 C. The detectors were patterned
using conventional e-beam lithography and reactive-ion etching in an SF6

/ Ar plasma. We fabricated detectors with lengths of 0, 100, 200 and 400
nm. For each length, we fabricated 16 nominally identical detectors, with a
width of 150 nm.

In this experiment, we use a series of detectors which must di�er only
in the wire length. To �nd a group of similar detectors, we measured the
critical current of these detectors in a probe station. One detector of each
length was selected for further investigation for having similar critical cur-
rent, between 27.4 and 27.9 µA. These detectors were located closely together
on the sample, pointing to slowly varying properties within our �lm. After
measurement of the critical current, we measured the quantum e�ciency of
these samples and found this to be of the order of 10−4, which is the expected
value taking into account the limited overlap between our illumination spot
and the active area of the detector. Moreover, from the high and constant
critical current, which is comparable to earlier samples2 [39], and extensive
inspection of detectors fabricated in the same process by SEM [121], we have
minimized the possibility that these detectors are su�ering from fabrication
errors.

To characterize these detectors, we perform quantum detector tomo-
graphy. We apply the usual technique of two crossed polarizers with a λ/2
wave plate in between to create variable attenuation of the incident light
pulses with a dynamic range of more than 3 orders of magnitude. The axis
of the second polarizer was set in such a way that the count rate on the
devices was maximal, which corresponds to the TE polarization. This has
the added advantage of producing the most uniform excitation probability
density across the wire. We use a Coherent Vitesse laser (λ = 800 nm) to
perform detector tomography. This laser is well suited for this experiment
because it has a pulse duration of approximately 100 fs. Since the lifetime
of an excitation in an SSPD is a few tens of ps [40], in this way we avoid

2See Chapters 2-4.
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Figure 7.1: Relevant length scales in our experiment. The rectangle repres-
ents the detector, with an overall length L. The dot represents the quasi-
particle excitation produced by the absorbed photon ('hotspot'), which has
a length s.

introducing the temporal response of the device into the problem: our pulse
duration is su�ciently short to act as a delta-like excitation compared to all
relevant timescales.

7.3 Theory

In this section, we derive the expressions that we use to interpret our exper-
imental data. For the two-photon e�ciency, we compute the e�ciency per
photon, i.e. ηsingle =

√
ηoverall, where ηoverall is the overall e�ciency of the

multiphoton process. The e�cency per photon ηsingle is the quantity that
is reported by our tomography protocol.

The geometry of our experiment and the length scales involved are shown
in Figure 7.1. We show two cases: �rst, the absorption of a single photon,
which can occur anywhere in the wire, and second, the absorption of two
photons. We adopt a classical picure in which we may consider the photons
as arriving sequentially. We need not consider photon bunching because the
probability of two photons being absorbed by the same electron is minuscule,
given that there are approximately 107 charge carriers in a 5 nm thick NbN
�lm 200 by 150 nm in size [122]. For a one-photon event, the overall linear
e�ciency of the device is just proportional to the length of the device

η1 ∝ L. (7.1)

For a two-photon event, the two photons must be absorbed within some
distance s from each other, which represents the e�ective interaction distance
between the photons which is the quantity of interest. The �rst photon can
be absorbed anywhere in the wire, as in the single-photon case, but the
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second photon e�ectively sees a smaller detector, of only length s. The
overall e�ciency for this process is therefore:

η2
2 ∝ Ls. (7.2)

A comparison of the one and two-photon cases yields the hotspot size.

s = (η2/η1)2L, (7.3)

which contains only measurable parameters on the right hand side of the
equation.

This derivation containts two crucial assumptions: �rst, that the absorp-
tion probability across the detector is uniform. If this were not the case, we
would have to consider each position individually. We satisfy this assump-
tion by illuminating our detector with a light spot wspot ≈ 0.2 mm, which is
much larger than the device itself, which has L = 400 nm and w = 150 nm
for the largest device in this study.

The second assumption is that the in�uence of the hotspot extends across
the width of the wire. In our model, two photons absorbed at the same
position along the wire, but in di�erent positions along the cross-section are
counted as having shs = 0, i.e. we only count the distance along the wire.
The motivation for this is that it is known that the in�uence of the hotspot
in the form of redistributed current extends across the width of the wire.
This justi�es our assumption.

7.4 Results

Figure 7.2 shows the experimental results, for our 100 nm long sample.
Quantum detector tomography enables us to separately determine both the
absorption e�ciency η and the internal detection probability for a given
number of n photons pn. This is done by using the count rate measurement
at high intensity as a reference, assuming pn = 1 for n > nmax, where nmax
is some photon threshold, which can be determined via model selection. By
performing quantum detector tomography (QDT), we �nd a regime where
the detector primarily responds to single photons and a regime where the
detector primarily responds to two-photon events. These regimes are de-
marcated by the high values of the detection probability p1 and p2, from
Ib =20 - 24 µA and Ib =16 - 20 µA, respectively. We also �nd the e�-
ciency in the one and two-photon regime. These results are consistent with
results reported in Chapters 2-4.

We wish to compare linear e�ciencies at currents at which the nonlinear
internal detection probability of the wire is the same, using the nonlinear
coe�cient as a measure of the location of the one- and two-photon regimes.
We measure the distance between the one- and two-photon regime and ob-
serve that this value is independent of the chosen threshold criterion, i.e.
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Figure 7.2: Experimental result of quantum tomography on a supercon-
ducting wire of 100 nm length. We �nd the e�ciency as reported by our
tomographic protocol in the one- and two-photon regime, as well as the
coe�cients p1 and p2 describing the internal nonlinear detection probabilit-
ies [67]. To compare the e�ciency of the two photon regimes, we shift the
e�ciency curves by ∆I = γE such that p1 and p2 overlap. This process is
indicated by the arrow; the dotted lines show the shifted η and p1.

that a simple shift in current serves to describe the di�erence between the
one- and two-photon regime. This observation is consistent with the results
presented in Chapter 2. We then apply this shift, such that the one- and
two-photon regimes line up (dotted lines in Figure 7.2). Note the excellent
agreement between p2 and p1 over more than three orders of magnitude.

Finally, to obtain the size of the hotspot, we divide the e�ciency η(I)
by its shifted equivalent η(I + ∆I), obtaining the ratio η2/η1 of detection
probabilities from equation 7.3. For each detector, we �nd that for detection
probabilities in the range of p1 = 0.1 − 1, the ratio is independent of the
precise detection probability. We take this value as characteristic for that
length of the detector. We then repeat this process for all four detectors.

Figure 7.3 shows the result of this procedure, for our four detectors of
di�erent lengths. We �nd qualitatively that the ratio η2/η1 decreases when
increasing the length of the wire, as is expected from equation 7.3. We �nd,
however, that the �t of equation 7.3 to our experimental data is poor: it
overestimates the ratio η2/η1 for the 100 nm device. Moreover, it is com-
pletely unable to account for the �nite value of η2/η1 for our zero-length
detector. The observation that this detector has a �nite probability for two-
photon detection forces us to consider the tapers which lead to the device.
These tapers are fabricated under a 45 degree angle and serve to lead the
current into the active part of the wire without introducing too much current
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Figure 7.3: Result of the measurement of the hotspot size on a series of NbN
detectors. The four data points are obtained by repeating the procedure
outlined in Figure 7.2. The red line shows a �t of equation 7.3 to the exper-
imental data, using the nominal length of the devices. The blue line shows
a �t to the data taking into account an unknown extra length of the device,
which represents the tapers leading to the narrow section of the bridge. For
this �t, which has χ2 = 3.6, we �nd s = 22± 2 nm and ltaper = 74± 12 nm.

crowding.

To take into account the e�ect of the tapers, we replace the nominal
value of L in equation 7.3 by L + ltaper, where ltaper is some characteristic
length over which the leads of our system are also photodetecting, at the bias
currents and detection probabilities which we are considering here. With this
additional assumption, we are able to �t our data reasonably well (χ2 = 3.6).
We �nd a value of shs = 22± 2 nm, and a value of ltaper = 74± 12 nm.

Figure 7.4 shows the dependence of the size of the hotspot on the overall
detection probability. We �nd - suprisingly - that lower detection probab-
ilities (i.e. lower currents) correspond to larger hotspots. Interestingly, we
observe that the 0 nm brige deviates from the behaviour of the other devices
at low detection probabilities. The 100 nm bridge follows the trend of the
200 nm and 400 nm bridge up until shs ≈ 75 nm, and then deviates as well.
We explain this result by pointing to the limited size of these devices; the 100
nm curve starts to deviate at the point where the size of a hotspot becomes
comparable to the size of the detector. For the 200 and 400 nm bridges,
we �nd values of s as large as 200 nm at p2 = 2 ∗ 10−3, corresponding to
Ib = 13.5 µA. Decreasing the current further, we arrive in the regime where
three-photon detection events become dominant, and our analysis breaks
down.

Figure 7.5 shows the dependence of the ratio η2/η1 on the wavelength
of the incident photons, using a 100 nm long detector from a di�erent �lm.
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Figure 7.4: Dependence of hotspot size on detection probability. We plot
the size of the hotspot as a function of the internal detection probability p1.
Inset : the same data as in the main �gure, but plotted on a linear scale. In
both the main �gure and the inset, the black line indicates the hotspot size
of shs = 22 nm, which is found in the limit of high detection probability.

For this experiment, we used a �ltered Fianium supercontinuum laser, which
has a speci�ed pulse duration for its seed laser of 7 ps. We note that the
observed value of η2/η1 is independent of photon energy. This is a strong
indication of the role of di�usion in the detection process: since the di�usion
equation is linear, this result can be interpreted in a very natural way in
this context. In the normal-core model, in contrast, one would expect a
1/
√
λ dependence, which would mean almost a factor 2 di�erence over the

wavelength range at which we performed experiments.
We note that the value of η2/η1 which is observed here is slightly higher

than for the data reported on in Figures 7.1-7.4: if converted to a value
for s using the same method, this would give a value of s = 35 nm. We
note, however, that the laser used in this experiment has a temporal pro�le
which is not well-suited to this experiment. In fact, it is expected that
the pulse duration should depend on wavelength, increasing strongly with
the di�erence |ω − ωpump|, where ω is the frequency of the required light,
and ωpump is the pump frequency, to a value of several tens of ps3 . We
note that no evidence of this is visible in our measurements. Moreover, we
note that the 100 nm detector used for this experiment was from a di�erent
�lm than the ones reported on above, which is known to give rise to larger
�uctuations in properties than between detectors on the same �lm. We stress
the preliminary character of these measurements.

Using the di�usion coe�cient D = 0.5 cm2/s, which is more or less
constant for all SSPDs reported on in the literature, we may convert our

3This statement is based on private communication with Fianium Ltd.
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Figure 7.5: Values of η2/η1 for a 100 nm long device, measured with a �ltered
Fianium supercontinuum laser.

e�ective length to a time scale using the 2D-di�usion relation s =
√
Dt. For

our high-detection probability value of s = 22 nm, we �nd ths = 10± 2 ps.
For the low-detection probability limit, we arrive at ths = 800 ps, which
is comparable to the quasiparticle recombination time tr = 1000 ps. We
speculate that the recombination of quasiparticles could be the reason why
the increase of the e�ective interaction distance saturates at 200 nm. More
work at this point - especially on longer wires - is certainly necessary to
obtain an answer to this question.

Next, we consider the observed detection probability dependence of s.
By relying on the power-dependence of two-photon detection events, we
postselect on those events where exactly two photons play a role. It is
therefore natural to consider the quasiparticle density at a point inbetween
the two photon absorption spots. Since di�usion occurs not only towards
this point but in all directions, the quasiparticle density at the point where
a detection event is supposed to occur will be lower for photons with high
separation. If the required detection probability is lower, the absorption
positions can therefore be further apart. This argument o�ers a qualitative
explanation for the increase of s at lower detection probabilities, but a full
theory would have to take into account the e�ect of the reduced bias current
as well as all possible combinations of absorption positions.

Finally, we consider the measurement of the e�ective taper length ltaper =
74 ± 12 nm. We consider three e�ects: the intrinsic spread in e�ciency of
the detector as a function of transverse position (which we considered in
Chapter 5), the accuracy with which our constriction is de�ned, and the
observed overall e�ciency.

In Chapter 5, we demonstrated that the edges of the wire have a lower
threshold current than the center part of the wire. This means that there
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is a range of currents for which only the edges of the wire are e�ciently
photodetecting. This di�erence in threshold currents was calculated to be
∆Iedge,center = 0.14Ic, which is in reasonable agreement with the value of
∆Iedge,center ≈ 0.2Ic found experimentally. To make an order of magnitude
estimate of the expected length over which the taper is still photodetecting,
we adopt a zeroth-order approximation in which we consider the e�ect of the
taper on the current density but not on any other photodetection properties
of the wire. We �nd that the distance in the taper at which the edges of
the wire are still photodetecting lies 30 nm away from the center of the
constriction, pointing to a theoretical value of ltaper,th = 60 nm. Moreover,
we must consider that at a given bias current, detection events in the taper
will occur with lower probability, which we demonstrated results in a larger
interaction length. We note, however, that this is a strong oversimpli�cation
as the photodetection will become less e�cient because the wire is wider,
which would lead to a lower estimate for ltaper.

Secondly, we must also consider the radius of curvature with which the
central section of our zero-length bridge is de�ned, which is in the range
of 5-10 nm. This would be added to any estimate of the photodetecting
length. Thirdly, in Chapter 2, we measured a value of η = 1.5 ∗ 10−4 at high
current for a detector nominally identical to this one. Taking the absorptance
calculated in Chapter 5 and using the assumptions of uniform e�ciency
and illumination, we �nd ltaper = 50 nm. We therefore conclude that our
measured value for the taper photodetection length is of the right order of
magnitude.

7.5 Discussion

Multiphoton detectors su�er from overall low e�ciency. Unfortunately, our
results point to the fact that this e�ciency cannot be strongly enhanced by
increasing the length of the wire, at least for high detection probabilities. If
the wire length is increased, the sample functions e�ectively as a series of
independent nanodetectors one after each other, leading only to a linear en-
hancement in e�ciency. A much better solution to enhance the multiphoton
detection probability would be to introduce a thicker �lm for enhanced local
absorption, or a cavity structure, since that enhances the absorption prob-
ability per photon, leading to quadratic instead of linear improvement in the
two-photon regime.

The technological advantage of the low value of shs is that in any kind
of spatially resolved two-photon imaging scheme, it is possible in principle
to obtain far-subwavelength resolution using an appropriately current-biased
nanodetector in two-photon mode. One could imagine, for example, running
an asymmetric detector at such a current that only one edge is photodetect-
ing. Then, one could sample the two-photon near �eld with a resolution of
approximately 20 nm in one direction and some tens of nm in the other.
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We demonstrated previously4 that the detection probability depends
strongly on the position along the cross-section of the wire where the photon
is absorbed. This applies more strongly to multiphoton detection events.
It is therefore clear that our measured length is an ensemble average of
all possible pairs of absorption locations, weighted by the probability that
those absorption locations produce a detection event. At very low detection
probabilities, the overall detection probabilty is exponentially dominated by
detection events at the edge of the wire. We therefore conclude that at
low detection probability (p . 0.05) [35], we have measured the e�ective
interaction length between photons which are absorbed at the edges of the
wire.

We expect that the hotspot size which we have measured is a size along
the length of the wire. The reason for this is as follows: since we must sat-
isfy current continuity in the wire, an absorbed photon causes a disruption
across the entire width of the wire. Apart from the corrections due to the in-
homogeneity of the threshold current mentioned in the previous paragraph,
we therefore expect that the interaction distance which we have measured is
the component of the absorption distance along the length of the wire. Since
the width of our wire is much smaller than the observed hotspot length, how-
ever, we can safely assume that hotspots are circular, assuming an isotropic
di�usion constant. A full study of these problems would require a thorough
sampling of all possible multiphoton absorption events, which could be done
most e�ciently through a Monte Carlo simulation. This is however beyond
the scope of the present work.

We note that the position-dependent detection e�ciency carries in it a
length scale as well: from Figure 5.4, we observe that there is a plateau of low
threshold currents at the edges of the curve, which is approximately 30 nm
wide. Since the threshold current is reduced when the hotspot is in contact
with the edge of the �lm, this provides another, more indirect measure of
the hotspot size. This measurement is in reasonable agreement with the one
presented here.

A experiment similar to ours was performed in WSi [123], where a con-
stant, bias-current independent value of shs =100 nm was found. This result
is supported by numerical simulations of quasiparticle multiplication and dif-
fusion [32], which show that due to the lower density of states at the Fermi
level and the lower gap, even a photon with a relatively small energy can
make a signi�cant part of the cross-section of the wire normal.

7.6 Conclusion

We have demonstrated a direct measurement of the hotspot size in a series of
NbN superconducting single-photon detectors. We �nd a hotspot interaction
size of 22 nm, which increases rapidly to a value of 200 nm when the detection

4See Chapter 5.
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probability (or equivalently, the bias current) is decreased. We have shown
that this length is independent of wavelength. We have interpreted this
data in the context of the di�usion of quasiparticles. Our results show that
far-subwavelength imaging with a suitably engineered SSPD is in principle
possible.



Chapter 8

Conclusion and Future Work

8.1 Summary

The main result of this thesis is strong experimental evidence for a di�usion-
based vortex crossing detection mechanism in superconducting single-photon
detectors. The physical picture which arises from our experiments is as
follows: when a photon is absorbed, a cloud of quasiparticles is created.
That cloud spreads, forming an obstacle which diverts some of the bias
current towards the edges of the wire. This removes the energy barrier that
otherwise prevents vortices from entering the �lm, causing a vortex to enter.
This vortex then causes a transition to the normal state by the friction
experienced as it is pulled across the wire by the Lorentz force.

We have provided the following experimental evidence for this picture
(see Figure 8.1):

� We have demonstrated that the number of photons that excite the
detector does not in�uence the detection response directly. Rather,
only the overall energy of the excitation, combined with the applied
bias current, sets the detection probability. This is evidence that it is
the total amount of quasiparticles at the band-edge in some relevant
volume that sets the detection probability.

� We �nd that the energy-current relation is linear in applied bias cur-
rent and photon energy (see Figure 8.1b). This is strong evidence for
the role of di�usion: in a model where there is no point in the wire
that is in the normal state, the e�ect of the impinging photon on the
superconductivity is only through the reduction of the Cooper pair
density.

� We �nd that the temperature dependence of the device follows the
temperature dependence of the energy scale for vortex entry into the
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(a) From Chapter 2: Quantum detector
tomography on an SSPD - the workhorse
experiment of this thesis

(b) From Chapter 4: The linear energy-
current relation in SSPDs.

(c) From Chapter 4: Temperature depend-
ence of the internal detection mechanism of
an SSPD, which follows that of the energy
scale for vortex entry (red line).

(d) From Chapter 5: The experimentally de-
rived position-dependent internal detection
e�ciency, as well as a theory curve computed
for the di�usion-based vortex model.

(e) From Chapter 6: The quadratic depend-
ence of bias current on applied magnetic �eld,
for constant detection probability.

(f) From Chapter 7: Measurement of the size
of a hotspot in an SSPD.

Figure 8.1: The main results of this thesis. Full descriptions of each �gure
can be found in the respective chapters.
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�lm (see Figure 8.1c). This is evidence for the role of vortices in the
detection mechanism.

� We �nd that the detector is polarization-sensitive in its internal de-
tection probability, which is evidence of a position-dependent internal
detection e�ciency (IDE) (See Figure 8.1d). We have reconstructed
this position-dependent IDE with a resolution of approximately 10 nm.
We �nd that the edges of the wire have a lower threshold current for
photodetection than the center of the wire, leading to a regime where
the wire is more e�ciently photodetecting at the edges than in the cen-
ter. The explanation for this is that the vortex barrier is lowered by
the presence of quasiparticles, so if the quasiparticle cloud is in contact
with the edge of the wire, the current required for vortex entry is re-
duced. This is further evidence for the role of vortices in the detection
mechanism.

� We have measured the size of the excitation in the detector, which we
found to be 22 nm (see Figure 8.1f). Our preliminary result is that
this value is independent of wavelength, which �ts with our physical
picture. Moreover, this length scale is in reasonable agreement with
the distance at which we observe strongly reduced threshold currents
in our position-dependent IDE.

Moreover, we have studied the magnetic �eld dependence of the detection
mechanism (see Figure 8.1e). While our explanation for that �eld depend-
ence is conceptually separate from the model described above, it is entirely
compatible with it. The reason for this is that our description, which is
based on the Usadel equation, is concerned with the initial properties of the
�lm, whereas the model described above is concerned with the dynamics of
the detection event itself. We do observe that the permanent presence of a
vortex in the material is strongly detrimental to the detection mechanism.

8.2 Detection Models

We discuss the implications of our results for the four models: the normal-
core hotspot model, the di�usion-based hotspot model, the normal-state
vortex model and the di�usion-based vortex model (see Section 1.2).

Allthough the normal-core model appears not to be applicable to NbN,
recent simulations show [32] that in WSi the normal state might play a role
in detection events. Moreover, recent experiments similar to Chapter 7 of
this thesis show that in WSi the hotspot is well approximated as an object
of constant size, indicating that there is no role for di�usion [123]. These
results can be interpreted as evidence for the normal-core model in WSi,
although the de�nitive experiment on this topic has not yet been performed.
Moreover, it is known that for keV excitations, the normal-core model is
valid [75, 85].
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The di�usion-based hotspot model has the strong advantage that it gen-
erates the correct energy-current relation. It is, however, not able to capture
all the physics of the detection event, such as the temperature dependence
and the position dependence of the internal detection e�ciency. However,
this model has an important role as a toy model and a guide for experiments,
since it is the most correct model for which an analytical expression is avail-
able. Moreover, more advanced models have not yet been able to reproduce
the width dependence which is implied by this model [16].

Lastly, we turn to the two vortex-based models. Both models predict a
position-dependent detection e�ciency [32, 34], and both models have a role
for vortices. Moreover, with the most recent re�nements, the normal-state
vortex model also has an energy-current relation which is able to account
for the experimental results. Since it is clear that the models are quite
evenly matched, it is best to set out some of the conceptual di�erences. In
the normal-state vortex model, vortices arise naturally, whereas additional
assumptions are needed to relate the size of the hotspot to the incoming
photon energy. In the di�usion-based vortex model, on the other hand,
the entry of vortices has to be computed separately from the rest of the
model, while the hotspot is included naturally. This is due to the fact that
the normal-state model was computed in the Ginzburg-Landau formalism,
whereas the di�usion-based model was computed in the London formalism.

Apart from conceptual di�erences, the two models currently have one big
experimental di�erence: in the di�usion-based vortex model, vortices always
enter from the side of the wire, whereas in the normal-state based model,
vortices can also form around the hotspot. This di�erence is amenable to
further experiments.

8.3 Future Work

Based the discussion above, we envisage two lines of experiments. First, a
series of measurements of the energy-current relation on detectors of di�er-
ent materials would answer the question whether the mechanisms which we
have studied for NbN SSPDs are generic for all SSPDs, or whether there is
a crossover to normal-state behaviour. This could be done by investigating
WSi or one of the other amorphous materials, but another interesting can-
didate would be MgB2, out of which SSPDs were fabricated only recently
[101]. MgB2 has a higher Tc than NbN and therefore represents a data point
'in the other direction' compared to WSi.

A second line of inquiry should look into the di�erences between the
normal-state vortex model and di�usion-based vortex model. The di�erence
in the vortex entry locations is most easily accessed via the magnetic �eld.
Since the current density in the middle of the wire is not disturbed by the
presence of a magnetic �eld, detection events which occur there should ex-
perience only a weak in�uence on an applied magnetic �eld. In the di�usion-
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based model, in contrast, all detection events should be strongly in�uenced
by the �eld since the e�ect of the applied magnetic �eld is strongest at
the edges [35]. This experiment has been done in Chapter 7 of this thesis.
We showed that the predictions of the version of the di�usion-based vortex
model presented in [24, 25] are contradicted by experiments. However, there
are at present no predictions from the more advanced versions of this model.
Therefore what is needed to resolve this question is futher re�nement of the
theoretical models.

There are still some open problems within the topic of SSPD detector
physics. First, as mentioned previously, there is no good theoretical account
of the width dependence yet. Second, while we have demonstrated a current
scale which follows the temperature dependence of vortex entry, in principle
in the di�usion-based vortex models, this current scale should be the critical
current. There is no theoretical explanation for the experimentally observed
regime in which the detector doesn't respond to single photons while oper-
ating close to the critical current.

Connected to this last problem is the issue of dark counts. We have
seen repeatedly throughout this thesis that dark counts behave qualitatively
di�erent than photon counts. In particular, dark counts do not behave as
E = 0 excitations. While part of this issue, presented in Chapters 3 and 4, is
resolved by the position-dependent detection e�ciency presented in Chapter
5, this is not a complete solution. Moreover, dark counts and photon counts
also di�er in their response to a magnetic �eld. This is still an open problem,
for which measurements of very low-energy excitations would be useful [16].

8.4 Conclusion

In summary: we have studied the detection mechanism in superconducting
single-photon detectors through quantum detector tomography. We have
studied single and multiphoton excitations on a nanodetector and a series of
bridge samples of varying lengths. We have demonstrated strong evidence
for the role of vortices in the detection mechanism. We have investigated
the temperature and position dependence of the detection mechanism. These
results pave the way to a complete, quantitative understanding of supercon-
ducting single-photon detectors.
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Samenvatting

Dit proefschrift beschrijft onderzoek naar het werkingsprincipe van superge-
leidende fotondetectoren (SSPDs, naar het Engelse acroniem). Zulke detec-
toren hebben belangrijke technologische toepassingen, maar er is nog veel
onbekend over het werkingsmechanisme. Om deze detectoren te onderzoe-
ken maken we gebruik van quantumdetectortomogra�e (QDT). Dit is een
methode om de respons van een fotondetector in de basis van aantaltoestan-
den (Fock-basis) te meten. In het eerste, inleidende hoofdstuk geven we een
korte introductie op de stand van het vakgebied en van de technieken die
in dit proefschrift gebruikt worden. We bespreken verder de verschillende
theorieen die opgesteld zijn voor het detectiemechanisme van SSPDs.

In het tweede hoofdstuk demonstreren we hoe quantumtomogra�e ge-
bruikt kan worden om een supergeleidende fotondetector te karakteriseren.
We hebben de methode aangepast om hem geschikt te maken voor detec-
toren met een kleine absorptie. Door een extra factor in de vergelijkingen
toe te voegen die deze absorptiekans beschrijft kunnen we de (interne) de-
tectiekans na absorptie scheiden van de absorptiekans zelf. Door het toe-
voegen van deze extra variabele wordt het systeem van vergelijkingen dat
onze respons beschrijft onbepaald; we lossen dit op door via een aanname
van schaarsheid (sparsity) modelselectie te introduceren. We vinden dat de
absorptiekans overeenkomt met de op basis van de experimentele geometrie
verwachtte waarde. We vinden verder dat de absorptiekans onafhankelijk is
van de instelstroom door de detector. Uit deze twee waarnemingen trekken
we de conclusie dat we daadwerkelijk de interne en externe processen in de
detector gescheiden hebben. We laten zien dat de detector niet-lineair ge-
drag kan vertonen: het is mogelijk om de instelstroom zo te kiezen dat de
detector sterker reageert op twee tegelijkertijd geabsorbeerde fotonen dan op
basis van de detectiekans van individuele fotonen te verwachten is.

In het derde hoofdstuk beginnen we met de fysische interpretatie van
de meetresultaten die verkregen zijn door QDT. In dit hoofdstuk wordt de
energie-stroomrelatie geintroduceerd, die verderop een cruciale rol zal spe-
len. De energie-stroomrelatie is het functioneel verband dat aangeeft hoeveel
instelstroom nodig is om een foton van een gegeven energie met een vooraf
gekozen detectiekans (typisch 1%) te detecteren. We laten zien dat enkel de
totale energie van de excitatie belangrijk is voor de energie-stroomrelatie, en
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niet de manier waarop die energie over een aantal fotonen verdeeld is. Met
andere woorden: als de detector aangeslagen wordt door twee fotonen met
een gol�engte λ, dan reageert de detector precies zo als wanneer hij aange-
slagen wordt met een foton met gol�engte λ/2. We laten zien dat er een
universele responscurve bestaat voor SSPDs: voor detectiekansen tussen de
10−4 en 0.3 is de detectiekans enkel een functie van een lineaire combinatie
van de totale energie en instelstroom. We vinden dat de dark counts zich
niet aan deze relatie houden.

Het vierde hoofdstuk is gewijd aan een meting van de energie-stroomrelatie.
De verschillende modellen van het werkingsmechanisme in een SSPD zijn van
elkaar te onderscheiden doordat ze elk een andere voorspelling doen voor
deze energie-stroomrelatie. We maken gebruik van de in hoofdstuk 2 vastge-
stelde eigenschappen van multifotonexcitaties om het dynamisch bereik van
onze meting op te rekken tot in het vacuum-ultraviolet. Door verschillende
fotonaantallen binnen een enkel experiment met elkaar te vergelijken lukt
het ons om de energie-stroomrelatie met een precisie van 50 nA te meten.
We vinden dat de energie-stroomrelatie ook bij deze nauwkeurigheid lineair
is. Hiermee sluiten we modellen uit waarin er een cylindervormig normaal
domein in de detector aanwezig is, of laten we in ieder geval zien dat het
normale domein geen rol speelt in de detectiegebeurtenis. Vervolgens meten
we de temperartuurafhankelijkheid van de energie-stroomrelatie. We vinden
dat deze de temperatuurafhankelijkheid volgt van de intreeënergie van een
vortex in het materiaal. Hieruit trekken we de conclusie dat vortices een
belangrijke rol spelen in de detectiegebeurtenis. We concluderen dat in het
detectiemechanisme zowel di�usie van quasideeltjes als vortexdynamica een
belangrijke rol spelen.

In hoofdstuk vijf onderzoeken we de energie-stroomrelatie op microsco-
pisch niveau. Door de detector aan te slaan met licht van verschillende
polarisaties en gol�engtes kunnen we selectief excitaties aanbrengen op ver-
schillende posities in de breedterichting van de draad. We nemen waar dat
licht dat loodrecht op de draad gepolariseerd is een lagere instelstroom nodig
heeft dan licht dat parallel aan de draad gepolariseerd is. Omdat de parallele
polarisatie meer in het midden geabsorbeerd wordt, leiden we hieruit af dat
de grenswaarde van de instelstroom die nodig is om een detectiegebeurtenis
te veroorzaken aan de randen van de draad lager is dan in het midden van
de draad. Deze resultaten bieden een verklaring voor het verschijnsel dat de
stroom die nodig is voor een e�ciënte detector geen scherpe drempelwaarde
heeft: bij lage stromen worden de randen van de detector actief, en naarmate
de stroom hoger wordt, gaat langzaam steeds meer van het midden meedoen
met het detectieproces. We vergelijken deze metingen met berekeningen in
de context van een numeriek model dat di�usie van quasideeltjes, herverde-
ling van stroom onder invloed van de quasideeltjes en het binnendringen van
vortices omvat. We zien sterke kwalitatieve overeenkomst: zowel het model
als het experiment voorspellen een gebied midden in de draad waar de grens-
waarde van de instelstroom min of meer constant is, gevolgd door een snel
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dalende waarde aan de randen. De berekende waarde en de experimentele
waarden liggen minder dan een factor 2 uit elkaar.

In het zesde hoofdstuk onderzoeken we hoe de detectiekans afhangt van
een extern aangebracht magneetveld. We vinden drie regimes. Bij lage
magneetvelden neemt de benodigde instelstroom voor een vaste detectiekans
kwadratisch af met toenemend magneetveld. In een tussenregime wijkt de
detector af van dit gedrag: de benodigde stroom neemt nog steeds af, maar
minder sterk dan op basis van het kwadratisch verband verwacht zou wor-
den. In het derde regime is de detectiekans slechts zwak afhankelijk van de
instelstroom. We interpreteren het kwadratisch regime in termen van de op-
lossing van de Usadel-vergelijking voor een homogene stroomdragende draad
in een magneetveld. We vinden goede overeenstemming tussen de gemeten
en berekende waarden van de coë�ciënten die het functioneel verband tus-
sen instelstroom en magneetveld beschrijven. Voor de andere twee regimes
vinden we een kwalitatieve verklaring die steunt op het idee dat er perma-
nent vortices in de draad aanwezig zijn. Uit deze resultaten trekken we de
conclusie dat het onmogelijk is om het fundamentele detectiemechanisme ef-
�ciënter te maken door een magneetveld aan te leggen. Metingen waarbij
dit wel gezien is, moeten geinterpreteerd worden in termen van herverdeling
van de stroom door bochten en andere obstakels in meanderstructuren.

In hoofdstuk zeven presenteren we een voorlopige dataset van metingen
aan de interactielengte tussen twee excitaties naast elkaar in de draad. Op
basis van eerdere experimenten verwachten we dat er een zekere afstand is
waarbinnen de twee excitaties samen tot een detectiegebeurtenis leiden. We
vinden dat deze afstand ongeveer 25 nm bedraagt voor de hoogste stromen
die we in ons experiment kunnen bereiken. Bij lagere stromen neemt de
interactieafstand linear af. Deze metingen zijn kwalitatief consistent met de
modellen die we in eerdere hoofdstukken hebben onderzocht.

In het laatste hoofdstuk vatten we de belangrijkste conclusies uit het
proefschrift samen.
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List of Symbols and

Material Parameters

Symbol Name Value/expression Reference

A(x) Local absorption probability - -
B Magnetic �eld - -
B0 Field scale 350 mT -

BΓ Usadel �eld scale
√

6~/ewξ = 2.7 T a

χ2 Goodness of �t χ2 =
∑
i

(yi,exp−yi,fit)
2

σ2
i

-

c Speed of light 3.00 ∗ 108m/s -
C Photon count rate - -
Ce Hot electron density - -
Cqp Quasiparticle density - -

ci Expansion coe�cient ci = e−N Ni

i!
b

d Thickness 4.9 nm -
D Di�usion constant 0.4 cm2/s -
∆ Superconducting gap 1.9 meV @ 1.5 K -
ε0 Vortex entry energy Φ2/2πµ0Λ⊥= 67.6 meV [25]
ε Dielectric constant - -
E Excitation energy - -
Φ0 Elementary �ux quantum h/2e = 2.067 fWb -
γ Energy-current interchange 2.9µA/eV a

γ′(x) Local value of γ - -
Γ Intrinsic pair breaker ≈ 100 µeV -
η Linear optical e�ciency - -
h Planck's constant 4.14 feV s -

aFor a 150 nm wide detector
bFor coherent states
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Symbol Name Value/expression Reference

Ib Bias current - -
Ic Critical current 28 µA a

I0 Reference current I0 ≈ 0.8Ic
b

Ith Threshold current Ith = Ic − γE -

IΓ Usadel current scale
√

2∆/eR(ξ) = 180 µA a

j Current density - -
jc Critical current density 40 GA/m2 -
j? Rollo� current density 0.9 GA/m2 -
kb Boltzman constant 8.6 ∗ 10−5eV/K -
λ Penetration length 430 nm, 500 nm [28, 21]
λ Optical wavelength - -
λc Cuto� wavelength - -
Λ⊥ E�ective penetration length 50 µm -
L Wire length - -

ltaper Taper e�ective length 74 nm -
µ0 Magnetic permeability of vacuum 4π ∗ 10−7N/A2 -
nmax Model selection cuto� - -
nse Density of supercond. electrons - -
N0 Density of states 51 nm3/eV [28]
N Mean photon number - -
νh Reduced vortex entry energy 3-8, 40-110 [25, 26]c

ν Vortex entry energy ε0/kbT = 250 [25]
ν Photon energy - -
pn Internal detection probability - -
P (x) Local detection probability - -
ς QP conversion e�ciency 0.25 [28]
R Detection probability per pulse - -
R� Sheet resistance 600 Ω -
s Hotspot size 22 nm -
t Reduced temperature T/Tc -
T Temperature - -
Tc Critical temperature 9.5 K -
τ Timescale for QP multiplication 1.6 ps [28]
vs Supercond. velocity - -
vc Critical velocity - -
V Visibility - -
w Wire width - -
ξ Coherence length 3.9 nm -

aFor a 150 nm wide detector
bFor low threshold values
cFor photon counts and dark counts, respectively
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