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Abstract. We suggest a way to overcome the obstacles that disorder and high
density of states pose to the creation of unpaired Majorana fermions in one-
dimensional systems. This is achieved by splitting the system into a chain of
quantum dots, which are then tuned to the conditions under which the chain can
be viewed as an effective Kitaev model, so that it is in a robust topological phase
with well-localized Majorana states in the outermost dots. The tuning algorithm
that we develop involves controlling the gate voltages and the superconducting
phases. Resonant Andreev spectroscopy allows us to make the tuning adaptive,
so that each pair of dots may be tuned independently of the other. The calculated
quantized zero bias conductance serves then as a natural proof of the topological
nature of the tuned phase.
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1. Introduction

Majorana fermions are the simplest quasiparticles predicted to have non-Abelian statistics [1, 2].
These topologically protected states can be realized in condensed matter systems, by making
use of a combination of strong spin–orbit coupling, superconductivity and broken time-reversal
symmetry [3–8]. Recently, a series of experiments have reported the possible observation
of Majorana fermions in semiconducting nanowires [9–12], attracting much attention in the
condensed matter community.

Associating the observed experimental signatures exclusively with these non-Abelian
quasiparticles, however, is not trivial. The most straightforward signature, the zero bias peak
in Andreev conductance [13, 14], is not unique to Majorana fermions, but can appear as a result
of various physical mechanisms [15–21], such as the Kondo effect or weak anti-localization.
It has also been pointed out that disorder has a detrimental effect on the robustness of the
topological phase, since in the absence of time-reversal symmetry it may close the induced
superconducting gap [22]. This requires experiments to be performed with very clean systems.
Additionally, the presence of multiple transmitting modes reduces the amount of control one
has over such systems [23–26], and the contribution of extra modes to conductance hinders the
observation of Majorana fermions [27]. Thus, nanowire experiments need setups in which only
a few modes contribute to conductance.

In this work, we approach the problem of realizing systems in a non-trivial topological
phase from a different angle. Following the work by Sau and Das Sarma [28], we wish to
emulate the Kitaev chain model [29], which is the simplest model exhibiting unpaired Majorana
bound states. The proposed system consists of a chain of quantum dots (QDs) defined in a two-
dimensional electron gas (2DEG) with spin–orbit coupling, in proximity to superconductors and
subjected to an external magnetic field. Our geometry enables us to control the parameters of
the system to a great extent by varying the gate potentials and superconducting phases. We will
show how to fine tune the system to the so-called ‘sweet spot’ in parameter space, where the
Majorana fermions are well localized at the ends of the system, making the topological phase
maximally robust. A sketch of our proposed setup is presented in figure 1(a).

The setup we propose and the tuning algorithm are not restricted solely to systems created
in a 2DEG. The essential components are the ability to form a chain of QDs and tune each
dot separately. In semiconducting nanowires the dots can be formed from wire segments
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Figure 1. Examples of systems allowing implementation of a Kitaev chain.
(a) A chain of QDs in a 2DEG. The QDs are connected to each other, and
to superconductors (labeled SC), by means of quantum point contacts (QPCs).
The first and the last dots are also coupled to external leads. The normal state
conductance of QPCs between adjacent dots or between the end dots and the
leads is G‖, and of the QPCs linking a dot to a superconductor is G⊥. The
confinement energy inside each QD can be controlled by varying the potential
Vgate. (b) Realization of the same setup using a nanowire, with the difference that
each dot is coupled to two superconductors in order to control the strength of the
superconducting proximity effect without the use of QPCs.

separated by gate-controlled tunnel barriers, and all the tuning can be done by gates, except
for the coupling to a superconductor. This coupling, in turn, can be controlled by coupling two
superconductors to each dot and applying a phase difference to these superconductors. The
layout of a nanowire implementation of our proposal is shown in figure 1(b).

This geometry has the advantage of eliminating many of the problems mentioned above.
By using single-level QDs, and also quantum point contacts (QPCs) in the tunneling regime,
we solve issues related to multiple transmitting modes. Additional problems, such as accidental
closings of the induced superconducting gap due to disorder, are solved because our setup allows
us to tune the system to a point where the topological phase is most robust, as we will show.

We present a step-by-step tuning procedure which follows the behavior of the system in
parallel to that expected for the Kitaev chain. As feedback required to control every step we
use the resonant Andreev conductance, which allows us to track the evolution of the system’s
energy levels. We expect that the step-by-step structure of the tuning algorithm should eliminate
the large number of non-Majorana explanations of the zero bias peaks.
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A related layout together with the idea of simulating a Kitaev chain was proposed recently
by Sau and Das Sarma [28]. (See also the two-dot limit of that proposal, analyzed in [30].)
Although similar in nature, the geometry which we consider has several advantages. First of all,
coupling the superconductors to the QDs in parallel allows us to not rely on crossed Andreev
reflection. More importantly, being able to control inter-dot coupling separately from all the
other properties allows us to address each dot or each segment of the chain electrically. This in
turn makes it possible to perform the tuning of the system to the sweet spot regime in a scalable
manner. This can be achieved by opening all the QPCs except for the ones that contact the
desired dots.

This setup can also be extended to more complicated geometries which include the
T-junctions of such chains. Benefiting from the high tunability of the system and the localization
of the Majorana fermions, it might then be possible to implement braiding [31, 32] and
demonstrate their non-Abelian nature.

The rest of this work is organized as follows. In section 2, we briefly review a generalized
model of the Kitaev chain, and identify the ‘sweet spot’ in parameter space in which the
Majorana fermions are the most localized. The system of coupled QDs is described in section 3.
For the purpose of making apparent the resemblance of the system to the Kitaev chain, we
present a simple model that treats each dot as having a single spinful level. We then come up
with a detailed tuning procedure describing how one can control the parameters of the simple
model, in order to bring it to the desired point in parameter space. In section 4, our tuning
prescription is applied to the suggested system of a chain of QDs defined in a 2DEG, and it is
shown using numerical simulations that at the end of the process the system is indeed in a robust
topological phase. We conclude in section 5.

2. Generalized Kitaev chain

In order to realize unpaired Majorana bound states, we start from the Kitaev chain [29]
generalized to the case where the on-site energies as well as the hopping terms are not uniform
and can vary from site to site. The generalized Kitaev chain Hamiltonian is defined as

HK =

L−1∑
n=1

[(
tneiθn a†

n+1an + 1neiφn a†
n+1a†

n + h.c.
)

+ εna†
nan

]
, (1)

where an are fermion annihilation operators, εn are the on-site energies of these fermions,
tn exp(iθn) are the hopping terms, and 1n exp(iφn) are the p-wave pairing terms.

The chain supports two Majorana bound states localized entirely on the first and the last
sites, when (i) εn = 0, (ii) 1n = tn and (iii) φn+1 − φn − θn+1 − θn = 0. The larger values of tn

lead to a larger excitation gap. Condition (iii) is equivalent, up to a gauge transformation, to the
case where the hopping terms are all real, and the phases of the p-wave terms are uniform. The
energy gap separating the Majorana modes from the first excited state then equals

Egap = 2 min {tn}n . (2)

The above conditions (i)–(iii) constitute the ‘sweet spot’ in parameter space to which we would
like to tune our system. Since all of these conditions are local and only involve one or two sites,
our tuning procedure includes isolating different parts of the system and monitoring their energy
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levels. For that future purpose we will use the expression for excitation energies of a chain of
only two sites with ε1 = ε2 = 0:

E12 = ±(t1 ± 11). (3)

Exactly at the sweet spot, in order to couple Majorana fermions formed at the ends of the chain,
one needs to change at least L Hamiltonian parameters, where L is the length of the chain.
This happens because any local perturbation would only delocalize Majorana fermions between
the dots on which it acts. Hence if a typical imperfection of the tuning due to the presence of
noise or the imperfection of tuning itself is of an order δ, then the residual coupling between
Majoranas will be of the order of (δ/t)L . Quadratic protection from noise for two such dots in
the sweet spot regime was reported in [30]. While for quantum computation applications the
length of chains required for sufficient noise tolerance may be relatively large, as we show in
section 4, in order to detect robust signatures of Majorana fermions, three dots may be sufficient.

3. System description and the tuning algorithm

The most straightforward way to emulate the Kitaev chain is to create an array of spinful QDs,
and apply a sufficiently strong Zeeman field such that only one spin state stays close to the
Fermi level. Then the operators of these spin states span the basis of the Hilbert space of
the Kitaev chain. If we require normal hopping between the dots and do not utilize crossed
Andreev reflection, then in order to have both tn and 1n non-zero we need to break the particle
number conservation and spin conservation. The former is achieved by coupling each dot to
a superconductor; the latter can be achieved by spatially varying Zeeman coupling [33, 34]
or more conventionally by using a material with a sufficiently strong spin–orbit coupling.
Examples of implementation of such a chain of QDs in a 2DEG and in semiconducting
nanowires are shown in figure 1.

We neglect all the levels in the dots except for the one closest to the Fermi level, which is
justified if the level spacing in the dot is larger than all the other Hamiltonian terms. We neglect
the Coulomb blockade, since we assume that the conductance from the dot to the superconductor
is larger than the conductance quantum [35]. We consider a single Kramers doublet per dot with
creation and annihilation operators c†

n,s and cn,s , with n the dot number and s the spin degree
of freedom. Since we consider dots with spin–orbit interaction, cn,s is not an eigenstate of spin.
Despite that, only singlet superconducting pairing is possible between cn,s and cn,s′ as long as the
time-reversal symmetry breaking in a single dot is weak. By applying a proper SU (2) rotation
in the s–s ′ space we may choose the Zeeman field to point in the z-direction in each dot. As long
as the Zeeman field does not change the wave functions of the spin states the superconducting
coupling stays s-wave. The general form of the BdG Hamiltonian describing such a chain of
spinful single-level dots is thus given by

HS =

∑
n,s,s′

(
µnσ

s,s′

0 + Vzσ
s,s′

z

)
c†

n,scn,s′ + 1
2

(
1ind,nei8n iσ s,s′

y c†
n,sc

†
n,s′ + h.c.

)
+

(
wn

(
eiλnσ

)s,s′

c†
n,scn+1,s′ + h.c.

)
, (4)

where σi are Pauli matrices in spin space. The physical quantities entering this Hamiltonian are
the chemical potential µn, the Zeeman energy Vz, the proximity-induced pairing 1ind,n exp(i8n)

and the inter-dot hopping wn. The vector λn characterizes the amount of spin rotation happening
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during a hopping between the two neighboring dots (the spin rotates by a 2|λ| angle). This
term may be generated either by a spin–orbit coupling, or by a position-dependent spin rotation,
required to make the Zeeman field point in the local z-direction [33, 34, 36]. The induced pairing
in each dot 1ind,n exp(i8n) is not to be confused with the p-wave pairing term 1n exp(iφn)

appearing in the Kitaev chain Hamiltonian (1).
In order for the dot chain to mimic the behavior of the Kitaev chain in the sweet spot, each

dot should have a single fermion level with zero energy, so that εn = 0. Diagonalizing a single
dot Hamiltonian yields the condition for this to happen

µn =

√
V 2

z − 12
ind,n. (5)

When this condition is fulfilled, each dot has two fermionic excitations

an =
ei 8n

2

√
2Vz

(√
Vz − µn c†

n↑
− e−i8n

√
Vz + µn cn↓

)
, (6)

bn =
ei 8n

2

√
2Vz

(√
Vz − µn c†

n↓
+ e−i8n

√
Vz + µn cn↑

)
. (7)

The energy of an is zero, and the energy of bn is 2Vz. If the hopping is much smaller than the
energy of the excited state, wn � Vz, we may project the Hamiltonian (4) onto the Hilbert space
spanned by an. The resulting projected Hamiltonian is identical to the Kitaev chain Hamiltonian
of equation (1), with the following effective parameters:

εn = 0, (8a)

tneiθn = wn (cos λn + i sin λn cos ρn) [sin (αn+1 + αn) cos(δ8n/2)

+ i cos (αn+1 − αn) sin(δ8n/2)] , (8b)

1neiφn = iwn sin λn sin ρneiξn [cos (αn+1 + αn) cos (δ8n/2) + i sin (αn+1 − αn) sin (δ8n/2)] ,

(8c)

where

µn = Vz sin(2αn), 1ind,n = Vz cos(2αn), (9)

λn = λn (sin ρn cos ξn, sin ρn sin ξn, cos ρn)
T (10)

and δ8n = 8n − 8n+1.
It is possible to extract most of the parameters of the dot Hamiltonian from level

spectroscopy, and then tune the effective Kitaev chain Hamiltonian to the sweet spot. The tuning,
however, becomes much simpler if two out of three of the dot linear dimensions are much
smaller than the spin–orbit coupling length. Then the direction of spin–orbit coupling does not
depend on the dot number, and as long as the magnetic field is perpendicular to the spin–orbit
field, the phase of the prefactors in equations (8) becomes position independent. Additionally,
if the dot size is not significantly larger than the spin–orbit length, the signs of these prefactors
are constant. This ensures that if δ8n = 0, the phase matching condition of the Kitaev chain is
fulfilled. Since δ8n = 0 leads to both tn and 1n having a minimum or maximum as a function
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of δ8n, this point is straightforward to find. The only remaining condition, tn = 1n at δ8 = 0,
requires that αn + αn+1 = λn.

The above calculation leads to the following tuning algorithm:

1. Open all the QPCs, except for two contacting a single dot. By measuring conductance
while tuning the gate voltage of a nearby gate, ensure that there is a resonant level at zero
bias. After repeating for each dot the condition εn = 0 is fulfilled.

2. Open all the QPCs except the ones near a pair of neighboring dots. Keeping the gate
voltages tuned such that εn = 0, vary the phase difference between the neighboring
superconductors until the lowest resonant level is at its minimum as a function of phase
difference, and the next excited level at a maximum. This ensures that the phase tuning
condition φn+1 − φn − θn+1 − θn = 0 is fulfilled. Repeat for every pair of neighboring dots.

3. Start from one end of the chain, and isolate pairs of dots like in the previous step. In the
pair of nth and (n + 1st) dots tune simultaneously the coupling of the (n + 1st) dot to the
superconductor and the chemical potential in this dot, such that εn+1 stays equal to 0. Find
the values of these parameters such that a level at zero appears in two dots when they are
coupled. After that proceed to the following pair.

Having performed the above procedures, the coupling between all of the dots in the chain is
resumed, at which point we expect the system to be in a robust topological phase, with two
Majorana fermions located on the first and last dots. In practice one can also resume the coupling
gradually by, for instance, isolating triplets of adjacent dots, making sure they contain a zero-
energy state, and making fine-tuning corrections if necessary and so on.

4. Testing the tuning procedure by numerical simulations

We now test the tuning procedure by applying it to a numerical simulation of a chain of three
QDs in a 2DEG. The 2D BdG Hamiltonian describing the entire system of the QD chain reads

HQDC =

(
p2

2m
+ V (x, y)

)
τz +

α

h̄
(σx py − τzσy px) + 1ind

(
cos(8)τy + sin(8)τx

)
σy + Vzτzσz.

(11)

Here, σi and τi are Pauli matrices acting on the spin and particle–hole degrees of freedom,
respectively. The term V (x, y) describes both potential fluctuations due to disorder, and the
confinement potential introduced by the gates. The second term represents Rashba spin–orbit
coupling, 1ind(x, y) exp (8(x, y)) is the s-wave superconductivity induced by the coupled
superconductors and Vz is the Zeeman splitting due to the magnetic field. A full description
of the tight-binding equations used in the simulation is presented in the appendix.

The chemical potential of the dot levels µn is tuned by changing the potential V (x, y). For
simplicity, we used a constant potential Vn added to the disorder potential, such that V (x, y) =

Vn + V0(x, y) in each dot. Varying the magnitude of 1ind,n is done by changing conductance
G⊥ of the QPCs, which control the coupling between the dots and the superconductors. Finally,
varying the superconducting phase 8(x, y) directly controls the parameter 8n of the dot to
which the superconductor is coupled, although they need not be the same.

New Journal of Physics 15 (2013) 045020 (http://www.njp.org/)

http://www.njp.org/


8

Figure 2. Andreev conductance measured from the left lead as a function of bias
voltage and QD potential (measured relative to quarter filling) for the second
dot. Changing the chemical potential allows one to tune quasi-bound states to
zero energy (white circle).

The tuning algorithm requires monitoring of the energy levels of different parts of the
system. This can be achieved by measuring the resonant Andreev conductance from one of the
leads. The Andreev conductance is given by [37, 38]

G/G0 = N − tr(reer
†
ee) + tr(rher

†
he), (12)

where G0 = e2/h, N is the number of modes in a given lead, and ree and rhe are normal and
Andreev reflection matrices. Accessing parts of the chain (such as a single dot or a pair of
dots) can be done by opening all inter-dot QPCs, and closing all the ones between dots and
superconductors, except for the part of the system that is of interest.

We begin by finding such widths of QPCs that G‖ ≈ 0.02 and G⊥ ≈ 4G0. This ensures
that conductance between adjacent dots is in the tunneling regime and that the dots are strongly
coupled to the superconductors such that the effect of the Coulomb blockade is reduced [35].
The detailed properties of QPCs are descrbed in the appendix and their conductance is shown
in figure A.3.

First step: tuning chemical potential. We sequentially isolate each dot, and change the dot
potential Vn. The Andreev conductance as a function of Vn and bias voltage for the second
dot is shown in figure 2. We tune Vn to the value where a conductance resonance exists at zero
bias. This is repeated for each of the dots and ensures that µn = 0.

Second step: tuning the superconducting phases. We now set the phases of the induced pairing
potentials 8n as constant. As explained in the previous section, this occurs when 1n and tn

experience their maximal and minimal values. According to equation (3) this happens when
the separation between the energy levels of the pair of dots subsection is maximal. Figure 3
shows the evolution of these levels as a function of the phase difference between the two
superconductors. The condition δ81 = 0 is then satisfied at the point where their separation
is maximal.
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Figure 3. Conductance as a function of bias voltage and superconducting phase
difference for a two-dot system. The two lowest energy levels are given by
equation (3) for a two-site Kitaev chain, as indicated. At the point where their
separation is maximal (SC phase difference 0 in the plot), the phase difference
δ8n of the induced superconducting gaps vanishes.

Figure 4. Conductance as a function of bias voltage during simultaneous tuning
of G⊥ and Vn for the first pair of dots. The three different plots represent the
situation before (dotted line), at an intermediate stage (dashed line) and after
(solid line) the tuning. The arrow indicates the evolution of the first peak upon
tuning, and the number of successive changes of G⊥ and Vn are shown for each
curve. By bringing the first peak to zero, the third tuning step is achieved.

Third step: tuning the couplings. Finally, we tune tn = 1n. This is achieved by varying G⊥,
while tracking the Andreev conductance peak corresponding to the tn − 1n eigenvalue of the
Kitaev chain we are emulating. After every change of G⊥ we readjust Vn in order to make
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Figure 5. Conductance as a function of bias voltage for a system composed
of three tuned QDs (dashed line). The zero bias peak signals the presence of
Majorana bound states at the ends of the chain. The first and second excited states
are consistent with those expected for a three-site Kitaev chain, namely E1 = 2t1

and E2 = 2t2 (vertical dashed lines), given the measured values of t1 = 11 and
t2 = 12, obtained after finalizing the two-dot tuning process. As described in the
main text, after increasing the transparency of the lead the QPC, we get a zero
bias peak having a height G = 1.98G0 (solid line).

sure that the condition εn = 0 (or equivalently V 2
z = l2

n + 12
n) is maintained. This is necessary

because not just 1n, but also µn depend on G⊥. Therefore, successive changes of G⊥ and Vn

are performed until the smallest bias peak is located at zero bias. The tuning steps of the first
two dots are shown in figure 4. We repeat steps 2 and 3 for each pair of dots in the system.

Finally, having all three conditions required for a robust topologically non-trivial phase, we
probe the presence of localized Majorana bound states in the full three-dot system by measuring
Andreev conductance (see figure 5). In this specific case, the height of the zero bias peak is
approximately 1.85G0, signaling that the end states are well but not completely decoupled.
Increasing the transparency of the QPC connecting the first dot to the lead brings this value to
G = 1.98G0.

5. Conclusion

In conclusion, we have demonstrated how to tune a linear array of QDs coupled to
superconductors in the presence of a Zeeman field and spin–orbit coupling to resemble the
Kitaev chain that hosts Majorana bound states at its ends. Furthermore, we have presented a
detailed procedure by which the system is brought to the so-called ‘sweet spot’ in parameter
space, where the Majorana bound states are the most localized. This procedure involves varying
the gate potentials and superconducting phases, as well as monitoring the excitation spectrum
of the system by means of resonant Andreev conductance.

We have tested our procedure using numerical simulations of a system of three QDs,
defined in a 2DEG, and found that it works in systems with experimentally reachable
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Figure A.1. Geometry of the QD chain. The QDs have a width WDOT and length
equal to LDOT. QPCs have a longitudinal size LQPC and a transverse dimension
equal to either LDOT or WDOT. Leads are semi-infinite in the x-direction, and
superconductors are modeled as semi-infinite systems in the y-direction.

Figure A.2. Potential profile VQPC(x) across the transverse direction of a QPC.
For the maximum value of this potential, no states are available for quasiparticles
in the 2DEG. The two curves show potential profiles for two different QPC
transparencies, corresponding to s̃ = 17, L̃ = 210 nm, and w̃ = 87.4, 39.5 nm for
the solid and dashed curves, respectively.

parameters. It can also be applied to systems where QDs are defined by other means, for example
formed in a one-dimensional InAs or InSb wire.

Acknowledgments

The numerical calculations were performed using the kwant package developed by A R
Akhmerov, C W Groth, X Waintal and M Wimmer. We acknowledge discussions with J Alicea,
L P Kouwenhoven, C M Marcus, F von Oppen and J D Sau. We are grateful for partial support
from SPP 1285 of the Deutsche Forschungsgmeinschaft (YO), for grants of ISF and TAMU
(YO), to the Dutch Science Foundation NWO/FOM and for an ERC Advanced Investigator
Grant (ICF and AA). AA was partially supported by a Lawrence Golub Fellowship.

Appendix. System parameters in numerical simulations

In this section, we describe the parameters used throughout the numerical simulations. The QDs
and QPCs are modeled using a tight-binding model defined on a square lattice, with leads and
superconductors taken as semi-infinite.
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Figure A.3. Conductance of a QPC as a function of w̃ of equation (A.1), for a
single QPC. The vertical lines indicate the values at which QPCs are set after
tuning. The inter-dot QPCs are all set to the tunneling regime while the ones
connecting the dots to the superconductors are set to higher transparencies.

The characteristic length and energy scales of this system are the spin–orbit length lSO =

h̄2/mα and the spin–orbit energy ESO = mα2/h̄2. We simulate an InAs system in which the
effective electron mass is m = 0.015 me, where me is the bare electron mass, taking values of
ESO = 1 K = 86 µeV and lSO = 250 nm.

We consider a setup composed of three QDs, like the one shown in figure A.1. Each of the
three dots has a length of LDOT = 208 nm and a width WDOT = 104 nm. QPCs have a longitudinal
dimension of LQPC = 42 nm, which is the same as the Fermi wavelength at quarter filling.

The value of the hopping integral becomes t = h̄2/(2ma2) = 55.8 meV, with a = 7 nm.
Disorder is introduced in the form of random uncorrelated on-site potential fluctuations,
leading to a mean free path lmfp = 218.8 nm. The system is placed in a perpendicular
magnetic field characterized by a Zeeman splitting Vz = 336 µeV, which, given a g-factor of
35 K T−1, corresponds to a magnetic field Bz = 111 mT. Each dot is additionally connected to a
superconductor characterized by a pairing potential |1SC| = 0.86 meV.

The potential profile across a QPC is given by

VQPC(x) =
h̃

2

(
2 − tanh

(
s̃

L̃

(
x +

w̃

2

))
+ tanh

(
s̃

L̃

(
x −

w̃

2

)))
, (A.1)

where x ∈ [−L̃/2, L̃/2] is the transverse coordinate across the QPC, h̃ is the maximum height
of VQPC, s̃ fixes the slope at which the potential changes and w̃ is used to tune the QPC
transparency. Two examples of potential profiles are shown in figure A.2.
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