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Berry phase and adiabaticity of a spin diffusing in a nonuniform magnetic field
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An electron spin moving adiabatically in a strong, spatially nonuniform magnetic field accumulates a geo-
metric phase or Berry phase, which might be observable as a conductance oscillation in a mesoscopic ring.
Two contradicting theories exist for how strong the magnetic field should be to ensure adiabaticity if the
motion is diffusive. To resolve this controversy, we study the effect of a nonuniform magnetic field on the spin
polarization and on the weak-localization effect. The diffusion equation for the Cooperon is solved exactly.
Adiabaticity requires that the spin-precession time is short compared to the elastic scattering time—it is not
sufficient that it is short compared to the diffusion time around the ring. This strong condition severely
complicates the experimental observatip0163-182899)10103-§

I. INTRODUCTION 1
wg> ; (1.1
The adiabatic theorem of quantum mechanics implies that

the final state of a particle that moves slowly along a closeds necessary to observe the Berry-phase oscillations. For re-
path is identical to the initial eigenstate—up to a phase facalistic values ofg this requires magnetic fields in the quan-
tor. The Berry phase is a time-independent contribution tdum Hall regime, outside the range of validity of the semi-
this phase, depending only on the geometry of the pdth. classical theory. We call Eq(1.1) the ‘“pessimistic
simple example is a spin-1/2 in a rotating magnetic fdjd  criterion.” In a later work® Loss, Schoeller, and Goldbart
where the Berry phase equals half the solid angle swept b{-SG) concluded that adiabaticity is reached already at much
B. It was proposed to measure the Berry phase in the corveaker magnetic fields, when
ductanceG of a mesoscopic ring in a spatially rotating mag- -
netic field?>? Oscillations of G as a function of the swept 1 1(/> (1.2

L

; . . WS> — = —
solid angle were predicted, similar to the Aharonov-Bohm B T

oscillations as a function of the enclosed ffux. e . . .
An important practical difference between the two effects] S Optr']mf'St'C rﬁ:nterlon hﬁs motlva}ltled_ experimentalists
is that the Aharonov-Bohm oscillations exist at arbitrarily to search for the Berry-phase oscillations in disordered

small magnetic fields, whereas for the oscillations due to th ond_u_ctorg, and was |_nvoked ina recent_study of the con
e - ductivity of mesoscopic ferromagnétsn this paper, we re-
Berry phase the magnetic field should be sufficiently stron . ; .
. : . . . xamine the semiclassical theory of LSG to resolve the con-
to allow the spin to adiabatically follow the changing direc-

. . . - . troversy.
tion. Generally speaking, adiabaticity requires that the pre- The Berry-phase oscillations in the conductance result

cession frequencysg is large compared to the reciprocal of o 5 periodic modulation of the weak-localization correc-
the characteristic time scalgon whichB changes direction.  jon and require the solution of a diffusion equation for the
We know thatwg=gugB/2/, with g the Landefactor and  cooperon propagator. To solve this problem we need to con-
up the Bohr magneton. The question is, whatti8 In a  sjder the coupled dynamics of four spin degrees of freedom.
ballistic ring there is only one candidate, the circumference (The Cooperon has four spin indicedo gain insight we
of the ring divided by the Fermi velocity. (For simplicity  first examine in Sec. Il the simpler problem of the dynamics
we assume thdlt is also the scale on which the field direc- of a single spin variable, by studying the randomization of a
tion changes.In a diffusive ring there are two candidates: spin-polarized electron gas by a nonuniform magnetic field.
the elastic scattering timeand the diffusion timerqg around  We start at the level of the Boltzmann equation and then
the ring. They differ by a factory/7=(L//)%, where/  make the diffusion approximation. We show how the diffu-
=v 7 is the mean free path. Since, by definitit®>/" in a  sion equation can be solved exactly for the first two moments
diffusive system, the two time scales are far apart. Which obf the polarization. The same procedure is used in Sec. Il to
the two time scales is the relevant one is still under debatearrive at a diffusion equation for the Cooperon. This equa-
Stern’s original proposaiwas that tion coincides with the equation derived by LSG in the
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B where o= (o ,0y,0,)is the vector of Pauli matrices. It is
L o o convenient to decomposé= x;§;+ x2¢£, into the local
/ \ eigenstateg; ¢, of B- o,
y
Zox cost e imxL _sin? e-infxiL
L 2 2
§T = 7 ) é = 7 )
FIG. 1. Schematic drawing of a two-dimensional electron gas in sinie'"fx”' COSEé’TfX“‘
the spatially rotating magnetic field of E(.1), with f=1. (2.33
weak-field regimevg7<<1, but is different in the strong-field B-o&=B¢, B-of=-B, (2.30

regimewgT=1. We present an exact solution for the weak-

localization correction and compare with the findings ofand use the real and imaginary parts of the coefficients

LSG. X1,X2 as variables in the Boltzmann equation. The dynamics
Our conclusion both for the polarization and for the weak-of the wvector of coefficients c¢c=(c;,C5,C3,C4)

localization correction is that adiabaticity requireg=> 1.
Regrettably, the pessimistic criteriofi.1) is correct, in
agreement with Stern’s original conclusion. The optimistic
criterion (1.2) advocated by LSG turns out to be the criterion
for maximal randomization of the spin by the magnetic field,
and not the criterion for adiabaticity.

II. SPIN-RESOLVED TRANSMISSION
A. Formulation of the problem

Consider a conductor in a magnetic fiddd containing a
disordered segmeritength L, mean free path” at Fermi
velocity v) in which the magnetic field changes its direction.
An electron at the Fermi level with spin Upelative to the

local magnetic fieldlis injected at one end and reaches the

other end. What is the probability that its spin is up?
For simplicity we take for the conductor a two-
dimensional electron ga@n the x-y plane, with the disor-

:(ReXIIIleiReX21ImX2) is given by

dc 1
az;Mc, M=Mgy+ M, cosg, (2.49
0O -1 0 O
1 0 0 O
MoZwsm) o g o 1]
0O 0 -1 0
0 —Cosy 0 sing
wf/| cosp 0 —sinp O
T sing 0 coy|’
—siny 0 —-cosp O
(2.4b

dered region betweer=0 andx=L), and we ignore the wherewg=gugB/2% is the precession frequency of the spin.
curvature of the electron trajectories by the Lorentz forceThe Boltzmann equation takes the form
The problem becomes effectively one-dimensional by as-

suming thatB depends o only. We choose a rotation &
in the x-y plane, according to

B(x,y,z=0)

2mfx
L

2mfx
L

=| Bsiny cos ,Bsiny sin ,Bcosy |,

(2.9

>

P —— Soosg M;c;P
Tﬁ (X!¢!Cyt)_ /COSQ‘)& . aCi ijCj )
p 2‘rrd¢' P , )
+] 5 -Pxdé'et), (29

where we have assumed isotropic scatterifigte 14

=vl/).
We look for a stationary solution to the Boltzmann equa-

with 7 andf arbitrary parameters. The geometry is sketchec{ion, so the left-hand side of ER.5) is zero and we omit the

in Fig. 1. We treat the orbital motion semiclassically, within
the framework of the Boltzmann equatiofThis is justified
if the Fermi wavelength is much smaller thah) The spin
dynamics requires a fully quantum mechanical treatmen
We assume that the Zeeman eneggysB is much smaller
than the Fermi energgmuv?, so that the orbital motion is
independent of the spin.

We introduce the probability density(x, ¢, é&,t) for the
electron to be at timet at position x with velocity v
=(v cospvsing,0), in the spin state with spinorg

=(£&1,&,). The dynamics of depends on the local magnetic
field according to

dé igus

FTT) B-o¢, (2.2

argumentt of P. A stationary flux of particles with an iso-
tropic velocity distribution is injected at=0, their spins all
aligned with the local magnetic fielso y,=0 at x=0).
Ywithout loss of generality we may assume that=1 at x

=0. No particles are incident from the other endxatL.

Thus the boundary conditions are

P(x=0,¢,c)=6(c;—1)6(c,)d(c3)6(cy) if cosedp>0,
(2.6
P(x=L,$,c)=0 if cos¢<O0. (2.6b

This completes the formulation of the problem. We com-

pare two methods of solution. The first is an exact numerical
solution of the Boltzmann equation using the Monte Carlo
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method. The second is an approximate analytical solution -1
using the diffusion approximation, valid far>/". We begin J(x)=
with the latter.

(2.13

2'7
determines the denominator of EQ.117).
B. Diffusion approximation To determinep we multiply Egs.(2.8) and (2.9) with
The diffusion approximation amounts to the assumptionXaX @nd integrate ovec (recall thaty; =c; +ic, x2=C3
that P has a simple cosine-dependencedan +icy). It follows upon partial integration that
P(x,¢,c)=N(x,c)+ J(x,c)cosqe. (2.7

To determine the densiti and current) we substitute Eq.
(2.7 into Eq. (2.5 and integrate ove®. This gives

d
JdCXaXZ%(MOCf)
:_2 (Sapgﬁo'_éapsﬁa')J’ dCXpX:'f’
/aJ— J 2MycN+M;cd 2.8 "
o= 7e(2Moc 1¢J). (2.8 (2.143

Similarly, multiplication with cosp before integration gives 9
f deXaxp 55 (Macf)

/aN S MocJ+M;cN)—J 2.9
v %( o€J+MicN)—J. 2.9 ST 5T)fd .
= a o Ca o CXpXoTH
Thus we have a closed set of partial differential equations for p.o PR pep ’
the unknown function®l(x,c) andJ(x,c). Boundary condi- (2.14h
tions are obtained by multiplying Eq2.6) with cos¢ and
integrating overg: for arbitrary functionsf(x,c). The 2x2 matricesS, T are
defined by
aa
S=iwgro,, T= T(UZCOSn—O'XSIrm). (2.19
=0(c;—1)d(cy) 8(c3)d(cy), (2.103 _ ,
In this way we find that the moments
a
N(x=L,c)——J(x=L,c)=0. 2.10
( =7 ) (2100 NaB(X)=f dc x.xpN(x,0), (2.163
We seek the spin polarizatign=c5+c5—c3—c3 of the
transmitted electrons, characterized by the distribution Jaﬁ(x):f dCXaXEJ(X,C), (2.168
f dc J(x=L,c)8(ci+c3—ci—c5—p) satisfy the ordinary differential equations
P(p)= -
d NaB
dcJ(x=L,c) Srr :,)E(, (Tap®s0— 8apT po)Npo
(2.11 '
(Thg notationdeEf_dcl IQCZ Jdc; [dc, indicates an inte- +>) (SapB80— 0upSpe)dpe—Jap,
gration over the spin variableswe compute the first two p.o
moments ofP(p). The first momentp is the fraction of (2.17a
transmitted electrons with spin up minus the fraction with
spin down, averaged quantum mechanically over the spin dJ.g
state and statistically over the disorder. The variance /ar ’ ax_ =2§_ (Sapps= 0apSpa)N,p
=p?—p? gives an indication of the magnitude of the statis-
tical fluctuations.
. . . + — , .
Integration of Eqs(2.8—(2.10 over the spin variables p% (TapOpo™ OapTpo)dpo, (2178
yields the equations and boundary conditions for the func- . .
tions N(x) = fdc N(x,c) andJ(x)=fdc J(x,c): with boundary conditions
dN dJ ™
L S Nop(x=0)+ 73,p(x=0)= 58,1851,  (2.183
‘=Y o (2.123 B 4 VaB 19p1
T T _ m =
N(0)+ 73(0)=1, N(L)=7I(L)=0. (212D Nap(x=L)= 7 Jap(x=L)=0. (2.18h

The solution The mean poIarizatioHis determined by, ; according to
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FIG. 2. Average and variance of the spin polarizatpof the

current transmitted through a two-dimensional region of lerigth

=25/, as a function ofvg 7, for a magnetic field given by E¢2.1)

T
with »=m/3 andf=1. The data points result from Monte Carlo N,g,s(X=L)— ZJQBW(X: L)=0.
simulations of the Boltzmann equati¢®.5), the solid curves result
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Lagys= Taudpu0ypO0ss OanT puOypOss

001081 ypOs5™ OauOpr0y, T 50, (2.220

Na;ayg(X)=f dexaxpx,X5N(x,0), (2233

Jaﬁyé(x):f dexaxpx,x5Jd(x,0).  (2.23D

The boundary conditions on the functioNsz, s andJ,z,s
are

from the diffusion approximatiori2.7), and the dashed curves are The second momer? is determined by

the asymptotic formulag2.20 and (2.27). Notice the transient re-

gime (A), the randomized regim@), and the adiabatic regim€).

— J1g(L)—Joo(L)
(L)

_7TL
“\277

Since Eqg. (2.17

[J12(L) —Jao(L)]. (2.19

is linear in the eight functions

a
Nal;,ﬂs(x=0)+ ZJCV,B'WS(X:O):551’15,81571551’ (224)
(2.2
— |7 L
pc= §+7 [J1111(X=L) =112 X=L)
—Jo1(X=L) + I X=L)]. (2.26

The numerical solution is plotted also in Fig. 2, together with
the asymptotic expression

2k\/3 k2

1
VA= 3t Senhky3)  sinftk’ 229

Ng(X),Jdqp5(X) (,8=1,2), a solution requires the eigenval-
ues and right eigenvectors of thex8 matrix of coefficients. It is evident from Eqgs(2.20 and(2.27), and from Fig. 2,
These can be readily computed numerically for any values of . el P = f
L// and wg7. We have found an analytic asymptotic solu- that the regime witlp=1, Varp=0 is entered forwp7=

tion for L//>1 andwgr>(f//L)?, given by

— k K= 27rfsing (2.20
PTsinhk T T 2agr)? |

In Fig. 2 we compare the numerical soluti¢gsolid curve
with Eq. (2.20 (dashed curvefor L//=25 and = w/3,f

[for sinp=0(1)], in agreement with Stern’s criterida.1) for
adiabaticity. For smallewg7 adiabaticity is lost. There is a
transient regimevg7<<(f//L)?, in which the precession fre-
quency is so low that the spin remains in the same state
during the entire diffusion process. FofA/L)?<wgr<f

the average polarization reaches a plateau value close to zero
with a finite variance. For a sufficiently nonuniform field,

fsin>1, we find in this regiqu_)=0 and Vamp=1/3, which

=1. The two curves are almost indistinguishable, except fomeans that the spin state is completely randomized. The tran-

the smallest values abg.

In a similar way, we compute the second momen® ()
by multiplying Egs.(2.8) and(2.9) with x,xpx,xsand in-
tegrating overc. The result is a closed set of equations,

d
/gxNapys= MVEP (LegyiN oot Kagysduwpo) = Japys,
2.213

d
O dapyoe= 2 (KU ot L300, (221D

MV, p,0
where we have defined

Ke5y6= SauOp10yp050 = 0auSprOyp0Osa
+ 50(#5&87!,550— 50,115,31)53’#’850’ (2.223

sient regime, the randomized regime, and the adiabatic re-
gime are indicated in Fig. 2 by the lettets B, andC.

C. Comparison with Monte Carlo simulations

In order to check the diffusion approximation we solved
the full Boltzmann equation by means of a Monte Carlo
simulation. A particle is moved from=0 over a distance
/1 in the directiong,, then over a distancg, in the direc-
tion ¢,, and so on, until it is reflected back xe=0 or trans-
mitted to x=L. The step lengthg’; are chosen randomly
from a Poisson distribution with meaf.. The directionseg;
are chosen uniformly from0,27r], except for the initial di-
rection ¢4, which is distributedecosp,. The spin compo-
nents are given by

(Xl) =[] ¢St Teosen //(;)_ (2.289

X2 i



2106 van LANGEN, KNOPS, PAASSCHENS, AND BEENAKKER PRB 59

To find p", one has to averagéx(|?>— | x,|?)" over the trans-
mitted particles. The results fauw//'= 25 are shown in Fig. 2
(data points They agree very well with the results of the
previous subsection, thus confirming the validity of the dif-

d igup
at+B)Xaﬁy5(X XI!¢ ¢I!t) Zﬁ

fusion approximation fot.//>1. XQZ, [(B(X): @) aar 8yy = Saar (B(X)- @)y IXarpy's
=8(t) 8(X=X;) (P — i) Sap0ys- (3.5
Ill. WEAK LOCALIZATION The Boltzmann operatds is given by
A. Formulation of the problem
. . g 1 1(27dé¢
We turn to the effect of the nonuniform magnetic field on B=v cos¢p—+—— —f —_—. (3.6
oX 1T 7)o 27

the weak-localization correction of a multiply connected sys-
tem. We consider the same geometry as in Fig. 1, but now ; He e
with periodic boundary conditions—to model a ring of cir- tior-]l—?(f:gpjgatof( t')s a moment of the probability distribu
cumference.. Only the effects of the magnetic field on the

spin are included, to isolate the Berry phase from the con-

ventional Aharonov-Bohm phase. As in the previous subsec- Xaﬁy&zf dU+f dU™ U U P, 3.7
tion, we assume that the orbital motion is independent of the

spin dynamics. We follow LSG in applying the semiclassicalthat satisfies the Boltzmann equation

theory of Chakravarty and Schmidio the problem; how-

ever, we start at the level of the Boltzmann equation—rather 9 gyt (dU” g (dU”
than at the level of the diffusion equation—and make the at gutl dt | gu-| dt
diffusion approximation at a later stage of the calculation.
The weak-localization correctioAG to the conductance XP(x,¢,U",U",1)=0, (3.8
is given by with initial condition
P(x,¢,U",U",0)
t/T _
AG=- wﬁLf dte (), @D = 8(x—x) 8(¢— ) S(U* ~1)5(U " ~1).

(3.9

where, is the phase coherence time and the diffusion coThe notationdU™ or dU~ indicates the differential of the
eff|C|entD vl/d in d dimensions(In our geometryd=2.) real and imaginary parts of the elements of the2 matrix
The “return quasiprobability”C(t) is expressed as a sum U™ or U™. We will write this in a more explicit way in the
over “Boltzmannian walks”R(t) with R(0)=R(t), next subsection.

The Boltzmann equatiof3.8) has the same form as the
one that we studied in Sec. Il. The difference is that we have
four times as many internal degrees of freedom. Instead of a
single spinoré we now have two spinor matricds* and
U~. A first doubling of the number of degrees of freedom
] ) ] occurs because we have to follow the evolution of both spin
Here W[R(t)] is the weight of the Boltzmannian walk for & yp and spin down. A second doubling occurs because we
zpmless particle. The 22 matricesU~[R(t)] are defined haye to follow both the normal and the time-reversed evolu-

y tion.

C(t)= D, WTr(utu). (3.2
(RO}

B. Diffusion approximation

U+=Texp{ gMB] dt’ B(R(t"))- 0'] (3.3 We make the diffusion approximation to the Boltzmann
equation(3.8), by following the steps outlined in Sec. Il. The
4X 2 matrix u* containing the real and imaginary parts of

where T denotes a time ordering. The factor TH{U ") in u=,

Eq. (3.2) accounts for the phase difference of time-reversed . N
paths. ReU;; ReUg,
The Cooperon can be written in terms of a propagator ) ImU; ImUp,

! ReU,; ReU,,|’ (310

* *
ImU3; ImUx,

1 2w 27
C(t)= Zfo dd’fo d¢ia2,3 Xappa(Xi Xi; b, i),

(3.9 has a time evolution governed by

du®
—_— *
that satisfies the kinetic equation T dt =Z00u”, (3.113
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) 27fx ) 27fx

0 —cospy siny smT —siny cosT

. 2mfx ) C2afx
cosy 0 siny cos——  siny sin— —
Z(x)=wgT 27X 27 fx (3.11b
—siny sinT —siny cosT 0 cosy
) 27fx ) C27fx
Sinyp CoS——  —siny sin—— —Ccosy 0
|
The Boltzmann equatiof3.8) becomes, in a more explicit dd,z.s 1QupT
notation, /' dfy ZTZ [(B(X): 0)aar Fyy
a',‘y'
d s} Ut = Saar (B(X)- 0)yy INargyr s
Ty X! 1u !u L
it ) — (2717 )N g5 278058,50(X—X).

(3.15H

JP The periodic boundary conditions are

=—/cos¢— —iEk M—Jrzik(x)uk*jP
R Nagys(0)=Nagys(L),  Jupys(0)=Jagys(L).

(3.1

J _
+ > —Zy(X)uP—P
i,J,k dU:

The CooperorC and the propagatoy of Eqs.(3.4) and(3.7)
ij

are related to the density by

2'n'd¢’
+ | S5=P(x,¢’,u",u,t). (3.12 ST S
o 2m NagyoX)= | dte 7| ~dg
. . . 27
We now make the diffusion ansatz in the form x ) dd’iXa,By&(vai bbict), (3.17)
c v, [P
J;) dte ¢f0 d(ﬁ, P=N+\]COS¢. (313) Eﬁ Naﬁﬁa(xi): JO dt e_t”wC(t). (318)

By integrating the Boltzmann equation ove, once with
weight 1 and once with weight ca@s we obtain two coupled
equations for the functionsl(x,u*,u™) and J(x,u*,u”).

Hence the weak-localization correctiaf3.1) is obtained
from N by

e?D

Next we multiply both equations withy ;BU ,s and integrate
over the real and imaginary parts of the matrix elements. The
momentsN, s, s andJ, g, s defined by

AG:—W% N gpa(X)- (3.19

The transformation to the local basis of spin std@$)
takes the form of a unitary transformation of the momets

NQW(x):f dU*f dU U U N, (3149 andd
Na,375: , B’E’ 5 Qaa’Q‘yy’Na’ﬁ"y’&’Q;'BQ;/g: (3203
a,p Y,
Jaﬁw(x):f du*f du” U, U, (3.14h
5 t At
Jaﬁyéz , Z, /Qaa’Q'yy"]a’B’y’é"QB/ﬁQg/5:
are found to obey the ordinary differential equations a.pye (3.20H
dNggys 1QupT il ool Il i
/TMZ T 2 [BX): 0)ear 8,y € oS € siny
' Q(x)= . .
= B (B(X) - 0) 1y 1t gy 5= (L 71 7,) I s —elmhiL siny g imhIL cos;

(3.153 (3.200
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FIG. 3. Weak-localization correctiohG of a ring in a spatially
rotating magnetic field, as a function of the tilt angje Plotted is
the result of Eq(3.2) for f=5, L=500/, L,=125/. The upper
panel is forwgr<1. From top to bottomwgr=10"5 104, 2
X 1074, 3X1074, 5%x10°%4, 1073, 102 At wgr=(f//L)?, the

weak-localization correction crosses over from the transient regime

A of Eq. (3.23 to the randomized regint of Eq. (3.30. The lower
panel is forwgr=1. From bottom to topwg7=0.1, 1, 2, 5, 10,
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AG=—e—Zﬁ sinh(L/L,)

mh L cosKL/L,)—cog2mfcosy)

analogously to the Aharonov-Bohm oscillatichs(The
lengthL ,= VD, is the phase-coherence lengtim the ran-
domized regimef//L)?<wgr<f there are no conductance
oscillations. Instead we find a reduction of the weak-
localization correction, due to dephasing by spin scattering.
In the transient regimeg7<<(f//L)? the effect of the field

on the spin can be ignoréand the weak-localization cor-
rection remains at its zero-field value

e’ L, L
AG=—-——cotanh=—|.

(3.23
7h L 0

C. Comparison with Loss, Schoeller, and Goldbart

If we replace the Boltzmann operat8iin Eq. (3.5 by the
diffusion operator— D #%/9x? and integrate oves and ¢,
we end up with the diffusion equation studied by LSG,

J
(E _H> Xaﬁ'yﬁ(xaxi 1t) =0(t) o(x— Xi)aaﬁayér

100. Here the weak-localization correction reaches the adiabatic

regimeC of Eq. (3.22.

The transformed moments obey

dN,z,s N
a .,y
+ 2/ (Sw,gw,—5w,SWr)ja,ﬁyr5
a .,y
— (147173 s (3.213
apyo_

/ dx 2 ,2, (Saa’éy'y’_5aa’syy’)Na’B'y’5
a .,y

+ 2 (TawSyy+ aar Toy)uipys

Cl,,‘y,
— (271 7N g5t 278 ,58,55(X— X)),
(3.21b

with the same X2 matricesSandT as in Sec. Il. Because

the transformation fromN to N is unitary, the weak-
localization correction is still given by AG=
—(e?D/7hL) 2, sNoppa(Xi), as in EQ.(3.19.

We have solved Eq3.21) with periodic boundary condi-
tions by numerically computing the eigenvalues dright)
eigenvectors of the 8 8 matrix of coefficients. The resulting
AG is plotted in Fig. 3 as a function of the tilt angie In the
adiabatic regimewg>f we find the conductance oscilla-
tions due to the Berry phase. These are giveh by

(3.243
2 .
H=D-— + LBIB(x). 0y B(x)- 0;], (3.24D
IX 2h
1 (2= 27
Xaﬁyﬁ(xaxi;t):EJ'O d(;b 0 d¢iXaB'y§(X!Xi;¢!¢i;t)-
(3.240

Here o, and o, act, respectively, on the first and third indi-
ces ofx,pys-

The difference between the diffusion equati@?4 and
the diffusion equatior{3.15 is that Eq.(3.24) holds only if
wg7<1, while Eq.(3.19 holds for any value ofvg7. LSG
used Eq(3.24 to argue that there exists an adiabatic region
within the regimewgr<<1. In contrast, our analysis of Eq.
(3.15 shows that adiabaticity is not possibledif7<<1. The
argument of LSG is based on a mapping of the diffusion
equation(3.24 onto the Schrdinger equation studied in Ref.
11. However, the mapping is not carried out explicitly. In
this subsection we will solve Eq3.24 exactly using this
mapping, to demonstrate that the adiabatic regime of LSG is
in fact the randomized regimB. This misidentification per-
haps occurred because both regimes are stationary with re-
spect to the magnetic-field strengtef. Fig. 2. However,
Berry-phase oscillations of the conductance are only sup-
ported in the adiabatic regin@, not in the randomized re-
gime B (cf. Fig. 3.

We solve Eq/(3.24) for the weak-localization correction

_ eZDz -1 -1
AG___TrﬁLa,B (X,a,,8|(7'qp —H) x,8,a),
(3.25

where we introduced the basis of eigenstdies, ) (with
a,B=*1) of the position operatax and the spin operators
o1, ando,,. The operatofH commutes with
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We have checked that our soluti¢d.29 of Eq. (3.24 co-
+3f(o1+ 02)). (3.26  incides with the solution of Eq(3.15 in the regimewgr
<1. (The two sets of curves are indistinguishable on the
It is therefore convenient to use as a basis, instead of thecale of Fig. 3. In particular, Eq.(3.30 coincides with the
eigenstatesx, «, 8), the eigenstatef,«,B) of J, o1,, and  curves labeled B in Fig. 3, demonstrating that it represents
o,,. The eigenvalug of J is an integer because of the peri- the randomized regime—without Berry-phase oscillations.
odic boundary conditions. The eigenfunctions are given by  Recently? Loss, Schoeller, and Goldbart have reconsid-
ered the condition for adiabaticity. We agree on the equa-

T 27 ox

(x,a",B'|j,a.B) tions [our exact solution(3.29 is their starting poirit but
1 2 differ in the interpretations. They interpret our randomized
=—5,8 cmX i—lfg—Lf regimeB as being the adiabatic regime and explain the ab-
a'a B’Bex (J 2la—3 B) . . . .
JL L sence of Berry-phase oscillations as being due to the effects

(3.2 of field-induced dephasing. We reserve the name “adia-

' batic” for regime C, because if the spin would follow the
In the basig|j,1,1),|j,1,—1),]j,—1,2),|j,—1,—1)} the op- magnetic field adiabatically in regint, it should not suffer
eratorH has matrix elements dephasing.

(e’ g M) IV. CONCLUSIONS
(j—-)2 0 0 0 ) _
In conclusion, we have computed the effect of a nonuni-

B 2m\? 0 j? 0 0 form magnetic field on the spin polarizatidSec. 1) and
=-D T Oy 0 0 j2 0 weak-localization correctioiSec. Il)) in a disordered con-
: 2 ductor. We have identified three regimes of magnetic-field
0 0 0 (+f strength: the transient regimegr<<(f//L)?2, the random-
0 sing —siny 0 ized regime {//L)’<wgr<f, and the adiabatic regime
. , wgr>Tf. In the transient regim@éabeledA in Figs. 2 and 3
Cions, | M —2co:p 0 —siny the effect of the magnetic field can be neglected. In the ran-
BEVI —sing 0 2coy sing |’ domized regimelabeledB), the depolarization and the sup-
0 —sing siny 0 pression of the weak-localization correction are maximal. In

the adiabatic regimdabeledC), the polarization is restored
(3.28  and the weak-localization correction exhibits oscillations due
to the Berry phase.
The criterion for adiabaticity iswgt;>1, with wg the
oD 1 spin-precession frequency atda characteristic timescal;1 of
G=——— = ~1_apn—1: the orbital motion. We find.= 7, in agreement with Stern,
AG wh |_2E E (oo Bl(re =11 B ) but in contradiction with the result,=7(L//)? of Loss,
Schoeller, and GoldbaftBy solving exactly the diffusion

Substitution into Eq(3.25 yields

2

e ) equation for the Cooperon derived in Ref. 6, we have dem-
T ko2 Z [(y+iH%(F 4 y+]?) onstrated unambiguously that the regime that in that paper
was identified as the adiabatic regime is in fact the random-
- K2(3f2+4’y+ 4j%+f2cos 2p)] ized regimeB—without Berry-phase oscillations.
554 ) 5 - 54 We have focused on transport properties, such as conduc-
XLy i) (7 + 215y + 7= 2855+ 2] 5+ %) tance and spin-resolved transmission. Thermodynamic prop-
2/¢4 2 2_£2:2 02 erties, such as the persistent current, in a non-uniform mag-
T2 3y b2y 174 4y netic field have been studied by Loss, Goldbart, and
+2j4+f2(f2+ y—3j?)cos 2p)] . (3.29  Balatsky™? in connection with Berry-phase oscillations.

These papers assumed ballistic systems. We believe that the
adiabaticity criterionwg7>1 for disordered systems should
apply to thermodynamic properties as well as transport prop-
erties. This strong-field criterion presents a pessimistic out-
look for the prospect of experiments on the Berry phase in

We abbreviated = 2wg(L/27/)? andy=(L/27L )2 The
sum overj can be done analytically foe>1, with the result

e 1 [4a_+4y+(3+cos 2n)f2

AG=-3 47Q| Ja_tanma_ disordered systems.
2
_ 48, Ty +(3+cos 2t (3.308 ACKNOWLEDGMENTS
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