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We create mechanical metamaterials whose response to uniaxial compression can be programmed by
lateral confinement, allowing monotonic, nonmonotonic, and hysteretic behavior. These functionalities
arise from a broken rotational symmetry which causes highly nonlinear coupling of deformations along the
two primary axes of these metamaterials. We introduce a soft mechanism model which captures the
programmable mechanics, and outline a general design strategy for confined mechanical metamaterials.
Finally, we show how inhomogeneous confinement can be explored to create multistability and giant
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hysteresis.
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Metamaterials derive their unusual properties from their
structure, rather than from their composition [1]. Important
examples of mechanical metamaterials are auxetic (neg-
ative Poisson’s ratio) materials [2], materials with vanishing
shear modulus [3-5], materials with negative compressibil-
ity [6,7], singularly nonlinear materials [8,9], and topologi-
cal metamaterials [10-12]. Of particular recent interest are
mechanical metamaterials whose functionality relies on
elastic instabilities, such as quasi-2D slabs perforated with
a square array of holes [13—17]. When compressed, these
“holey sheets” undergo a bucklinglike pattern transforma-
tion, which can be explored to obtain switchable auxetics
[15], chiral and phononic properties [18-20], and 3D
“buckliballs” [21,22]. An important limitation common to
all these metamaterials is that each mechanical functionality
requires a different structure.

Here we present a novel strategy to create programmable
mechanical metamaterials, where the response of a single
structure is determined by confinement. The core idea is
illustrated in Fig. 1 for a biholar sheet, a quasi-2D elastic
slab of material patterned by a regular array of large and
small holes. The difference in hole sizes breaks one of the
90° rotation symmetries which is present for equal hole
sizes. This causes a difference in the polarization of the hole
pattern, depending on whether x compression or y com-
pression is dominant—see Figs. 1(c)-1(d) [23].

By constraining this metamaterial in the x direction, and
then compressing it in the y direction, the material under-
goes a pattern switch from an x-polarized to a y-polarized
state, as illustrated in Figs. 1(c)-1(d). Depending on the
magnitude of the x confinement, this pattern switch can be
either smooth or discontinuous, and the force-displacement
curves for the y deformations can be tuned from monotonic
to nonmonotonic (unstable) to hysteretic—all for a single
biholar sheet.

We observe this tunability in experiments on systems of
various sizes as well as in numerical simulations of the unit
cell—this is a robust phenomenon. We introduce a simple
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model that qualitatively captures all these different
mechanical behaviors, and which allows a precise study
of the bifurcation scenario that underlies this phenomenol-
ogy. Finally, we show that the sensitive nature of the
hysteretic switching between x- and y-polarized patterns
can be explored in larger systems, where controlled
inhomogeneities lead to multistability and giant hysteresis.
We suggest that confinement is a general mechanism for a
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FIG. 1 (color online). (a)—(b) A biholar sheet characterized
by hole diameters D; = 10 mm, D, =7 mm, and pitch
p =10 mm. (c¢) Uniform confinement L. in the x direction
(by semitransparent clamps) leads to an x polarization of the
material. (d) Sufficient y compression of this x-confined material
leads to a switch of the polarization, and concomitant nontrivial
mechanical behavior. Without x confinement the pattern will look
very similar.
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FIG. 2 (color online). Mechanical response of a 5 x 5 sheet
with D; = 10 mm, D, =7 mm (y = 0.3, r = 0.15) for increas-
ing confinement &, [24]. Curves are offset for clarity. (a) The
force curves F(e,) show monotonic, nonmonotonic, and hys-
teretic behavior. The curves labeled (i)—(iv) correspond to four
qualitatively different behaviors. (b) Polarization of the large
center hole, where full (dashed) curves indicate negative (pos-
itive) values. For movies of case (i)—(iv), see [25].

much larger class of programmable mechanical metama-
terials, and outline how our model opens a pathway towards
rational design of these materials.

Experimental setup and sample preparation.—We use
quasi-2D elastic sheets of thickness 35 mm to avoid out-
of-plane buckling. Their 2D structure is shown in Fig. 1.
The dimensionless numbers that characterize their
geometry are the biholarity, y := |D; — D,|/p, and the
dimensionless thickness of their most slender parts,
t=1—-(D1+ D2)/2p. To create these biholar sheets,
we pour a two component silicone elastomer (Zhermack
Elite Double 8, Young’s Modulus E = 220 kPa, Poisson’s
ratio v =0.5) in a mold that consists of brass cylinders
of diameter D and D,, precisely placed in the square grid
of two laser-cut sidewalls with p = 10 mm. We cut the
sheets lateral sides and glue their flat bottom and top to
Plexiglas plates, and then probe their mechanical response
in a uniaxial testing device (Instron type 5965), which
controls the compressive strain &, better than 10~ and
allows us to measure the compressive force F y with an
accuracy 107* N.

To impose confinement we glue copper rods of diameter
1.2 mm on the sides of our material, see Fig. 1, and use laser
cut plastic clamps which have holes at distance L, to exert
a fixed x strain, which we approximate as &, := 1 — L./Np,
where N is the number of holes per row [24]. We image the
deformations of the material with a CCD camera, resulting

in a spatial resolution of 0.03 mm, and track the position
and shape of the holes. This allows us to determine the polari-
zation of the holes, defined as Q:==4(1—p,/p;)cos2q,
where p; (p,) is the major (minor) axis and ¢ the angle
between the major axis and x axis—as the values of ¢ of the
small and big holes are different, we define the sign of
Q such that Q is positive (negative) for y polarization (x
polarization) [23].

Programmable mechanical response.—As we will see,
inhomogeneities play an important role for large systems,
so to probe the mechanics of asymptotically large homo-
geneous materials, we start our exploration with the
smallest experimentally feasible building block, a 5 x5
biholar sheet.

In Fig. 2 we present the force F\(e,) and polarization
Q(e,) of the large center hole for a range of values of ¢,. We
can distinguish four qualitatively different types of
mechanical response. (i) For ¢, < 0.09, the force increases
monotonically with &, and the polarization smoothly grows
from its initial negative value to positive values. (ii) For
0.10 <&, £0.13, Fy(e,) becomes nonmonotonic—here
the material has negative uniaxial compressibility. The
increase in polarization gets focused in the “negative slope”
regime but remains monotonic. (iii) For 0.14 < ¢, <0.16,
F(ey) exhibits a hysteretic transition with a correspond-
ing hysteretic switch from x to y polarization. Note that in
this case, the polarization is nonmonotonic and initially
decreases—hence, y compression makes the center hole
initially more x polarized. (iv) For e, = 0.17 the material
becomes increasingly strongly x polarized and does no
longer switch to y polarization and F(e,) is smooth and
monotonic. We note that in this case, additional experi-
ments reveal that initial compression in the y direction
followed by x confinement brings the material to a strongly
y-polarized state. Hence, for strong biaxial confinement
there are two stable states that are so different that uniaxial
compression is not sufficient to make them switch.

We have explored this scenario for a number of different
biholar sheets, and find the same four types of responses,
provided that y 5 0.10 and 7 g, 0.15 [26]. Moreover, as we
will discuss below, such behavior is also found in larger
systems. Hence, we conclude that confined biholar sheets
can be tuned to exhibit four different types of mechanical
behavior.

Numerics.—To probe whether these phenomena are
robust, we have performed 2D plane strain finite element
simulations (Abaqus) of a Neo-Hookean material on a
2 x 2 unit cell using periodic boundary conditions (Fig. 3).
To probe numerically the various equilibrium branches,
hysteresis and bistability, we use two different protocols—
in protocol A we first apply a confinement ¢, and then a
compression ¢,, whereas in protocol B we first apply a
large compression in the y direction, then a confinement &,
and finally decompress in the y direction until we reach e,.
As shown in Fig. 3, these simulations exhibit the four types
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FIG. 3 (color online). Finite element simulations on a unit cell
with periodic boundary conditions and y = 0.3, ¢ =0.15.
(a) Force F, and (b) polarization €, for (i) &, = —1.0 X 1072,
(i) e, = 2.8 x 1072, (iii) &, = 3.4 x 1072, (iv) &, = 7.5 x 1072
Full (dashed) curves correspond to protocol A (B). For a movie
of case (iii), see [25].

of behavior (i)-(iv) observed in experiments. Moreover,
these simulations reveal that in case (iv), the x- and y-
polarized branches become disconnected, consistent with
our experimental data. The correspondence between
experiments and simulations on systems with periodic
boundaries show that our findings represent robust, bulk-
type behavior, and suggest that biholar metamaterials of
arbitrary size remain functional.

Soft  mechanism.—To qualitatively understand the
mechanics of confined biholar sheets, we note that when
t — 0, the materials low energy deformations are equivalent
to that of a mechanism of rigid rectangles coupled by hinges
located at the necks of the “beams” (Fig. 4). The state of this
mechanism is described by a single degree of freedom, 6,
which determines the internal dimensions x; and y;. To model
the storing of elastic energy, we couple this mechanism to
outside walls at spacing x, and y,, via a set of linear springs
with zero rest length and spring constant 1/2 [Fig. 4(c)]. As
Figs. 4(a)-4(b) show, such a simple model qualitatively
captures the full experimentally and numerically observed
scenario, when we identify the clamping ¢, with 1 — x, and
compression ¢, with 1 —y, [Figs. 4(a)-4(b)].

A geometric interpretation of the various equilibria and
their bifurcations as ¢, and &, are varied provides much
insight [25]. As illustrated in Fig. 4(d), the relation between
the x; and y; can be represented as a smooth curve, which
we refer to as M (for mechanism). For given (x,, y,), the
elastic energy E equals (x; —x,)*> + (y; —y,)%, so that
equienergy curves are circles of radius E'/2. Stable (unsta-
ble) equilibria thus correspond to points on M tangent to
such circles, where R,;, the radius of curvature of M, is
smaller (larger) than E'/2. The experimental protocol varies
v, at fixed x,. Repeating this geometric construction while
varying y, provides the corresponding stable and unstable
equilibria, their elastic energies, and the force F )= 6qu.

0.8 T T T 6
I

0.6r

.............

Q

0.2/\—/

0.0 _— 1| o
0.00 0.05 0.10 0.00 0.05 0.10
(a) %y (b) &y

09 B, -
s\ ¥/ ea

0.9 1.0
(d) Tis T,

FIG. 4 (color online). (a)—(b) The force and polarization in our
mechanical model for y = 0.3 (a ~ 0.81, b = 0.6) exhibit behav-
iors (i)—(iv)—here full (dashed) curves correspond to stable
(unstable) equilibria, and the insets show a y-and x-polarized
state. The colored regions in (b) are obtained by sweeping x,
through the ranges (i)—(iv) and tracing out the corresponding
polarization curves. (c) Soft mechanism, with y =2(a —b)/
(a + b), and where the undeformed configuration corresponds
to @ = /4, so that a + b = /2 (d) M curve (thick solid pink)
(M: [(x; —y;)/(a—= b))+ [(x; +y:)/(a+ b)]> =2), evolute =
(thin solid blue), and transitions A—C between domains (i)—(iv).
For movies illustrating case (i)—(iv) and A-C see [25].

We now explore this model to understand the transition A
from monotonic to nonmonotonic force curves, the tran-
sition B that leads to hysteresis, and the transition C, where
the differently polarized branches become separated. In
Fig. 4(d) we indicate the four trajectories corresponding
to the data shown in Figs. 4(a)-4(b), as well as three
trajectories labeled A, B, and C that correspond to marginal
curves which separate scenarios (i)—(iv). To understand
the transitions B and C, we will consider the evolute X,
the locus of all the centers of curvature of M [27]. When
(x,, v,) crosses X, saddle-node bifurcations occur—when
(x,, y,) crosses X in a nongeneric manner, more complex
bifurcations may arise [28].

Figure 4(d) now gives a clear geometric interpretation of
the three transitions: A: Curve A is tangent to M, so that
here the energy is purely quartic in y,, and 0,F, = 0.
Curve A thus separates (i) monotonic force curves at larger
Xo from (ii) nonmonotonic force curves for smaller x,,.
B: Curve B intersects the cusp of Z, leading to a pair of
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FIG. 5 (color online).

(a) Force-displacement curves fora9 x 11 sheet (D; = 10 mm, D, =7 mm, y = 0.3, t = 0.15) with horizontal

confinement ¢, as indicated exhibits behavior (i)—(iv) as well as multistable behavior. Curves are offset for clarity. (b) Force-
displacement curve for an inhomogeneously confined 9 x 11 system, showing two giant hysteresis loops with multiple, perfectly
reproducible polarization switching events. (c) Snapshots of the state of our experimental metamaterial corresponding to (1)—(10), where

color codes for polarization.

saddle-node bifurcations which become separated for
smaller x,, and thus spawn a hysteresis loop. Curve B
thus separates case (ii) and (iii). C: Finally, curve C is
tangent to X, which corresponds to a transcritical bifurca-
tion where two solutions cross and exchange stability. As a
result, for smaller x,, the differently polarized branches
decouple [Fig. 4(b)](iv). Curve C thus separates (iii) and
(iv), which can be seen as unfoldings of this transcritical
bifurcation. For movies illustrating the geometrical con-
struction for cases (i)—(iv) as well as A-C, see [25].

Larger systems.—To show that our observed mechanical
functionality can be experimentally realized in larger
systems, we show in Fig. 5(a) examples of F(e,) for a
9 x 11 sheet. We observe the same four regimes as in Fig. 2
when the confinement is increased, illustrating the robust-
ness of these phenomena. The main difference with smaller
systems is that the hysteretic range is expanded and the
force signal then has a complex structure exhibiting several
peaks. These correspond to multiple switching events, due
to inhomogeneities—as hysteresis corresponds to instabil-
ity, even small inhomogeneities are amplified.

We exploit this sensitivity to inhomogeneities to create
multistable states. We use five clamps of decreasing length as
function of row number, corresponding to strains €, = 0.08,
0.11,...,0.20. As shown in Fig. 5(b), this results in a giant
hysteresis loop with multiple peaks. We stress that Fig. 5(b)
overlays two subsequent hysteretic loops, illustrating that
this complex behavior is well reproducible. As shown in
Fig. 5(c) and in [25], each of these peaks corresponds to a
polarization switch of part of the material: Under compres-
sion and decompression, a polarization wave travels through
our material. We note that the spatial configurations in the
downsweep of &, are not the same as in the upsweep, which
can be understood from the observation that the most
confined part of the system shows the most hysteresis.

Hence, inhomogeneous confinement provides an
avenue for the realization of complex multistable systems.
Moreover, these states with large hysteresis can also be
seen as very effective dissipators of work, leading to novel
strategies for mechanical damping [6,29].

Outlook.—We have introduced a class of programmable
mechanical metamaterials whose functionality rests on two
pillars: First, confinement allows us to store and release
elastic energy, crucial for complex mechanics; second, a
broken symmetry leads to competition and coupling
between a secondary confinement and a primary strain.

The soft mechanism model suggests how to rationally
design mechanical metamaterials with confinement con-
trolled response. First, determine the bifurcation scenario
when ¢, is varied. Second, construct an evolute X that is
consistent with these sequence of bifurcations. The M
curve can then explicitly be constructed as the involute of
[30]. Third, design a physical mechanism that possesses
this M curve; in principle any M curve is encodable in a
mechanism [31]. Finally, translate the rigid mechanism and
hinges to a soft metamaterial with slender elements.
Important work for the future is to explicitly demonstrate
the feasibility of this design strategy [32].

Finally, our work leads to several open questions, of
which we highlight three. First, for large, inhomogenous
and multistable systems, how many distinct states can be
reached when more complex parameter sweeps are
allowed? Second, can we connect the mechanics of biholar
sheets to the well-studied holey sheets with equal hole
sizes, for which the mechanical response is not fully
understood [13-19]? Third, can we use the strategies
outlined here to create fully 3D mechanical metamaterials?
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