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Transport Properties of Vortices in Easy Flow Channels: A Frenkel-Kontorova Study
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Incommensurate easy flow channels in an otherwise perfect vortex lattice are investigated. The
associated (point) defects in the lattice inside the channel cause an almost vanishing critical current,
as shown by molecular dynamics simulations and a comparison with the Frenkel-Kontorova model. In
addition to the normal flux flow behavior, we find a low mobility regime at small drives associated
with defect motion. We treat this situation analytically for the case of a single defective vortex
row. We also briefly discuss the relation to existing experiments on artificial vortex channels.
[S0031-9007(99)08955-3]
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In recent years, vast interest has grown in the depernwell as show that our line of reasoning also applies to
dence of static and dynamic properties of vortex mattetarger channel widths and a relative CE shift # 0.
on the spatial profile of the pinning potential originating When a shear force is applied to the vortices in the
from defects in the underlying material. The behavior ofchannel, the onset of flux flow appears as the force
the vortex lattice was investigated experimentally as welexceeds the maximum shear stress. The maximum
as theoretically in the presence of a wide variety of thesshear force densityF;, may be obtained fromcgs:
pinning landscapes, ranging from purely random [1-3] to
highly periodic [4]. Several of these studies revealed the
existence of static channels of easy vortex flow at currents  0.15
just above the critical value [2,3]. In addition, this criti-
cal current was shown to be proportional to the interaction
strength between vortices inside the channel and those in
the channel edges (CE’s), as expressed by the shear modu-
lus of the vortex latticegs [3,5]. A precise theoretical de- 0.10
scription of this phenomenon and of its dependence on the
channel width is still lacking. In this paper we study forthe s
first time the properties of static easy flow channels within
the framework of the Frenkel-Kontorova (FK) model [6]. L
It is demonstrated that a mismatch between channel width 4 g5
and lattice constants induces (point) defects in the channel
leading to an almost vanishing shear strength. This can
have important implications for the properties of vortex
matter in a pinning potential with large spatial variations
in strength. In addition, our results on the dynamics of in- B e e L
commensurate structures may be applied to various other "0.00 005 f 0.10 0.15
fields, such as vortex dynamics in overdamped Josephson
junction arrays, transport properties of charge density@o
waves [7], and solid friction of confined layers [8,9]. Q
We consider 2D vortices af' = 0 in an easy flow X
channel of widthw and lengthl, confined by two semi- < . .
infinite pieces of a rigidly pinned vortex lattice with 0 20 40
perfect hexagonal structure of lattice constantind row x/ Y

spacingby = agv/3/2. The pinned structures forming FIG. 1. (a)f-v characteristics for vortex channels with =~
the _edg_es are chosen to have their principal axis in _th@o andAx = 0. Symbols are simulated data and drawn lines
x direction parallel to the channel and have a relativesre obtained with Eq. (5). The inset shows an expanded view
shift Ax (left upper corner of Fig. 1a). First we describe of the small velocity regime. Left upper corner shows the chan-
qualitatively the case in whichw = b, and Ax = 0 nel geometry with mobile vortices displayed by open symbols.
(restricting the degrees of freedom for the mobile vorticeg?) Vortex densityp(x) = 1/[w(x;+; — x;)] along the channel

: . . . - or w = 0.97by: (o) GS as well as a snapshot of the mov-
to thex direction), corresp_ondlng to _the S|r_1gle cham FKmg row in the low mobility regime £ = 0.01); (s) snapshot
model. Molecular dynamics (MD) simulations will then at large drive ¢ = 0.1). The drawn line represents(x) =
provide a justification of these qualitative arguments agw(h(¢ + a) — h(e) + a)]™! atv(f = 0.01).
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F, = 2Acgs/w where A accounts for the lattice an- ri=f+ va(rij), 2
harmonicity and orientation of the shear direction with Jj#i
respect to the principal lattice axes [10]. For our ori-with ao as unit of length,®3/(27 uoA2a) as unit of
entation and a harmonic potential from the vorticesforce (per unit vortex length), andlr woA?/ (/3 psyr) as
in the CE’s, it follows thatA = (7+/3)"'. Then, unit of time. The external drivef is directed along
for w = by, the “edge” potential (per unit length) for the channel. The interaction force is chosen fas=
a single vortex inside the channel can be defined aél/r)(1 — r?/r2)? with r. = 3.33 [1]. This interaction
U = 3[1 + codkox)], with o = agces/(w2by) and  results in a shear modulus coinciding with the above given
ko = 27 /ao. Next, we consider the mutual interaction expression [in dimensionless unitgs = 1/(4+/3)]. In
between the mobile vortices in the channel. Thesdeq. (2), the index runs over all vortices, including those
vortices have an average spaciag which is given inthe CE’s (see Fig. 1la). We adopted periodic boundary
by the induction B asa = ®y/(Bw) = agbo/w with conditions with! large enough, such that our results did
@, the flux quantum. We use a harmonic approxi-not depend on this length scale. For eachwe relaxed
mation for the interaction, while its nonlocal nature isthe system to its ground state (GS) and then measured
preserved by including interactions with neighbors the force-velocity {-v) characteristic by stepwise cycling
in the chain. The effective spring constarks then the force (f = 0 — fnax — 0) and taking the stationary
can be obtained from a Londob/r interaction force velocityv = (x);, at each step.
between vorticesk, = (@3/47r,u0)\2)(1/na)2 with A Figure 1a shows the resultinv curves forAx = 0
the penetration depth. Thus, in the presence of a transpahdw =~ by. Forw = by, the maximum shear strength is
current densityJ applied perpendicular to the channel, observed with a valug. = 0.054, coinciding with the di-
the equation of motion for vorteikin the channel reduces mensionless value gf in (1). Additionally, the dynamics
to an overdamped FK model, are identical to that of a single particle in a sinusoidal po-
tential. Both observations are in agreement with the fact
that the edge potential resulting from our vortex interac-
tion is indeed harmonic. More interesting is the behavior
(1) intheincommensurate case (* bo). As seeninthe inset
fe/m = 0.001, which can be understood from our previ-
where f = J®, is the Lorentz force,u = mo/ap is  ous arguments when we calculateexpandingf, in (2)
the amplitude of the periodic force, and the friction we obtaink, = (na/aog)~2 + 0.18 — 0.003(na/ao)?, re-
coefficient y is related to the flux flow resistance by sultinging = 6. Atypical example of the GS defect struc-
y = B®y/pss(B). ture is shown in Fig. 1b, where the open symbols represent
In the FK model the critical forcef. and the dy- the vortex density along the channel for= 0.97b,.
namic properties largely depend on both the value of Turning to the dynamics in Fig. 1a, it is seen that the
a/ay as well as the dimensionless elastic constart  defective vortex rows possess a regime of low mobility
a3y, n?K, /270 [7,11]. From the above given expres- in the f-v curves. In this regime, transport in the
sions fore andK,, and using the low field expression for row is carried by the defects which have a velocity
the shear moduluggs = ®oB/(167 uoA?), we find that much larger than the average velocity= c,v,, with
g = (A/a) (ap/a)? for our system. Since in practice [5] ¢; = |1 — (ap/a)| the defect density. A snapshot of the
Aag > 1, we restrict ourselves to the cage> 1 [12].  moving row then resembles the GS defect structure (see
In casea/ap = 1, the vortex row locks in with the peri- again the open symbols in Fig. 1b). A useful quantity
odic potential andf. = w. For rationala/ag, the row  here is the mobility of an isolated defect. From the
contains point defects with a sizg ~ 27a,/g. Then simulation we getv,/f = 13, a value which one can
fc is determined by their Peierls-Nabarro (PN) barrieralso obtain from the analytical treatment described below.
[11] which, for an isolated defect ang> 1 is given by  The mobility of an interstitial is slightly larger than that
fe = (8/3)m3gue ™%, Accordingly, f./u < 1 and of a vacancy due to the anharmonic vortex interactions.
the channel has an almost vanishing critical current. FiWhen entering the high mobility regime whefe= u,
nally, for irrationala/ay andn = 1, Aubry has shown that the defects are smeared out in a slight sinusoidal density
a transition exists to a state wilfi = 0 asg exceeds a modulation and the transport becomes coherent within the
critical valueg,. Fora/ay = (/5 — 1)/2, g. = 1 [13].  row (see the filled symbols in Fig. 1b).
The conditiong > 1 then implies that the vortex channel It turns out that we can capture the transport charac-
can have a truly vanishing critical current. The influenceteristics within a perturbation theory as used in Ref. [15].
of nonlocal elastic constants [14] on the above results ca@onsider Eq. (1). It is known that the motion of all par-
be neglected as long &g = A, i.e., forA < 50a. ticles in the FK chain can be completely described by
In order to check the above scenario, we performed MOhe dynamic hull functionz(ia + vt) = x;(t) — (ia +
simulations of easy flow channels in a thin film. Thewvt) = h(¢), which represents the deviations of the par-
dynamics of a vortex inside the channel is governed byicle positions from the undisturbed sliding values. From
the following equation: (1) we obtain the following equation far(¢):

7)éi = f + /-LSin(kOXi) + ZKn(xi+n + Xi—p — 2.Xi),

n
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yu[l + W' (e)] = f + psinfkle + h(e)]}
+ ZK,I[h(go + na)

+ (e — na) — 2h(ep)].
3)
When mappinge back onto one period of the potential,
& = (¢ — iag), h(®) has the periodicityry resulting in

fey s 2 Twerae. @
0 JO

The shape and amplitude @f(¢) represent the defect

for3.5b9 < w < 5by. The features are similar to thifev
curves forw = by, and these are again associated with
the presence of defects in the channel. Two character-
istic structures can be identified: ftiw/by) — p| < 0.4

(1) the structure consists ¢f vortex rows plus interstitials
(w/by > p) or vacanciesw/by < p). The defects are
not necessarily equally distributed within a row. In addi-
tion, the defect density differs per row due to the repulsive
interaction with the channel edges. The latter is illustrated
in Fig. 3a, where two snapshots of the motion for=
4.08bg in the low mobility regime are displayed with inter-
stitials indicated by arrows. Fofw/bo) — (p + 1/2)] =

structure of the moving FK chain and thus depend.1 (ll), clustering of vacancies«/by > p + 1/2) orin-

on a/ag, g, and v. For large speed or in case of
both large lattice mismatch ang > 1 (above Aubry’s
transition), #(@) is sinusoidal with a small amplitude
[9]. In our casei(@) can have a more complex shape
as well as a large amplitude.
orders in the perturbation to describe the dynamics fo
any a/ay by solving (3) with a trial hull function
of the form h(@) = YV_ (H,.e*™?® + c.c). Inserting
this hull function in (3), we obtain a set of coupled
equations for the coefficiend,,. Solving for H,, yields
the approximate form ofi(¢). A full account of this

terstitials ¢v/bg < p + 1/2) occurs. As aresult, alternat-
ing regimes form along the channel pfandp + 1 rows,
which we refer to as stacking faults (SF’s). The regimes
are separated by dislocations with Burgers vectors at angles

We introduce higherof 60° with the channel direction, as shown in Fig. 3b.

r Structure | is just &D extension of our results for a
single incommensurate vortex row. The shear strength
is almost vanishing due to the small PN barriers of the
point defects in each row. The low mobility regimes in
the f-v curves once more originate from motion of these
defects. However, two additional features appear. First,

work will be published elsewhere. Now the expressionrecalling our simple description of defect motion in a row

describing thef-v characteristics is obtained by using this
hull function in Eq. (4), which results fa¥ = 3 in
2 2,,2
5 m Iu’ ')/'U , (5)
apQd + 2ayv)?
whereayQ? represents the elastic restoring forcermm-
linear excitations in the FK chain. From the perturbation

approach(, is expressed im and the restoring forces on
linear modes (phonons) at wave number mk,

Q31030345 + p272(QF + Q3)
030363 + p2a?

f=yv+

Q%(a = aoho/w) =

)

(6)
in which Q2 = Q2(mko) = >, 2K,[1 — codnmako)].
The last term in Eq. (5) corresponds to the sliding friction
in the field of tribology [9]. It results from the dissipation
of the internal (nonlinear) collective modes in the chain.
The crossover from low to high mobility occurs a =
apQ?/(2my) where the amplitude of the hull function
drastically decreases.

for K, and take into account that slightly depends ow
as well. The correspondingv curves, shown in Fig. 1a,

agree well with the simulated data. The transport of a
defective vortex row can thus be accurately described by

perturbing the harmonic FK model.

In order to compare (5) with the
simulated data, we use the previously obtained expression

(vy = ca,v4), we see that, for equal defect velocities in
different rows, a different defect density causes different
average row velocities,, i.e., plastic motion within the
channel This clearly shows up in Fig. 3a, where the inter-
stitials move at the same velocity, > v, while the row
velocities vary fromv, = 0 to v3 = 2v. Second, occa-
sionally a hysteresis is observed in the transport curves
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In order to study channels of larger width, we adopted arFIG. 2. Shear strengtfi. versus channel width for a velocity

edge shiftAx(w) with a sawtooth shap® (= Ax < ag/2)
which assures that, as we varya perfect hexagonal struc-
ture is retained fow = pb, with p an integer. However,

criterion of 5 X 107* and Ax = Ax(w). Open symbols are
experimental data of artificial vortex channels at the same
criterion [5]. The dashed line represents the continuum
result: f. = ubo/w. The inset displays typical simulated

for w # pby, the qualitative behavior did not depend on ¢y, characteristics. Note the hysteresis for= 4.54b, and

Ax. The inset of Fig. 2 shows the simulat¢gedv curves
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FIG. 3. (a) Two snapshots of the channel flow for= 4.08b, (case I) in the low mobility regime f{ = 0.007, see inset of

Fig. 2). For clarity the amplitude of vortex displacements from the aveyag@ordinate of a row has been enlarged by a factor of
3.5. Snapsho? (o) is taken after an average displacemen®.dt:;, with respect to snapshat(e), whereas the defect displacement

is about6ay. The rows are labeled with their interstitial density and average velocity. Defects are indicated by arrows) (b) (
defect structure at /by = 4.54 (case Il), small dots represent the trajectories in the plastic reginie=a0.002.

of I (see inset of Fig. 2). This hysteresis originates fromf, = 27 J.ugA%ag/®o vs w/by of such a device. It
either a redistribution of defectsetweerrows (for0.2 = is seen that the commensurability peaks are lower and
lw/bg — p| = 0.4) or within the rows. After the transi- smeared out. Preliminary results of simulations in which
tion, defects within the row have the maximum possiblepositional disorder of vortices in the CE’s is implemented
separation and they are clustered with those in neighboindicate that pinning of defects (at # pby) and gen-
ing rows, as expected from the standard FK model. Noveration of defects (atv = pby) by this (phase) disor-
the mobility of a defect moving along a locked (defectder in the periodic potential forms the mechanism for the
free) region of a neighboring row is small compared tosmoothening of..
that of a defect traveling along with a neighboring de- In conclusion, we have shown that the critical
fect, since part of the periodic potential is destroyed incurrent of incommensurate vortex flow channels is dras-
the latter case. This explains the transport hysteresis arittally reduced as compared to the expected value for
the fact that the mobility is always larger after the transi-commensurate channels. The dynamic behavior exhibited
tion. However, the nature of the transition and whethem crossover from defect motion to coherent flow. We
or not it occurs depend on bothix andw. In the high described these transport characteristics analytically for
mobility regime of |, vortex transport is no longer carried the case of a single vortex row.
by the defects but by the rows as a whole. They attain We thank A. E. Koshelev, A. van Otterlo, and T. Droese
the same velocity and the flow loses its plastic character.for stimulating discussions.
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