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Observation of Large Differences in the Diffraction of Normal- and Para-H;
from LiF(001)
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Large differences have been observed in the diffraction intensities of normal-hydrogen and pure
para-hydrogen scattered from the surface of a LiF(001) single crystal. The observed differences
are shown to result from a strong coupling between the quadrupole moment ahdHthe surface
electrostatic field, which, in a zeroth order approximation, is averaged out in the case of para-hydrogen.
Analogous effects are expected in scattering of all homonuclear diatomic molecules from ionic solids.
[S0031-9007(98)07935-6]

PACS numbers: 79.20.Rf

Historically, experiments in which molecular beams ofdifferences in the diffraction intensities for ortho- and
He or H, were scattered from ionic crystal surfaces havepara-H. In a first order picture, nonrotating,H j = 0)
served to establish the existence of numerous importamtoes not “see” the surface ion charges, while the electro-
physical effects. By showing that He and ldcattered static interaction directly affects the diffraction of, kh
from LiF undergo diffraction, Stern and co-workers [1] thej = 1 state. The importance of the electrostatic inter-
established the wave nature of atoms and molecules. laction has already been realized in studies of physisorp-
1933, these experiments also led to the discovery of théon of molecules on ionic surfaces for some time [10,11],
resonance trapping phenomenon, now known as selectivmit had been completely overlooked in connection with
adsorption [2], which today is still the best method (rotationally elastic) molecular diffraction.
for quantitatively determining the atom-surface potential In the present Letter, new high resolution diffraction
[3]. Experiments on Kl scattering from LiF(001) were experiments are reported, in which the diffraction patterns
among the first to show that molecules colliding with of cold para-H (j = 0) are compared with those of cold
the surface may change their rotational state as well asormal-H. Indeed, largely different diffraction proba-
diffract (rotationally inelastic diffraction, RID). Today bilities are observed experimentally for scattering of the
very detailed extensive experimental [4] and theoreticatwo hydrogen species from LiF(001), which are explained
[5-7] results are available for both the rotationally elasticin terms of the recent theoretical prediction [8]. The ex-
and the rotationally inelastic diffraction of normakHa  perimental data are in good agreement with diffraction
mixture of 75% H in j = 1 and 25% inj = 0 at low calculations which are tailored to the experimental con-
temperature), and many physical aspects of the scatterirditions and which include the electrostatic interaction.
phenomena appeared to be well understood. In contrast, calculations that omit this interaction predict

In a recent theoretical paper [8], however, it wascomparable diffraction probabilities for para-Hp-H,)
first pointed out that the scattering should depend rathemnd normal-H (n-H,), thus confirming that the experi-
strongly on the rotational state of the molecules viamentally observed differences in the diffraction pfH,
the electrostatic interaction of the,Hmolecule with andn-H, are due to the electrostatic interaction.
the electric fields at the surfaces on ionic crystals such The experimental apparatus has been described in detail
as LiF(001). Especially the interaction between the H in Refs. [12,13]. In its fixed angle geomet{g; + 6, =
guadrupole moment and the individual surface ions intro90.1°), diffraction patterns (angular distributions) were
duces a strong orientational dependence into the short-toreasured by rotating the crystal around an axis normal
medium range molecule-surface interaction. In contrasto the plane of the incident and scattered beams. Hence,
the Pauli or exchange repulsion is not significantly af-the incident angled; and the final angled, are varied
fected, since the charge distribution of the electronic cloudgimultaneously. Rotationally cold molecular beams of
at the outer edges of the molecule is nearly sphericahydrogen with an energy resolution éf ~ 8% were
[9] and therefore independent of the orientation. Thegenerated by free jet expansion from a pressure of
orientational dependence was predicted to lead to larggbout 50 bar through d0 um diameter nozzle. By

5608 0031-900798/81(25)/5608(4)$15.00 © 1998 The American Physical Society



VOLUME 81, NUMBER 25

PHYSICAL REVIEW LETTERS

21 BCEMBER 1998

varying the nozzle temperature from 100 to 330 K,

thej = 0 — 2 transition and the reciprocal lattice vectors

H,-beam energies between 21 and 93 meV were obtainet = (0,0), (—1,0), and(—2,0), respectively [17].

A magnetic mass spectrometer, operating in the io
counting mode, was used to detect the scattered hydrog
molecules with an effective angular resolution ®f =
0.05°. The surface was prepared b situ cleaving
off a small slice from a LiF single crystal with an
area of 10 X 10 mm?. The p-H, was converted from
liquid normal-H by an iron oxide and chromium oxide
catalyst. Thep-H, content obtained with this method
was previously determined by Jozefowsial. [14] to
be about 95%.
between the allowed rotational statespH, (AE(j =

0 — 2) = 44 meV [15]) and the relatively low source
temperaturesTy = 330 K), only a small fraction<4%)
of the p-H, beam is in thej = 2 rotational level [16].

n In Fig. 2, the integrated intensities of the first and sec-
@md order peaks relative to the specular peak are plotted as
a function of beam energy. To reduce uncertainties due to
possibly inaccurate alignment of the crystal, the average
of the (+k,0) and(—k,0) peak areas is plotted, since the
probabilities for scattering in these channels must be equal
for the symmetrically corrugated LiF(001) surface. Over
the whole range of incident energies, the probabilities for
the diffraction into the first and second order diffraction

Because of the large energy differencehannels are higher fqr-H, than forn-H, [18].

The close coupling (CC) method [5] was used to
calculate probabilities for rotationally and diffractionally
elastic scattering. In its formalism, the time-independent
Schrddinger equation is written as a system of coupled

Similarly, because of the even larger difference for orthosecond order linear differential equations in the scattering

H, (0-H;) of AE(j = 1 — 3) = 73 meV nearly all of
the molecules in thei-H, beam are in either thg = 0

coordinatez, the equations being coupled in a basis of
diffraction and rotation functions. In the basis sets 4

or j = 1 states in the ratio of 1:3 determined by the spinand|k| + |I| = 5 were taken in the calculations fprH,,

degeneracy.

andj = 5 and|k| + |I| = 5 in the calculations fop-H,.

Figure 1 shows two angular distributions for the scatterdn computing a particular diffraction probabilityq; is

ing of normal- and para-hydrogen from the LiF(001) sur-

face measured along th&10] azimuthal directions. The

angular distributions are dominated by rotationally elaspotential presented in detail elsewhere [8].

tic, i.e., j-conserving, diffraction peaks which are desig-
nated by(*+k,[), wherek is the diffraction peak order in
this direction and = 0. As seen from the figure, the first
[1(1,0)] and second ordéi (2, 0)] diffraction peak intensi-
ties relative to the specular pepK0, 0)] are considerably
lower for n-H, than for p-H,. The much weaker struc-
tures labeled with small lettera (b, andc) in Fig. 1 have
been assigned to rotationally inelastic diffraction involving
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FIG. 1. Two angular distributions of-H, (a) and p-H, (b)
molecules scattered from LiF(001) along thel0] azimuthal
direction measured at the given incident energigs and
at a surface temperature df, = 300 K; «a, b, and ¢ label
rotationally inelastic diffraction peaks for thg =0 — 2
transition involving the following reciprocal lattice vectdis=
(GL,Gy): a—(0,0), b—(—1,0), andc—(—2,0), respectively.
In (c) the structure of the LiF(001) surface is shown; the Li
are depicted by grey circles.

taken such tha#; + 6, = 90°, as in the experiments.

The molecule-surface interaction was described by a
Briefly, it
contains terms describing the induced dipole-induced
dipole interaction, the induced dipole-induced quadrupole
interaction, the ionic lattice-induced dipole interaction,
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FIG. 2. Ratios of integral intensities of diffraction peaks
I(k,1) to the specular peak intensit§(0,0) for n-H, and
p-Hy. I(1,0) corresponds to the first order diffraction peaks
along the[110] direction, wheread(2,0) denotes the second
order diffraction peaks. The experiments were performed at
T, = 300 K.
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and the short range repulsion, which is mostly Pauli or exchange repulsion. The term which is most important to this
work is the electrostatic interactidr,;; which is written as [8,19]

Vs = =0y 5" A exiliGkx + 1)) expl—yie2) [XHI2EY22(0, @) + eXH—26)Y32(0, 9)
k,l
= 2i eXpi€)Y21(0, ¢) + 2i exp(—i€)Ya-1(6, &) — V6 Y20(6. $)1}, (1)

! _ .
where p-H, (a) and n-H, (b) in the [110] direction. The

} ) calculations reproduce the diffraction probability ratios,
explif) = (k — il)y/(k2 + 7). (@) which have been experimentally observed to be nearly
In Eqg. (1), z is the distance to the surfac€) is the a factor of 2 larger forp-H,, within about 15% of this
quadrupole moment of H and G = /27 /a, where difference between the probability ratios ferH, and
a is the surface lattice parametén = 2.84 A). For  p-H,. In contrast to the calculations that employ the
detailed expressions for the, and vy, coefficients, see potential includingV,s, calculations fom-H, and p-H,,

Refs. [8,19]. The fact tha®/., contains products of respectively, in which the electrostatic interactidfy
parallel translational functions and second order sphericdlas been excluded from the molecule-surface potential
harmonics suggests that diffraction may depend on thériangles in Fig. 3) result in almost equal diffraction
rotational statg (andm;). probabilities forn-H, and p-H,. This clearly indicates
Differences in the diffraction ofp-H, (j = 0) and that V. is responsible for the differences between the
n-Hy (75% j = 1, o-H,) can be understood by consid- diffraction of p-H, and n-H, observed experimentally.
ering the effect of orientational averaging on the electroThe results of analogous calculations and measurements
static interaction, neglecting changes in the rotational
angular momentg. For j = 0 p-H,, all orientations

are equally likely and, hence, the (orientation-dependent)  ;, F _ LiF(001)[110] p-H,3 1 »
electrostatic interaction averages out to zero. Mathemati- | -0 - experiment ]
cally, this may be understood from the fact that the matrix 1.0 '™ theory J10
element(Yoo| Veis| Yoo) €quals zero, becausé,, is writ- s A model V without Vg ] _
ten in terms of second order spherical harmortics, ) S 08F =5 g . m- Jos8 <2
. . . . J = L R . - -8B ] o
only [20]. Therefore, in elastic diffractionp-H, does a F g ‘8. 4 ] =
not see the surface electrostatic field, and so its diffrac- © 06 P oo.m 0L .o0q06 ©
. . . — o ' ] . y —
tion is not affected. In contrast, foif = 1, mj, o-H,, = oo H =
the molecule possesses a net orientation depending on °* -0 .-n 304
mj, and is affected by the electrostatic interaction lead- C W A A 4
. . L - 02 F A 402
ing to diffraction in whichj is conserved and:; may or A ] a)
may not be conserved (changes in only being isoen- 0.0 Bl bbb 11 g g
ergetic). Mathematically, this can be attributed to the 12 E LiF(001)[110] n-H 3 1.2
fact that (Y, |Veis|Y1,,) differs from zero for all pos- F o experiment ]
siblem; andm, since all second order spherical harmon- 10 - -@-- theory 410
ics (m; = —2to +2) occur in the expression fdr.js. =) L w  model V without V, ] -
A similar argument can be derived based on the first o 08 J08 32
order Born approximation, assuming that the molecule- £ F 3 =
surface interaction can be written in terms ¥f;, and L o© 306 ©
that j is conserved. Under these approximations, only & C o-© C.©-0 =
. - g . 04fF 00"  g..-- o - @04
transitions (jm;00 — j'mj;kl) are allowed for which Oe@----- o ]
(j'mkl|Veisjm;00) differs from zero. By the same 02? v v v Y] 0.2
arguments as used above, this integral can differ from Y 1 b
zero for j = 1, but not for j = 0. Note that, for the 00 o bttt il g g
integral to differ from zerolk| + || has to be odd, while 20 30 40 50 60 70 80 90

the largest values of this integral will be obtained for
k] = 1 and|l| = 0, or vice versa [19]. Therefor&,,

is expected to have the largest effect on the first ordeFIG. 3. The ratios of the calculated probabilities of first order
diffraction probabilities which are naturally obtained diffraction p(1,0) and specular reflectiop(0,0) are compared

in_ i i il to the ratios of the experimental intensiti&s, 0) and/(0, 0) for

3.5 tht(.e in-plane d|ffragt|'onthprobat;|htles along tEl0] rotationally elastic scattering ¢f-H, (a) andr-H, (b) along the
Irection, as measured in this work. [110] direction. The up- and down-pointing triangles represent

Figure 3 compares experimental (open symbols) andalculations forp-H, andn-H,, respectively, in whict/.;; was

theoretical results (black symbols) for the scattering ofexcluded from the model potential.
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