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We describe a simple experiment that is ideally suited to analyze the high-dimensional entanglement con-
tained in the orbital angular momenta �OAM� of entangled photon pairs. For this purpose we use a two-photon
interferometer with a built-in image rotator and measure the two-photon visibility versus rotation angle. Mode
selection with apertures allows one to tune the dimensionality of the entanglement; mode selection with spiral
phase plates and fibers allows detection of a single OAM mode. The experiment is analyzed in two different
ways: either via the continuous two-photon amplitude function or via a discrete modal �Schmidt� decomposi-
tion of this function. The latter approach proves to be very fruitful, as it provides a complete characterization
of the OAM entanglement.
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I. INTRODUCTION

Spontaneous parametric down-conversion �SPDC�, in
which a pump photon splits into two photons of lower en-
ergy, is a common technique to produce quantum-entangled
photon pairs �1–4�. The generated photon pairs can be en-
tangled in three degrees of freedom. The best-studied form of
entanglement is that of the polarization �2�, which spans a
two-dimensional space and can thus be described in terms of
qubits. The two other forms of entanglement involve either
the time-frequency entanglement or the position-momentum
entanglement within the photon pair. As these forms of en-
tanglement involve continuous variables, the states are con-
tained in a space of much higher dimension and described by
qunits instead of qubits. One of the first experiments on time-
frequency entanglement was the two-photon interference ex-
periment of Hong, Ou, and Mandel �1�, who demonstrated
photon bunching at equal arrival times. Other forms of time-
frequency entanglement have recently been studied by Gisin
et al. �3�.

In this paper, we will discuss the nature of spatial en-
tanglement, where a measurement on the position-momen-
tum of one photon fixes the spatial profile of the other. This
form of entanglement is rapidly attracting more attention
�4–9�. We will separate the spatial profiles in radial and azi-
muthal components and concentrate on the azimuthal part,
which can be described in terms of the photon’s orbital an-
gular momentum �OAM�.

The questions that we will address both theoretically and
experimentally deal with the nature of the spatial entangle-
ment: “How many modes are involved in the spatial en-
tanglement?,” “What is the profile of these spatial eigen-
modes?,” “How can we separate the radial and azimuthal
components?,” and “What is the intensity distribution over
the orbital angular momentum �OAM� modes and the related
Schmidt number?” For our experimental analysis of the na-
ture of the OAM entanglement, we will use a two-photon
interferometer with an odd number of mirrors and an image
rotator in one of its arms. A measurement of the two-photon
interference as a function of the rotation angle proves to be
sufficient for a full characterization of the OAM entangle-

ment. This paper addresses the theory and confirms and ex-
tends earlier experimental results from our group �10�.

This paper is organized as follows. In Secs. II and III we
present two different theoretical descriptions of the interfer-
ence in a two-photon Hong-Ou-Mandel �HOM� interferom-
eter with a built-in rotator. The first analysis is based on a
continuous representation of the two-photon amplitude func-
tion A�x1 ,x2�. The second analysis uses a modal decomposi-
tion of the detected two-photon amplitude into a discrete set
of eigenmodes. This analysis yields an important and intu-
itively simple expression for the angle-dependent two-
photon interference as a Fourier series over the OAM eigen-
modes. In Sec. IV, we present our setup and the obtained
experimental results. We demonstrate that our method allows
for a full characterization of the entanglement in orbital an-
gular momentum. We apply this method both to a spatially
filtered beam and a single-mode beam with a fixed OAM. We
end with a concluding discussion in Sec. V.

II. CONTINUOUS TWO-PHOTON AMPLITUDE

A. Generated two-photon amplitude

The two-photon amplitude that is generated in spontane-
ous parametric down-conversion �SPDC� is relatively simple
in the quasimonochromatic paraxial thin-crystal limit, which
applies to our experiment. We use a cw monochromatic
pump �at optical frequency �p� with perfect spatial coher-
ence and consider almost frequency-degenerate SPDC,
where both photons have approximately the same frequency
�0��p /2. We operate in the paraxial regime, with generated
beams close to the direction of the pump beam. Finally, we
take care to operate in the thin-crystal limit, where phase
matching is well satisfied within the narrow spectral band-
width and limited spatial extent of the detection system �11�.

In the thin-crystal limit, the generated two-photon field
amplitude is �12�

Ag�rs,ri� �� h�rs,x�h�ri,x�Ep�x�dx , �1�

where Ep�x� is the field profile of the pump beam at the
crystal �z=0� with transverse coordinate x. The three dimen-
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sional vectors rs and ri are the coordinates of the two-photon
amplitude. The one-photon propagators h�rs,i ,x�=ks,i /
�2�iLs,i�exp�iks,iLs,i� describe free space propagation of ei-
ther signal or idler photon from the crystal to the detector,
where ks,i��s,i /c are their wave numbers �obeying �s+�i
=�p� and Ls,i= �rs,i− �x ,0�� their path lengths.

In the quasimonochromatic paraxial thin-crystal limit, one
can express the generated two-photon amplitude in terms of
the pump field behind the crystal. The precise form of this
relation depends on the chosen coordinate system �13,14�.
For noncollinear SPDC, we will use “beam coordinates” in
which the signal and idler coordinates of the generated two-
photon amplitude are defined with respect to two fixed beam
axes pointing in the −�0 and +�0 directions, respectively. We
use �xs,i for the transverse coordinates of the signal and idler
photon and L0 for the propagation length along each beam
axis �see Fig. 1�. In the paraxial limit ��0�1 and �x� , ��xs,i�
�L0� the photon propagation lengths Ls,i become

Ls,i = L0 ± xx�0 +
��xs,i − x�2

2L0
, �2�

where xx is the x component of x, which is the component in
the plane defined by the z axis and the two beam axes. Fi-
nally, also working in the quasimonochromatic limit ��ks

−ki��kp�, the generated two-photon amplitude of Eq. �1�
becomes

Ag��xs,�xi,L0� �

Ez�1

2
��xs + �xi�	

L0
exp
 ikp

8L0
��xs − �xi�2� ,

�3�

where Ez�x� is the pump profile in the transverse plane at a
distance z=L0 behind the crystal �14�. The advantage of
beam coordinates in comparison with Cartesian coordinates
is that the phase factor relating Ez and Ag is much smaller in
beam coordinates. Equation �3� shows that the generated
two-photon amplitude is not only invariant under permuta-
tion of the Cartesian coordinates rs↔ri, but even remains
unchanged under permutation of the local beam coordinates
�xs↔�xi.

B. Interference after image rotation

In this subsection we will first present a theoretical de-
scription of a two-photon interferometer with an image trans-
formation U in one of its arms �see Fig. 1�. An image trans-
formation U acts as a coordinate transformation of the form
Eout�xout�=Eout�Uxin�=Ein�xin�=Ein�U−1xout�. We will then
derive an expression for the two-photon bunching visibility,
assuming U to be an orthogonal matrix �comprising image
rotations and reflections� and the pump beam to be rotation-
ally symmetric. In the final part we will focus on the impor-
tant experimental case of an interferometer with an odd num-
ber of mirrors and an image rotator, as only this
interferometer allows for a characterization of the OAM en-
tanglement �see below�.

In order to calculate the detected coincidence rate, we
need to express the two-photon amplitude at the detectors
A12�x1 ,x2� in terms of the generated field Ag��xs ,�xi�. We do
so by accumulating all image operations for the two relevant
propagation channels, being the “double transmission” and
“double reflection” of the incident photon pair at the beam
splitter. For the double transmission channel, these opera-
tions are x2=UMyxs and x1=Myxi, whereas the double re-
flection channel corresponds to x1=MyUMyxs and x2=xi.
Here, the operations My arise from reflections on the mirrors
and beam splitter in the interferometer. The two-photon am-
plitude at the detectors thus becomes

A12�x1,x2;��� = Tbse
−i�1/2����Ag�MyU

−1x2,Myx1�

− Rbse
i�1/2����Ag�MyU

−1Myx1,x2� , �4�

where ����1−�2 is the frequency difference between pho-
tons 1 and 2 and ���Ls−Li� /c is the time delay difference in
the interferometer. Tbs and Rbs are the intensity transmission
and reflection coefficients of the beam splitter, which can
also be written as Tbs= t2 and −Rbs= �ir�2, where t and r are
the real-valued amplitude transmission and reflection coeffi-
cients of the beam splitter. We will assume the beam splitter
to be balanced at Tbs=Rbs= 1

2 . The coincidence rate for simul-
taneous photon detection with large �bucket� detectors be-
hind two apertures with transmission profiles T1�x1� and
T2�x2� is obtained after spatial and spectral integration via

Rcc��� �� � � �A12�x1,x2;����2T1�x1�

	T2�x2�Ttot����dx1dx2d�� , �5�

where Ttot�����Tf1��0+ 1
2���Tf2��0− 1

2��� and Tf1��� and
Tf2��� are the intensity transmission spectra of the bandpass
filters situated in front of detectors 1 and 2.

Two-photon interference can best be observed by measur-
ing the coincidence rate Rcc as a function of the time delay �
experienced in the interferometer. We distinguish two ex-
treme cases for the time delay: �=
, where interference is
absent, and �=0, where the interference is strong and where
one generally observes a so-called Hong-Ou-Mandel �HOM�
dip �1� in the coincidence rate Rcc���. We quantify the
strength of the two-photon interference, i.e., the depth of
HOM dip, by defining the two-photon bunching visibility as

FIG. 1. �Color online� Sketch of a two-photon interferometer
containing a built-in image transformation U and the definition of
various “beam coordinates.” We use the following transverse coor-
dinates: �xs and �xi for the relative positions within the signal and
idler beams, and x1 and x2 for the positions at the detectors, again
with respect to fixed beam lines. L0 is the distance along a fixed
beam line from the crystal to the detection planes. The photon
propagation lengths Li,s and the transverse position on the crystal x
are used in the integrand of Eq. �1� to calculate the two-photon
amplitude.
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V � 1 −
Rcc�� = 0�
Rcc�� = 
�

. �6�

The two-photon bunching visibility of our interferometer
with built-in image transformation U �see Fig. 1� can now be
calculated by combining Eqs. �3�–�6�. In order to simplify
the final expression we will restrict our analysis in three
ways. First, we assume the pump field to be rotationally-
symmetric with zero orbital angular momentum. Second, we
consider only orthogonal image transformations which com-
prise any combination of image reflections and image rota-
tions �see Fig. 2�. We define M��� as an image reflection in
a line oriented at an angle � with respect to the y axis, and
R��� as an image rotation over an angle �. Finally, we as-
sume one aperture to be fully open, i.e., T1�x1�=1.

The first two restrictions allow us to combine all image
operations into a single matrix Utot=UMyUMy and reduce
the two-photon amplitudes in Eq. �4� to Ag�x1� ,x2� and
Ag�x1� ,Utotx2�. The third restriction allows us to isolate the
transverse correlation function of the pump field. The expres-
sion for the two-photon bunching visibility thus becomes

V��� =
� g̃z�1

2
�Utot − 1�x2
T2�x2�dx2

� g̃z�0�T2�x2�dx2

, �7�

where the normalized correlation function of the pump field
�in spherical coordinates� is defined as

g̃z��x� =
� Ẽz

*
x +
1

2
�x�Ẽz
x −

1

2
�x�dx

� �Ẽz�x��2dx

. �8�

This function is always real-valued due to the symmetry of

the pump. The pump field Ẽz�x� in spherical coordinates is
related to the pump field in Cartesian coordinates as

Ẽz�x� � Ez�x�exp
−
ikp

2z
�x�2� . �9�

Note that we have incorporated all phase factors in Ẽz�x�
by choosing a convenient spherical coordinate system that

has its origin at the center of the pump spot on the crystal.

The pump profile Ẽz�x� becomes real-valued in the far field,
but is complex in the near field. As a result, only the far-field
correlation function is directly related to the intensity profile
of the pump in the detection plane. The near-field correlation
function on the other hand is much narrower than the pump
profile in the corresponding plane. For the experimentally
important case of a Gaussian TEM00 pump that is mildly
focused at the crystal as E0�x��exp�−�x�2 /w0

2�, this correla-
tion function is

g̃z�x� � exp�−
�x�2

2wz
2
1 +

z0
2

z2�
 , �10�

where wz=w0�1+ �z /z0�2 is the width of the pump beam in
the detection plane and z0� 1

2w0
2kp is the Rayleigh range of

the pump beam.
There are two distinct possibilities for the orthogonal ma-

trix Utot. If the built-in operation in Fig. 1 is an image rota-
tion U=R���, the combined matrix Utot is equal to unity and
hardly interesting. If the built-in operation is an image reflec-
tion U=M���=R�2��My, the combined operation Utot

=R�4�� is a rotation over an angle 4�. If the interferometer
contains more than two mirrors, it can still be reduced to one
of these two generic cases by absorbing the extra reflections
in the effective image transformation U in Fig. 1.

We will study the case where the effective image trans-
formation U is an image reflection in more detail. We some-
times call this system an “odd-R” interferometer, to indicate
that it operates as an interferometer containing an odd num-
ber of mirrors in between crystal and beam splitter and an
image rotator R���=M�� /2�My in one of its arms. We will
evaluate Eq. �7� for this “odd-R” geometry, where the rela-
tion Utot=R�2�� yields � 1

2 �Utot−1�x2�=sin ��x2�. We consider
a geometry that comprises a Gaussian TEM00 pump beam
and a “hard-edged” circular aperture with a top-hat transmis-
sion profile T2�x2�=��1− �x2� /a� of radius a positioned in
the far field of this beam �L0
z0�. For this geometry, the
two-photon bunching visibility �Eq. �7�� becomes

V��� = �1 − exp�− ���/� , �11�

where �= 1
2 �a /wz�2 sin2 �. Note that the predicted two-photon

visibility V��� is symmetric under inversion of the rotation
angle �V�−��=V���� and periodic in � instead of 2� radian
�V��+��=V����.

Our key result of Eq. �11� quantifies the effect of “spatial
labeling” on the two-photon interference. If the aperture
T2�x� is much smaller than the transverse correlation length
wz of the pump, we expect V����1 irrespective of the rota-
tional angle �, as the diffraction limit of the aperture frus-
trates the observation of any image rotation or reflection. If
the aperture is much larger, diffraction will be less restrictive
and V��� will decay rapidly away from �=0. The two-photon
interference should disappear if one can distinguish the sig-
nal from the idler path based on any conceivable photo po-
sition measurement at the detector side, even if that measure-

FIG. 2. �Color online� Graphical representation of the two ge-
neric orthogonal image transformations M��� and R��� in a plane
orthogonal to a beam line. The beam line is pointing out of the
paper. M��� is a reflection in a line making an angle � with the y
axis. R��� is a rotation of an angle � around the beam line.
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ment is not actually performed but only possible in principle.
Mathematically, the criteria for spatial labeling translates into
�2�= �a /wz�sin���
1.

III. DISCRETE MODAL ANALYSIS

A. Schmidt decomposition of the detected two-photon
amplitude

In the previous section we have analyzed two-photon in-
terference in a two-photon interferometer with an image
transformation U in one of its arms �see Fig. 1�. We consid-
ered the case of a rotationally symmetric pump profile and an
orthogonal image transformation matrix U, comprising any
combination of image reflections and rotations as visualized
in Fig. 2. We found out that the two-photon bunching visibil-
ity is only affected by U if U is an image reflection M�� /2�,
which is equivalent to an image rotation in combination with
an extra mirror R���My. An expression for V��� is given by
Eq. �11� for detection through a ‘hard-edged’ circular aper-
ture in front of one of the detectors. Our analysis that led to
this result was based on calculations of the continuous two-
photon amplitude in the quasimonochromatic paraxial thin-
crystal limit.

In this subsection we will analyze the two-photon inter-
ference that leads to Eq. �11� from a different perspective,
namely by decomposing the continuous two-photon ampli-
tude into a countable set of discrete spatial modes. We will
consider the detected two photon amplitude �15� instead of
the generated two-photon amplitude �16,17�. As we will
show, the rotational symmetry of the pump and the apertures
allows for a decomposition of the detected two-photon am-
plitude in a Fourier series of orbital angular momenta. This
azimuthal decomposition is a first step towards a full
Schmidt decomposition �16,18,19� of the detected field. Our
Schmidt decomposition of the detected field is mathemati-
cally equivalent to the Schmidt decomposition of the gener-
ated field as performed in Ref. �16�.

We have shown in the previous section that rotational
symmetry of the pump field �l=0 pumping� leads to invari-
ancy of the two-photon amplitude under any orthogonal
transformation U on both beam coordinates, i.e., that
Ag�U�xs ,U�xi�=Ag��xs ,�xi�. Based on this symmetry we
can rewrite Ag��xs ,�xi� as Ag�rs ,ri ,�si�, where �si��s−�i.
Here, we have introduced polar coordinates �xs,i↔ �rs,i ,�s,i�,
where � is the angle with the y axis and the sign of � is
defined in analogy with the definition of R��� in Fig. 2. The
detected two-photon amplitude is obtained by including the
spatial filtering of two rotationally symmetric apertures
Ts,i�rs,i� in the signal and idler beam �see Fig. 3�. We analyze
the angular dependence of this detected field by decompos-
ing it in a Fourier series of orbital angular momenta l, via

Ain�rs,ri,�si� � �Ts�rs�Ti�ri�Ag�rs,ri,�si�

= A �
l=−





Fl�rs,ri��Ple
il�si/2� , �12�

where A2����Ain��xs ,�xi��2d�xsd�xi is the “average ampli-
tude squared.” Furthermore, we have Fl�rs ,ri�=F−l�rs ,ri� and

P−l= Pl, because of mirror symmetry. The functions Fl�rs ,ri�
are normalized via �16�

�
0


 �
0




�Fl�rs,ri��2rsridrsdri = 1, �13�

so that �Pl=1.
Equation �12� is a first step towards a full Schmidt decom-

position of the detected two-photon amplitude. This decom-
position can be completed by expanding �16�

Fl�rs,ri��rsri = �
p=0




��l,pf l,p�rs�gl,p�ri� , �14�

where the radial mode number p quantifies the number of
nodal lines in the radial profile of f l,p�rs� and gl,p�ri�. The
functions f l,p�rs� and gl,p�ri� are normalized via the standard
inner product so that �p�l,p=1. The full Schmidt decompo-
sition of the detected two-photon amplitude now reads

Ain��xs,�xi� = A �
l=−





�
p=0




��l,pul,p��xs�v−l,p��xi� , �15�

where �l,p� Pl�l,p and ul,p��xs��eil�sf l,p�rs� /�2�rs and
vl,p��xi��eil�igl,p�ri� /�2�ri.

We now return to the HOM interference setup visualized
in Fig. 1 with an image transformation U=R���My. We re-
position the apertures Ts�rs� and Ti�ri� in front of the detec-
tors 2 and 1, respectively. Because the generated field
Ag��xs ,�xi� is invariant under a coordinate swap �xs↔�xi,
we can write the two-photon amplitude behind the apertures
T1 and T2 in terms of the detected two-photon amplitude, i.e.,

AHOM�x1,x2� = TBSe−i�1/2����Ain�r2,r1,�1 + �2 − ��

− RBSei�1/2����Ain�r2,r1,�1 + �2 + �� ,

�16�

where ����1−�2 is the frequency difference between pho-
tons 1 and 2 and ���Ls−Li� /c is the time delay difference in
the interferometer. The only difference between Eq. �4� and
Eq. �16� is that the latter incorporates the transmission pro-
files of the detection apertures whereas Eq. �4� does not.

The two-photon bunching visibility as defined in Sec. II is
now easily calculated by using the azimuthal Schmidt de-
composition of the detected two-photon amplitude as given
in Eq. �12�. By substituting Eq. �12� in Eq. �16�, assuming a
balanced beam splitter RBS=TBS= 1

2 , and using the prescrip-
tions of Eqs. �5� and �6� one quickly finds

FIG. 3. �Color online� Graphical representation of what we call
the detected two-photon amplitude Ain��xs ,�xi� in relation to the
generated two-photon amplitude Ag��xs ,�xi�.
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V��� = �
l=−





Pl cos�2l�� . �17�

In other, words, a measurement of V��� with the HOM setup
as visualized in Fig. 1 �with U=R���My� reveals the azi-
muthal Schmidt coefficients Pl of the detected two-photon
amplitude. This key result will be discussed in more detail in
Sec. III C.

The OAM weights Pl depend on the size and radial shape
of the circular detection apertures T1,2 in relation to the pro-
file of the pump laser in the detection plane, as these deter-
mine the detected two-photon amplitude Ain�rs ,ri ,�si� and its
angular Fourier components AFl�rs ,ri��Pl /2�. These OAM
weights are often difficult to calculate. For our geometry
with a Gaussian pump and a single hard-edged aperture, we
did not find analytic expressions for Pl, as we could not solve
the Fourier decomposition of Eq. �11� or Eq. �12� analyti-
cally.

B. Modal decomposition and the Schmidt number

In this subsection, we will introduce a convenient coordi-
nate free bra-ket notation for the detected two-photon state
�see Fig. 3� and use the Schmidt decomposition to quickly
rederive the previous results of Eq. �16� and Eq. �17�. We
will also introduce two different Schmidt numbers.

A Schmidt decomposition of the detected two photon state
���in in bra-ket form is

���in = �
�

����u�� � �v�� , �18�

where ��u��� and ��v��� are two sets of orthogonal mode
functions, which are identical only if the aperture profiles Ts
and Ti are identical. The effective number of modes involved
in this decomposition is defined by the so-called �2D�
Schmidt number

K2D �

�

�

���2

�
�

��
2

. �19�

The rotation symmetry of the detected two-photon ampli-
tude Ain�U�xs ,U�xi�=Ain��xs ,�xi� allows one to separate
the mode index � into an azimuthal mode number l and a
radial mode number p. It also enforces the conservation of
OAM in the paraxial SPDC process �20� and changes the
modal decomposition of Eq. �18� to

���in = �
l=−





�
p=0




��l,p�l,p�� � �− l,p��, �20�

where �l , p�� and �−l , p�� are the LG-like Schmidt eigen-
modes of the detected two-photon amplitude. This equation
is the bra-ket notation of Eq. �15�, where �l , p�� and �−l , p��
correspond to the functions ul,p��xs� and v−l,p��xi�, respec-
tively. As the amplitude coefficients ��l,p already contain the
effects of aperture filtering, they will decrease rapidly both
for high p and high l values �high l-states are quite extended

even for p=0�. We define the OAM probability as Pl
��p�l,p and the related azimuthal Schmidt number as

Kaz �
1

�
l

Pl
2

, �21�

for �lPl=1 �21,26�. The relation between the azimuthal
Schmidt number Kaz and the full 2D Schmidt number K2D
depends �somewhat� on the shape of the detection aperture.

We now return to the HOM interference setup visualized
in Fig. 1 with an image transformation U. Starting from the
modal decomposition of Eq. �20�, it is relatively easy to ap-
ply the rotation and mirror operations that are needed to
evaluate the doubly-reflected and doubly-transmitted field
and the visibility of their interference. For the “even R” ge-
ometry �U=R����, the generated �l ,−l� pairs are also de-
tected as �l ,−l� pairs behind the beam splitter and we expect
good two-photon interference, i.e., V��=1�, at any rotation
angle. For the “odd R” geometry �U=R���My�, the OAM
inversion produced by the extra mirror leads to the detection
of �l , l� and �−l ,−l� pairs instead. As the OAM at the rotator
is now different for the doubly-reflected and doubly-
transmitted path, so is the effect of rotation. For rotation over
an angle � the combined two-photon state after HOM inter-
ference can now be written as

���HOM = �
l,p

�Tbs
��l,pe−i�l�+�1/2����� − Rbs

��−l,pei�l�+�1/2������

	�l,p�� � �l,p��. �22�

This is the bra-ket notation of Eq. �16�. Next, we assume a
balanced beam splitter �Rbs=Tbs= 1

2
� and use the reflection

symmetry �l,p=�−l,p �and Pl= P−l� to obtain

V��� = �
l=−





Pl cos�2l�� , �23�

where we normalized to �lPl=1 �equivalent to V�0�=1�.
With the convenient bra-ket notation, we thus recover the
important Eq. �17� in only a few steps.

C. Physical significance of V„�…

Equation �23� shows how the observed visibility V��� is a
weighted sum over contributions from groups of l modes,
each contribution oscillating between Vl=1 �HOM dip� and
Vl=−1 �HOM peak� with its own angular dependence
cos�2l��. It thereby shows how the visibility V��� and the
modal distribution �Pl� are related via a simple Fourier se-
ries. As a Fourier transformation of V��� directly yields the
full OAM distribution �Pl�, it thus provides for a complete
characterization of the angular structure of the two-photon
amplitude.

The azimuthal Schmidt number Kaz is a measure for the
angular structure in the detected two-photon amplitude.
More precisely, by averaging V���2 over the full rotation
range one finds
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Kaz =
1

� Pl
2

=
1

�V���2�
. �24�

When V��� remains close to V�0�=1 over its full range, this
relation gives Kaz�1. When V���=cos�2l�� this relation
gives Kaz=2 as expected for Pl= P−l=

1
2 . When V����1 only

in a very limited range around �=0 and zero for all other
angles, Kaz
1 is inversely proportional to the angular width
of V���.

In one of our experiments we use a single-mode detector
that only selects photons with a specific OAM value ld. We
predict that the coincidence rate versus time delay Rcc�� ,��
now contains both a symmetric and �surprisingly� also an
antisymmetric part with respect to time delay �. Using the
detected two-photon state after HOM interference of Eq. �22�
for a single l= ld number we find

Rcc��,�� �� �1 + cos���� + 2ld���Ttot����d�� . �25�

This equation shows that Rcc�� ,�� will have an antisymmet-
ric component only if Ttot���� is asymmetric and if
sin�2l���0. Note that Ttot����, as defined below Eq. �5�, is
asymmetric only if the filter transmission spectra Tf1��� and
Tf2��� are different. For the two-photon bunching visibility
at zero delay, which solely depends on the symmetric part,
we find the earlier result of Eq. �23�, which now reduces to
V���=cos�2ld��.

Finally, one might wonder what the observed visibility
V��� tells us about the nature of the spatial entanglement,
i.e., whether it proves that the two-photon amplitude is in-
deed described by the pure state of Eq. �20� with its perfect
OAM entanglement. This question is best answered by argu-
ing backwards from hypothetical detected pairs �l1 , l2�. For
an “even R” interferometer, our experimental observation
that V����1 irrespective of rotation angle indeed proves the
conservation of OAM; it shows that the two-photon field at
the detectors contains only �l ,−l� pairs, as any other pairs
�l1 , l2� would introduce an angle dependence of the form
cos�2�l1+ l2��� in V���. However, as the same result V���
�1 would have been obtained for any classical mixture of
�l ,−l� pairs, this observation does not prove the existence of

quantum entanglement. For the “odd-R” interferometer, the
observations on V��� discussed in this paper do prove some
form of quantum entanglement. It shows that the two-photon
amplitude contains only coherent superpositions of the form
���in= �l ,−l�+ �−l , l�. Again, we cannot exclude any incoher-
ent mixture of these superposition states.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

Our experimental setup, as shown in Fig. 4, is a two-
photon �Hong-Ou-Mandel type� interferometer with an odd
number of mirrors and an image rotator in one of the arms. A
cw krypton-ion laser �Coherent Innova 300� emits 210 mW
at 413.1 nm in a vertically polarized pure TEM00 mode. The
beam is mildly focused �wp=270 �m is the radius at e−2 of
maximum irradiance� on a 1 mm thick �-BaB2O4 crystal
�BBO� with a cutting angle of 29.2°. The crystal is tilted
such that we obtain type I spontaneous parametric down con-
version �SPDC� where the SPDC-light is emitted in a cone
extending over a full opening angle of 2�0=3.2° around the
pump beam. After multiple reflections and a single transit
through the image rotator, two opposite parts of this cone are
combined on a beam splitter. The crucial angular alignment
of this beam splitter is performed with computer-controlled
actuators. Behind the 50/50 beam splitter, three different de-
tection geometries can be chosen �described in more detail in
the next paragraph�. Color filters are positioned in front of
the detectors in all detection geometries. The filters are
custom-made bandpass filters �Chroma Technology Corpora-
tion�, filtering around 826 nm with a FWHM of 5nm. The
detectors in all three detection geometries are single photon
sensitive avalanche photodiodes �Perkin Elmer SPCM-AQR-
14�.

Detection geometry A consists of a relatively large
�bucket� detector behind an aperture �at 0.10 m from the
beam splitter� in each detection arm. Each detector will col-
lect all the light that passes through its aperture. In detection
geometry B, each detector is connected to a single-mode fi-
ber collecting only the fundamental Gaussian mode. In de-
tection geometry C, one of the detectors is connected to a
single-mode fiber in combination with a spiral phase plate
�SPP� making it effectively a single-mode l=1 detector,

FIG. 4. �Color online� Experi-
mental setup: A two-photon inter-
ferometer with an odd number of
mirrors and a built-in image rota-
tor. The �-icon represents an ad-
justable delay line. Behind the
beam splitter three different detec-
tion geometries can be chosen: A,
B, or C.
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while the other detecting arm contains a bucket detector. A
more detailed description of the l=1 single-mode detector
and the fabrication of the SPP can be found in Sec. IV B. The
apertures �in geometry A� and the position of the objectives
�in geometries B and C� define the signal and idler path. The
beam splitter is positioned on the crossing of the signal and
idler path and is angle tuned such that the detection apertures
obey mirror symmetry with respect to the beam splitter
plane. The signal and idler arm of the interferometer each
have a length of 1.6 m. The direction of the pump beam is
centered in between the directions of the signal and idler
path. The idler arm contains a delay line with which the
length of the arm, and hence the relative arrival times of the
photons at the beam splitter, can be adjusted.

The microscope objectives in detection geometry B are
Leica 10	 /0.25 infinity-corrected objectives with an effec-
tive focal length of 20 mm. They are positioned at 0.6 m
from the beam splitter and image the tip of the single-mode
fiber �Thorlabs SM800-5.6-125� onto the BBO crystal. The
radius �at e−2 of maximum irradiance� of this image of the
detected mode on the BBO crystal is measured to be
280 �m. We use slightly different optics in detection geom-
etry C, in order to obtain a narrower waist of the detected
mode on the BBO crystal. The radius �at e−2 of maximum
irradiance� of the detected l=0 mode, i.e., whenever the SPP
is temporarily removed from the apparatus, on the BBO
crystal is now 220 �m. The radius of the characteristic ring
of the detected l=1 mode, i.e., whenever the SPP is in the
apparatus, is 180 �m. This value is somewhat larger than the
value of 1

2
�2	220 �m=156 �m expected for the �l=1, p

=0�-mode due to the presence of higher order p-modes.
The image rotator includes five optical components as

shown in Fig. 5. The rotatable part is responsible for an
image reflection M��� in a line making an angle � with the
y axis �see Fig. 2�. It consists of three discrete mirrors in-
stead of a commercially available glass Dove prism, in order
to avoid any detrimental effects of wavelength dispersion.
We are able to align the rotatable part within ±0.2 mrad in
the far field and ±0.5 mm in the near field, measured over a
full rotation. The fixed mirror on the left causes an image
reflection M�0� so that the combined action of the unit is a
rotation R���=R�2��=M���M�0�.

Although an image rotation is generally accompanied by a
polarization rotation �22�, our rotator transfers at most only
8% of the power into the orthogonal polarization. This con-

venient property is obtained by using silver mirrors �pro-
tected by a thin SiO2 cover layer� instead of dielectric mir-
rors. The measured phase difference between the �threefold�
reflected s- and p-polarized light is �s-p=0.81� �23�, which
is sufficiently close to the ideal value of �s-p=� needed for a
polarization-insensitive rotator. As both polarization compo-
nents have the same spatial profile, we simply remove this
small unwanted orthogonal component with a fixed polarizer
�see Fig. 5�.

B. Spiral phase plate

A spiral phase plate �SPP� is a transparent plate whose
thickness increases proportional to the azimuthal angle �24�.
It imposes an azimuth-dependent optical retardation on the
optical field. Our SPP is custom made by Philips Research
Laboratories with dimensions suited for our application; the
imposed optical retardation over a full rotation equals one
optical cycle of the 826.2 nm SPDC-light. The SPP operates
as a lowering operator on l-numbers of the incoming modes
at this wavelength. In detection geometry C, a single-mode
fiber is used to detect solely the fundamental Gaussian mode
�l=0� behind the SPP which implies that it solely detects an
l=1 mode in front of the SPP.

The SPP is manufactured using photo replication technol-
ogy �25�. To this end a high accuracy brass mold, the nega-
tive of the SPP we wish to produce, is machined using a
programmable computer driven diamond tool. A transparent
copy of the mold is obtained by using a reactive monomer
encapsulated between the mold and a glass cover plate. The
final SPP is obtained after polymerization of the monomer by
UV radiation. The demand for an optical retardation of
826 nm in one cycle requires proper definition of step height
and refractive index. We use a step height of 1.66 �m and a
refractive index of 1.50. Some technical details on the pro-
duction process are as follow: We use an adhesion promoter
�-�methacryloyloxypropyl�trimethoxysilane to allow for a
firm coupling between the resulting polymer and the cover.
We use a mixture of poly�ethyleneglycol� dimethacrylate
with a refractive index of 1.48 and Ebecryl 604 �75% epoxy-
acrylate in hexanedioldiacrylate, a product of UCB chemi-
cals� with a refractive index of 1.54 in a ratio of 2:1 to obtain
an effective index of 1.50. To enable the photopolymeriza-
tion reaction 2% of a mixture of photoinitiators �Irgacure 651
and Irgacure 184� was added.

C. Alignment

We will discuss the alignment procedure in more detail
because we think it can be helpful for anyone who wants to
reproduce the experiment. We consider the position of the
beam splitter as well as the position of the pump spot on the
BBO crystal as fixed. Leaving out the rotator from the dis-
cussion we need to deal with the following degrees of free-
dom: angle of the pump beam �p and the angle of the beam
splitter �BS. In detection geometry A we additionally need to
consider the position of the apertures. In detection geom-
etries B and C we additionally need to consider the positions
of the objectives as well as the positions of the fibers �deter-
mining the position and angle of the detected mode on the

FIG. 5. �Color online� Scheme of the different components of
our image rotator, drawn in the xz plane �see Fig. 1�. Light enters
with an in-plane linear polarization. The rotatable part �drawn here
in the �=0 situation� can be rotated as a whole around the indicated
axis, and it is responsible for an image reflection M��� as defined in
Fig. 2. The polarizer selects the in-plane polarization.

ORBITAL ANGULAR MOMENTUM ANALYSIS OF HIGH-… PHYSICAL REVIEW A 76, 042302 �2007�

042302-7



crystal�, assuming that the SPP is positioned correctly in ge-
ometry C. The correct alignment of �p and �BS are indepen-
dent of the choice of detection geometry. Therefore, we are
allowed to switch to another detection geometry halfway the
alignment procedure.

We start the alignment procedure by aligning the angle of
the beam splitter in detection geometry B. We do this by first
moving the fiber in the transverse plane in order to maximize
the single count rate of each fiber for the corresponding
transmission channel only. Secondly, we tune �BS to maxi-
mize the single count rates of the reflection channels. The
accuracy of this alignment step is ��BS= ±70 �rad. The cor-
rect alignment of the angle of the beam splitter depends on
the position of the pump spot on the BBO as well as the
alignment of the optics in the interferometer arms. From now
on we do not change either of these.

The next goal is to align the angle of the pump beam. We
control �p with a mirror that is positioned very close to the
BBO crystal. Changing the angle of the pump beam with this
mirror has a negligible effect on the position of the pump
beam on the BBO crystal. The angle of the pump beam must
become centered in between the detected directions in the
signal and idler arm. We do this by maximizing the coinci-
dence count rate Rcc,ref far away from HOM interference.
Note that one may only perform this operation if the aper-
tures or objectives are positioned correctly, obeying mirror
symmetry with respect to the beam splitter plane. This posi-
tioning of apertures �detection geometry A� or fiber-detectors
detectors �detection geometry B and C� is done by eye, using
a visible HeNe laser.

To measure the correct visibility in detection geometry A
with a large aperture diameter, an even higher precision of
the alignment of the angle of the beam splitter is required
���BS= ±40 �rad set by the diffraction limit�. We improve
the alignment by simply minimizing the coincidence count
rate inside the HOM dip in detection geometry A. One may
only apply this alignment technique if all the other compo-
nents are aligned correctly, for minimizing the coincidence
count rate can sometimes also be achieved by misaligning
any other component in the setup.

The alignment of the fiber-detector in detection geometry
C deserves some extra attention. The problem is that placing
the spiral phase plate �SPP� in front of the single-mode fiber
will slightly shift the central position of the detected mode
on the BBO crystal ��1 mm� due to a small wedge in the
SPP. As a consequence, one has to reposition the fiber with
respect to the microscope objective in order to get the posi-
tion of the detected mode centered at the pump beam again.
From experimental experience we know that the shape of
Rcc���, and hence also the visibility, is extremely sensitive to
the position of the projection of the detected l=1 mode on
the BBO crystal. A transverse shift of only 25 �m on the
BBO can lead to a decrease of the HOM visibility of 9%
points in the case of an image rotation of �=90°. This means
that an alignment precision below ��det�10 �rad is re-
quired. We achieve this accuracy by imaging the projection
of the detected l=1 mode on the BBO crystal onto a CCD
camera.

We want to stress that fine tuning the position fiber in
detection geometry C by optimizing two-photon interference

effects �i.e., maximizing the absolute visibility� may result in
an incorrectly aligned system. Figure 10 shows two results
which are obtained with an incorrectly positioned projection
of the detected l=1 mode on the BBO crystal. The figure
makes clear that an incorrectly aligned system may give an
absolute visibility that is even higher than the visibility that
would have been obtained with a correctly aligned system.

D. Experimental results for detection through
circular apertures

We have measured the two-photon bunching visibility as
a function of image rotation with the setup shown in Fig. 4.
In this subsection we present the results obtained in detection
geometry A �detection through circular apertures� and in de-
tection geometry B �detection of solely the fundamental
Gaussian mode�. We compare these measurements with the
theoretical predictions and we determine the azimuthal
Schmidt number Kaz, which is the effective dimensionality of
the entanglement in orbital angular momentum.

The effect of an image rotation on the two-photon bunch-
ing visibility is clearly illustrated in Fig. 6. The figure shows
measurements of the coincidence count rate as a function
time delay for two different rotation angles �=0° and �
=20° in detection geometry A �aperture diameter of 10 mm�.
Both cases exhibit a drop of the coincidence count rate near
�=0 reaching almost ideal photon bunching �V=92% � in the
nonrotated case. The dip in the case of �=20° on the other
hand, has a strongly reduced visibility of only 36%.

The two visibilities extracted from Fig. 6 correspond to
two points in Fig. 7. In this figure we have plotted the bunch-
ing visibility V��� as a function of the rotation angle for
various aperture diameters �detection geometry A� and for
two fiber-coupled detectors �detection geometry B�. As ex-
pected, we observe almost ideal photon bunching for all de-
tection geometries as long as we apply no image rotation. If
we apply a certain image rotation, however, the two-photon
bunching visibility becomes different for different detection
geometries. The measurement with fiber-coupled detectors
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FIG. 6. �Color online� Two-photon coincidence count rate ver-
sus the time delay � for two different rotation angles. The measure-
ments are performed in detection geometry A �see Fig. 4� where one
aperture has a diameter of 10 mm and the other aperture is open.
The two-photon bunching visibilities are 92% and 36% for �=0°
and �=20°, respectively.
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serves as a reference measurement, demonstrating that the
bunching visibility of the rotational symmetric fundamental
Gaussian mode is independent of the angle of rotation �re-
maining V�98.7%�. Our measurements in detection geom-
etry A show that a larger aperture corresponds to a narrower
peak of V��� around �=0. This is in agreement with our
expectations based on the calculation of the continuous two-
photon amplitude �Eq. �11��. The figure shows theoretical
curves of V��� for aperture diameters of 1 mm, 4 mm, and
10 mm. The latter two are in good agreement with the mea-
surements, but the 1 mm case shows a slight deviation which
we believe is the result of imperfect alignment.

Apart from the three cases mentioned above, where the
second aperture is set completely open, we have also mea-
sured V��� in the case where both apertures are set to a
diameter of 4 mm �see Fig. 7�. Closing the second aperture
to the size of the first one slightly broadens the V��� curve.
The detection of one photon within an aperture minimizes
the position uncertainty of the other �brother� photon to twice
the width of the pump beam in the detection plane �see Eq.
�3��. The fact that the position of the second photon is still
not completely fixed after detection of the first one explains
why it matters whether or not an identical aperture in front of
the second detector is present. Closing the second aperture to
the same size indeed also reduces the reference coincidence
rate Rcc�
�. We have not plotted the corresponding theoreti-
cal curve in Fig. 7 simply because we have no analytic ex-
pression for V��� in a detection geometry with two equally
closed apertures.

Now what do the measurements in Fig. 7 tell us about the
generated two-photon state? From symmetry arguments
�Gaussian pump beam, paraxial angle of the SPDC cone, and
circular detection apertures� we know that we can write the
detected part of the generated two-photon state in the form of
Eq. �20�. By applying a cosine transform on the measured
curve V��� we find all the orbital angular momentum �OAM�
probability coefficients Pl conform Eq. �23�. This means that
a measurement of V��� provides a complete characterization

of the high dimensional entanglement that exists between the
orbital angular momenta of the two photons.

We have performed such modal decompositions on our
measured curves V���. The resulting coefficients Pl for three
�of five� detection geometries are shown in Fig. 8. It is
clearly visible that the contributions of the smallest
l-numbers become more dominant if the detection apertures
become narrower. The measurement with single mode fibers
�detection geometry B� serves as a reference, and shows that
the detected two-photon state contains only photons with
zero orbital angular momentum, i.e., with l=0. From the
measured values of Pl we calculate the azimuthal Schmidt
number �using Eq. �24�� which is the effective number of
modes that participate in the entanglement. The values are
listed in Table I. For detection through single mode fibers
�detection geometry B� we find Kaz=1.01±0.01 and in detec-
tion geometry A the azimuthal Schmidt number ranges be-
tween 1.26±0.06 and 7.3±0.3 depending on the aperture di-
ameter.

E. Experimental results for l=1 detection

In this subsection we present the measurements that we
have performed in detection geometry C, where one of the
detectors is coupled to a single-mode l=1 selector �see Fig.
4�. Again, we have measured the coincidence count rate
Rcc��� as a function of delay time. The results for various
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FIG. 7. �Color online� Measured two-photon bunching visibility
versus angle of rotation for various detection geometries �see Fig.
4�: Two single-mode fibers �circles�, 1-mm-open apertures �dia-
monds�, 4-mm–4-mm apertures �stars�, 4-mm-open apertures
�squares� and 10-mm-open apertures �triangles�. The three solid
curves are predicted by theory �Eq. �11�� and correspond from top
till bottom to the measurements of the diamonds, the squares, and
the triangles, respectively.

FIG. 8. Measured weight factors Pl of the “orbital angular mo-
mentum” terms in the entangled two-photon state for the three
specified detection geometries. Not shown are the weight factors for
l�4 and negative l, for which P−l= Pl.

TABLE I. Measured azimuthal Schmidt number �Kaz� of the
detected two-photon state for various detection geometries �see Fig.
4�. The first row is measured in detection geometry B; the other four
rows are measured in detection geometry A, for which the aperture
diameters are specified.

Detector 1 Detector 2 Kaz

SM-fiber SM-fiber 1.01±0.01

1 mm open 1.26±0.06

4 mm 4 mm 2.08±0.08

4 mm open 2.7±0.1

10 mm open 7.3±0.3
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angles of rotation are presented in Fig. 9. As expected from
Eq. �23� we observe photon bunching in the case of no image
rotation and photon anti-bunching if a rotation of �=90° is
applied.

For angles between 0���90° we observe an asymmet-
ric curve for Rcc���. This phenomenon can be fully explained
from the spectral shape of the color filters. The theoretical
shape of Rcc�� ,�� is given by Eq. �25� from which we con-
clude that Rcc��� will have an antisymmetric component only
if the filters are not exactly identical, making Ttot��� asym-
metric, and if sin�2���0. We had intended to use identical
filters; however, due to the limited fabrication accuracy, the
transmission spectra of the two filters were slightly different.
One of the filters has a transmission spectrum that is centered
around �=824.7 nm instead of �=826.2 nm, whereas the
other filter is neatly centered around �=826.2 nm. This dif-
ference is responsible for the antisymmetric component in
Rcc��� in Fig. 9.

The dotted curve shows the calculated coincidence count
rate for �=45° as expected from Eq. �25� using measured
spectral transmission functions of the filters. The strength of
the contribution of the asymmetric component in Rcc��� is in
excellent agreement with our measurements. Serving as an
extra check of Eq. �25�, we have also exchanged the two
filters and observe, as expected, an asymmetry of Rcc��� that
is flipped around the vertical �=0 axis.

From the measured curves of Rcc��� for various angles of
rotations, we have extracted the two-photon bunching vis-
ibility defined as V����1−Rcc��=0� /Rcc��=
�. According
to this definition, V��� depends only on the symmetric com-
ponent of Rcc��� and hence Eq. �23� is fully applicable to the
outcome of our measurement of V���. The resulting values
are presented in Fig. 10 and are very well described by the
predicted V���=cos�2��.

As shown in Fig. 10, we have performed several measure-
ments of V��� twice and observed a small spread which, we
believe, is caused by the limited achievable accuracy of the
alignment. This limited accuracy of the alignment is the
dominant contribution to the uncertainty of ±0.05 in the mea-

surements of V���. We furthermore observe that the two-
photon bunching visibility at �=90° is only −82±5% instead
of the predicted −100%. This may be explained by the ob-
servation that our detected l=1 mode �detection geometry C�
is not perfectly rotationally symmetric for yet unknown rea-
sons.

V. CONCLUDING DISCUSSION

In conclusion, we have presented and demonstrated a
method to obtain a complete characterization of the high-
dimensional entanglement in orbital angular momentum
�OAM� of down-converted photon pairs. The method is
based on measurements of the interference in a two-photon
interferometer �Hong-Ou-Mandel-type� with an odd number
of mirrors and a built-in image rotator. We have theoretically
analyzed this method for the case of a rotationally symmetric
�Gaussian� pump profile and coincidence detection behind
circular apertures, using two different approaches. In the first
approach, we derive analytic expressions for the two-photon
�bunching� visibility V��� as a function of the rotation angle
�, by spatial integration of the interference in the continuous
two-photon amplitude. In the second approach, we use a
modal �Schmidt� decomposition of the detected two-photon
amplitude to derive a natural Fourier relation between V���
and the weight factors Pl of the OAM terms in the entangled
two-photon state: High OAM states result in fast changes of
V��� with angle, whereas low OAM states produce slower
changes. These weight factors are then combined to an azi-
muthal Schmidt number Kaz, which quantifies the effective
dimensionality of the OAM entanglement. Both approaches
can easily be generalized to pump profiles with an orbital
angular momentum different from l=0.

We have shown that the experimental results are in close
agreement with the theoretical predictions. More specifically,
an increase in the size of the detection aperture results in an
increase in the effective dimensionality Kaz, which is visible
as a reduction in the angular width of V��� around V�0��1.
We have tuned the effective dimensionality between Kaz
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FIG. 9. �Color online� Coincidence count rate versus time delay
�, measured in a single-mode �l=1� detection geometry, for various
angles of rotation �. The five solid curves �from top to bottom� are
measured at �=90°, 67.5°, 45°, 22.5°, and 0°, respectively. The
dotted curve is calculated for �=45°, making use of Eq. �25� and
the measured spectral transmissions of the bandpass filters.
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FIG. 10. �Color online� Two-photon bunching visibility versus
angle of rotation �circles�, where only a single-mode with orbital
angular momentum l=1 is detected. The triangles are two results
obtained with an experimental apparatus that is improperly aligned
�see Sec. IV C�. The uncertainty of the measured visibility is ±0.05.
The solid curve is predicted by theory �Eq. �23��.
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=1.01±0.01 and Kaz=7.3±0.3. Using a single-mode OAM-
selective �l=1� detector, we have isolated one term in the
Fourier expansion and demonstrated a controllable change
from photon bunching to photon antibunching. At intermedi-
ate settings we have observed highly asymmetric HOM dips
V��� versus time delay �. We attribute this asymmetry to a
difference between the two spectral filters in front of the
detectors.

The Klyshko picture provides for a simple intuitive way
to understand the working principle of our OAM analysis
method. The Klyshko approach is based on a time reversal of
the path of one of the photons. The full path now runs �back-
wards in time� from one detector back to the generating crys-
tal and after reflection �forward in time� to the second detec-
tor. In the Klyshko picture, the two-photon visibility results
from the interference between the clockwise and counter-
clockwise paths, which are associated with the “doubly re-
flected” and “doubly transmitted” paths at the beam splitter.
Only if the total number of mirrors in the interferometer is
odd, will these two paths acquire an opposite image rotation,
which in turn leads to a reduction of the two-photon visibil-
ity. For an even number of mirrors the image rotation is
identical for both paths.

One might wonder why our experimental results are lim-
ited to Kaz�7.3±0.3. The prime reason is the limited size of
our pump spot. The simplest way to increase the Schmidt

numbers Kaz and K2D would therefore be an increase of the
pump spot from its present diameter of 270 �m to a larger
value. A complication one might, however, run into is the
combined spectral and spatial labeling discussed in Ref. �14�.
This labeling can be diminished by either reducing the de-
tection bandwidth or the angle between the signal and idler
beam. An alternative method to increase the Schmidt num-
bers is via an increase of the opening angle of the detection
system. However, with the current setup we are already close
to the boundary set by the thin-crystal limit.

A logical question for future research is if and how our
method can be extended to an analysis of the full spatial
entanglement, comprising both the azimuthal and the radial
components. Recent experiments have shown how the 1D
Schmidt number can be determined by measuring the two-
photon visibility as a function of the transverse displacement
of one beam with respect to the other �14�. We expect that a
combination of 1D translation and image rotation will be
sufficient to obtain enough information for a characterization
of the full 2D spatial entanglement.
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