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We report on a detailed numerical study of the evolution of semilocal string networks, based on the
largest and most accurate field theory simulations of these objects to date. We focus on the large-scale
network properties, confirming earlier indications (coming from smaller simulations) that linear scaling is
the attractor solution for the entire parameter space of initial conditions that we are able to probe. We also
provide a brief comparison of our numerical results with the predictions of a previously developed one-
scale model for the overall evolution of these networks. Two subsequent papers will discuss in more detail
the analytic modeling of the semilocal segment populations as well as optimized numerical diagnostics.
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I. INTRODUCTION

The formation of networks of cosmic strings [1–4] is a
generic prediction in a wide range of high-energy physics
models of the early Universe [3,5,6]. Examples include
linelike topological defects in field theories breaking Uð1Þ
symmetry [7], coherent macroscopic states of fundamental
superstrings (F strings), and D-branes extended in one
macroscopic direction (D strings). The latter two examples,
collectively referred to as cosmic superstrings [8], are
generically predicted in string theoretic inflationary models
involving spacetime-wrapping D-branes [6,9–11]. These
“brane inflation” models often have an effective
Supergravity description of the hybrid inflation type,
ending in a phase transition that produces topological
defects, so F and D strings can also be modeled as string
defects in a field theory approximation.
A key property of cosmic superstrings is that they

interact nontrivially, joining together in Y-shaped junctions
to form heavier bound FD states [8,12,13], and in this
respect, they are similar to non-Abelian strings [3]. There
is, however, an important distinction between string defects
in ordinary four-dimensional field theories and their higher-
dimensional superstring cousins: field theoretic strings are
known to interact with probabilities of order unity [14,15]

(although at ultrarelativistic speeds, the strings can appear
to pass through each other due to multiple intercommuta-
tions [16–18]), while cosmic superstrings have intercom-
mutation probabilities which can be much smaller than
unity [19,20]. This has an important effect on the cosmo-
logical evolution of superstring networks leading to higher
number densities than for ordinary field theory cosmic
strings [19,21,22].
Understanding the evolution of string networks is crucial

for predicting their number densities at late times, which in
turn determine their potentially observable effects. Since
these observational signals depend on parameters of the
underlining theory (notably through their sensitivity to
the string tensions and intercommutation probabilities), the
observational search for cosmic strings provides a powerful
tool for probing and/or constraining high-energy physics
theories of the early Universe [23–25]. However, the
quantitatively accurate modeling of string network evolu-
tion is a difficult problem, requiring the combination of a
range of techniques (both numerical and analytical) and
interpolating between physics at very different energy
scales.
For the simplest type of Abelian cosmic strings (e.g., the

Nielsen–Olesen solutions of the Abelian Higgs model [7]),
which interact simply by exchange of partners, it has long
been proposed [26] through analytic modeling that the
network should reach a self-similar scaling regime, char-
acterized by a single length scale (the correlation length),
which asymptotes to a constant fraction of the horizon. This
has been confirmed by high-resolution numerical simula-
tions of both Nambu–Goto [27–29] and field theory
[30–33] models, which are in remarkable agreement
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despite the very different techniques employed in each
case. Even in this simplest type of strings, there still
remains significant numerical uncertainty regarding the
relevant importance of decay mechanisms (gravitational
radiation vs decay to particles [32,34]) and the average size
of loops in the network [29,35–37], but a consensus has
long been reached regarding the large-scale properties of
long strings and their quantitative dependence on the
intercommutation probability and the rate of cosmic
expansion.
The situation is less clear for non-Abelian strings, which

do not simply exchange partners but interact in a more
complex fashion, forming Y-type junction configurations.
This was originally thought to lead to network “frus-
tration,” implying a cosmologically catastrophic domina-
tion of strings over ordinary matter at late times [38].
Subsequent work, however, has indicated that this is not
necessarily the case [39], and whether the network reaches
scaling or gets frustrated depends on the relation among the
various intercommutation probabilities of strings carrying
different charges [40]. In particular, for networks resem-
bling the properties of cosmic superstrings, all recent
studies (see, for example, Refs. [40–48]), covering both
analytic and field theory modeling, have found scaling
solutions with the relative abundance of light F strings
dominating over the heavier D strings and FD bound states.
Thus, it is now believed that cosmic superstring networks
do reach late-time scaling with light strings being more
abundant, even though to date it has not been possible to
construct both analytic and field theory models of the
“same” network so as to quantitatively compare their
abundance predictions.
There is an outstanding case of cosmic string networks

for which the cosmological evolution has not been sys-
tematically studied: semilocal strings. These are string
solutions in theories with both local and global symmetries,
the standard semilocal model [49,50] being a minimal
extension of the Abelian Higgs model by a global SUð2Þ
symmetry. This model, which has an SUð2Þ doublet of two
equally charged Higgs fields under a single Uð1Þ gauge
field, admits stable string solutions even though the vacuum
manifold is simply connected. This nontopological nature
of semilocal strings endows them with very different
properties than their topological counterparts. In particular,
they appear as finite open segments for which the ends have
long-range interactions akin to global monopoles [51].
Note that such strings are also well motivated from the
theoretical point of view, arising in supersymmetric grand
unified theories of inflation [52] and the corresponding
D3-/D7-brane inflation models [53]. These are a natural
extension of usual inflationary models, in which the only
extra ingredient is the doubling of a hypermultiplet.
A first study of the cosmological evolution of semilocal

strings was presented in Refs. [54] and [55]. The dynamics
of these networks is very different than for both Abelian

and non-Abelian topological strings, be it global or local. In
particular, the long-range forces between the monopoles
mean that the segments can shrink and annihilate or grow
by joining with other segments. In a recent paper [56], we
initiated the analytical study of such networks by modeling
them as local strings ending on global monopoles and
attempted a preliminary comparison with numerical sim-
ulations. Here, we present the first detailed numerical study
of semilocal string networks. In this paper (paper I), which
is the first in a series of three, we will discuss in detail the
large-scale properties of simulated semilocal networks,
covering couplings in the range 0.01 ≤ β ≤ 0.09, and
damping terms corresponding to expanding universes
dominated by radiation and matter.
Our goal is to demonstrate scaling behavior for semilocal

networks. We note, however, that the notion of scaling has
to be interpreted carefully in this context. When describing
these networks, we may simply be interested in the
evolution of the overall energy density contained in the
semilocal string configurations, or we may be interested in
the detailed distribution of semilocal string segments. The
former (which will be the focus of this paper) is the simplest
in the sense that it can, to a good approximation, be
described by a single length scale, while the latter is
somewhat more complex. We will explore this distinction
further in the subsequent papers of this series, but for the
moment, we emphasize that overall scaling of the network’s
energy density is necessary but not sufficient to ensure
scaling of the segment distribution.
In paper II, we will present the results of detailed

comparison of our simulations with the analytical models
of Ref. [56]: starting from an initial configuration of a
semilocal network, we group all string segments into length
bins and evolve the segments in each bin both using our
field theory simulation and our analytic models. We then
compare the number density in each bin between the two
approaches. An important source of uncertainly in this
comparison is related to our lack of knowledge of the
transverse string velocity in simulations of semilocal
strings. In paper III we will present a novel method for
measuring velocities from semilocal string simulations.

II. SEMILOCAL STRINGS

Semilocal strings [49,50,57] were introduced as a
minimal extension of the Abelian Higgs model with two
complex scalar fields—instead of just one—that make an
SUð2Þ doublet. This leads to Uð1Þ flux-tube solutions even
though the vacuum manifold is simply connected. The
strings of this extended model have some similarities with
ordinary local Uð1Þ strings, but they are not purely
topological and will therefore have different properties.
For example, since they are not topological, they need not
be closed or infinite and can have ends. These ends are
effectively global monopoles with long-range interactions
[51] that can make the segments grow or shrink. The
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monopoles at the ends of the strings have some exotic
properties by themselves [58].
The relevant action for the simplest semilocal string

model, the one we will use in the numerical simulations of
Sec. V, reads

S ¼
Z

d4x
�
½ð∂μ − iAμÞΦ�2 −

1

4
F2 −

β

2
ðΦþΦ − 1Þ2

�
; (1)

where Φ¼ðϕ;ψÞ, F2 ¼ FμνFμν, and Fμν¼ð∂μAν−∂νAμÞ
is the gauge field strength. It can be easily seen that, setting
one of the two scalar fields to zero, we recover the Abelian
Higgs model. We can therefore build from the analytical
models applied to usual cosmic strings to tackle this new
problem.
The symmetry breaking pattern that leads to the for-

mation of strings in this model is SUð2Þglobal ×Uð1Þlocal →
Uð1Þglobal so this model can be thought of as a particular
limit of the Glashow-Weinberg-Salam electroweak model
in which the SUð2Þ symmetry is global; i.e., the Weinberg
angle is cos θW ¼ 0, and there are no SUð2Þ gauge fields.
The vacuum manifold is the 3-sphere, so one would not
expect strings to form if the dynamics is dominated by the
potential energy. On the other hand, the magnetic field is
massive, and magnetic flux is conserved, which would
suggest the existence of magnetic flux tubes when the
magnetic mass is large. This is the regime in which strings
form and are stable.
The stability of the strings is not trivial, and it will

depend on the value of the parameter β ¼ m2
scalar=m

2
gauge:

for β < 1 the string is stable, for β > 1 it is unstable, and for
β ¼ 1 it is neutrally stable [49,57]. As we will see in Sec. V,
only low values of β will be of interest for the comparison
because, otherwise, the string network is either unstable or
disappears very fast [54,55,59].
After a cosmological phase transition in such a model, it

is expected that segments of semilocal strings will form.
The cosmological evolution of a semilocal segment net-
work will be quite different from the evolution of ordinary
Abelian Higgs strings [50,60]. The fact that semilocal
strings have a different cosmological evolution is interest-
ing because cosmic microwave background (CMB) pre-
dictions can be different [61] and can be relevant to
inflationary model building [52]. Semilocal strings also
have interesting gravitational properties [62,63].
The network evolution depends on the interplay between

string dynamics and monopole dynamics. When a string
segment ends, it must end in a cloud of gradient energy.
Those string ends behave like global monopoles, providing
an interaction between strings that is independent of dis-
tance. Therefore, depending on the interplay between string
dynamics and monopole dynamics, the segments can con-
tract and eventually disappear, or they can grow to join a
nearby segment and form a very long string, and also the two
ends of a segment can join to form a closed loop [51,54,55].

We thus see that, at least to a first approximation, we can
envisage these networks as being made of local strings
attached to global monopoles, and, as such, previously
developed analytic modeling techniques [64,65] should be
applicable. This being said, it is also clear that these
networks possess additional dynamical properties, beyond
those of standard hybrid networks [64–66].
Specifically, the evolution of the string network will

depend both on the string tension and on the dynamics of
the gradient energy: the latter may be thought of as
providing a long-range interaction between the strings.
(Note that the force between global monopoles is inde-
pendent of distance.) In Ref. [56] we presented analytical
models for the cosmological evolution of semilocal net-
works, taking into account these long-range interactions
through the addition of phenomenological terms in hybrid
(local stringsþ globalmonopole) networks. We provide a
quick summary of this analytical approach in the next
section, before moving to the presentation of our numerical
study in Sec. IV.

III. SEMILOCAL NETWORK
EVOLUTION MODELING

We now discuss an analytic model for the evolution of
semilocal string networks, which will be subsequently
compared to our numerical simulations. This is mostly a
summary of Ref. [56], where the model was first presented;
we refer the reader to that work for additional details.
Our analysis focuses on the behavior of the network as a

whole, starting from the premise that it can be treated as a
network of local strings attached to global monopoles.
Therefore, previously developed models for each of these
cases can be applied, with suitable changes, to this case.
Our model for the evolution of these networks is based on
explicitly modeling the dynamics and interactions of the
monopoles. This is justified since (as has been shown in
previous work [55]) it is indeed the monopoles that control
the evolution of the network.
A complementary approach (also developed in Ref. [56])

models the evolution of individual semilocal segments,
discussing under what conditions these segments can grow
—a process that has been clearly identified in numerical
simulations—or shrink. We will not discuss this here since
a detailed study of this approach, including comparisons
with the numerical simulations discussed in this paper, will
be the focus of paper II.
Analytic modeling of defect networks generally starts

from the microscopic equations of motion for the defects
and uses statistical averaging procedures leading to a
macroscopic energy evolution equation (which can be
traded for an equation for the network’s characteristic
length scale) and an equation for the rms network velocity.
These equations will necessarily be coupled, and together
they describe the network at large scales in a “thermody-
namical” sense. Suitable defect interactions are then added
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to these equations in a phenomenological way. This
procedure was originally followed in the case of cosmic
strings, where it leads to the so-called velocity-dependent
one-scale (VOS) model [64,67], which has been well tested
against simulations and is used for predicting CMB signals
of string networks [68].
Similar techniques can be used in the case of monopoles.

The idea is to obtain an evolution equation for the
monopole density (neglecting interactions) and then reex-
press it in terms of a characteristic length scale, L (which in
this case should be thought of as the average intermonopole
distance). The effects of monopole forces and friction are
then included in this equation (as well as in the relevant
velocity equation) by adding extra phenomenological
terms. It has been shown in Refs. [65,66] that the evolution
equation for the characteristic monopole length scale has
the form

3
dL
dt

¼ 3HLþ v2
L
ld

þ c⋆v; (2)

where c⋆ is a free parameter (to be calibrated by simu-
lations) quantifying energy loss and where we have defined
a damping length scale, ld, that includes the effects of
expansion (due to the Hubble parameter H) and of friction
due to particle scattering (with a generic length scale, lf)

1

ld
¼ H þ 1

lf
: (3)

The evolution equation for the rms velocity, v, of the
monopoles is

dv
dt

¼ ð1 − v2Þ
�
km
L

�
L
dH

�
3=2

þ ks
L

η2s
η2m

−
v
ld

�
; (4)

where the first term in square brackets is the force due to the
monopoles

fm ¼ km
L

�
L
dH

�
3=2

; (5)

and the second describes the force due to the strings,

fs ¼
ks
L

η2s
η2m

: (6)

For an expansion rate of the generic form

aðtÞ ∝ tλ; (7)

the Hubble parameter and horizon distance are, respectively,

H ¼ λ

t
; dH ¼ t

1 − λ
: (8)

The constants km and ks parametrize the monopole and
string forces, and ηs, ηm are the relevant symmetry breaking
scales. Since in what follows we are mostly interested in late-
time scaling solutions, we will (unless otherwise stated)
neglect the effect of friction due to particle scattering, which
is only relevant in the early stages of the network’s evolution.
Note that the fact that the string and monopole symmetry

breaking scales appear in Eq. (4) is a consequence of the
fact that these equations of motion are obtained by
modeling semilocal strings as local strings attached to
global monopoles (as previously mentioned) and appro-
priately adapting the equations of motion for both.
Physically one knows that it is the monopoles that dominate
the semilocal string dynamics, and this can be modeled by
assuming that ηs ≪ ηm. Similarly, the horizon enters in the
monopole force term in Eq. (4) due to a number counting
argument: this force depends on the number of monopoles
(and antimonopoles) inside the horizon; for a detailed
discussion, see Ref. [65] and references therein.
We shall mostly consider standard expansion rates,

corresponding to the parameter range 0 < λ < 1, and in
particular λ ¼ 1=2 in the radiation-dominated era and λ ¼
2=3 in the matter-dominated era. This is justified since
observational constraints [61,68] show that semilocal string
networks cannot be the dominant component of the
Universe’s energy budget but can only contribute a small
fraction to it.
In the semilocal case, the ratio of the forces due to strings

and monopoles is

fs
fm

¼ ks
km

�
ηs
ηm

�
2
�
dH
L

�
3=2

; (9)

and since ηs ≪ ηm the string force is always subdominant.
This is in agreement with theoretical expectations and
numerical simulations. Note that this is a distinguishing
characteristic of these networks: for local strings attached to
local monopoles, the force due to the strings always
dominates the dynamics, while for global strings attached
to global monopoles the string force is subdominant at
string formation but becomes dominant later in the net-
work’s evolution [66].
One interesting consequence of the fact that the monop-

oles always dominate the dynamics is that the only attractor
solution of these evolution equations in an expanding
Universe (with a ∝ tλ) is linear scaling. Indeed, if one
looks for generic solutions of the equations of motion for L
and v, allowing for arbitrary power laws of time in either
case, one will find (after a relatively long but otherwise
straightforward calculation) that the only consistent asymp-
totic solution is

L ¼ γt; v ¼ v0; (10)

as in the case of plain global monopoles, and indeed the
analysis in Ref. [65] is, to a large extent, applicable here.
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There are two possible branches of the scaling solution.
First, there is an ultrarelativistic one with

γ ¼ c⋆
3 − 4λ

; v0 ¼ 1; (11)

which only exists for slow expansion rates (λ < 3=4) but is
in principle allowed both for the radiation and matter eras.
Second, a normal solution exists for any expansion rate,
with scaling parameters

γ ¼ c⋆v0
3 − λð3þ v20Þ

(12)

λv0 ¼ kmð1 − λÞ3=2γ1=2; (13)

and a constraint on the velocities

v20 < 3

�
1

λ
− 1

�
: (14)

This constraint is trivial for λ < 3=4 (that is, v0 → 1 is
allowed) but restrictive for faster expansion rates. On the
other hand, velocities will generically be significant: having
v0 → 0 requires λ → 1.
For comparison we also consider the case of Minkowski

space (corresponding to λ ¼ 0 and H ¼ 0) but with a
friction length scale proportional to the correlation length
(say, for simplicity, lf ∼ L). This should be an adequate
description of some of the numerical simulations of semi-
local strings done so far [55]. In this case, linear scaling is
still the attractor solution, but the scaling parameters now
obey

3γ ¼ v20 þ cv0; v0 ¼ kmγ3=2: (15)

In the opposite limit of the fast expansion rate (λ ≥ 1 or,
in other words, inflation), the linear scaling solution of
Eq. (10) no longer exists. In this case the network is
conformally stretched and gradually frozen, and the char-
acteristic length scale and velocity evolve as

L ∝ a; v ∝
1

HL
: (16)

These conformal stretching solutions are ubiquitous in the
defects literature.
In the following section, we will test these scaling

solutions using state-of-the-art numerical simulations.

IV. NUMERICAL SIMULATIONS

We simulated numerically the semilocal model intro-
duced in Sec. II so as to provide us with data to be used for
comparison with the analytic models mentioned above. The
parameter space we want to explore is rather large, so we
carefully chose the cases to study and tried to maximize the

information we could obtain from our simulations given the
computer resources available to us.
We discretized the action given in Eq. (1) by standard

techniques (using lattice-link variables and a staggered-
leapfrog method) and evolved the discretized action in
10243 lattices with periodic boundary conditions, similar to
Ref. [55]. One very important approximation we use in our
discretization and subsequent evolution of the equations of
motion is the use of the so-called fat-string algorithm [69].
We adopt this approach since, otherwise, it would be
computationally very expensive to perform the simulations
and because it has proven to work fairly well in previous
works; in particular, it has been shown that it works fine for
obtaining information on large-scale properties, which is
our aim in the present work. (A related discussion for the
case of cosmic strings can be found in Ref. [70].)
As in many field theoretic simulations of defect dynam-

ics, the initial conditions are an unknown. It would be very
hard to simulate exactly the phase transition leading to the
formation of the defects, and in many cases, it would not be
clear which model to adopt as the underlying phase
transition model. However, this is not the goal; instead,
our aim is to study the asymptotic (long-term) behavior of
these networks and in particular whether (and under what
conditions) the expected scaling solution is reached. The art
of performing the simulations therefore lies in obtaining
some initial conditions which may approach this putative
scaling solution as fast as possible. Bear in mind that the
periodic boundary conditions force us to have a stringent
upper bound on the time that the system can be evolved
before it feels the effects of the boundaries. The simulations
can only be believed up to the half light-crossing time; i.e.,
if we sent a light ray in opposite directions in the box, the
simulation would be accurate up to when the two rays
meet again.
The initial condition chosen for these simulation is the

following: the gauge field, gauge field velocities, and scalar
field velocities are set to zero. This choice already ensures
that Gauss’s law is satisfied in the discretized equations and
will be satisfied during the dynamical evolution of the
system. The scalar fields are chosen to lie in the vacuum
manifold but have randomly chosen orientations. After a
transient time with an ad hoc damping term for the system
to lose energy, the system relaxes into the scaling regime.
Once the system reaches scaling, quantities of interest

can be measured. Semilocal strings are not topological
entities; therefore, we cannot use topology to detect semi-
local strings. For example, in the usual Abelian Higgs
strings, one can use the windings of the string to pinpoint
where the core of the string is. However, we cannot use the
windings in the semilocal strings since the winding is not
topologically protected. As mentioned earlier, semilocal
strings can be thought of as concentrations of magnetic
energy, and that is the strategy we follow, inherited from
previous works [55,71,72]: we first calculate the maximum
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of the magnetic field strength, and the radius, of a straight
and infinite Abelian Higgs string for a given β. We use
those values for the simulated semilocal string network: if
the magnetic field strength of a simulated semilocal model
measured at a point of the box exceeds the 25% of the
maximum of the corresponding Abelian Higgs string, we
consider that point to be part of a semilocal string segment.
The output of our simulation is thus an array of points from
the simulated box which have a considerable concentration
of magnetic field strength.
One typical simulation snapshot is shown in Fig. 1. It is

very clear that semilocal strings have ends (as opposed to
Abelian Higgs strings which are either infinite or form

loops). We then group together the points that have been
output by the simulations into segments. These segments
are mostly tubelike, but some are spherelike instead of
tubelike; i.e., they are blobs of energy. These can be
formed, for example, after a segment has collapsed into
itself. We do not wish to count these blobs as part of our
network, and we introduce a lower cutoff: those segments
that are not longer than a given factor (α) times the typical
radius of a string are considered to be blobs and are
discarded. Different choices of α have been considered as
explained later. Figure 1 shows the output of a typical
simulation where we have differentiated between structures
that we consider blobs and proper semilocal string seg-
ments. We also show in that figure the network of segments
with each segment plotted with a different color.
It is now possible to obtain the necessary quantities for

our comparison: the total string length (that is, the sum of
all the segment lengths), the number of monopoles, and the
segment length distribution. The procedure we have
described so far only gives the volume of string points,
so in order to obtain string lengths, we divide the number of
string points by the typical string width for each β. The
number of monopoles is obtained by multiplying the
number of segments by two, as each segment has a
monopole and an antimonopole at its ends (more on this
point is below). In what follows we do not directly compare
the velocities in the model and simulations since reliable
numerical measurements of these velocities are highly
nontrivial and require the development of additional
numerical algorithms, which we will address in paper
III. For analogous issues in the more standard case of
Abelian Higgs string networks, see Ref. [32]; for the case of
domain wall simulations with the Press-Ryden-Spergel
(PRS) algorithm, see Ref. [73].
Given a box size (in our case 10243), one would want to

have as big a dynamical range as possible, with as much
accuracy as possible. There is clearly tension between these
two aims: on the one hand, we would want a big lattice
spacing (δx) to increase the dynamical range and on the
other a small one to increase accuracy in the discretization.
We have performed two sets of simulations trying to
accommodate both needs: one set of simulations has δx ¼
0.5 and the other δx ¼ 1.0. The first set provides a more
accurate discretization of the equations but pays the price of
having a shorter dynamical range. The second has a larger
dynamical range but may lack accuracy, and there might be
discretization effects creeping into the simulation. As will
be shown below, results obtained by the two approaches are
clearly compatible, and we believe that they are accurate
enough for the purposes of this paper.
It is well known [55] that rather low values of β are

needed to form a reasonably populated network of semi-
local strings, and in this work, we chose to perform the
simulations for β ¼ 0.01, β ¼ 0.04, and β ¼ 0.09.The
magnetic and scalar string cores for even lower β are

FIG. 1 (color online). Semilocal string network, in matter
domination with β ¼ 0.04. The top figure shows two types of
structures: on the one hand, we have tubelike structures (proper
strings) and on the other short blobs. These blobs we disregard in
our analysis. The bottom figure shows the network without blobs,
and also each segment has been identified and plotted with a
different color. As the number of segments is large, the colors are
unfortunately used for more than one string segment. Note also
that the blob removal procedure does sometimes fail to identify
some spherelike structures since their volume is large.
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too different in size and are difficult to simulate since they
are difficult to resolve and can overlap. Higher β gives too
scarce a network.
We have performed simulations using two different scale

factors ruling the expansion of the Universe, tλ: radiation
(t1=2) and matter (t2=3). Since we are using the fat-string
algorithm, this amounts to changing the damping term in
each simulation accordingly. All in all, we have performed
12 simulations for each combination of the following
parameters:
(i) δx ¼ ð0.5; 1Þ
(ii) β ¼ ð0.01; 0.04; 0.09Þ
(iii) Cosmological era ¼ ðradiation;matterÞ
There are several systematic errors of which the reader

should be aware. On one hand there are numerical errors
inherent to the simulation of the dynamics of the system.
By these we mean errors arising because of the discretiza-
tion of the equations (which will depend on the lattice
spacing δx), errors coming from the fat-string algorithm,
and errors due to the limited dynamical range that can be
obtained.
On the other hand, there are systematic errors in the

identification and characterization of strings and monop-
oles from the simulation. The string lengths are obtained by
dividing the string volume by the width of a static straight
string, whereas our strings can be moving fast (and will
therefore have Lorentz contraction) and have turns. In
addition, the strings appear more fuzzy depending on the
value of β and the cosmology (meaning the amount of
damping) we use. This fuzziness can sometimes be under-
stood by considering that as strings move there is some
radiation left behind, and if such lumps of radiation are
touching the string, they are considered as string points by
our algorithm. The end result is that the lower the value of β
and the smaller the damping term, the fuzzier the strings
become and also the bigger the energy blobs are.
An illustration of the effect of damping can be found in

Fig. 2, where we show snapshots of two simulations, one in
the radiation era and the other in the matter era. In radiation,
the strings appear to be more fuzzy, with some energy
lumps attached to the strings; whereas in the matter era,
strings are noticeably smoother. Note that these cubes are
only one part of the total simulation, which we have
zoomed into to show the fuzziness more clearly; therefore,
the segments close to the boundaries would actually be
continued in other parts of the box.
As for the effect of β, for lower β the strings are expected

to be more stable, as a result of the competition between
gradient energy and potential energy [57]. Producing a blob
without topology costs the same gradient and magnetic
energy regardless of the value of β, but it does cost less
potential energy for smaller β, thus again producing fuzzier
strings.
As mentioned earlier, the number of monopoles is

directly read from the number of segments. Some of the

segments will in fact form a closed loop, so monopoles
would be slightly overcounted by this procedure.
Besides, even though we tried to factor out the energy
blobs, some of them escaped our algorithm, and we are
still counting those blobs as segments and thus overcount
monopoles again. Finally, the definition of segment is
somewhat arbitrary, since those segments that are not
longer than α times the typical radius of a string are
discarded. Different choices for α can give different
numbers of segments.
Ways of quantifying some of these uncertainties will be

briefly discussed in the following section and in more detail
in papers II and III. For the moment, we provide one
specific example, concerning the choice of the segment
cutoff α. We have analyzed our data using α ¼ 1, 3, 5, 8,

FIG. 2 (color online). Two snapshots of the simulations with
β ¼ 0.04 in radiation (top) and matter (bottom). The top figure
shows that strings in the radiation era are fuzzier, and many of the
segments have energy lumps attached to them. The bottom figure
shows segments that are in general smoother—an obvious
consequence of the additional damping (there is less radiation
in the box). Note that in either snapshot only part of the simulated
box is depicted.
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10, and we have found that the differences are bigger for
smaller values of α, but for α ¼ 5, 8, 10 the results are more
consistent. Also, this uncertainty decreases at later times,
when there are fewer blobs and strings are longer. Tables I
and II, which are described in the next section, show results
for different α.
Despite these numerical uncertainties, our methodology

and sample size are sufficient to establish that the networks
reach the expected scaling solution in all the cases studied.
We discuss our results and compare them with our analytic
models in the next section.

V. SIMULATION RESULTS AND COMPARISON
TO ANALYTIC MODELS

As described above, we have performed 12 simulations
for each case of our set of parameters and used results from
the various sets of simulations to obtain basic statistics
about the properties of the networks. Each one of the 12
simulations in a given set has the same values for the
parameters but a different initial random configuration, so

that we can use them to obtain a purely statistical error. All
in all, for each one of those simulations, and for specific
values of the simulation time, we obtain the total string
length LðtÞ and monopole numberN ðtÞ in the box. Both of
these provide simple diagnostics for the large-scale evo-
lution of the network, and specifically for the presence of
scaling, as we will now discuss.
Figures 3 and 4 provide two examples of the evolution of

these quantities, for the cases (β ¼ 0.09, δx ¼ 1) and
(β ¼ 0.01, δx ¼ 0.5); both are matter era simulations.
These are representative of all the sets of simulations we
have performed. This analysis therefore shows that all the
networks have reached the scaling solution by the corre-
sponding final time steps. The time needed for the different
sets of networks to reach scaling is slightly different, but
this is to be expected given the different underlying
conditions, such as the amount of damping in the simu-
lation boxes.
The obtained string lengths and number of monopoles

can easily be translated into VOS-type length scales using
Eq. (10):

TABLE I. The measured values (with 1-σ statistical errors) of the string scaling parameter γs for the various series of simulations
described in the text.

β λ δx γsðsimÞðα ¼ 3Þ γsðslopeÞðα ¼ 3Þ γsðsimÞðα ¼ 8Þ γsðslopeÞðα ¼ 8Þ
0.01 Rad 0.5 0.27� 0.02 0.27� 0.04 0.29� 0.02 0.29� 0.04
0.01 Rad 1.0 0.280� 0.003 0.27� 0.06 0.285� 0.001 0.29� 0.01
0.01 Mat 0.5 0.30� 0.01 0.30� 0.05 0.30� 0.01 0.30� 0.05
0.01 Mat 1.0 0.292� 0.002 0.29� 0.01 0.295� 0.002 0.30� 0.01
0.04 Rad 0.5 0.301� 0.005 0.30� 0.04 0.294� 0.006 0.30� 0.04
0.04 Rad 1.0 0.283� 0.004 0.28� 0.01 0.284� 0.004 0.28� 0.01
0.04 Mat 0.5 0.302� 0.001 0.30� 0.03 0.301� 0.001 0.30� 0.03
0.04 Mat 1.0 0.291� 0.005 0.29� 0.01 0.291� 0.005 0.29� 0.01
0.09 Rad 0.5 0.327� 0.001 0.33� 0.05 0.325� 0.002 0.33� 0.05
0.09 Rad 1.0 0.303� 0.005 0.30� 0.01 0.303� 0.005 0.30� 0.01
0.09 Mat 0.5 0.337� 0.006 0.33� 0.07 0.336� 0.006 0.33� 0.06
0.09 Mat 1.0 0.307� 0.006 0.31� 0.01 0.306� 0.006 0.31� 0.01

TABLE II. The measured values (with 1-σ statistical errors) of the monopole scaling parameter γm for the various series of simulations
described in the text.

β λ δx γmðsimÞðα ¼ 3Þ γmðslopeÞðα ¼ 3Þ γmðsimÞðα ¼ 8Þ γmðslopeÞðα ¼ 8Þ
0.01 Rad 0.5 0.549� 0.007 0.6� 0.1 0.586� 0.005 0.6� 0.2
0.01 Rad 1.0 0.34� 0.01 0.34� 0.02 0.44� 0.01 0.44� 0.03
0.01 Mat 0.5 0.544� 0.007 0.55� 0.08 0.555� 0.008 0.56� 0.08
0.01 Mat 1.0 0.41� 0.01 0.41� 0.02 0.47� 0.01 0.48� 0.03
0.04 Rad 0.5 0.45� 0.02 0.4� 0.1 0.5� 0.2 0.5� 0.1
0.04 Rad 1.0 0.359� 0.009 0.36� 0.02 0.469� 0.006 0.46� 0.02
0.04 Mat 0.5 0.48� 0.02 0.47� 0.09 0.49� 0.01 0.5� 0.1
0.04 Mat 1.0 0.424� 0.006 0.43� 0.02 0.466� 0.004 0.46� 0.02
0.09 Rad 0.5 0.45� 0.09 0.45� 0.09 0.46� 0.02 0.5� 0.1
0.09 Rad 1.0 0.397� 0.007 0.40� 0.01 0.460� 0.005 0.46� 0.02
0.09 Mat 0.5 0.44� 0.01 0.45� 0.06 0.45� 0.02 0.46� 0.08
0.09 Mat 1.0 0.419� 0.004 0.42� 0.03 0.442� 0.003 0.44� 0.03
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t
¼ 1

t

�
V
N

�
1=3

: (18)

It follows from our discussion in Sec. III that, once a
network reaches scaling, both γs and γm should become
constants. Note that, while we do expect them to have
comparable values of order (but slightly smaller than) unity,
there is no expectation that they must be equal.
From our simulations, each of γs and γm can be numeri-

cally calculated in various different ways. This turns out to
be a simple but useful way of quantifying statistical and
systematic uncertainties. We can average the values of
LsðtÞ and LmðtÞ obtained in each simulation and then
calculate γs and γm using Eqs. (17) and (18) on the averaged

quantities, or we can obtain one γs and γm for each
simulation and then average the γs and γm over all
simulations. Moreover, if we are in (or approaching)
scaling, the slopes of LsðtÞ or LmðtÞ evolution plots can
also be used as numerical diagnostics for the corresponding
γ. This is the prescription we actually use, by considering
only the latter part of each set of simulations.
The result of both prescriptions is shown in Table I for γs

and Table II for γm. The values γsðsimÞ show the values
when the averaging has been done at the simulation level
and γmðslopeÞ when it is the γ’s which have been averaged.
In all cases the errors quoted are statistical errors, which are
smaller than the systematic error and so not directly
indicative of the full uncertainty. Instead, they should be
understood as lower bounds on the uncertainties in these
simulations.
Both Tables I and II show comparisons of the simu-

lations with δx ¼ 1.0 and δx ¼ 0.5. As mentioned before,
the low value of δx is a more accurate approximation to the
continuous case but lacks in dynamical range, whereas the
higher value of δx has a larger dynamical range though a
poorer discretization.
The tables also show a comparison of the results

obtained with two different values for the definition of
segment, namely, for α ¼ 3 and α ¼ 8. We investigated
values of α ¼ 1, 3, 5, 8, 10 and found that for the latter three
the results are quite similar. The table shows that the
magnitudes related to the string lengths do not change
much with respect to the value of α, whereas the monopole
length scale changes more. Not only are the cases with a
higher value of α more similar to each other, but also the
differences between δx ¼ 0.5 and δx ¼ 1.0 are smaller for
higher α. Therefore, the systematics seem to be under better
control for higher values of α.
Given the way they were numerically determined, Ls

should be thought of as the typical interstring distance (or
perhaps the typical segment size), while Lm is a character-
istic intermonopole distance. These are therefore not
correlation lengths in the same strict sense as the term is
used, for example, in Nambu–Goto string simulations. In
particular, the fractal distribution of the semilocal networks
(and more specifically the assumption of a Brownian
network) is an issue that warrants further study.
Bearing in mind the caveats we discussed, one should

proceed with caution if trying to extract quantitative
information from these scaling properties. (A further
difficulty stems from the fact that we have as yet no
accurate measurement of the defect velocities—this will be
addressed in paper III.) Nevertheless, it is encouraging that
the overall behavior is in agreement with our understanding
of the relevant underlying physical mechanisms.
Specifically, we note the following:
(i) For a given cosmology (damping term), γs grows with

β, and γm gets smaller. This is to be expected since for
lower β we expect the system to behave more like an

FIG. 3 (color online). Scaling plots for L and N for β ¼ 0.09,
in the matter era, with δx ¼ 1. The error bars show statistical
errors over the 12 simulations.

FIG. 4 (color online). Scaling plots for L and N for β ¼ 0.01,
in the matter era, when δx ¼ 0.5. The error bars show statistical
errors over the 12 simulations.
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Abelian Higgs network, which has longer strings and
fewer segments (note that γs and γm are inversely
proportional to L and N , respectively). Analogous
results have recently been found for cosmic
strings [70].

(ii) For a given β, γs is higher for higher damping terms,
and γm is lower. This is also to be expected since a
lower damping term means that monopole velocities
will be higher. Segments can therefore move faster to
either grow and meet with other segments or collapse,
giving a longer typical string length and smaller
number of monopoles. One naturally expects that
the additional length lost by segment collapse is more
than compensated by that gained by the extra growth.
(Note that increasing the string correlation length Ls
corresponds to decreasing the string density and
therefore the total length in string.)

(iii) One set of simulations (corresponding to radiation era,
δx ¼ 1 and β ¼ 0.01) is an outlier, in the sense that it
does not obviously follow the above trends. However,
we note that this is the case where there is a smaller
effective damping (and therefore more radiation) in the
simulation box, and hence this is also the case that is
most vulnerable to hidden systematics.

We should also point out that the scaling properties we
have obtained for the string segments and monopoles are
somewhat less sensitive to the value of β than one might
have expected. It is possible that this is a feature of the PRS
algorithm, as has been recently discussed in Ref. [70].
Nevertheless, our results are consistent with an earlier set of
semilocal simulations, discussed in Ref. [56].
As in the case of the analysis in Ref. [56], a full direct

calibration of the parameters of the analytic model for the
evolution of the overall network cannot be done until we
can numerically determine the velocities of the monopoles
and segments—a task which we leave for paper III. Still,
we can use the results of Table II to provide a preliminary
comparison with the model and specifically with the
scaling solution described by Eqs. (12) and (13). We will
neglect the β dependence, which as we saw is numerically
found to be quite small when allowing for statistical and
systematic uncertainties, and we will focus on the results
for the α ¼ 8 case for the reasons discussed above.
With these assumptions our free parameters are the

analytic model parameters, c⋆ and km, as well as the
monopole scaling velocities in the radiation and matter
eras, which we will denote vrad and vmat. Using our
numerically determined values of γm, we find

vrad ∼ 0.48km (19)

vmat ∼ 0.20km; (20)

we have deliberately not included error bars in these
numbers since we are unable to quantify possible

systematic uncertainties in the γ’s. These values are con-
sistent with the results of our earlier simulations [56],
where for a faster expansion rate (λ ¼ 3=4) we had found

vfast ∼ 0.12km: (21)

As expected, faster expansion rates lead to smaller veloc-
ities. On the assumption that the analytic model is correct,
we therefore infer that the ratio of the scaling monopole
velocities in the matter and radiation eras should be

vmat

vrad
∼ 0.4: (22)

If one assumes a curvature parameter km of order unity as
in the case of Nambu–Goto strings [67], our estimated
velocities are comparable to (though possibly somewhat
lower than) the ones typically encountered in other field
theory defect simulations [32,73]. Thus, even though this
comparison is somewhat simplistic, the results are at least
encouraging. A full comparison (and thus a proper cali-
bration of the analytic model) requires the numerical
implementation of a reliable method to measure defect
velocities in our simulations, which will be the subject of
paper III.

VI. CONCLUSIONS

We took advantage of recent progress in computing
facilities to carry out a more detailed numerical study of the
evolution of semilocal string networks, the first results of
which have been discussed above. These are based on the
largest and most accurate field theory simulations of these
objects to date, with sets of 10243 simulations. Several of
these sets have been simulated, thereby exploring a
parameter space spanning different cosmological eras,
values of the coupling β and spatial resolutions, as well
as thresholds for identification of the semilocal segments.
In the present work, we have focused on the large-scale

properties of these networks, our main result being a
confirmation of earlier indications that linear scaling
(analogous to the well-known one for cosmic strings) is
the attractor solution for the entire parameter space of initial
conditions that we have been able to reliably probe. A brief
comparison of our numerical results with the predictions of
a previously developed one-scale model for the overall
evolution of these networks [56] is encouraging, though a
proper comparison must be left for future work. We found
the dependence of the scaling parameters on the coupling β
to be somewhat weaker than one may have naively
anticipated. This may be a side effect of our usage of
the fat-strings algorithm [69], as recently discussed in a
different context in Ref. [70].
As previously mentioned, the dynamics of these net-

works is more complex than that of plain Nambu–Goto
strings, and therefore it cannot be fully described by a
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simple analytic model for the overall defect density. This
must be complemented by a description of the evolution of
the distribution of the individual semilocal segments.
Indeed, the fact that the overall energy density of the
network is scaling (which is, physically, what is being
quantified by the evolution of Ls or Lm) does not by itself
ensure that the segment distribution is also scaling. In this
sense one can say that a one-scale model is not sufficient to
describe the full evolution of the network. To some extent
this is analogous to the presence of small-scale structures
on cosmic string networks, which can be characterized in
Nambu–Goto simulations [29].
The characterization of the semilocal segment popula-

tion will be the subject of paper II. Indeed, a new way of
detecting segments should also be a good way to improve
on the possible systematic uncertainties which have been
discussed above. Segment identification is clearly the
dominant contribution to these, and therefore this is one of
the limiting factors preventing a more accurate calibration
of the analytic model. The other current bottleneck is a
reliable method of measurement of the defect velocities.
Note that the two are to some extent related, since velocity
measurements will in principle require the direct detection
of the positions of the monopoles. Some possible methods
to carry out these measurements will be presented and
discussed in paper III, leading to a deeper comparison

between the analytic models and the numerical simula-
tions and thus to a proper calibration of the models
themselves.
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