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Two types of topological transitions in finite Majorana wires

Dmitry I. Pikulin
Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands

Yuli V. Nazarov
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

(Received 23 November 2012; revised manuscript received 5 March 2013; published 19 June 2013)

Motivated by the recent advances in studying Majorana states in nanowires under conditions of the
superconducting proximity effect, we address the correspondence between the common topological transition in
an infinite system and a topological transition of another type that manifests itself in the positions of the poles of
the scattering matrices. We establish a universal dependence of the pole positions in the vicinity of the common
transition on the parameter controlling the transition, and discuss the manifestations of the pole transitions in the
differential conductance.
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I. INTRODUCTION

Majorana bound states have been predicted to exist in
various condensed matter setups: in the 5/2 Fractional
Quantum Hall effect (FQHE) state,1 in vortices found
in p + ip superconductors,2 and in specific models of
one-dimensional (1D) superconductors.3 The importance of
the Majorana states for quantum computation4 has brought
them to the focus of condensed matter research.5

The next steps were suggestions to realize the Majorana
states in more experimentally feasible setups; those include
topological insulators6,7 and semiconductor nanostructures
with big spin-orbit interaction brought in proximity to s-wave
superconductors. Two-8,9 and one-dimensional10,11 nanostruc-
tures have been considered.

The observation of Majorana bound states in 1D nanowires
has been reported by several groups by measuring the zero-
bias conductance peak12–14 and 4π Josephson effect.15 The
signature of Majorana bound states is their emergence upon
a topological transition16 separating the regions of parameter
space with and without zero-energy excitations. In all cases the
experiments have been performed with finite and rather short
wires. This brings about the question of how a topological
transition taking place in an infinite system is manifested in
the properties of a finite wire.

Strictly speaking, this common topological transition is
absent in a finite system, where excitation energies contin-
uously depend on the control parameter of the transition and
are never precisely zero.3,10,17 This may be shown in several
ways. In Ref. 17 we gave the most general formulation in terms
of the topology of the energy-dependent scattering matrix
characterizing a finite nanostructure.

The same study revealed a topological transition of another
kind that takes place in finite systems, and manifests itself
in the properties of the poles of the scattering matrix. The
topological number in this case is the number of poles at
purely imaginary energy, and the topological transition is
the change of this integer even number upon the continuous
variation of the control parameter. This is in contrast to a
common expectation from a phase transition: if it becomes
a crossover, no sudden changes of any quantity would
occur.

In the present work we link these two topological transitions
of different types: the bulk one and the finite-system one.
We show in this article that in the general case a common
topological transition is accompanied by a pole topological
transition (the opposite is not true: there can be a pole
topological transition in a topologically trivial situation18).
The points of the transitions differ at a scale inversely
proportional to the wire length. We implement a generic model
of the Majorana wire that is always valid in the vicinity of
the transition point, and we obtain the universal dependence
of the pole positions on the control parameter and a single
parameter characterizing the coupling of the wire to a normal
metal lead. We discuss how the same correspondence occurs
for more specific models and how the universal picture is
manifested in a transport measurement.

II. SETUP AND GENERIC 2 × 2 MODEL

The “standard” model describing a Majorana wire en-
compasses a single-band spectrum that includes spin-orbit
interaction, proximity effect from the bulk superconductor,
and spin magnetic field.10,11 Let us derive a phenomenological
effective model valid near the common topological transition
point. We can start with a multimode wire where the spectrum
at each k is described by a general Hamiltonian matrix Ĥ (k)
in the space of the modes and Nambu index. The general sym-
metry of Bogolyubov-de Gennes (BdG) equations19 requires
Ĥ (k) = −Ĥ T (−k) in a certain (Majorana) basis. In the usual
basis the BdG symmetry reads Ĥ (k) = −τxĤ

T (−k)τx , where
τx is the Pauli matrix in the Nambu space, which connects
particles with holes. Then by rotation of the Hamiltonian
Ĥ ′(k) = U †Ĥ (k)U , where U = 1√

2
(1 + iτx) we bring it to

the Majorana basis. The common topological transition takes
place when an eigenvalue of Ĥ (k = 0) passes 0, indicating a
closing of the superconducting proximity gap in the wire.

Owing to BdG symmetry, the zero eigenvalue is doubly
degenerate. Thus we concentrate on two modes corresponding
the eigenvalue, and mutually related by the complex conju-
gation; in this basis, the BdG symmetry is expressed in the
above form. Near the transition point the general form for this
Hamiltonian in the Majorana basis reads H (k = 0) = aσy ,
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FIG. 1. (Color online) (a) The setup: the Majorana wire of length
L at the top of a superconductor is connected to a normal-metal
lead. The total scattering matrix at low energy incorporates that
of the contact (Sc) and the energy-dependent scattering matrix
describing propagation in the wire, Sw. (b) Sketch of the (continuous)
spectrum in the limit of infinite; a Majorana level emerges upon
the common topological transition. (c) The common topological
transition becomes a crossover for finite L. The quantized energy
levels (real parts of the pole energy positions) are sketched versus the
control parameter a. The lowest level reaches 0 at the point of the
pole topological transition. Dashed lines give the imaginary parts of
the pole positions for the lowest level.

where σ ’s here and below are the usual Pauli matrices. The
phenomenological parameter a controls the proximity to the
transition and is a function of physical control parameters such
as magnetic field or chemical potential; a = 0 at the transition
point. Expanding near k = 0 and taking into account the BdG
symmetry, we find two possible terms ∝kσx and ∝kσz. The
combination of the two can be brought to ∝kσz by a rotation of
the pseudospin about the y axis. This brings us to the generic
Hamiltonian we will use in further consideration:

H = vkσz + aσy. (1)

It was first introduced in Ref. 20.
Let us turn to a finite wire; see the setup in Fig. 1(a).

The boundary conditions at the wire ends must be consistent
with current conservation. The operator of current reads Î =
∂H
∂k

= vσz so conservation implies that the wave function � =
{ψ1,ψ2}T must satisfy

|ψ1|2 = |ψ2|2. (2)

At zero energy the wave function may be chosen to be real,21

and we are left with binary choice ψ1 = ±ψ2. We fix the signs
to + at the right end of a system and − at the left one. In this
case, in the limit of infinite wire length the Majorana states
are formed at a < 0 while the phase at a > 0 is topologically
trivial [Fig. 1(b)]. Thus the parameter a together with the
boundary condition on the closed end of the wire determines
the topological phase.

III. SCATTERING MATRIX DESCRIPTION

Let us now contact the left end of the wire with a normal
metal lead and describe the situation in therms of the scattering
matrix from/to normal lead modes. Scattering matrices are
very useful objects to study the properties of superconducting
junctions.22 They incorporate relevant details of the setup in a

few parameters and allow us to compute different properties
of the junction, such as conductivity. They also allow for the
topological classification of the junction in a concise way.17

The BdG symmetry equation in the Majorana basis implies for
any scattering matrix that S∗(−E) = S(E).

There are two interesting modes in the wire propagating in
opposite directions. The scattering matrix of the contact Sc is
in the basis of the incoming waves in the lead and the single
mode of the wire, and is thus of size M + 1 × M + 1; M is
the number of modes in the normal lead. We separate it into
blocks as

Sc =
(

ř11 ř21

ř12 r

)
. (3)

Here ř11 is an M × M matrix of the (Andreev)reflection to
the leads that also incorporates the scattering in all other wire
modes, ř21, 12 are scattering amplitudes from/to the wire, and
r is a number that gives the reflection amplitude in the wire
(r = 1 corresponding to the wire isolation).23 By virtue of
BdG condition Sc is real at zero energy. Since the interesting
energy dependence comes from the wire, we can neglect the
energy dependence of Sc.

To get the full M × M scattering matrix in the space of
normal lead modes, we need to combine the Sc with the
scattering amplitude Sw that describes the propagation along
the wire, reflection from the right, and the propagation back
to the left end. This amplitude is easy to find from the
Hamiltonian (1) and reads

Sw = eiχ =
(

coth(
√

a2 − ε2L/v) + a+iε√
a2−ε2

)
(

coth(
√

a2 − ε2L/v) + a−iε√
a2−ε2

) , (4)

L being the wire length. The whole peculiarity of the limit of
the infinite wire may be seen from this formula. If we formally
set L → ∞ and then set energy to zero, we obtain Sw(ε =
0) = sgn(a), which is thus topologically trivial (nontrivial) for
a < 0 (a > 0). However, at any finite L Sw(ε = 0) = 1, and
is thus topologically trivial.

The full scattering matrix thus reads

S = ř11 + ř21e
iχ

1 − reiχ
ř12. (5)

We concentrate on poles of this matrix that are solutions of√
a2 − ε2 coth(

√
a2 − ε2L/v) + a − iε

1 − r

1 + r
= 0. (6)

IV. CONNECTION BETWEEN THE TWO TYPES
OF TOPOLOGICAL TRANSITIONS

At finite length L the common topological transition
becomes a crossover taking place in an interval of a of the
order of effective level spacing in the wire v/L and at the
corresponding energy scale. We call this interval the crossover
region and aim to describe this universal crossover. To this end
we rescale a,ε to dimensionless units ã = a v

L
, ε̃ = ε v

L
. The

equation becomes√
ã2 − ε̃2 coth(

√
ã2 − ε̃2) + ã − iε̃

1 − r

1 + r
= 0. (7)

Numerical solutions for pole positions are shown in Figs. 2(a)
and 2(b) for two values of r as functions of the control
parameter ã. We see a sharp feature in the crossover region:
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the pole topological transition. At this point, the real part of the
energy of the lowest pole becomes strictly zero. This occurs at
finite negative values of ã. The higher the transmission through
the Sc, the closer to 0 is the transition point. This dependence
is presented in Fig. 2(c). In the limit of low transmissions,
the pole transition takes place at |ã| � ln(1 − r), where the
exponentially small splitting of Majorana states matches the
small decay rate of the left-end state to the normal metal.
The real parts of energies of all other poles follow the
hyperbola-like curves, indicating formation of discrete energy
levels in the wire above the gap edge |ã|. The same transition

is seen in the imaginary parts of the energy positions as a
splitting of the curve corresponding to the lowest pole. The
upper (lower) parts of the split curve give the decay rates
of the left (right) end Majorana state. The decay rate for the
Majorana state “buried” at the right end falls off exponentially
with increasing |ã|: ε̃ ≈ 2iã exp(−2|ã|) 1+r

1−r
.

Let us reveal the peculiarity of the pole positions in the
vicinity of the transition point. For this, we expand (7) near the
transition point ã = a0, ε̃ = iε0 to obtain the relation between
the deviations δε, δa from the point in the lowest nonvanishing
order:

δa = Cδε2,
(8)

C = −a3
0(1 + 2ε0μ) − 2ε5

0μ(−1 + μ2) + 2a0ε
2
0

[
1 + ε2

0(1 − 3μ2)
] + a2

0ε0[−3μ − ε0(−1 + 4ε0μ + μ2)]

2ε0
(
a2

0 + ε2
0

){a0(1 + 2a0)μ + ε0[−1 + a0(−1 + μ2)]} � 1.

Here μ = 1−r
1+r

. This gives a square-root splitting of either the
real parts of the energy positions δε = ±√

δa/C at δa > 0 or
the imaginary ones, δε = ±i

√|δa|/C at δa < 0. This square-
root dependence of δε on δa is in full agreement with Figs. 2(a)
and 2(b).

The experimentally observable quantity is the differential
conductance of the contact, G(ε = eV ), V being the voltage
drop at the contact. It is known that each pole in the scattering
matrix produces a Lorentzian-shaped peak or deep in the
conductance curve.17 In terms of the scattering matrix, the

(a) (b)

(d)
(c)

FIG. 2. (Color online) The real (a) and and imaginary (b) parts
of the pole energy positions versus the control parameter ã at two
values of the reflection amplitude r: r = 0.86 (green dots, almost
isolated) and r = 0.34 (red crosses, almost transparent). The part
of (a) within the rectangle is replotted in (c). The pole topological
transition occurs at a0 = −1.2 for r = 0.86 and a0 = −3.3 for
r = 0.34. (d) The dependence of the transition point a0 on r .

conductance reads G = e2

2πh̄
Tr(1 − τySτyS

†). Substituting S

in the form of (5), we obtain a universal energy dependence of
the conductance in the crossover region,

G(ε) = G0 + G1f (a,ε), (9)

f (a,ε) = (1 − r2)2

1 + r2 + 2r cos χ (a,ε)
. (10)

The dependence is governed by the universal function f (a,ε)
(0 < f < 4) while the nonuniversal coefficients G0,G1 de-
pend on the details of Sc,

G0 = e2

2πh̄
Tr

[
1 − (ř11 − r−1ř21ř12)τy ř

T
11τy

]
,

(11)

G1 = e2

2πh̄

Tr
{
τy ř21ř12τy

[
řT

12ř
T
12 + (r − r−1)řT

11

]}
(1 − r2)2

.

The coefficient G1 � e2/h̄ and can be of any sign while G0

can be much bigger than e2/h̄. The function f (Fig. 3) at
any r gives a sequence of peaks associated with the poles of
the scattering matrix. The peaks are narrow in the isolation
limit r → 1. Before the transition, the peaks are far from zero
energy. Upon the crossover, the peaks come close to zero and
almost merge near the transition point. However, they never
merge to a single peak: the Majorana state at the far end of the
wire is manifested in the conductance as a dip that becomes
increasingly narrow upon increasing −ã.

Since the poles always have a finite imaginary part, and the
conductance is defined at real energy, there is no singularity in
f (ε) at the point of the pole topological transition. However,
this singularity can be readily identified from the experimental
data by numerical analytical continuation to the complex
energy plane. This amounts to fitting the conductance trace
by a superposition of Lorentzian peaks. The positions of the
fitted Lorentzians will give the real parts of the pole positions
while their widths give the imaginary parts.

Another setup proposed20 to reveal the signatures of
Majorana fermions encompasses normal leads at both ends
of a finite grounded nanowire. Also in this case the common
topological transition is accompanied by a pole transition and
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FIG. 3. (Color online) The universal bias-dependent contribution
to the differential Andreev conductance of the contact versus
energy/voltage. Solid, dashed, dotted curves correspond to r =
0.9,0.5,0.1 respectively (ã0 ≈ −0.5, − 1.7, − 3.5). (a) ã = 2, long
before the transition. (b) ã = 0, the bulk topological transition, no
sharp features in the conductance curves. (c) ã = −2 in the crossover
interval. (d) ã = −4 long after the transition. The Majorana at the far
end of the wire is manifested as a narrow dip at zero bias.

proceeds in a similar way. The qualitative difference is that
far below the transition both Majorana quasilocalized states
retain a finite width, and each of the two associated poles is
manifested only in the scattering from the corresponding end of
the wire. The tunneling conductance from either of the normal
leads to the superconductor will show a single Lorentzian peak
at zero bias.

In the model under consideration, the Majorana splitting
retains the same sign. More detailed models, e.g., Ref. 10,
predict spectacular oscillations of the splitting.24 We stress

that in the limit of the long wires LkF 
 1 such oscillations
can only start far from the common topological transition; that
is, at the values of the control parameter that are parametrically
bigger than v/L.

V. CONCLUSIONS AND DISCUSSION

To conclude, we have formulated and studied a universal
model that describes the crossover in the vicinity of the com-
mon topological transition for finite clean Majorana wires. Im-
portantly, we have shown that a sharp pole topological transi-
tion takes place in the crossover interval of the control parame-
ter, and we have computed the dependence of the pole positions
on the control parameter in this interval. We have also found
a universal shape of differential conductance for this model;
this enables its straightforward experimental verification.

We stress the universal character of our conclusions, in
particular, the predictions for the conductance: those should
hold in any sufficiently long wire with small disorder in the
vicinity of the topological transition. Some features of our
results have been seen in Ref. 12: the authors have observed
a narrow zero-bias peak on the background of a wider dip
as seen in Fig. 3(d) (assuming G1 is negative). The zero-bias
peak originates from the bound state on the closed end of the
wire, while the smooth dip is the signature of the Majorana
state on the open end. On the other hand, no regular pattern
of peaks moving to zero upon changing the control parameter
has been observed so far. More experimental data, in particular
for longer wires, are required to clarify the discrepancy, which
can be due to sufficiently strong disorder or finite temperature
effects.
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