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Abstract
A two-dimensional superconductor with spin-triplet p-wave pairing supports
chiral or helical Majorana edge modes with a quantized (length L-independent)
thermal conductance. Sufficiently strong anisotropy removes both chirality and
helicity, doubling the conductance in the clean system and imposing a super-
Ohmic L1/ decay in the presence of disorder. We explain the absence of
localization in the framework of the Kitaev Hamiltonian, contrasting the edge
modes of the two-dimensional system with the one-dimensional Kitaev chain.
While the disordered Kitaev chain has a log-normal conductance distribution
peaked at an exponentially small value, the Kitaev edge has a bimodal dis-
tribution with a second peak near the conductance quantum. Shot noise provides
an alternative, purely electrical method of detection of these charge-neutral edge
modes.

Keywords: topological superconductivity, edge modes, Kitaev chain

1. Introduction

Gapless edge states are a striking manifestation of topological protection in two-dimensional
systems. First studied in connection with the quantum Hall effect in a strong magnetic field
[1, 2], they are now known to exist also in the presence of time-reversal symmetry (for
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topological insulators (TIs)) or particle-hole symmetry (for topological superconductors) [3, 4].
The edge current can carry charge or heat, it can be uni-directional (chiral) or bi-directional
(helical), but in each manifestation there is no backscattering—so that the corresponding
electrical or thermal conductance is quantized, independent of system size.

Isotropic two-dimensional superconductors with spin-triplet p-wave pairing belong to the
class of topological superconductors, with charge-neutral gapless edge states. Depending on the
absence or presence of time-reversal symmetry, the edge modes can be chiral (class D) or
helical (class DIII). It is known that the quantization of the thermal conductance breaks down if
the two-dimensional superconductor is strongly anisotropic; the edge states remain, but
backscattering by disorder is no longer forbidden by a topological invariant [5–8]. One might
surmise that the edge states will localize on length scales L larger than the mean free path ℓ, with
an exponentially decaying conductance ∝ −Lexp ( /ℓ), but that is not what happens. Instead, in

[6] an anomalously slow (super-Ohmic) scaling ∝ Lℓ/ was found, unlike that of any known
one-dimensional system. A statistical symmetry (translational invariance of the disorder
distribution) was identified as the origin of the topological protection [6].

Here we study this remarkable delocalization of edge states in the framework of the Kitaev
Hamiltonian [9] of randomly coupled Majorana fermions. We contrast the two realizations of
the model illustrated in figure 1: at the edge of a two-dimensional superconductor (Kitaev edge,
figure 1(a)) and as a one-dimensional chain of nanoparticles (Kitaev chain, figure 1(b)). While
the Kitaev chain allows for delocalization, this requires a fine-tuning to the critical point of the
topological phase diagram [10, 11]. Generically, the conductance of the Kitaev chain has a log-
normal distribution peaked at an exponentially small value [12–14], because disorder drives the
system away from the gapless critical point into the gapped phase. In contrast, for the Kitaev
edge we find a bimodal conductance distribution, with a second peak near the quantized

Figure 1. Two realizations of the Kitaev Hamiltonian, at the edge of an array of
nanowires (Kitaev edge, panel (a)) and in a chain of magnetic nanoparticles (Kitaev
chain, panel (b), adapted from [15, 16]). Statistical translational invariance at the Kitaev
edge means that all couplings κn between Majorana fermion operators γ

n
and γ +n 1

have
the same statistical distribution. In the Kitaev chain it means that the couplings κ n2

between nanoparticles have the same distribution, as well as the couplings κ −n2 1 of pairs
of Majorana fermions within a nanoparticle—while the sets κ n2 and κ −n2 1 are unrelated.
This difference is the reason that statistical translational invariance protects the Kitaev
edge from localization, but not the Kitaev chain. As a consequence, the thermal
conductance has a lognormal distribution in the Kitaev chain (dashed curve in panel
(c)), but a bimodal distribution in the Kitaev edge (solid curve, with a second peak of
weight ∝ L1/ at the conductance quantum G0).
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conductance of the clean system. (Compare dashed and solid curves in figure 1(c).) The Lℓ/
weight of this second peak produces the super-Ohmic conductance scaling of [6].

We explain the difference in conductance distributions in terms of the different way in
which translational invariance of the disorder distribution is realized in the two systems: in the
Kitaev edge all nearest-neighbor coupling strengths of Majorana fermions are statistically
equivalent, while in the Kitaev chain even and odd-numbered couplings are inequivalent.
Finally, we show how the charge-neutral edge modes of the topological superconductor can be
detected in an electrical—rather than thermal—measurement, by considering the shot noise of
time-dependent current fluctuations.

The outline of this paper is as follows. In section 2 we introduce model Hamiltonians for p-
wave superconductors with chiral or helical edge states and calculate the topological phase
diagram in the presence of both anisotropy and disorder. The topological phase transitions are
identified by considering the bulk conductance and the associated topological invariants. Edge
conductance in the topologically non-trivial phases is studied in section 3. In section 4 we
contrast the conductance distributions of the Kitaev edge and the Kitaev chain. Electrical, rather
than thermal, detection of the edge modes is discussed in section 5. We conclude in section 6.

2. Topological phase diagrams of chiral and helical p-wave superconductors

The topological phase diagram of clean chiral p-wave superconductors (or superfluids) was
studied in [5, 7, 8]. Here we show how the topologically distinct phases evolve when we
include disorder, for both chiral and helical pair potentials, which as we will see have a
qualitatively different phase diagram. Numerical calculations on a disordered tight-binding
model are compared with analytical calculations of the phase boundaries in self-consistent Born
approximation (SCBA).

2.1. Model Hamiltonians

Superconductors with broken spin–rotation symmetry are in symmetry class D or DIII in the
Altland–Zirnbauer classification [17], depending on whether time-reversal symmetry is broken
or not. In both symmetry classes the Bogoliubov-De Gennes Hamiltonian  k( ) has electron-
hole symmetry,

τ τ = − −* k k( ) ( ), (1)x x

where the Pauli matrix τi acts on the electron-hole degree of freedom. In class DIII there is
additionally the time-reversal symmetry

σ σ = −* k k( ) ( ), (2)y y

with σi acting on the spin degree of freedom and k the momentum.
The minimal class-D Hamiltonian, constrained by equation (1), has the form

ϵ τ Δ τ Δ τ= + + k k k k a( ) ( ) sin sin , (3 )z x x x y y yD

ϵ μ= − − −k t k t k b( ) 2 cos 2 cos , (3 )x x y y

where Δ Δ Δ αΔ=( ), ( , )x y is the anisotropic amplitude of the chiral p-wave pair potential (in a

gauge where it is real), α=( )t t t t, ( , )x y is the anisotropic hopping amplitude, and μ is the

3
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chemical potential. The parameter α ∈ [0, 1] measures the degree of anisotropy, with α → 1 the
isotropic limit. We consider equal-spin pairing, so the spin degree of freedom does not appear in
D.

In class DIII the additional constraint (2) is satisfied by taking two time-reversed copies of
the Hamiltonian (3),

ϵ σ τ Δ σ τ

Δ σ τ σ τ

= ⊗ + ⊗

+ ⊗ + ⊗


( ) ( )
( ) ( )k k k

k K

( ) ( ) sin

sin , (4)

z x z x x

y y y y y

DIII 0

0

coupled with strength K.
The Hamiltonians (3) and (4) are discretized on a two-dimensional square lattice of size

×L Lx y (lattice constant ≡a 1). Electrostatic disorder (strength δ) is added by randomly

varying μ, independently for each lattice site and uniformly in the interval μ δ μ δ− +[ , ]. We
study thermal conduction by attaching disorder-free leads at two ends of the lattice, connected
to reservoirs at temperature T0 and δ+T T0 (see figure 2). The scattering matrix,

= ′ ′( )S
r t
t r

, (5)

evaluated at the Fermi level (E = 0) determines the thermal conductance

π= =†G G t t G k T hTr , 6 , (6)0 0
2

B
2

0

in the low-temperature, linear response regime. The numerical calculations are performed using
the KWANT tight-binding code [18].

2.2. Class D phase diagram

2.2.1. Clean limit. We first discuss the phase diagram of the class-D Hamiltonian (3) in the
clean limit of refs. [5, 7, 8], before including the effects of disorder. Without disorder the
momentum is a good quantum number and one can search for gap closings in the Brillouin
zone. These occur at the four high-symmetry points π∈k k, {0, }x y , for chemical potentials

Figure 2. Two-terminal geometries for thermal conduction in an anisotropic p-wave
superconductor. Panels (a) and (b) show the perpendicular orientations of the heat
current I in response to a temperature difference δT . The thermal conductance in linear
response is δ= δ →G I Tlim /T 0 .
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μ α= ± ±t2 (1 ). In the μ–α plane the four gapless lines are boundaries separating five
topologically distinct insulating phases, see figure 3.

The number of chiral edge modes is given by the Chern number ν [3, 4, 19], being the
winding number of eigenstates in the Brillouin zone. We compute this two-dimensional
topological invariant from the scattering matrix rather than from an integral over the Brillouin
zone, in a formulation that can be applied directly to disordered systems [20, 21],

∫ν
π

ϕ
ϕ

ϕ=
π

i
r

1
2

d
d

d
ln det ( ). (7)

0

2

Here ϕr ( ) is the reflection block of the scattering matrix (5) in the geometry of figure 2(a), with
leads attached to x = 0 and =x Lx and twisted periodic boundary conditions3 on the scattering

state ψ x y( , ) in the y-direction: ψ ψ= ϕ ( )x x L( , 0) e ,i
y .

For α μ α− < | | < +t t2 (1 ) 2 (1 ) the system is topologically non-trivial, with ν μ= sign
and a chiral Majorana edge mode. (The sign of ν gives the direction of propagation.) The
absence of backscattering leads to a quantized thermal edge conductance =G G0. This
characterizes the strong TI.

When μ α| | > +t2 (1 ) or μ α| | < −t2 (1 ) the Chern number ν = 0, so there are no chiral
edge modes. These regions in the phase diagram are distinguished by an alternative ‘weak’
topological invariant νy [22, 23]. Again, to prepare ourselves for disorder effects, we use a

scattering matrix formulation rather than a Brillouin zone formulation [5, 7]. The two-
dimensional weak topological invariant is the strong topological invariant in one dimension
lower, which in class D is given by the determinant of the reflection matrix [11],

Figure 3. Phase diagram of the class-D Hamiltonian (3) in the absence of disorder
(δ = 0), as a function of chemical potential μ and anisotropy α. The strong topological
insulator phases (TI) have chiral Majorana modes along all edges, while the weak
topological insulator phase (WTI) has Majorana modes only along edges oriented in the
y-direction. The trivial phase has no edge modes.

3 When we implement the twisted periodic boundary condition on the lattice it should extend over an odd number
of sites, in order to avoid a minigap in the edge state spectrum that would spoil the calculation of the weak
topological invariant (figures 5 and 8). For the conductance it makes no difference whether there is an even or an
odd number of lattice sites across.
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ν ϕ= =rdet ( 0). (8)y

The dimensional reduction is implemented by evaluating ϕr ( ) at ϕ = 0, so for periodic
boundary conditions in the y-direction. When the Chern number ν = 0 the weak invariant νy

may be equal to +1 (trivial insulator) or −1 (weak topological insulator, WTI).
For μ α| | > +t2 (1 ) we are in the topologically trivial phase, with ν = 1y and no edge

modes at all. In contrast, when μ α| | < −t2 (1 ) the system is a WTI, with ν = − 1y and non-

chiral Majorana modes on the edges in the y-direction.

2.2.2. Disorder effects. Having described the phase diagram of the system in the clean limit,
we now turn to the effects of disorder. Sufficiently strong disorder can convert a class-D
superconductor that is insulating in the bulk into a thermal metal [24–26]. To search for this
topological phase transition we take the two-terminal geometry of figure 2(a) with periodic
boundary conditions in the y-direction, in order to focus on the metallic or insulating nature of
the bulk. (We will consider edge conduction in section 3.)

Numerical results for the disorder-averaged thermal conductance G are shown in
figure 4, as a function of chemical potential μ and disorder strength δ. One can see that both the
TI and WTI phases are robust to disorder, up to about δ ≈ t. For stronger disorder there is a TI-
to-thermal metal phase transition, followed by a transition to a topologically trivial Anderson
insulator. The phase boundaries between TI, WTI, and thermal metal are in quite good
agreement with those calculated in SCBA (dashed lines in figure 4, see the appendix for details
of the calculation). The transition to an Anderson insulator at strong disorder is out of reach of
that approximation.

The distinct topological nature of the TI, WTI, and trivial phase is confirmed by a
calculation of the topological invariants ν ν, y, see figure 5. In the bulk insulating phases these

are quantized numbers: ν ∈ −{ 1, 0, 1} (a so-called  invariant), while ν ∈ −{ 1, 1}y (a 2

invariant). At the topological phase transitions, when the bulk gap closes, both ν and νy are free

to vary between these integer values, resulting in the smooth transitions shown in figure 5.

2.3. Class DIII phase diagram

2.3.1. Clean limit. We now turn to the phase diagram of the class DIII Hamiltonian (4), first
without disorder. It is convenient to rotate the Hamiltonian to a block off-diagonal form,

π σ τ= = − ⊗†
†

⎜ ⎟⎛
⎝

⎞
⎠ ( )U U

A
A

U a
0

0
, exp i , (9 )x xDIII

1
4

Δσ αΔσ

μ α σ

= +

+ + + −( )
A k k

t k t k k b

i sin sin

2 cos 2 cos i . (9 )

x z y

x y y

0

At the gap closings of HDIII the determinant of A vanishes, which happens when

μ α= − −t k k a2 cos 2 cos , (10 )x y

Δ α= +K k k bsin sin . (10 )x y
2 2 2 2 2

The gap closings identify the boundaries of insulating phases, as shown in figure 6. While
in class D the gap closes along a line in the phase diagram, in class DIII there are extended
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gapless regions of a metallic phase separating the insulating phases. (This is a generic feature of
helical p-wave superconductors [27].)

We can distinguish five distinct insulating regions of phase space. For weak anisotropy,
α Δ> K / , we find two μ± symmetric insulating phases bounded by

α Δ μ α Δ− − < < + −K t K2 2 2 2 . (11)2 2 2 2 2 2

When the anisotropy reaches the critical value

α Δ= −( )K1 , (12)c
2 2 1 2

a third insulating phase appears centered around μ = 0, in the interval

μ α α α α< − <t 2 ( ), for . (13)c c

Additionally, for any amount of anisotropy there are insulating phases at large chemical
potentials, with boundaries given by

Figure 4. Bulk thermal conductance for the class-D Hamiltonian (3), as a function of
chemical potential μ and disorder strength δ, for two values of the anisotropy at fixed
Δ = t /2. The data is averaged over 50 disorder realizations on a lattice of dimensions

= =L L 50x y (current in the x-direction, periodic boundary conditions in the y-
direction). The isotropic case (top panel, α = 1) shows gapped TI phases that are robust
to disorder up to values δ ≲ t2 . In the presence of anisotropy (bottom panel, α = 1/2),
the weak topological insulator which forms at μ α| | < −t2 (1 ) survives up to disorder
strengths of the same order as the TI phases. Dashed lines represent the phase
boundaries in self-consistent Born approximation, without any fit parameter.

7
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μ
α Δ α α

α Δ α α
<

+ − <

+ − >⎪
⎪⎧⎨
⎩

t
K

K

2 2 1 , for

2 2 1 , for .
(14)c

c

2 2

2 2 2

To test the topological properties of these phases, we compute the associated DIII
topological invariants in a scattering formulation (so that we can directly apply it to disordered
systems in the next subsection). The strong topological invariant [21],

Figure 5. Topological phase transitions signaled by a change in the Chern number ν
(red solid line) or the weak invariant νy (blue dashed line). The curves are calculated
from the class-D Hamiltonian (3), using the scattering matrix formulas 7 and 8, for
Δ = t /2, α = 1/2, δ = t, averaged over 4000 disorder realizations in a system of size

× = ×L L 50 50x y .

Figure 6. Phase diagram of the class-DIII Hamiltonian (4) without disorder, for
Δ =K / 0.35. Topologically distinct insulating phases are separated by gapless metallic

regions (blue). The topologically trivial insulator, without edge states, exists for any
amount of anisotropy, while the TI and WTI phases with edge states require,

respectively, α Δ> K / and α Δ< − K1 /2 2 .

8

New J. Phys. 16 (2014) 063049 M Diez et al



σ ϕ σ ϕ π= = × =⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦Q r rPf i ( 0) Pf i ( ) , (15)y y

is determined by the Pfaffians of the reflection matrix with periodic (ϕ = 0) and anti-periodic
(ϕ π= ) boundary conditions in the y-direction. In view of the time-reversal symmetry
condition (2), the matrix σ ϕri ( )y is anti-symmetric for ϕ π= 0, , so the Pfaffian exists.

The insulating regions delimited by equation (11) are topologically non-trivial ( = −Q 1),
with helical Majorana edge states and quantized thermal conductance =G G2 0. All other
insulating phases have Q = 1. The ones appearing at large chemical potentials, bounded by
equation (14), are topologically trivial, without edge states. However, the phase which develops
at the critical anisotropy αc, bounded by equation (13), has Q = 1 but still supports gapless
modes on edges oriented in the y-direction. The weak topological invariant = −Q 1y of this

phase is obtained by dimensional reduction to the one-dimensional class-DIII topological
invariant [28],

σ ϕ= =⎡⎣ ⎤⎦Q rPf i ( 0) . (16)y y

2.3.2. Disorder effects. Figure 7 shows the effect of disorder on the topological phases, probed
by calculating the thermal conductance in the geometry of figure 2(a) with periodic boundary
conditions in the y-direction. Comparison with the class-D phase diagram of figure 4 shows as a
qualitative difference that the thermal metal phase extends down to zero disorder. This behavior
is also captured by the SCBA (dashed curves), see the appendix for details of the calculation.

Figure 7. Same as figure 4 for the class-DIII Hamiltonian (4) (with Δ = t, =K t0.35 ,
other parameters unchanged). Notice that the thermal metal phase starts already at zero
disorder.

9
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The scattering matrix formulas (15) and (16) for the class-DIII strong and weak topological
invariants are applied to a disordered system in figure 8. These are both 2 invariants, meaning
that they take on the values ±1 when the bulk is insulating: = =Q Q 1y in the trivial insulator,

= −Q 1, = ±Q 1y in the TI, and Q = 1, = −Q 1y in the WTI.

3. Edge conduction

So far we studied thermal conduction in the geometry of figure 2(a) with periodic boundary
conditions in the transverse direction, in order to eliminate edge contributions and focus on bulk
properties. To study edge conduction in the TI and WTI phases we now take the geometry of
figure 2(b), with leads attached to =y L0, y and hard-wall boundary conditions at =x L0, x.

We again first consider the clean case and then add the effects of disorder, for both symmetry
classes D and DIII.

3.1. Clean case

The TI and WTI phases both have gapless edge states, the difference being that the TI edge
states appear on all edges while the WTI edge states exist only at two of the four edges (see
figure 9). In the geometry of figure 2(b) we can probe the edge conductance in both phases.
Without disorder the conductance is system-size independent, because there is no back-
scattering, and the difference between the TI and WTI phases is simply a factor of two.

This conductance doubling at the TI-to-WTI transition is shown in figure 10. In class D it
happens because the chiral edge state of the TI phase can propagate in both directions in the
WTI phase. In class DIII we start out with helical edge states in the TI phase, with direction of
propagation tied to the spin degree of freedom. In the WTI phase this helicity is lost, so now
both spin-up and spin-down can propagate in both directions and the conductance is doubled.

Figure 8. Same as figure 5 for the class-DIII topological invariants Q, equation (15), and
Qy, equation (16) (with δ = t1.5 , other parameters as in figure 7).
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3.2. Disorder effects

The addition of disorder has no effect on the conductance in the TI phase, since backscattering
of chiral or helical edge states is forbidden. The edge states in the WTI are neither chiral nor
helical, so disorder does cause backscattering and reduces the edge conductance. However, as
discovered in [6], the recovery of translational invariance upon ensemble averaging prevents
localization of the WTI edge states. Instead of an exponential decay of the conductance with the
length ≡L Ly of the edge, there is only an algebraic L1/ decay. In figure 11 we show this

super-Ohmic conductance scaling for the WTI phase of the class-D and class-DIII Hamiltonians
(3) and (4).

Figure 9. Intensity of the lowest eigenstate of the class-D Hamiltonian (3) (with δ = 0,
α = 1/2, Δ = t /2). The edge states in the TI (μ = t2.2 ) and WTI (μ = t0.2 ) phases are
contrasted in the two panels.

Figure 10. Thermal conductance without disorder in class D and DIII. The geometry is
that of figure 2(b) with dimensions = =L L 50x y and hard-wall boundaries in the
x-direction. Parameters are Δ = t, α = 1/2, and =K t0.35 . The transition from the TI
to the WTI phase is marked by a doubling of the edge conductance in the absence of
backscattering. In class DIII the transition occurs via an intermediate region of thermal
conduction through the gapless bulk.
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4. Kitaev chain versus Kitaev edge

The absence of localization at the edge of the anisotropic p-wave superconductor is puzzling if
one tries to understand it starting from the limit α → 0 of strong anisotropy. Then the system
can be thought of as an array of weakly coupled nanowires with overlapping Majorana zero-
modes at the end points, a so-called Kitaev ladder [29–31]. The effective edge Hamiltonian is
the Kitaev Hamiltonian [9] in class D, or two time-reversed copies of it in class DIII. The
disordered one-dimensional Kitaev model, called the Kitaev chain, is known to be an insulator
[12–14]—so how do the Kitaev edge modes avoid localization?

To clarify the situation we contrast the two class-D systems. (Class DIII is similar.) The
Kitaev Hamiltonian

∑ κ γ γ=
=

+H i (17)
n

N

n n nK
1

2

1

describes the nearest-neigbor coupling (coupling strength κn) of N2 Majorana fermion operators

γ
n
. These are Hermitian operators, γ γ= †

n n
, with anti-commutation relation γ γ γ γ δ+ = 2

n m m n nm.
To obtain a closed system the Majoranaʼs are assumed to lie on a ring, so that κ N2 couples γ

N2
to

γ γ≡+N2 1 1
.

This one-dimensional system in symmetry class D has a 2 topological invariant [9],

= + −( ) ( )Q A Asign Pf Pf , (18)K

determined by the Pfaffians of a pair of real antisymmetric matrices ±A , having non-zero matrix
elements

κ= − = ⩽ ⩽ −+
±

+
±A A n N a, 1 2 1, (19 )n n n n n, 1 1,

κ= − = ±± ±A A b. (19 )N N N2 ,1 1,2 2

Figure 11. Disorder-averaged thermal conductance in the WTI phase of class D and
DIII, at fixed =L 50x and varying Ly. Data points are averaged over 4000 disorder
realizations, for μ = 0, δ = t1.5 , other parameters as in figure 10. Solid lines show the
expected −Ly

1/2 scaling in the log-log plot.
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Evaluation of the Pfaffians gives

∏ ∏κ κ= −
=

−
=

⎛
⎝⎜

⎞
⎠⎟Q sign . (20)

n

N

n
n

N

nK
1

2 1
2

1
2
2

Translational invariance of the disorder ensemble means two completely different things
for the Kitaev edge and for the Kitaev chain. For the Kitaev edge it means that the coupling
strengths κn between adjacent Majoranaʼs all have the same distribution. The disorder average

QK of the topological invariant then vanishes, which is why the Kitaev edge is called a critical
WTI [6]. In contrast, as illustrated in figure 1, for the Kitaev chain translational invariance
means that the κn with n even or those with n odd have the same distribution, but the
distributions of κ n2 and κ −n2 1 are unrelated. The topological invariant is then non-zero on
average, so the Kitaev chain is not critical [12, 14].

The implication for the transmission probability T follows if we remove the coupling
between γ

N2
and γ

1
, so that we can introduce transmission and reflection amplitudes

α=t 1/cosh , α=r tanh . The Lyapunov exponent α determines both T and QK,

α α= =Q Tsign , 1 cosh , (21)K
2

and has a Gaussian distribution αP ( ) [10, 14]. The variance α = LVar /ℓ is determined by the
mean free path ℓ for backscattering along the edge, of length ≫L ℓ. The mean α ξ= L /

defines the localization length ξ. A vanishing QK implies that the median of αP ( ) is zero, and

since itʼs Gaussian also α ξ= ⇒ = ∞0 .

For the Kitaev chain ≠Q 0K and hence ξ is finite, so the transmission probability has a

log-normal distribution peaked at = ξ−T e L2 / , with an exponentially decaying average
transmission [12, 14]. In contrast, for the Kitaev edge α ξ= ⇒ = ⇒ = ∞Q 0 0K . The
Gaussian distribution of the Lyapunov exponent then produces a bimodal distribution of the
transmission probability for ≫L ℓ,

∫ α δ α π

π

= −

= −

× −

α

−∞

∞
− −

− −

−⎡⎣ ⎤⎦

( )

( )

P T T L

L T T

L T

( ) d 1 cosh (2 ℓ) e

(ℓ 2 ) (1 )

exp (ℓ 2 )arcosh , (22)

L2 1 2 ℓ 2

1 2 1 1 2

2 1 2

2

peaked near T = 0 and T = 1, with average decaying algebraically as π=T L2ℓ/ .
We have tested the result (22) in a computer simulation of the anisotropic p-wave

superconductor, with class-D Hamiltonian (3). In the geometry of figure 2(b) both edges at x = 0
and =x Lx contribute to the thermal conductance in the WTI phase, but one edge can be
removed by reducing the width of the contacts to the interval ⩽ ⩽x L0 /2x . Results are shown
in figure 12. With the mean free path ℓ as a single fit parameter, the transition from a uni-modal
distribution to a bimodal distribution upon increasing L /ℓ is well-described by equation (22).
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5. Electrical detection of Kitaev edge modes

So far we considered thermal conduction as the probe of edge state transport. Electrical
detection would be more convenient experimentally, and this is possible by adapting the
nanowire setup of [11]. All contacts are now at the same temperature T0, the superconductor is
grounded as well as one of the metal contacts (number 2), and the other contact (number 1) is
biased at voltage V1. The electrical current into the grounded contact 2 fluctuates in time with
noise power P12. This is dominated by shot noise, at low temperatures when thermal noise can
be neglected ( ≪k T eVB 0 1).

The noise power is given in terms of the transmission matrix by [32]

τ τ

= + − −

= −

† † † †

† †

( ) ( )
( )

P P t t t t t t t t

t t t t

Tr Tr

Tr Tr , (23)

ee ee he he ee ee he he

z z

12 0

2

1
2

1
2

2

with =P e V h/0
3

1 . The subscripts e h, indicate transmission from electron to electron (tee) or from
electron to hole (the), and we used electron-hole symmetry in the second equation to rewrite the
whole expression in terms of the full transmission matrix t.

As derived in [11], when the transmission is via an unpaired Majorana mode, the second
trace in equation (23) vanishes identically so the electrical shot noise is directly related to the

thermal conductance: =P P G G/ /12 0
1

2 0. This applies to symmetry class D. More generally, in

Figure 12. Disorder-induced thermal conductance distribution of a single edge in the
WTI phase of the anisotropic p-wave superconductor in symmetry class D, for fixed

=L 50x and varying Ly. The histograms are calculated numerically (δ = t, other
parameters as in figure 11). Dashed lines show the analytical result (22) for ≡T G G/ 0,

≡L Ly, with the mean free path =ℓ 65 as single fit parameter.

14

New J. Phys. 16 (2014) 063049 M Diez et al



both symmetry classes D and DIII the two quantities P12 and G have the same L1/ scaling in
the WTI phase4, compare figures 11 and 13.

6. Conclusion

The Kitaev model [9] is paradigmatic for topological superconductivity and Majorana zero-
modes, and for that reason has been studied extensively [33, 34]. Here we have shown that the
realization of this model at the edge of a two-dimensional system (what we have called the
‘Kitaev edge’) is fundamentally different from its strictly one-dimensional counterpart, the
Kitaev chain. The difference, summarized in figure 1, manifests itself in the different
distribution of the thermal conductance, peaked at exponentially small value in the Kitaev chain
[12–14] while the Kitaev edge has a second peak at the conductance quantum.

As a possible physical realization of Kitaev edge modes we have studied in some detail a
model of an anisotropic two-dimensional chiral p-wave superconductor [5–8], as well as its
time-reversally symmetric (helical) counterpart. Both can produce WTI with Kitaev edge
modes, but while they appear at any amount of anisotropy for chiral p-wave pairing, the helical
p-wave pairing requires a threshold anisotropy (compare figures 3 and 6). We have
demonstrated the robustness of the WTI phase to disorder by numerical simulations, in good

Figure 13. Disorder-averaged electrical shot noise power (23) in the WTI phase of class
D and DIII, for parameters as in figure 11. Data points are averaged over 104 disorder
realizations. The solid lines show that this electrical transport property obeys the same

−L 1/2 scaling as the thermal transport property of figure 11. The inset shows the
geometry, with one metal contact biased at voltage V1 and both the superconductor and
the second metal contact grounded. The electrical current I2 into this second contact

fluctuates in time with noise power ∫ δ δ=
−∞

∞
P t I I td (0) ( )12 2 2 .

4 The first trace in equation (23) is proportional to the transmission probability T, while the second trace is

proportional to T 2. Because of the bimodal distribution 22, the averages of T and T 2 scale with the same power of

L: = ∝T T L1/2 2

3
. Incidentally, we note that this also implies that the ‘thermal Fano factor’

= − −F T T T(1 ) 1 has the same L-independent value 1/3 as the electrical Fano factor of a metallic diffusive
conductor—even though the conductance in that system has a Gaussian rather than bimodal distribution.
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agreement with analytical calculations of the phase boundaries in self-consistent Born
approximation (figures 4 and 7).

Experimentally the transition into the WTI phase can be detected, on length scales below
the mean free path, via the doubling of the thermal conductance (figure 10), and on larger length
scales via the super-Ohmic scaling (figure 11). Because of the complexity of thermal transport
measurements at low temperatures, we have proposed an alternative fully electrical method of
detection, using the electrical shot noise power (figure 13).
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Appendix. Calculation of the phase boundaries in SCBA

We calculate the phase diagram in the presence of electrostatic disorder (strength δ as defined in
the main text) using the SCBA. Below we provide details of the calculation for the class-DIII
Hamiltonian (4). The corresponding results for the class-D Hamiltonian (3) are simply obtained
by taking the vanishing coupling →K 0 limit and are summarized at the end of this appendix.

We calculate the disorder-averaged density of states from the self-energy Σ , defined by

Σ+ − −

=
+ − −

+

+

E H

E H H

1
i0

1
i0

. (A.1)

DIII

DIII disorder

The SCBA self-energy at the Fermi level (E = 0) is given by

∑Σ δ τ
Σ

τ=
− −+ kH

1
i0 ( )

. (A.2)
k

z z
1
3

2

DIII

The sum over k ranges over the first Brillouin zone and in the continuum limit

∫ ∫∑
π

↦
π

π

π

π

− −
k k

1

4
d d . (A.3)

k
x y2

The SCBA self-energy is a k-independent 4×4 matrix with spin and electron-hole degrees
of freedom

Σ σ τ δμ σ τ δ σ τ γ= ⊗ − ⊗ − ⊗( )( ) K ( )i . (A.4)z y y0 0 0

The terms δμ and δK renormalize the chemical potential and coupling respectively. Both terms
account for a disorder induced shift of the phase boundaries between the trivial insulator, TI,
WTI, and thermal metal. The term γ produces a finite density of states, induced by the disorder.
Such a finite density of states may indicate a thermal metal or a trivial Anderson insulator, but it
cannot distinguish between the two.
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We substitute the self-energy (A.4) into equation (A.2) and observe that the right-
hand-side depends only on the renormalized chemical potential μ μ δμ˜ = − and coupling

δ˜ = −K K K . Denoting the renormalized Hamiltonian by σ τ δμ˜ ≡ + ⊗ −( )k kH H( ) ( ) zDIII DIII 0

σ τ δ⊗( ) Ky y we can write the following identity:

γ γ

γ Δ σ τ Δ σ

γ

− ˜ = + ˜

· + − ˜ +

· ˜ − +

μ

μ

−

˜ ˜

˜ ˜

−

( )
( )

( )
( )

( ) ( )k k

k

k k

H H

f K k k

K g f

i ( ) i ( )

( ) 2 sin sin

4 ( ) ( ) , (A.5)

K x x z z y y y

K

DIII

1

DIII

2
,

2 2
,

2 1

where

Δ Δ= +kg k k a( ) sin sin , (A.6 )x x y y
2 2 2 2

ϵ= + ˜ +μ μ˜ ˜ ˜k k kf K g b( ) ( ) ( ). (A.6 )
K,

2 2

Because of symmetry only terms even in k contribute to ∑
k
. We find from equation (A.2) three

coupled equations for the parameters δμ, δK , and γ, which completely determine the SCBA self-
energy:

∑δμ δ
ϵ γ

γ
=

+

˜ − +

μ μ

μ

˜ ˜ ˜

˜ ˜

( )
( )

k k

k k

f

K g f
a

1
3

( ) ( )

4 ( ) ( )
, (A.7 )

k

K

K

2

2
,

2 2
,

2

∑δ δ
γ

γ
= ˜

+ −

˜ − +

μ

μ

˜ ˜

˜ ˜( )
k k

k k
K K

f g

K g f
b

1
3

( ) 2 ( )

4 ( ) ( )
, (A.7 )

k

K

K

2

2
,

2 2
,

2

∑γ δ
γ γ

γ
=

− +

˜ − +

μ

μ

˜ ˜

˜ ˜

( )
( )

k

k k

f

K g f
c

1
3

( )

4 ( ) ( )
. (A.7 )

k

K

K

2

2
,

2 2
,

2

We address first the shift of phase boundaries in the weak disorder case. To this end we set
γ = 0 assuming that the disorder is too weak to induce a finite density of states. We are looking
for solutions of the clean system gap closing conditions equations (11), (13), (14) expressed in
terms of the renormalized parameters μ μ→ ˜, → ˜K K . The gap closing condition defines the

phase boundary and can be expressed as μ˜ = ˜ ˜( )K K (with a different function μ˜ ˜( )K for each
boundary). We rewrite the SCBA equations (A.7a) with γ = 0 in the form

μ δ μ μ= ˜ ˜ + ˜( )F K a, , (A.8 )1
3

2

δ μ= − ˜ ˜ ˜ −( )( ) ( )K K G K b3 , , (A.8 )2 1
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where

∑μ
ϵ

˜ ˜ =
˜ −

μ μ

μ

˜ ˜ ˜

˜ ˜

( )
k k

k k
F K

f

K g f
,

( ) ( )

4 ( ) ( )
, (A.9)

k

K

K

,

2

,
2

∑μ̃ ˜ = ˜
−

˜ −
μ

μ

˜ ˜

˜ ˜

( )
k k

k k
G K K

f g

K g f
,

( ) 2 ( )

4 ( ) ( )
. (A.10)

k

K

K

,

2

,
2

In this way we obtain the parametric solution for the disorder strength δ μ μ˜ ˜ ˜⎡⎣ ⎤⎦( )K,2 and

the gap parameter μ μ δ μ˜ ˜⎡⎣ ⎤⎦( ), 2 along the phase boundary. We vary the parameter μ̃ away from

the clean system solution μ at δ = 0. The sums over the Brillouin zone are computed

numerically in the continuum limit. The resulting parametric phase boundaries μ μ δ μ˜ ˜⎡⎣ ⎤⎦( ) ( ),

separate insulating and gapless phases at low to moderate disorder.
For sufficiently large disorder δ δ> c the SCBA equations (A.7a) may support solutions

with non-zero γ indicating the onset of a finite density of states at zero energy. This marks the
transitions from the strong and WTIs to the thermal metal at strong disorder. The δc dependence
on μ and K follows from solutions of the SCBA equations at infinitesimal γ ≠ 0

∑δ δ
μ=

− ˜
≡ ˜ ˜μ

μ

˜ ˜

˜ ˜

( )
k

k k

f

f K g
H K a1

3

( )

( ) 4 ( ) 3
, , (A.11 )

k

c K

K

c
2

,

,
2 2

2

μ δ μ μ˜ = − ˜ ˜ +( )F K b, , (A.11 )c
1
3

2

δ μ˜ = − ˜ ˜ +( )K G K K c, . (A.11 )c
1
3

2

To determine δc we first search numerically (using Steffensen iteration) for fixed point solutions
of equations (A.11b), (A.11c),

μ
μ

μ

μ
μ˜

˜ = −
˜ ˜

˜ ˜

˜ ˜
+

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )( )

( )
( )K H K

F K

G K K
1

,

,

,
, (A.12)

for a given value of the chemical potential μ and coupling K. Finally we compute δc from

(A.11a) for the obtained solutions μ̃ ˜( )K, .

Both the parametric solutions to the renormalized gap closing conditions and the computed
μ-dependence (for fixed K) of the critical disorder δc are shown as white dashed lines in figure 7.

This was all for class DIII. The formulas for class D correspond to the →K 0 limit.
Denoting by μ kE ( ) the excitation spectrum of the class-D Hamiltonian (3) we find

ϵ Δ Δ= = + +μ μ μ→k k kE f k k( ) ( ) ( ) sin sin . (A.13)
K x x y y

2
, 0

2 2 2 2 2

The shift of the phase boundaries at low disorder is obtained by imposing the gap closing
conditions for the renormalized chemical potential μ α˜ = ± ±t2 (1 ). From equation (A.8a) we
directly obtain the boundary position as a function of the disorder strength
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∑μ δ
ϵ

μ= − + ˜μ

μ
μ α

˜

˜
˜ =± ±

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

k

kE

( )

( )
. (A.14)

k
t

1
3

2
2

2 (1 )

For the isotropic case α = 1 the central μ = 0 transition separating the two TI phases is not
renormalized by disorder. The transitions separating the TI phases from the trivial insulator

phase are shifted according to μ δ= ± +( )t4 0.130 2 . For α = 1/2 the transition line between

the WTI and TI phases is given by μ δ= ± +( )t3 0.039 2 and the transition between TI and the

trivial phase by μ δ= ± +( )t 0.180 2 . These phase boundaries are shown as dashed lines in

figure 4.
The critical disorder lines separating the TI and WTI phases from the thermal metal at

large disorder can be found from the SCBA solutions equations (A.11a), (A.11b) at
infinitesimal γ ≠ 0. In class-D we can directly parametrize such solutions by the renormalized
chemical potential μ̃. We obtain

∑δ μ̃ =
μ̃

−⎛
⎝
⎜

⎞
⎠
⎟

kE
( ) 3

1

( )
, (A.15)

k
c
2

2

1

∑μ μ δ μ μ δ μ
ϵ

˜ ˜ = ˜ − ˜ μ

μ

˜

˜
[ ]

k

kE
, ( ) ( )

( )

( )
. (A.16)

k
c c

1
3

2
2

The parametric dependence for μ̃ ∈ −[ 4, 4] calculated from the above equations is also
included in figure 4.
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