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Berry phase and adiabaticity of a spin diffusing in a nonuniform magnetic field
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An electron spin moving adiabatically in a strong, spatially nonuniform magnetic field accumulates a geo-
metric phase or Berry phase, which might be observable as a conductance oscillation in a mesoscopic ring.
Two contradicting theories exist for how strong the magnetic field should be to ensure adiabaticity if the
motion is diffusive. To resolve this controversy, we study the effect of a nonuniform magnetic field on the spin
polarization and on the weak-localization effect. The diffusion equation for the Cooperon is solved exactly.
Adiabaticity requires that the spin-precession time is short compared to the elastic scattering time—it is not
sufficient that it is short compared to the diffusion time around the ring. This strong condition severely
complicates the experimental observation.@S0163-1829~99!10103-6#
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I. INTRODUCTION

The adiabatic theorem of quantum mechanics implies
the final state of a particle that moves slowly along a clo
path is identical to the initial eigenstate—up to a phase f
tor. The Berry phase is a time-independent contribution
this phase, depending only on the geometry of the path1 A
simple example is a spin-1/2 in a rotating magnetic fieldB,
where the Berry phase equals half the solid angle swep
B. It was proposed to measure the Berry phase in the c
ductanceG of a mesoscopic ring in a spatially rotating ma
netic field.2,3 Oscillations ofG as a function of the swep
solid angle were predicted, similar to the Aharonov-Boh
oscillations as a function of the enclosed flux.4

An important practical difference between the two effe
is that the Aharonov-Bohm oscillations exist at arbitrar
small magnetic fields, whereas for the oscillations due to
Berry phase the magnetic field should be sufficiently stro
to allow the spin to adiabatically follow the changing dire
tion. Generally speaking, adiabaticity requires that the p
cession frequencyvB is large compared to the reciprocal
the characteristic time scaletc on whichB changes direction
We know thatvB5gmBB/2\, with g the Lande´ factor and
mB the Bohr magneton. The question is, what istc? In a
ballistic ring there is only one candidate, the circumferencL
of the ring divided by the Fermi velocityv. ~For simplicity
we assume thatL is also the scale on which the field dire
tion changes.! In a diffusive ring there are two candidate
the elastic scattering timet and the diffusion timetd around
the ring. They differ by a factortd /t.(L/l )2, where l
5vt is the mean free path. Since, by definition,L@l in a
diffusive system, the two time scales are far apart. Which
the two time scales is the relevant one is still under deba5

Stern’s original proposal3 was that
PRB 590163-1829/99/59~3!/2102~9!/$15.00
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~1.1!

is necessary to observe the Berry-phase oscillations. Fo
alistic values ofg this requires magnetic fields in the qua
tum Hall regime, outside the range of validity of the sem
classical theory. We call Eq.~1.1! the ‘‘pessimistic
criterion.’’ In a later work,6 Loss, Schoeller, and Goldba
~LSG! concluded that adiabaticity is reached already at m
weaker magnetic fields, when

vB@
1

td
.

1

t S l

L D 2

. ~1.2!

This ‘‘optimistic criterion’’ has motivated experimentalist
to search for the Berry-phase oscillations in disorde
conductors,7 and was invoked in a recent study of the co
ductivity of mesoscopic ferromagnets.8 In this paper, we re-
examine the semiclassical theory of LSG to resolve the c
troversy.

The Berry-phase oscillations in the conductance re
from a periodic modulation of the weak-localization corre
tion, and require the solution of a diffusion equation for t
Cooperon propagator. To solve this problem we need to c
sider the coupled dynamics of four spin degrees of freed
~The Cooperon has four spin indices.! To gain insight we
first examine in Sec. II the simpler problem of the dynam
of a single spin variable, by studying the randomization o
spin-polarized electron gas by a nonuniform magnetic fie
We start at the level of the Boltzmann equation and th
make the diffusion approximation. We show how the diff
sion equation can be solved exactly for the first two mome
of the polarization. The same procedure is used in Sec. II
arrive at a diffusion equation for the Cooperon. This equ
tion coincides with the equation derived by LSG in th
2102 ©1999 The American Physical Society
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PRB 59 2103BERRY PHASE AND ADIABATICITY OF A SPIN . . .
weak-field regimevBt!1, but is different in the strong-field
regimevBt*1. We present an exact solution for the wea
localization correction and compare with the findings
LSG.

Our conclusion both for the polarization and for the wea
localization correction is that adiabaticity requiresvBt@1.
Regrettably, the pessimistic criterion~1.1! is correct, in
agreement with Stern’s original conclusion. The optimis
criterion ~1.2! advocated by LSG turns out to be the criteri
for maximal randomization of the spin by the magnetic fie
and not the criterion for adiabaticity.

II. SPIN-RESOLVED TRANSMISSION

A. Formulation of the problem

Consider a conductor in a magnetic fieldB, containing a
disordered segment~length L, mean free pathl at Fermi
velocity v) in which the magnetic field changes its directio
An electron at the Fermi level with spin up~relative to the
local magnetic field! is injected at one end and reaches t
other end. What is the probability that its spin is up?

For simplicity we take for the conductor a two
dimensional electron gas~in the x-y plane, with the disor-
dered region betweenx50 and x5L), and we ignore the
curvature of the electron trajectories by the Lorentz for
The problem becomes effectively one-dimensional by
suming thatB depends onx only. We choose a rotation ofB
in the x-y plane, according to

B~x,y,z50!

5S Bsinh cos
2p f x

L
,Bsinh sin

2p f x

L
,Bcosh D ,

~2.1!

with h and f arbitrary parameters. The geometry is sketch
in Fig. 1. We treat the orbital motion semiclassically, with
the framework of the Boltzmann equation.~This is justified
if the Fermi wavelength is much smaller thanl .! The spin
dynamics requires a fully quantum mechanical treatme
We assume that the Zeeman energygmBB is much smaller
than the Fermi energy12 mv2, so that the orbital motion is
independent of the spin.

We introduce the probability densityP(x,f,j,t) for the
electron to be at timet at position x with velocity v
5(v cosf,v sinf,0), in the spin state with spinorj
5(j1 ,j2). The dynamics ofj depends on the local magnet
field according to

dj

dt
5

igmB

2\
B•s j, ~2.2!

FIG. 1. Schematic drawing of a two-dimensional electron ga
the spatially rotating magnetic field of Eq.~2.1!, with f 51.
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where s5(sx ,sy ,sz)is the vector of Pauli matrices. It is
convenient to decomposej5x1j↑1x2j↓ into the local
eigenstatesj↑ ,j↓ of B•s,

j↑5S cos
h

2
e2 ip f x/L

sin
h

2
eip f x/L

D , j↓5S 2sin
h

2
e2 ip f x/L

cos
h

2
eip f x/L

D ,

~2.3a!

B•s j↑5Bj↑ , B•s j↓52Bj↓ , ~2.3b!

and use the real and imaginary parts of the coefficie
x1 ,x2 as variables in the Boltzmann equation. The dynam
of the vector of coefficients c5(c1 ,c2 ,c3 ,c4)
5(Rex1 ,Im x1 ,Rex2 ,Im x2) is given by

dc

dt
5

1

t
Mc, M5M01M1 cosf, ~2.4a!

M05vBtS 0 21 0 0

1 0 0 0

0 0 0 1

0 0 21 0

D ,

M15
p f l

L S 0 2cosh 0 sinh

cosh 0 2sinh 0

0 sinh 0 cosh

2sinh 0 2cosh 0

D ,

~2.4b!

wherevB5gmBB/2\ is the precession frequency of the spi
The Boltzmann equation takes the form

t
]

]t
P~x,f,c,t !52l cosf

]P

]x
2(

i , j

]

]ci
~Mi j cj P!

2P1E
0

2pdf8

2p
P~x,f8,c,t !, ~2.5!

where we have assumed isotropic scattering~rate 1/t
5v/l ).

We look for a stationary solution to the Boltzmann equ
tion, so the left-hand side of Eq.~2.5! is zero and we omit the
argumentt of P. A stationary flux of particles with an iso
tropic velocity distribution is injected atx50, their spins all
aligned with the local magnetic field~so x250 at x50).
Without loss of generality we may assume thatx151 at x
50. No particles are incident from the other end, atx5L.
Thus the boundary conditions are

P~x50,f,c!5d~c121!d~c2!d~c3!d~c4! if cosf.0,
~2.6a!

P~x5L,f,c!50 if cosf,0. ~2.6b!

This completes the formulation of the problem. We co
pare two methods of solution. The first is an exact numer
solution of the Boltzmann equation using the Monte Ca

n
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method. The second is an approximate analytical solu
using the diffusion approximation, valid forL@l . We begin
with the latter.

B. Diffusion approximation

The diffusion approximation amounts to the assumpt
that P has a simple cosine-dependence onf,

P~x,f,c!5N~x,c!1J~x,c!cosf. ~2.7!

To determine the densityN and currentJ we substitute Eq.
~2.7! into Eq. ~2.5! and integrate overf. This gives

l
]J

]x
52

]

]c
~2M0cN1M1cJ!. ~2.8!

Similarly, multiplication with cosf before integration gives

l
]N

]x
52

]

]c
~M0cJ1M1cN!2J. ~2.9!

Thus we have a closed set of partial differential equations
the unknown functionsN(x,c) andJ(x,c). Boundary condi-
tions are obtained by multiplying Eq.~2.6! with cosf and
integrating overf:

N~x50,c!1
p

4
J~x50,c!

5d~c121!d~c2!d~c3!d~c4!, ~2.10a!

N~x5L,c!2
p

4
J~x5L,c!50. ~2.10b!

We seek the spin polarizationp5c1
21c2

22c3
22c4

2 of the
transmitted electrons, characterized by the distribution

P~p!5

E dc J~x5L,c!d~c1
21c2

22c3
22c4

22p!

E dc J~x5L,c!

.

~2.11!

~The notation*dc [*dc1 *dc2 *dc3 *dc4 indicates an inte-
gration over the spin variables.! We compute the first two
moments ofP(p). The first momentp̄ is the fraction of
transmitted electrons with spin up minus the fraction w
spin down, averaged quantum mechanically over the s
state and statistically over the disorder. The variance Vap

5p22 p̄2 gives an indication of the magnitude of the stat
tical fluctuations.

Integration of Eqs.~2.8!–~2.10! over the spin variables
yields the equations and boundary conditions for the fu
tions N(x)5*dc N(x,c) andJ(x)5*dc J(x,c):

l
dN

dx
52J,

dJ

dx
50, ~2.12a!

N~0!1
p

4
J~0!51, N~L !2

p

4
J~L !50. ~2.12b!

The solution
n

n

r

in

-

-

J~x!5S p

2
1

L

l
D 21

~2.13!

determines the denominator of Eq.~2.11!.
To determinep̄ we multiply Eqs. ~2.8! and ~2.9! with

xaxb* and integrate overc ~recall thatx15c11 ic2 ,x25c3

1 ic4!. It follows upon partial integration that

E dc xaxb*
]

]c
~M0c f !

52(
r,s

~Sardbs2darSbs!E dc xrxs* f ,

~2.14a!

E dc xaxb*
]

]c
~M1c f !

52(
r,s

~Tardbs2darTbs!E dc xrxs* f ,

~2.14b!

for arbitrary functionsf (x,c). The 232 matricesS,T are
defined by

S5 ivBtsz , T5
ip f l

L
~szcosh2sxsinh!. ~2.15!

In this way we find that the moments

Nab~x!5E dc xaxb* N~x,c!, ~2.16a!

Jab~x!5E dc xaxb* J~x,c!, ~2.16b!

satisfy the ordinary differential equations

l
dNab

dx
5(

r,s
~Tardbs2darTbs!Nrs

1(
r,s

~Sardbs2darSbs!Jrs2Jab ,

~2.17a!

l
dJab

dx
52(

r,s
~Sardbs2darSbs!Nrs

1(
r,s

~Tardbs2darTbs!Jrs , ~2.17b!

with boundary conditions

Nab~x50!1
p

4
Jab~x50!5da1db1 , ~2.18a!

Nab~x5L !2
p

4
Jab~x5L !50. ~2.18b!

The mean polarizationp̄ is determined byJab according to
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p̄5
J11~L !2J22~L !

J~L !

5S p

2
1

L

l
D @J11~L !2J22~L !#. ~2.19!

Since Eq. ~2.17! is linear in the eight functions
Nab(x),Jab(x) (a,b51,2), a solution requires the eigenva
ues and right eigenvectors of the 838 matrix of coefficients.
These can be readily computed numerically for any value
L/l and vBt. We have found an analytic asymptotic sol
tion for L/l @1 andvBt@( f l /L)2, given by

p̄5
k

sinhk
, k5

2p f sinh

A11~2vBt!2
. ~2.20!

In Fig. 2 we compare the numerical solution~solid curve!
with Eq. ~2.20! ~dashed curve! for L/l 525 andh5p/3,f
51. The two curves are almost indistinguishable, except
the smallest values ofvBt.

In a similar way, we compute the second moment ofP(p)
by multiplying Eqs.~2.8! and ~2.9! with xaxb* xgxd* and in-
tegrating overc. The result is a closed set of equations,

l
d

dx
Nabgd5 (

m,n,r,s
~Labgd

mnrsNmnrs1Kabgd
mnrsJmnrs!2Jabgd ,

~2.21a!

l
d

dx
Jabgd5 (

m,n,r,s
~2Kabgd

mnrsNmnrs1Labgd
mnrsJmnrs!, ~2.21b!

where we have defined

Kabgd
mnrs5Samdbndgrdds2damSbndgrdds

1damdbnSgrdds2damdbndgrSds , ~2.22a!

FIG. 2. Average and variance of the spin polarizationp of the
current transmitted through a two-dimensional region of lengthL
525 l , as a function ofvBt, for a magnetic field given by Eq.~2.1!
with h5p/3 and f 51. The data points result from Monte Car
simulations of the Boltzmann equation~2.5!, the solid curves resul
from the diffusion approximation~2.7!, and the dashed curves a
the asymptotic formulas~2.20! and ~2.27!. Notice the transient re-
gime ~A!, the randomized regime~B!, and the adiabatic regime~C!.
of

r

Labgd
mnrs5Tamdbndgrdds2damTbndgrdds

1damdbnTgrdds2damdbndgrTds , ~2.22b!

Nabgd~x!5E dc xaxb* xgxd* N~x,c!, ~2.23a!

Jabgd~x!5E dc xaxb* xgxd* J~x,c!. ~2.23b!

The boundary conditions on the functionsNabgd andJabgd
are

Nabgd~x50!1
p

4
Jabgd~x50!5da1db1dg1dd1 , ~2.24!

Nabgd~x5L !2
p

4
Jabgd~x5L !50. ~2.25!

The second momentp2 is determined by

p25S p

2
1

L

l
D @J1111~x5L !2J1122~x5L !

2J2211~x5L !1J2222~x5L !#. ~2.26!

The numerical solution is plotted also in Fig. 2, together w
the asymptotic expression

Var p5
1

3
1

2kA3

3sinh~kA3!
2

k2

sinh2k
. ~2.27!

It is evident from Eqs.~2.20! and~2.27!, and from Fig. 2,
that the regime withp̄51, Varp50 is entered forvBt* f
@for sinh5O(1)#, in agreement with Stern’s criterion~1.1! for
adiabaticity. For smallervBt adiabaticity is lost. There is a
transient regimevBt!( f l /L)2, in which the precession fre
quency is so low that the spin remains in the same s
during the entire diffusion process. For (f l /L)2!vBt! f
the average polarization reaches a plateau value close to
with a finite variance. For a sufficiently nonuniform field
f sinh@1, we find in this regimep̄50 and Varp51/3, which
means that the spin state is completely randomized. The t
sient regime, the randomized regime, and the adiabatic
gime are indicated in Fig. 2 by the lettersA, B, andC.

C. Comparison with Monte Carlo simulations

In order to check the diffusion approximation we solv
the full Boltzmann equation by means of a Monte Ca
simulation. A particle is moved fromx50 over a distance
l 1 in the directionf1, then over a distancel 2 in the direc-
tion f2, and so on, until it is reflected back tox50 or trans-
mitted to x5L. The step lengthsl i are chosen randomly
from a Poisson distribution with meanl . The directionsf i
are chosen uniformly from@0,2p#, except for the initial di-
rection f1, which is distributed}cosf1. The spin compo-
nents are given by

S x1

x2
D 5)

i
e~S1Tcosf i !l i /l S 1

0D . ~2.28!
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To find pn, one has to average (ux1u22ux2u2)n over the trans-
mitted particles. The results forL/l 525 are shown in Fig. 2
~data points!. They agree very well with the results of th
previous subsection, thus confirming the validity of the d
fusion approximation forL/l @1.

III. WEAK LOCALIZATION

A. Formulation of the problem

We turn to the effect of the nonuniform magnetic field
the weak-localization correction of a multiply connected s
tem. We consider the same geometry as in Fig. 1, but n
with periodic boundary conditions—to model a ring of c
cumferenceL. Only the effects of the magnetic field on th
spin are included, to isolate the Berry phase from the c
ventional Aharonov-Bohm phase. As in the previous subs
tion, we assume that the orbital motion is independent of
spin dynamics. We follow LSG in applying the semiclassic
theory of Chakravarty and Schmidt9 to the problem; how-
ever, we start at the level of the Boltzmann equation—rat
than at the level of the diffusion equation—and make
diffusion approximation at a later stage of the calculation

The weak-localization correctionDG to the conductance
is given by

DG52
e2D

p\LE0

`

dt e2t/twC~ t !, ~3.1!

wheretw is the phase coherence time and the diffusion
efficient D5v l /d in d dimensions.~In our geometryd52.!
The ‘‘return quasiprobability’’C(t) is expressed as a sum
over ‘‘Boltzmannian walks’’R(t) with R(0)5R(t),

C~ t !5 (
$R~ t !%

W Tr ~U1U2!. ~3.2!

HereW@R(t)# is the weight of the Boltzmannian walk for
spinless particle. The 232 matricesU6@R(t)# are defined
by

U65T expH 6
igmB

2\ E
0

t

dt8 B„R~ t8!…•sJ , ~3.3!

whereT denotes a time ordering. The factor Tr (U1U2) in
Eq. ~3.2! accounts for the phase difference of time-revers
paths.

The Cooperon can be written in terms of a propagatorx,

C~ t !5
1

2pE0

2p

dfE
0

2p

df i(
a,b

xabba~xi ,xi ;f,f i ;t !,

~3.4!

that satisfies the kinetic equation
-

-
w

-
c-
e
l

r
e

-

d

S ]

]t
1BDxabgd~x,xi ;f,f i ;t !2

igmB

2\

3 (
a8,g8

@~B~x!•s!aa8dgg82daa8„B~x!•s…gg8#xa8bg8d

5d~ t !d~x2xi!d~f2f i!dabdgd . ~3.5!

The Boltzmann operatorB is given by

B5v cosf
]

]x
1

1

t
2

1

tE0

2pdf

2p
. ~3.6!

The propagatorx is a moment of the probability distribu
tion P(x,f,U1,U2,t),

xabgd5E dU1E dU2 Uab
1 Ugd

2 P, ~3.7!

that satisfies the Boltzmann equation

F ]

]t
1B1

]

]U1S dU1

dt D1
]

]U2S dU2

dt D G
3P~x,f,U1,U2,t !50, ~3.8!

with initial condition

P~x,f,U1,U2,0!

5d~x2xi!d~f2f i!d~U121!d~U221!.

~3.9!

The notationdU1 or dU2 indicates the differential of the
real and imaginary parts of the elements of the 232 matrix
U1 or U2. We will write this in a more explicit way in the
next subsection.

The Boltzmann equation~3.8! has the same form as th
one that we studied in Sec. II. The difference is that we h
four times as many internal degrees of freedom. Instead
single spinorj we now have two spinor matricesU1 and
U2. A first doubling of the number of degrees of freedo
occurs because we have to follow the evolution of both s
up and spin down. A second doubling occurs because
have to follow both the normal and the time-reversed evo
tion.

B. Diffusion approximation

We make the diffusion approximation to the Boltzma
equation~3.8!, by following the steps outlined in Sec. II. Th
432 matrix u6 containing the real and imaginary parts
U6,

u65S ReU11
6 ReU12

6

Im U11
6 Im U12

6

ReU21
6 ReU22

6

Im U21
6 Im U22

6

D , ~3.10!

has a time evolution governed by

t
du6

dt
56Z~x!u6, ~3.11a!
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Z~x!5vBtS 0 2cosh sinh sin
2p f x

L
2sinh cos

2p f x

L

cosh 0 sinh cos
2p f x

L
sinh sin

2p f x

L

2sinh sin
2p f x

L
2sinh cos

2p f x

L
0 cosh

sinh cos
2p f x

L
2sinh sin

2p f x

L
2cosh 0

D . ~3.11b!
t

Th
The Boltzmann equation~3.8! becomes, in a more explici
notation,

t
]

]t
P~x,f,u1,u2,t !

52l cosf
]P

]x
2(

i , j ,k

]

]ui j
1

Zik~x!uk j
1P

1(
i , j ,k

]

]ui j
2

Zik~x!uk j
2P2P

1E
0

2pdf8

2p
P~x,f8,u1,u2,t !. ~3.12!

We now make the diffusion ansatz in the form

E
0

`

dt e2t/twE
0

2p

df i P5N1Jcosf. ~3.13!

By integrating the Boltzmann equation overf, once with
weight 1 and once with weight cosf, we obtain two coupled
equations for the functionsN(x,u1,u2) and J(x,u1,u2).
Next we multiply both equations withUab

1 Ugd
2 and integrate

over the real and imaginary parts of the matrix elements.
momentsNabgd andJabgd defined by

Nabgd~x!5E dU1E dU2 Uab
1 Ugd

2 N, ~3.14a!

Jabgd~x!5E dU1E dU2 Uab
1 Ugd

2 J, ~3.14b!

are found to obey the ordinary differential equations

l
dNabgd

dx
5

igmBt

2\ (
a8,g8

@„B~x!•s…aa8dgg8

2daa8„B~x!•s…gg8#Ja8bg8d2~11t/tw!Jabgd ,

~3.15a!
e

l
dJabgd

dx
5

igmBt

\ (
a8,g8

@„B~x!•s…aa8dgg8

2daa8„B~x!•s…gg8#Na8bg8d

2~2t/tw!Nabgd12tdabdgdd~x2xi!.

~3.15b!

The periodic boundary conditions are

Nabgd~0!5Nabgd~L !, Jabgd~0!5Jabgd~L !.
~3.16!

The CooperonC and the propagatorx of Eqs.~3.4! and~3.7!
are related to the densityN by

Nabgd~x!5E
0

`

dt c2t/tw
1

2pE0

2p

df

3E
0

2p

df i xabgd~x,xi ;f,f i ;t !, ~3.17!

(
a,b

Nabba~xi!5E
0

`

dt e2t/twC~ t !. ~3.18!

Hence the weak-localization correction~3.1! is obtained
from N by

DG52
e2D

p\L(
a,b

Nabba~xi!. ~3.19!

The transformation to the local basis of spin states~2.3!
takes the form of a unitary transformation of the momentsN
andJ,

Ñabgd5 (
a8,b8,g8,d8

Qaa8Qgg8Na8b8g8d8Qb8b
† Qd8d

† , ~3.20a!

J̃abgd5 (
a8,b8,g8,d8

Qaa8Qgg8Ja8b8g8d8Qb8b
† Qd8d

† ,

~3.20b!

Q~x!5S eip f x/L cos
h

2
e2 ip f x/L sin

h

2

2eip f x/L sin
h

2
e2 ip f x/L cos

h

2

D .

~3.20c!
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The transformed moments obey

l
dÑabgd

dx
5 (

a8,g8
~Taa8dgg81daa8Tgg8!Ña8bg8d

1 (
a8,g8

~Saa8dgg82daa8Sgg8!J̃a8bg8d

2~11t/tw!J̃abgd , ~3.21a!

l
dJ̃abgd

dx
52 (

a8,g8
~Saa8dgg82daa8Sgg8!Ña8bg8d

1 (
a8,g8

~Taa8dgg81daa8Tgg8!J̃a8bg8d

2~2t/tw!Ñabgd12tdabdgdd~x2xi!,

~3.21b!

with the same 232 matricesS andT as in Sec. II. Because
the transformation fromN to Ñ is unitary, the weak-
localization correction is still given by DG5

2(e2D/p\L)(a,bÑabba(xi) , as in Eq.~3.19!.
We have solved Eq.~3.21! with periodic boundary condi-

tions by numerically computing the eigenvalues and~right!
eigenvectors of the 838 matrix of coefficients. The resulting
DG is plotted in Fig. 3 as a function of the tilt angleh. In the
adiabatic regimevBt@ f we find the conductance oscilla
tions due to the Berry phase. These are given by6

FIG. 3. Weak-localization correctionDG of a ring in a spatially
rotating magnetic field, as a function of the tilt angleh. Plotted is
the result of Eq.~3.21! for f 55, L5500l , Lw5125l . The upper
panel is forvBt!1. From top to bottom:vBt51025, 1024, 2
31024, 331024, 531024, 1023, 1022. At vBt.( f l /L)2, the
weak-localization correction crosses over from the transient reg
A of Eq. ~3.23! to the randomized regimeB of Eq. ~3.30!. The lower
panel is forvBt*1. From bottom to top:vBt50.1, 1, 2, 5, 10,
100. Here the weak-localization correction reaches the adiab
regimeC of Eq. ~3.22!.
DG52
e2

p\

Lw

L

sinh~L/Lw!

cosh~L/Lw!2cos~2p f cosh!
~3.22!

analogously to the Aharonov-Bohm oscillations.4 ~The
lengthLw5ADtw is the phase-coherence length.! In the ran-
domized regime (f l /L)2!vBt! f there are no conductanc
oscillations. Instead we find a reduction of the wea
localization correction, due to dephasing by spin scatter
In the transient regimevBt!( f l /L)2 the effect of the field
on the spin can be ignored,10 and the weak-localization cor
rection remains at its zero-field value

DG52
e2

p\

Lw

L
cotanhS L

2Lw
D . ~3.23!

C. Comparison with Loss, Schoeller, and Goldbart

If we replace the Boltzmann operatorB in Eq. ~3.5! by the
diffusion operator2D]2/]x2 and integrate overf andf i ,
we end up with the diffusion equation studied by LSG,

S ]

]t
2HDxabgd~x,xi ;t !5d~ t !d~x2xi!dabdgd ,

~3.24a!

H5D
]2

]x2
1

igmB

2\
@B~x!•s12B~x!•s2#, ~3.24b!

xabgd~x,xi ;t !5
1

2pE0

2p

dfE
0

2p

df i xabgd~x,xi ;f,f i ;t !.

~3.24c!

Heres1 ands2 act, respectively, on the first and third ind
ces ofxabgd .

The difference between the diffusion equation~3.24! and
the diffusion equation~3.15! is that Eq.~3.24! holds only if
vBt!1, while Eq.~3.15! holds for any value ofvBt. LSG
used Eq.~3.24! to argue that there exists an adiabatic reg
within the regimevBt!1. In contrast, our analysis of Eq
~3.15! shows that adiabaticity is not possible ifvBt!1. The
argument of LSG is based on a mapping of the diffus
equation~3.24! onto the Schro¨dinger equation studied in Ref
11. However, the mapping is not carried out explicitly.
this subsection we will solve Eq.~3.24! exactly using this
mapping, to demonstrate that the adiabatic regime of LSG
in fact the randomized regimeB. This misidentification per-
haps occurred because both regimes are stationary with
spect to the magnetic-field strength~cf. Fig. 2!. However,
Berry-phase oscillations of the conductance are only s
ported in the adiabatic regimeC, not in the randomized re
gime B ~cf. Fig. 3!.

We solve Eq.~3.24! for the weak-localization correction

DG52
e2D

p\L(
a,b

^x,a,bu~tw
212H!21ux,b,a&,

~3.25!

where we introduced the basis of eigenstatesux,a,b& ~with
a,b561) of the position operatorx and the spin operator
s1z ands2z . The operatorH commutes with

e
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J5
L

2p i

]

]x
1 1

2 f ~s1z1s2z!. ~3.26!

It is therefore convenient to use as a basis, instead of
eigenstatesux,a,b&, the eigenstatesu j ,a,b& of J, s1z , and
s2z . The eigenvaluej of J is an integer because of the pe
odic boundary conditions. The eigenfunctions are given

^x,a8,b8u j ,a,b&

5
1

AL
da8adb8bexpF2p ix

L
~ j 2 1

2 f a2 1
2 f b!G .

~3.27!

In the basis$u j ,1,1&,u j ,1,21&,u j ,21,1&,u j ,21,21&% the op-
eratorH has matrix elements

^ j 8,a8,b8uHu j ,a,b&

52DS 2p

L D 2

d j 8 jS ~ j 2 f !2 0 0 0

0 j 2 0 0

0 0 j 2 0

0 0 0 ~ j 1 f !2

D
2 ivBd j 8 jS 0 sinh 2sinh 0

sinh 22 cosh 0 2sinh

2sinh 0 2 cosh sinh

0 2sinh sinh 0

D .

~3.28!

Substitution into Eq.~3.25! yields

DG52
e2D

p\

1

L2(a,b
(

j 52`

`

^ j ,a,bu~tw
212H!21u j ,b,a&

52
e2

p\

1

2p2 (
j 52`

`

@~g1 j 2!2~ f 21g1 j 2!

1k2~3 f 214g14 j 21 f 2cos 2h!#

3@~g1 j 2!2~ f 412 f 2g1g222 f 2 j 212g j 21 j 4!

12k2~ f 413 f 2g12g22 f 2 j 214g j 2

12 j 41 f 2~ f 21g23 j 2!cos 2h!#21. ~3.29!

We abbreviatedk52vBt(L/2pl )2 andg5(L/2pLw)2. The
sum overj can be done analytically fork@1, with the result

DG52
e2

p\

1

4pQF4a214g1~31cos 2h! f 2

Aa2tanpAa2

2
4a114g1~31cos 2h! f 2

Aa1tanpAa1
G , ~3.30a!

Q5@ f 4~9 cos22h22 cos 2h27!

232g f 2~11cos 2h!#1/2, ~3.30b!

a652g1 1
4 ~113 cos 2h! f 26 1

4 Q. ~3.30c!
he

We have checked that our solution~3.29! of Eq. ~3.24! co-
incides with the solution of Eq.~3.15! in the regimevBt
!1. ~The two sets of curves are indistinguishable on
scale of Fig. 3.! In particular, Eq.~3.30! coincides with the
curves labeled B in Fig. 3, demonstrating that it represe
the randomized regime—without Berry-phase oscillations

Recently12 Loss, Schoeller, and Goldbart have recons
ered the condition for adiabaticity. We agree on the eq
tions @our exact solution~3.29! is their starting point#, but
differ in the interpretations. They interpret our randomiz
regimeB as being the adiabatic regime and explain the
sence of Berry-phase oscillations as being due to the eff
of field-induced dephasing. We reserve the name ‘‘ad
batic’’ for regime C, because if the spin would follow the
magnetic field adiabatically in regimeB, it should not suffer
dephasing.

IV. CONCLUSIONS

In conclusion, we have computed the effect of a nonu
form magnetic field on the spin polarization~Sec. II! and
weak-localization correction~Sec. III! in a disordered con-
ductor. We have identified three regimes of magnetic-fi
strength: the transient regimevBt!( f l /L)2, the random-
ized regime (f l /L)2!vBt! f , and the adiabatic regime
vBt@ f . In the transient regime~labeledA in Figs. 2 and 3!,
the effect of the magnetic field can be neglected. In the r
domized regime~labeledB!, the depolarization and the sup
pression of the weak-localization correction are maximal.
the adiabatic regime~labeledC!, the polarization is restored
and the weak-localization correction exhibits oscillations d
to the Berry phase.

The criterion for adiabaticity isvBtc@1, with vB the
spin-precession frequency andtc a characteristic timescale o
the orbital motion. We findtc5t, in agreement with Stern,3

but in contradiction with the resulttc5t(L/l )2 of Loss,
Schoeller, and Goldbart.6 By solving exactly the diffusion
equation for the Cooperon derived in Ref. 6, we have de
onstrated unambiguously that the regime that in that pa
was identified as the adiabatic regime is in fact the rando
ized regimeB—without Berry-phase oscillations.

We have focused on transport properties, such as con
tance and spin-resolved transmission. Thermodynamic p
erties, such as the persistent current, in a non-uniform m
netic field have been studied by Loss, Goldbart, a
Balatsky11,2 in connection with Berry-phase oscillation
These papers assumed ballistic systems. We believe tha
adiabaticity criterionvBt@1 for disordered systems shou
apply to thermodynamic properties as well as transport pr
erties. This strong-field criterion presents a pessimistic o
look for the prospect of experiments on the Berry phase
disordered systems.
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