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ABSTRACT
We determine the accuracy of galaxy redshift distributions as estimated from photometric
redshift probability distributions p(z). Our method utilizes measurements of the angular cross-
correlation between photometric galaxies and an overlapping sample of galaxies with spectro-
scopic redshifts. We describe the redshift leakage from a galaxy photometric redshift bin j into
a spectroscopic redshift bin i using the sum of the p(z) for the galaxies residing in bin j. We can
then predict the angular cross-correlation between photometric and spectroscopic galaxies due
to intrinsic galaxy clustering when i �= j as a function of the measured angular cross-correlation
when i = j. We also account for enhanced clustering arising from lensing magnification us-
ing a halo model. The comparison of this prediction with the measured signal provides a
consistency check on the validity of using the summed p(z) to determine galaxy redshift dis-
tributions in cosmological analyses, as advocated by the Canada–France–Hawaii Telescope
Lensing Survey (CFHTLenS). We present an analysis of the photometric redshifts measured
by CFHTLenS, which overlaps the Baryon Oscillation Spectroscopic Survey (BOSS). We
also analyse the Red-sequence Cluster Lensing Survey, which overlaps both BOSS and the
WiggleZ Dark Energy Survey. We find that the summed p(z) from both surveys are generally
biased with respect to the true underlying distributions. If unaccounted for, this bias would
lead to errors in cosmological parameter estimation from CFHTLenS by less than ∼4 per cent.
For photometric redshift bins which spatially overlap in 3D with our spectroscopic sample,
we determine redshift bias corrections which can be used in future cosmological analyses that
rely on accurate galaxy redshift distributions.

Key words: gravitational lensing: weak – methods: analytical – techniques: photometric –
surveys – galaxies: distances and redshifts.

1 IN T RO D U C T I O N

Cosmological parameter estimation often relies on highly accu-
rate knowledge of the underlying 3D spatial distributions of the
galaxies used in the analysis. The most direct way to estimate the
distributions in the redshift dimension is to measure the redshifts of
all galaxies of interest using high-resolution information from spec-
troscopy, but this is not only costly but potentially incomplete due to
the difficulties of measuring secure redshifts for certain populations
of galaxies (Cunha et al. 2014; Masters et al. 2015). Photometric
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redshift estimation provides a lower resolution and less expensive
tool for constraining redshift distributions. While fundamentally
limited by the available filters, relevant model and assumptions
(such as template choice or how representative the training set is),
summed redshift probability distribution functions, p(z), provide
estimates of the underlying redshift distributions that are less bi-
ased than counts of single-point estimates when compared against
spectroscopic information (Mandelbaum et al. 2008; Cunha et al.
2009; Wittman 2009; Abrahamse et al. 2011; Nakajima et al. 2012;
Sheldon et al. 2012; Benjamin et al. 2013).

Various techniques for calibration of these errors and the distri-
bution of photometric galaxies have been promoted (for a review,
see Newman et al. 2015), falling roughly into three categories.
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(i) Direct calibration requires a complete and representative train-
ing sample with which to re-weight the photometric galaxies or
compare them on an individual basis (Bordoloi et al. 2012; Bonnett
et al. 2016). The spectroscopic data sets that are used to characterize
photometric redshift scatter and bias are often only complete to a
magnitude that is much brighter than the magnitude of a typical
galaxy used in cosmological analyses.

(ii) Reconstruction methods utilize the fact that there is an excess
probability of pairs of galaxies (relative to a Poisson distribution)
that are truly physically correlated in 3D. The clustering informa-
tion is then used to infer the true underlying redshift distributions
(Schneider et al. 2006; Newman 2008; Matthews & Newman 2010;
Schulz 2010; McQuinn & White 2013; Ménard et al. 2013; Schmidt
et al. 2013; de Putter, Doré & Das 2014; Rahman et al. 2015). This
strategy needs a spectroscopic sample to span the full redshift range
that can be incomplete in terms of the galaxy properties. Cross-
correlations measure the combination of the galaxy bias times the
redshift probability distribution, and thus all of these methods re-
quire additional constraints on the galaxy bias of the given sample
to break the degeneracy. Newman (2008) propose an iterative pro-
cedure to account for evolution in the galaxy bias based on the
autocorrelations of the spectroscopic and photometric samples, re-
spectively, although the effectiveness of the correction depends on
the shape of the redshift distribution as well as the linearity of the
galaxy bias evolution (for further discussion, see Newman 2008;
Schmidt et al. 2013). In principle, the cross-correlation strategies
have a key advantage over standard direct calibration methods as
they do not rely as strongly on the completeness of the sample
with available spectroscopic redshifts provided that the spectro-
scopic redshifts cover a 3D space overlapping with the photometric
redshifts.

(iii) Verification methods use the cross-clustering signal between
galaxies in different redshift bins to indicate the degree of contam-
ination between those redshift bins and test for consistency with
other estimates of the redshift distribution such as summed p(z).
Erben et al. (2009) and Benjamin et al. (2010, 2013) investigated
the photometric–photometric case, and here we extend the formal-
ism to photometric–spectroscopic samples. The advantage of this
approach over others is that it can yield constraints on catastrophic
outliers even when the spectroscopic sample does not extend over
the full redshift range under consideration.

There are three types of photometric redshift error. Two of these,
random scatter and systematic bias, move galaxies into adjacent
or closely neighbouring redshift bins. A third kind occurs when
systematic bias sends galaxies into distant redshift bins and is com-
monly referred to as a ‘catastrophic outlier’. With the angular cross-
correlation analyses used in reconstruction and verification meth-
ods, a detection of a strong clustering signal between a low-redshift
spectroscopic sample and a high-redshift photometric sample is an
indication that catastrophic outliers exist in the photometric sam-
ple. However, one must also consider astrophysical effects caused
by lensing magnification, which most previous works have ignored.
Magnification can be thought of as both a contaminant to redshift
recovery via cross-correlations (Bernstein & Huterer 2010) and an
informative signal in its own right (Scranton et al. 2005; Hilde-
brandt, van Waerbeke & Erben 2009; Ménard et al. 2010; Morrison
et al. 2012; Duncan et al. 2014), containing the imprint of galaxy
evolution and cosmological processes. Lensing of light by fore-
ground structures (de)magnifies images of background galaxies.
Hence, at a fixed apparent magnitude, the number density behind
a massive foreground galaxy will change, which will be seen in

an angular cross-correlation signal. A cross-correlation signal can
contain contributions from both magnification and catastrophic out-
liers, thus necessitating a careful investigation of the magnification
effects before a clear interpretation can be made about the pres-
ence of catastrophic outliers. Moessner & Jain (1998) present the
theory behind the lensing and intrinsic contributions to the total
observed clustering signal as well as investigate the cosmological
dependence.

In this paper, we outline formalism for testing consistency be-
tween the estimated redshift probability distributions of a photomet-
ric sample and angular cross-correlations between the photometric
sample and a spatially overlapping spectroscopic sample (Section
2). Our verification method fully accounts for the unknown galaxy
bias, assuming that the average galaxy bias of an outlier popula-
tion at a given photometric redshift does not significantly deviate
from the average galaxy bias of the main population at the same
photometric redshift (see Section 2.3 for the details). This is a no-
table advantage compared with the aforementioned clustering-based
reconstruction approaches for which the redshift probability distri-
bution is completely degenerate with galaxy bias (before additional
corrections). We model the effects of the magnification component
using the halo model. We then apply this test to a ∼66 deg2 re-
gion where there are spatially overlapping samples of photometric
galaxies imaged by the Canada–France–Hawaii Telescope Lensing
Survey (CFHTLenS) and galaxies with spectroscopic redshifts from
the Baryon Oscillation Spectroscopic Survey (BOSS) survey and a
∼200 deg2 region with overlap between the Red Sequence Clus-
ter Lensing Survey (RCSLenS) and both the WiggleZ and BOSS
surveys. The considerable amount of spectroscopic overlap makes
CFHTLenS and RCSLenS ideal data sets on which to test cross-
correlation techniques. We describe these surveys and the catalogue
production pipeline in Section 3. In Section 4, we present the an-
gular cross-correlation measurements and predictions based on our
models for the intrinsic and magnification clustering and discuss the
level of consistency. We conclude in Section 5. In the appendix, we
describe validation tests of our method on mock galaxy catalogues,
provide further details of the halo modelling used, and check for
systematics in the object catalogues.

For the modelling of the magnification signal only, we assume
cosmological parameters from Planck Collaboration et al. (2014),
with �m = 0.315, �� = 0.685, σ 8 = 0.829, ns = 0.9603 and
�bh2 = 0.022 05.

2 FORMALI SM

In this section, we present the formalism for the angular cross-
correlations that are the focus of this work, beginning with a gen-
eral discussion of galaxy clustering and the physical processes that
contribute to the signal. We then relate the redshift probability distri-
butions to the intrinsic angular cross-correlations between spectro-
scopic and photometric samples and describe how we use the halo
model to construct predictions for the angular cross-correlations
arising from lensing magnification.

2.1 Angular correlations and magnification

The clustering signal w(θ ) is a two-point angular correlation func-
tion, or the excess probability of finding a pair of objects in a solid
angle d� and angular separation θ , such that the probability element
is given by

dP = N [1 + w(θ )]d�, (1)
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where N is the mean number of galaxies per unit steradian (Peebles
1973). For two different galaxy samples at mean redshifts 〈z1〉 and
〈z2〉,
dP1,2 = N1N2[1 + w1,2(θ )] d�1 d�2 . (2)

In practice, we use the Landy–Szalay estimator (Landy & Szalay
1993) for w1, 2(θ ) given by

w1,2(θ ) = (D1D2)θ
(R1R2)θ

NR,1NR,2

N1N2
− (D1R2)θ

(R1R2)θ

NR,2

N1

− (D2R1)θ
(R1R2)θ

NR,1

N2
+ 1 . (3)

(D1D2)θ is the number of pairs with one galaxy in data sample 1 and
the other in data sample 2 as a function of the angular separation θ .
Similarly, (D1R2)θ is the number of pairs with one galaxy in data
sample 1 and the other in a random sample 2, which is constructed to
reflect the same selection properties like masks and geometry as the
corresponding data sample 2. (R1R2)θ is the number of pairs with
one galaxy in random sample 1 and the other in random sample 2.
It is necessary to use random catalogues that are many times more
highly sampled than the data catalogues in order to minimize the
noise contributed by including the additional random pair counts.
Therefore, each of the terms in equation (3) must be normalized
by factors involving N1, N2, NR, 1, NR, 2 representing the number
of galaxies in data sample 1, the number in data sample 2, the
number in random sample 1, and the number in random sample 2,
respectively.

We can also write w1, 2(θ ) in terms of differential number densi-
ties

w1,2(θ ) = 〈δn1(φ)δn2(φ + θ )〉φ , (4)

where

δni(φ) ≡ ni(φ) − n̄i

n̄i

= δn
g
i (φ) + δn

μ
i (φ) , (5)

and ni(φ) is the number density of galaxies belonging to a sample
at redshift 〈zi〉 observed at position angle φ, and n̄i is the average
density of the ith sample. The superscript g indicates the intrinsic
galaxy component and the superscript μ indicates the magnification
component. Combining equations (5) and (4) yields

w1,2(θ ) = 〈δng
1(φ)δng

2(φ + θ )〉φ + 〈δng
1(φ)δnμ

2 (φ + θ )〉φ
+ 〈δnμ

1 (φ)δng
2(φ + θ )〉φ + 〈δnμ

1 (φ)δnμ
2 (φ + θ )〉φ . (6)

w1, 2(θ ) contains four terms. The first is the intrinsic galaxy cluster-
ing due to gravity. In the limit that sample 1 and sample 2 do not
overlap, this term disappears. Any redshift overlap between samples
1 and 2 increases the strength of this term. The second and third
components arise from the lensing magnification and depend on the
amount of overlap. w1, 2(θ ) is dominated by the second term when
〈z1〉 < 〈z2〉 and there is no redshift overlap between samples 1 and 2.
The fourth term is due to pure matter–matter correlations, which we
will ignore for the remainder of this work as it is sub-dominant to
the other terms in every case considered here (Heavens & Joachimi
2011; Duncan et al. 2014).

Focusing on the first two terms, respectively, and assuming linear
bias:

〈δng
1(φ)δng

2(φ + θ )〉φ = b1b2

∫ χH

0
dχ η1(χ )η2(χ )

×
∫ ∞

0

k dk

2π
Pδ(k, χ )J0(χkθ ) , (7)

where bi is the galaxy bias of sample i, χ is the comoving distance,
Pδ is the 3D dark matter power spectrum, ηi is the comoving distance
distribution of sample i and J0 is the zeroth order Bessel function.

〈δng
1(φ)δnμ

2 (φ + θ )〉φ = b1(α − 1)
∫ χH

0
dχη1(χ )K(χ )

×
∫ ∞

0

k dk

2π
Pδ(k, χ )J0(χkθ ) , (8)

where α is the slope of the magnitude number counts, defined
formally as

α(r) = 2.5
d log10 n(> r)

dr
, (9)

with n the observed galaxy number density and r the galaxy magni-
tude. α is measured using the appropriate detection band (r-band for
RCSLenS and i-band for CFHTLenS). K(χ ) is the lensing kernel-
weighted distribution of background sources η2(χ ) defined as,

K(χ ) = 3H 2
0 �m

c2

χ

a

∫ χH

χ

dχ ′η2(χ ′)
χ ′ − χ

χ ′ , (10)

with H0 the Hubble constant today, a the scalefactor and assuming
a flat universe.

Magnification affects the clustering in two ways. First, it raises
the flux of a magnified galaxy such that the galaxy count might
be boosted within the flux limit of a survey. Secondly, it increases
the observed solid angle around a magnifying galaxy. The net ef-
fect, given by equation (8),1 depends on the slope of the luminosity
function of the background objects, α, defined in equation (9). See
Scranton et al. (2005), Hildebrandt et al. (2009), Ménard et al.
(2010) and Morrison et al. (2012) for measurements of the mag-
nification signal via number counts. We measure α for RCSLenS
and CFHTLenS by calculating the slope of the cumulative number
densities of galaxies as a function of limiting magnitude and binned
by photometric redshift (Duncan et al. 2014).

We use the halo model implemented in the PYTHON package
CHOMP2 to generate theoretical predictions for the magnification
contribution to w(θ ) for BOSS galaxies. We take the BOSS halo
occupation distribution (HOD) parameters determined in Parejko
et al. (2013) for the LOWZ sample and Miyatake et al. (2013) for
the CMASS sample. We do not estimate predictions for the magnifi-
cation around WiggleZ galaxies due to the difficulty of obtaining an
HOD description of this sample, which is not volume-limited. The
WiggleZ galaxies have lower masses, so we expect the amplitude
of the signal to be negligible in the one-halo regime. The signal
might be more comparable in the regime where the two-halo term
dominates (roughly the largest two to three θ bins), but the S/N of
the data over these last few bins does not warrant the modelling
as we will see in Section 4.3. Appendix B contains further details
of the halo model and the input HOD parameters to the estimated
magnification signal.

2.2 Contamination from photometric redshift errors

In this section, we extend the formalism presented in Benjamin et al.
(2010, 2013), who considered cross-correlations between photo-
metric redshift bins. Here, we examine the case of cross-correlations

1 The magnification contribution to the clustering signal of off-diagonal
redshift bin combinations can be positive or negative.
2 http://code/google.com/p/chomp

MNRAS 463, 3737–3754 (2016)

http://code/google.com/p/chomp


3740 A. Choi et al.

between spectroscopic and photometric redshift bins. We define the
following quantities.

(i) Each galaxy has a single-point best-fitting photometric red-
shift zB and photometric redshift probability distribution p(z).

(ii) NO
j is the observed number of galaxies with single-point

photometric redshifts that place them in bin j.
(iii) When discussing aggregate or summed p(z), we use the

notation �j(z) as the sum of the p(z) for all galaxies in photometric
redshift bin j,

�j (z) =
NO

j∑
k=1

pkj (z) . (11)

(iv) NT
ij is the true number of galaxies which would have a spec-

troscopic redshift in bin i (if spectroscopy had been measured for
those galaxies) and placed in photometric redshift bin j. NT

ii is then
the number of galaxies that have both spectroscopic and photometric
redshifts placing them in bin i.

(v) wSP,O
ij is the observed clustering signal between galaxies with

photometric redshifts in bin j and galaxies in the spectroscopic
sample with spectroscopic redshifts in bin i and includes all terms
from equation (6).

(vi) wSP,T
ij is the true clustering signal between galaxies in the full

photometric sample with spectroscopic redshifts in bin j and those
in the spectroscopic sample with spectroscopic redshifts in bin i.

If i �= j (which we will often refer to as ‘off-diagonal’), in the
absence of lensing magnification, the true cross-clustering signal
wSP,T

ij = 0. Consider the pairwise case of the first two bins. When
i = j and the spectroscopic and photometric redshift bins are speci-
fied to be the same range (‘diagonal’), the observed cross-clustering
signal is related to the true cross-clustering signal. The true signal
is scaled by the ratio of the true number of galaxies assigned to pho-
tometric bin j = 1, which actually have a true redshift in the same
spectroscopic bin i = 1, to the total observed number of galaxies
in photometric bin j = 1. When the spectroscopic and photomet-
ric redshift bins are different (off-diagonal, e.g. i = 1 and j = 2)
but still overlapping due to photometric redshift scatter and out-
liers, the observed cross-clustering signal will be the true diagonal
cross-clustering signal multiplied by the ratio of the true number of
galaxies assigned to photometric bin j = 2, which actually have a
true redshift in spectroscopic bin i = 1, to the total observed number
of galaxies in photometric bin j = 2. Written using the quantities
defined above and generalizing to the case of multiple bins,3

wSP,O
ij = wSP,T

ii NT
ij

NO
j

. (12)

2.3 Procedure for estimating the clustering signal using �j(z)

We outline the steps to model the intrinsic clustering signal (i.e.
equation 7) of off-diagonal redshift bin combinations using photo-
metric redshift error distributions. We use E(x) to denote the esti-
mator for the quantity x defined in Section 2.2.

3 Equation (4) from Benjamin et al. (2013) describes the observed cross-
clustering signal between two photometric redshift bins i and j. In this
analysis, one bin is always spectroscopic, so that the fractional leak from
the spectroscopic bin 1 to the photometric bin 2 is always zero. In this case,
the formalism presented here is consistent with Benjamin et al. (2013).

(i) Step 0: create spectroscopic and photometric samples using
redshift bin limits based on available spectra. In this work, we
use the same bin limits for both spectroscopic and photometric
bins due to signal-to-noise considerations. In principle, however,
the spectroscopic information has much higher resolution and can
potentially be binned more finely.

(ii) Step 1: measure the observed number of galaxies in each pho-
tometric bin NO

j by counting the single-point photometric redshift
estimates zB.

(iii) Step 2: measure the auto- and cross-correlations between
spectroscopic and photometric bins and corresponding covariance
matrices. In this work, we use jack-knife resampling to estimate the
covariance matrices.

(iv) Step 3: estimate E(NT
ij ) by summing the p(z) corresponding

to galaxies selected to be in a photometric redshift bin j using zB

to obtain �j(z) (equation 11) and then integrating �j(z) over the
limits of true-z bin i. Note that E(NT

ij ) summed over all bins i must
equal NO

j . In practice, we implement this constraint by ensuring
that �j(z) integrated from the minimum to the maximum of the full
redshift range normalizes to NO

j .
(v) Step 4: use the E(NT

ij ) to predict the observed cross-
correlation, which can be derived from equation (12) as

E
(
wSP,O

ij

)
= wSP,O

ii

NO
i

NO
j

E

(
NT

ij

NT
ii

)
. (13)

(vi) Step 5: compare the predicted E(wSP,O
ij ) and observed cross-

correlation wSP,O
ij . If they agree, �j(z) is a good estimate of the

redshift distribution of the galaxy sample.

We present a validation of this method on an idealized mock galaxy
catalogue in Appendix A.

By constructing the estimate in this way, we bypass having to
constrain the true galaxy bias of the spectroscopic sample in each
bin, bi, and the galaxy bias of our photometric sample in each bin,
bj, since they are included within the measurement of the diagonal
cross-correlations as can be seen in equation (7). However, we must
assume that bj has either no or slow evolution over the full extent
of the distribution in each photometric bin and, more importantly,
that catastrophic outliers are a random sample of the bin’s galaxy
population, such that the average galaxy bias of the outliers is the
same as the average bias of the whole population. We revisit these
assumptions in Section 3.3.

2.4 Goodness of fit

To compare the predicted model and observed cross-correlation
signal, we calculate a goodness of fit as measured by χ2. We define
the χ2 of the fit of the model prediction to the data as

χ2 = (d − m)T C−1(d − m) , (14)

where d is a vector of length Nz × Nθ containing the measured
wij(θq) with i = {1, . . . , Ns}, j = {1, . . . , Np} and q = {1, . . . , Nθ}.
Ns and Np are the number of spectroscopic and photometric redshift
bins, respectively. Nz = Ns × Np − min (Ns, Np) is the total number
of spectroscopic-photometric redshift bin combinations with i �= j.
Nθ is the total number of angular scales for which wij(θq) is calcu-
lated. m contains the model for wij(θq) as given by equation (13).
This model depends on wii(θq), which has an associated error. We
assume the two terms wij(θq) and wii(θq) are independent and add
the corresponding covariance matrices, such that the total covari-
ance matrix Ci j = Cov

[
wij(θq), wij(θr)

] + f2
ijCov

[
wii(θq), wii(θr)

]
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is the propagated jack-knife resampled covariance between θ scales
q and r, and fij = (NO

i /NO
j )E(NT

ij /N
T
ii ) is the pre-factor in equa-

tion (13). Note that the spectroscopic bins are sufficiently broad
such that radial correlation between bins, and thus the covariance
between different spectroscopic i bins in this analysis, is negligible.
Throughout this work, we use angular scales in the range 1 arcmin <

θ < 35 arcmin, where the limits are chosen to mitigate the impact
of scale-dependent galaxy biases while still utilizing the signal at
intermediate scales.

2.5 Modifying photometric redshift distributions

As we will see in Section 4, the models predicted from the �j(z) are
often a poor fit to the data. We therefore investigate two methods
to modify the redshift distributions for galaxy samples binned by
photometric redshift.

The first modification takes the �j(z) and allows for a shift along
the z-dimension in the overall distribution. This represents a cor-
rection for a bias error in the measured �j(z), whilst maintaining
the level of scatter and catastrophic outliers as specified by the
�j(z). This is modelled using one free parameter per photometric
redshift bin j, zj. When the probability gets shifted to negative
redshifts, we re-normalize �j(z) by the integrated �j(z < 0). This
shifting approach is similar to that adopted by the cosmological to-
mographic shear analysis of The Dark Energy Survey Collaboration
et al. (2015), who allow for an independent shift of the estimated
photometric redshift distribution as a nuisance parameter.

The second modification models the redshift distributions in each
photometric redshift bin as a Gaussian. This model has two free
parameters per photometric redshift bin j with a mean μzj and stan-
dard deviation σ zj and are defined on a baseline redshift range with
z > 0. This test allows us to directly determine the photometric
redshift bias and scatter in each bin, independent of the BPZ �j(z).
The limitation of this single Gaussian model definition, however, is
that it sets all catastrophic outliers to zero.

We determine fits for these free parameters for photometric red-
shift bins by jointly fitting the data using Monte Carlo Markov
Chain (MCMC) sampling, as implemented with the PYTHON code
EMCEE4 (Foreman-Mackey et al. 2013), which is an implementation
of the affine invariant methods by Goodman & Weare (2010). For
a given combination of spectroscopic/photometric redshift surveys,
we minimize the negative log likelihood calculated jointly for every
ij cross-correlation as a function of either the additive shifts to the
�j(z), or the Gaussian model parameters. In the MCMC analysis of
the data, we do not include the effects of magnification as in most
cases, the contribution is at the percent level on the smallest scales
used (1 arcmin).

In Appendix A, we demonstrate that our methodology to deter-
mine the redshift distribution offsets is valid for the idealized case
of Gaussian errors in the photometric redshift distributions.

3 DATA

In this section, we provide details about the photometric and spec-
troscopic data sets we use in this study and an investigation into the
dependence of photometric redshift errors on galaxy type.

4 http://dan.iel.fm/emcee/current

3.1 Photometric surveys

We utilize two deep, wide, and high-resolution photometric surveys
observed by MegaCam on the 3.6-m Canada–France–Hawaii Tele-
scope (CFHT). The CFHTLenS (Heymans et al. 2012; Erben et al.
2013)5 is based on 154 deg2 of ugriz imaging from the wide com-
ponent of the CFHT Legacy Survey. Heymans et al. (2012) provide
an overview of the pipeline, and details about the data analysis can
be found in the following: Erben et al. (2013) describes the data
reduction with automated masking; the photometry was Gaussian-
ized to homogenize the point spread functions among the different
filters, object catalogues were created with SEXTRACTOR (Bertin &
Arnouts 1996; Erben et al. 2013), and photometric redshifts were
estimated using BPZ (Benı́tez 2000; Hildebrandt et al. 2012); galaxy
shapes were estimated using Bayesian model fitting with Lensfit
(Miller et al. 2013). The mean seeing is 0.72 arcsec (r band) and
0.68 arcsec (i band), and the median redshift is zm = 0.7.

The RCSLenS6 is based on the second Red-sequence Cluster
Survey (RCS2), comprising nearly 800 deg2 of multicolour imag-
ing 1–2 mag deeper than the Sloan Digital Sky Survey (SDSS)
(Gilbank et al. 2011). The resolution is lensing-quality with a me-
dian seeing in the r band of 0.7 arcsec. A total of 513 deg2 is imaged
in multiple bands with griz, allowing photometric redshifts and p(z)
to be estimated. The images were processed and the object cata-
logues were created with the same methods applied to CFHTLenS
(Hildebrandt et al. 2016). The number distribution of magnitudes as
a function of unweighted objects led to choices of magnitude cut-
offs of i = 24.7 for CFHTLenS sources and r = 23.7 for RCSLenS
sources. These numbers correspond to the 5σ detection limit in a
2.0 arcsec aperture (Erben et al. 2013).

Fig. 1 shows the normalized �j(z) corresponding to the eight
photometric redshift bins considered in this analysis with lim-
its given by: [0.15, 0.29], [0.29, 0.43], [0.43, 0.57], [0.57, 0.7],
[0.7, 0.9], [0.9, 1.1], [1.1, 1.3], [1.3, 3.5]. The choice of bin edges
was motivated by the spectroscopic samples used (i.e. using the
LOWZ and CMASS partitions described in Section 3.2), and z =
1.3 was the cut-off redshift for previous CFHTLenS lensing anal-
yses, motivated by the lack of near-infrared photometry to con-
strain higher redshifts. The top panel shows the �j(z) for the entire
CFHTLenS area overlapping with BOSS Data Release (DR10),
while the lower panel shows the �j(z) for the RCSLenS over-
lap with BOSS DR10 and WiggleZ. Compared with CFHTLenS,
the RCSLenS �j(z) are noticeably multimodal, with flatter tails
extending to adjacent bins, which reflects poorer photometric red-
shift accuracy due to the limited filter coverage, most critically the
missing u band.

As the calculation of w(θ ) requires pair counts with random
positions (see equation 3), we generate random catalogues for each
field, taking into account edges and masks.

3.2 Spectroscopic surveys

We briefly summarize the spectroscopic data sets used in
this analysis but refer the interested reader to Blake et al.
(2016) for further details and statistics regarding the WiggleZ–
RCSLenS, BOSS–CFHTLenS, BOSS–RCSLenS overlap regions,
as they use nearly identical WiggleZ and BOSS spectroscopic
samples.

5 http://www.cfhtlens.org
6 http://www.rcslens.org
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Figure 1. Summed probability redshift distributions �j(z) for galaxies with
single-point photometric redshifts zB in different bins j. The top panel cor-
responds to the 66 deg2 of unmasked overlap between CFHTLenS and
BOSS DR10. The bottom panel corresponds to the 184 deg2 where there is
unmasked overlap between RCSLenS and BOSS DR10.

BOSS

The BOSS (Eisenstein et al. 2011) is a spectroscopic survey of mas-
sive galaxies and quasars selected from SDSS photometry carried
out at the Sloan Telescope at Apache Point Observatory in Sunspot,
New Mexico, USA. DR10 contains BOSS spectra taken through
2012 July and comprises 927 844 galaxy spectra over 6373.2 deg2

(Ahn et al. 2014). BOSS galaxies were selected using colour and
magnitude cuts and are divided into the ‘LOWZ’ sample with red
galaxies z < 0.43 and the ‘CMASS’ sample which is designed to
be approximately stellar mass-limited for z > 0.43. There is a total
of 66.3 deg2 of total unmasked overlap with CFHTLenS (W1 and
W4, 2830 LOWZ galaxies, 5567 CMASS galaxies) and a total of
183.9 deg2 of total unmasked overlap with RCSLenS (six fields,

9214 LOWZ galaxies, and 18 156 CMASS galaxies). See table 1 of
Blake et al. (2016) for numbers corresponding to each field. The six
RCSLenS fields are labelled as 0047, 0133, 1514, 1645, 2143 and
2329. The field named 1303 has a very small number of galaxies
with spectroscopic redshifts, and we exclude it from this analysis.
We trim the catalogues to restrict them to the overlap regions (i.e.
no BOSS or CFHTLenS/RCSLenS galaxies falling outside of the
overlap are included in the analysis).

BOSS galaxies are assigned completeness weights as in
equation (18) of Anderson et al. (2014) in order to correct for
the effects of redshift failures, fibre collisions and other known
systematics, and we use these weights in our determination of the
cross-correlations of the galaxies. Specifically, the pair counts in
equation (3) are weighted by the completeness weights.

WiggleZ

The WiggleZ Dark Energy Survey is a spectroscopic survey of
bright emission line galaxies with median redshift ∼0.6 carried
out at the Anglo-Australian Telescope in Siding Spring, Australia
(Drinkwater et al. 2010). WiggleZ galaxies were selected using
colour and magnitude cuts from a combination of optical and UV
imaging. There is a total of 175.1 deg2 of total unmasked overlap
with RCSLenS imaging that has four bands and photometric redshift
estimates. 76 900 galaxies covering the range 0.1 < zs < 0.9 reside
in this region, which is comprised of five different RCSLenS fields
(0047, 0310, 2143, 2329, 2338; for numbers corresponding to each
field, see table 1 of Blake et al. 2016). Note that we use WiggleZ
galaxies at higher redshifts compared to Blake et al. (2016), who
cut their samples to zs < 0.7 to match BOSS. 1514 contains a small
number of galaxies with spectroscopic redshifts, and the geometry
of the overlap with the RCSLenS data is irregular and patchy (the
pointings are non-contiguous). The estimated covariance matrices
are not positive-definite, and we exclude 1514 in this analysis. We
again trim the catalogues to restrict them to the overlap regions (i.e.
no WiggleZ or RCSLenS galaxies falling outside of the overlap are
included in the analysis).

VVDS, VIPERS and DEEP2 EGS

CFHTLenS overlaps with three small area, but densely sampled
deep spectroscopic surveys. There are ∼2.62 of spectroscopic over-
lap with the VIMOS VLT Deep Survey (VVDS; Le Fèvre et al.
2005). VVDS selects objects with 17.5 ≤ i ≤ 24 and is ∼90 per cent
complete down to i < 23. There are ∼0.6 deg2 of spectroscopic over-
lap with the extended Groth Strip EGS DEEP2 survey (Davis et al.
2007; Newman et al. 2013). DEEP2 selects objects with 18.5 ≤
RAB ≤ 24.1 with ∼60 per cent of objects with i < 23. Finally, there
are 23.1 deg2 of spectroscopic overlap with the VIMOS Public Ex-
tragalactic Redshift Survey (VIPERS; Guzzo et al. 2014). VIPERS
selects i < 22.5 galaxies with an additional colour selection to target
galaxies in the redshift range 0.5 < z < 1.5 and is thus highly incom-
plete at z < 0.5. We use redshift quality flags 3 and 4 (>95 per cent
secure) for all of the spectroscopic surveys and create a matched
catalogue in order to directly compare photometric redshifts with
spectroscopic redshifts in Sections 3.3 and 4.2.

3.3 The dependence of photometric redshift errors
on galaxy type

There is one main advantage of the methodology we propose in this
paper over the reconstruction methods, discussed in Section 1. The
unknown galaxy bias is fully accounted for in our modelling if the
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Figure 2. The distribution of the absolute magnitude of the differential
between spectroscopic redshift and photometric redshifts as a function of
galaxy type as measured by BPZ. There are 2783 ET galaxies and 11,341
LT galaxies.

average galaxy bias of the population of outliers at a true redshift
z is not significantly different from the average galaxy bias of the
main population at that same redshift. If that is the case, we do not
need to incorporate nuisance parameters that model scale-dependent
and redshift-dependent galaxy bias in our analysis even though the
typical photometric sample will have a different mean galaxy bias
than the spectroscopic sample with which it is cross-correlated (e.g.
the highly biased BOSS galaxies). All these averaged galaxy bias
properties are encompassed by the autocorrelation signal wSP,O

ii

(equation 12). Outliers in the photometric redshift measurements
come from two sources. The first is from random photometric errors
as the majority of the faint galaxies used in cosmological analyses
are detected below 10σ . We would not expect this form of outlier to
be galaxy-type dependent. The second source, however, is template
or training set degeneracies, where a low-redshift red galaxy has
the same colour as a high-redshift intrinsically blue galaxy. These
outliers are clearly galaxy type-dependent.

To test the dependence of photometric redshift outliers on galaxy
type, Fig. 2 shows the absolute difference between spectroscopic
and photometric redshifts, |zs − zB| for the CFHTLenS–VVDS-
matched catalogue described in Section 3.2. Early-type galaxies are
selected with the BPZ template type TB < 1.5 (shown solid) and
late-type galaxies are selected with 2 < TB < 4 (shown dashed),
where these ranges in TB are shown by Velander et al. (2014) to
separate red and blue galaxies well. These distributions have been
normalized by the total number of galaxies for the given type and
are shown on a log-scale to enhance the differences. We see that the
numbers for early-type and late-type galaxies for |zs − zB| > 0.4
are different, with the majority of extreme outliers (z > 0.2) being
late-type. For the purposes of our analysis, the different galaxy bias
properties of these extreme outliers would only impact upon the
conclusions we drew from the most separated redshift bins where
we find little signal to constrain the redshift distributions anyway.

4 R ESULTS

We measure the cross-correlations between three combinations
of the photometric and spectroscopic surveys described above
– CFHTLenS–BOSS, RCSLenS–BOSS, and RCSLenS–WiggleZ.
For the eight redshift bins shown in Fig. 3, we measure the cross-

correlation wij(θ ) using equation (3) between spectroscopic red-
shift bin i and photometric redshift bin j for seven logarithmically
spaced angular bins in the range 1 arcmin < θ < 35 arcmin. Er-
rors are jack-knife-resampled such that each 1 deg2 pointing is a
jack-knife sub-sample. These sub-samples maximize the regular-
ity in the shapes of the jack-knife regions, as advocated by Cabré
et al. (2007) and Norberg et al. (2009). This internal method of er-
ror estimation is approximate, as Norberg et al. (2009) have found
jack-knife-resampled covariance matrices to be somewhat biased
on small angular scales. All of the covariance matrices pass tests
for positive definiteness and have eigenvalues spanning a reasonable
range.

4.1 Photometric redshift accuracy in CFHTLenS

In Fig. 3, we present our results for the measured cross-correlations
between the CFHTLenS and BOSS galaxies as filled circles. Each
panel represents a different cross-correlation between a spectro-
scopic and a photometric bin with the spectroscopic redshifts in-
creasing from top to bottom and the photometric redshifts increasing
from left to right. The red dashed line shows the predicted clustering
for the off-diagonal panels using equation (12). The orange solid
band shows the predicted magnification from equation (8) given
HOD parameters taken from Parejko et al. (2013) for the LOWZ
sample and Miyatake et al. (2013) for the CMASS sample. The α

values used are [0.52, 0.52, 0.46, 0.47, 0.45, 0.68, 0.89, 0.89] for
CFHTLenS, where each array value corresponds to the photometric
redshift bins in ascending order. The errors obtained by bootstrap
resampling the α values are all of the order of 1 × 10−3, so we do not
explicitly quote them here. The band of values is set by the minimum
and maximum values possible from sampling the HOD parameters
within their 1σ uncertainties. The purple and cyan bands show the
best-fitting models when we allow for modification of the �j(z) as
described in Section 2.5. We discuss these best-fitting models below
in Section 4.1.1.

Focusing first on the data measurements, the diagonal cross-
correlations are depicted in red and have the highest amplitude,
as is expected given the �j(z) plotted in Fig. 1. That is, the �j(z)
selected by zB peak are in the appropriate range. However, the
significant overlap between adjacent bins also indicates that we
would expect relatively high amplitudes in the off-diagonal panels
closest to the diagonal panels, and this trend is confirmed in Fig. 3.
The panels that are furthest away from the diagonal reflect cross-
correlations with smaller amplitude. Intrinsic clustering can only
cause positive cross-correlations, and thus, it is clear that the most
widely separated bins have little intrinsic clustering and a negligible
amount of contamination between low-z photometric redshift bins
and high-z spectroscopic redshift bins and vice-versa.

Fig. 3 provides a wealth of information. To illustrate this, con-
centrate on a particular sample, the 0.7 < zB < 0.9 bin. Here, we
find the leakage to the 0.57 < zs < 0.7 bin as revealed by the
non-zero cross-correlation measured with the spectroscopic sample
in this range, is well-modelled by the best-fitting �j(z). The anti-
correlation seen with lower spectroscopic redshift samples agrees
with the predictions from lensing magnification. Interestingly, some
widely separated bins contain a negative signal (of the order of
−1 per cent at 1 arcmin) in 1 or 2σ tension with the magnification
predictions. These anticorrelations could potentially be explained
by systematic effects such as object detection and deblending prob-
lems that are not fully characterized and accounted for in the angular
clustering measurements (Morrison & Hildebrandt 2015; Simet &
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Figure 3. The measured cross-correlations between the CFHTLenS (photometric redshift) bin j and BOSS (spectroscopic redshift) bin i galaxies. The data
points are weighted means over the two CFHTLenS fields (W1 and W4), with the weights given by the number of pairs (DiDj)θ (see equation 3). The red
dashed line shows the predicted ij clustering where i �= j based on equation (12). The orange band shows a predicted magnification contribution based on
halo model fits to the BOSS galaxies from the literature. The width of the orange band quantifies how the predicted magnification signal changes for the
uncertainties in the quoted halo model parameters from the literature. The cyan band shows the predicted ij clustering after the �j(z) have been shifted by the
best-fitting quantities given in Table 1. The purple band shows the predicted ij clustering given by best-fitting Gaussian p(z).

Mandelbaum 2015; Suchyta et al. 2016). In Appendix C, we in-
vestigate these systematic effects and find that while they likely
play a role in the negative signals, we are unable to constrain their
contribution without the aid of sophisticated image simulations.

Briefly returning to the question of galaxy bias discussed in Sec-
tion 3.3, we repeat our analysis for the CFHTLenS-BOSS cross-
correlation for the case of BPZ template type TB < 1.5 and compare
it to the case of 2 < TB < 4. Here we find that wSP,O

ii does differ
in terms of amplitude and angular dependence for red and blue
galaxies. However, the angular dependence (i.e. shape) is similar
over different photometric redshift bins, which supports the asser-
tion that the evolution of the scale-dependent photometric galaxy
bias is captured by the diagonal clustering measurements in each
bin. From this test and the analysis presented in Section 3.3, we
conclude that varying galaxy bias does not impact upon the conclu-
sions drawn in this paper. However, the different galaxy biases in
the outlier population will be important to model for reconstruction

methods and future higher fidelity implementations of the method-
ology presented in this analysis.

4.1.1 Improved CFHTLenS photometric redshift distributions

We determine best-fitting �j(z) for each photometric redshift bin us-
ing the procedure outlined in Section 2.5, which consists of two ap-
proaches. The first method fits a shift to the original BPZ �j(z) along
the z-dimension, and Fig. 4 shows an example of the MCMC results
for CFHTLenS cross-correlated with BOSS. Fig. 4 and subsequent
corner plots were made with TRIANGLE.PY7 (Foreman-Mackey et al.
2014). We impose the prior −0.15 < zj < 0.15 to avoid sampling
the parameter space where the �j(z) swap positions. The best-fitting
values for the redshift bias in each redshift bin are given in Table 1.

7 https://github.com/dfm/corner.py
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Figure 4. Joint fit shifts for photometric bin j for CFHTLenS cross-
correlated with BOSS. The dashed black lines mark the 16th, 50th and
84th percentiles of the samples in the marginalized distributions, and the
solid cyan lines mark zj = 0.

Table 1. A summary of the best jointly fit zj shifts and best-fitting μzj and
σ zj for the three spectroscopic–photometric redshift survey combinations
investigated in this work. The effective unmasked overlap area is provided
for each photometric/spectroscopic survey combination. The reduced χ2 is
also provided, with the sub-script ‘orig’ for the BPZ �j(z), ‘shift’ for the
BPZ �j(z) after best-fitting shifts have been applied, and ‘Gauss’ for the
best-fitting Gaussians.

CFHTLenS/BOSS RCSLenS/BOSS RCSLenS/WiggleZ

Aeff 66.3 180.2 175.1

z1 −0.037+0.009
−0.010 – –

z2 −0.016+0.008
−0.008 −0.095+0.007

−0.007 0.070+0.019
−0.019

z3 0.007+0.006
−0.006 −0.084+0.005

−0.005 −0.001+0.011
−0.011

z4 0.049+0.010
−0.010 0.236+0.026

−0.019 0.024+0.018
−0.022

z5 0.036+0.016
−0.013 0.143+0.024

−0.016 −0.015+0.018
−0.022

z6 – – −0.040+0.029
−0.028

χ2
red,orig 1.31 1.70 1.09

χ2
red,shift 1.17 1.29 1.07

μz1 0.233+0.019
−0.020 0.152+0.003

−0.001 0.281+0.007
−0.013

μz2 0.327+0.013
−0.017 0.291+0.002

−0.001 0.327+0.025
−0.022

μz3 0.505+0.010
−0.012 0.437+0.005

−0.004 0.455+0.015
−0.013

μz4 0.678+0.013
−0.014 0.698+0.002

−0.003 0.583+0.019
−0.010

μz5 0.823+0.048
−0.056 0.832+0.048

−0.083 0.822+0.046
−0.056

μz6 – – 1.063+0.026
−0.041

σz1 0.052+0.023
−0.022 0.169+0.009

−0.008 0.206+0.003
−0.006

σz2 0.091+0.034
−0.017 0.148+0.007

−0.007 0.209+0.008
−0.015

σz3 0.098+0.026
−0.018 0.105+0.004

−0.004 0.142+0.013
−0.013

σz4 0.114+0.011
−0.016 0.227+0.002

−0.004 0.201+0.018
−0.023

σz5 0.0846+0.031
−0.038 0.073+0.028

−0.047 0.269+0.027
−0.034

σz6 – – 0.188+0.056
−0.055

χ2
red,Gauss 0.95 1.75 0.95

For the main results, we have chosen to only assign free parame-
ters to the photometric redshift bins that have at least one adjacent
spectroscopic redshift bin. For CFHTLenS-BOSS, this limits us to
the five photometric redshift bins in the range 0.15 < zB < 0.9. In
Fig. D1 of Appendix D, we show an example of the full parameter
sampling for all eight photometric redshift bins for CFHTLenS-
BOSS, where it is clear that there are degeneracies for the photo-
metric redshift bins that do not have an adjacent spectroscopic bin.
For CFHTLenS-BOSS, we fit five free parameters for shifting the
�j(z), obtaining values of zj ranging from −0.037+0.009

−0.010 for j =
1 to 0.049+0.010

−0.010 for j = 4. This best fit is represented by the cyan
band in Fig. 3, where the width quantifies how the model changes
for the uncertainties in the best-fitting model parameters.

The second method described in Section 2.5 is to fit Gaussian
�j(z), each with a mean, μzj, and a standard deviation, σ zj. For
CFHTLenS-BOSS, we fit 10 free parameters for Gaussian �j(z).
We use the minimum and maximum redshifts of each bin j defined
in Section 3.1, zmin, j and zmax, j, to impose the priors zmin, j < μzj <

zmax, j and 0.001 < σ zj < zmax, j − zmin, j. These priors are chosen to
avoid sampling the parameter space where the �j(z) are extremely
flat. The values are provided in Table 1. We do not fit the model to
any data points corresponding to zB > 0.9 because the outliers can-
not be well modelled by a single Gaussian. In Fig. D2 of Appendix
D, we show the MCMC sampling of the 10 free Gaussian �j(z) pa-
rameters. Fig. D2 shows much stronger degeneracies than seen for
the MCMC sampling of the shift method in Fig. 4. The best-fitting
Gaussian model is represented by the purple band in Fig. 3. The
large uncertainties are reflected in the width of the purple band.

We assess a goodness of fit using the reduced χ2, which is the χ2

given by equation (14) divided by the degrees of freedom (DOF).
The naı̈ve estimate of DOF is 387 = 392 data points – 5 fit parame-
ters for the shifted �j(z) and 214 = 224 data points – 10 fit parame-
ters for the Gaussian �j(z). However, see Andrae, Schulze-Hartung
& Melchior (2010) for an argument that these DOF estimates should
be considered as upper limits, and a standard reduced χ2 is not an ap-
propriate measure of the goodness of fit. As previously mentioned,
we also issue the caveat that our covariance matrices are obtained
via internal jack-knife resampling and may be somewhat biased.
None the less, we quote the χ2/DOF to illustrate the performance
of the fitting: χ2

no−shift = 508.06/387 = 1.31 for the original BPZ
�j(z), χ2

shift = 454.31/387 = 1.17 for the BPZ �j(z) after applica-
tion of the best-fitting shifts, and χ2

Gauss = 202.32/214 = 0.95 for
the best-fitting Gaussian �j(z). These values are also summarized
in Table 1.

4.2 Comparison of photometric and spectroscopic redshifts
for a bright CFHTLenS galaxy sample

In this section, we compare the original and improved CFHTLenS
redshift distributions from our method with those obtained directly
by examining galaxies that have both spectroscopic and photometric
redshifts. For this comparison, we limit our photometric sample
to bright galaxies with i < 23 to match the completeness of the
comparison spectroscopic sample described in Section 3.2. We split
the sample in four photometric redshift bins spanning 0.15 < zB

< 0.7. The total number of spectroscopic redshifts with matched
photometric redshifts in the range 0.15 <zB < 0.7 are 3925 (VVDS),
3031 (EGS), and 11 108 (VIPERS).

For each photometric redshift bin, we define a measure of bias
zbias to be the difference between the median redshift (z̃) determined
from the spectroscopic redshifts and from the �j(z). We choose the
median as it is less sensitive to incompleteness in the spectroscopic

MNRAS 463, 3737–3754 (2016)



3746 A. Choi et al.

Figure 5. Direct comparison of the medians of the spectroscopic and pho-
tometric distributions for galaxies with i < 23. The open symbols show the
difference between the medians of VIPERS (circles), DEEP2 EGS (trian-
gles) or VVDS (stars) and the medians of the original BPZ �j(z). The closed
symbols show the difference between the median of VVDS and the �j(z) af-
ter application of the best-fitting shifts (circles) or the best-fitting Gaussian
�j(z) (squares). The data points are slightly horizontally offset for clar-
ity. For the cross-correlation analysis, the CFHTLenS galaxies were cut to
i < 23 to be more consistent with the magnitude completeness limits of the
comparison spectroscopic data sets.

sample at zspec > 1.3. Error bars are determined by bootstrap resam-
pling of the spectroscopic redshifts. Fig. 5 shows zbias determined
from each of the three spectroscopic surveys; VVDS (open star),
VIPERS (open circle) and EGS (open triangle). Whilst these sur-
veys are relatively complete, we have not investigated whether the
sample is fully representative of the photometric sample, both in
terms of colour–space coverage (see for example, Masters et al.
2015) and redshift coverage. Even with the applied bright magni-
tude limits, there is a noticeable amount of scatter even between
the zbias obtained from the two more complete surveys VVDS and
DEEP2 EGS, suggesting some sample variance not taken into ac-
count by the bootstrap resampled error bars. Residual differences
between the sampling of the galaxy populations can potentially
be accounted for in future work using the re-weighting method of
Bonnett et al. (2016). For all bins, however, we conclude that the
photometric redshifts underestimate the true median redshift of the
galaxy sample.

We next measure the CFHTLenS-BOSS cross-correlations for
bright CFHTLenS galaxies with i < 23 and determine redshift off-
sets and best-fitting Gaussian distributions for the four redshift bins
using our MCMC analysis. The resulting bias that we measure
between the spectroscopic redshift distribution and our improved
photometric redshift distribution is shown in Fig. 5 where we now
use the median of the �j(z) with best-fitting shifts applied and the
median of the best-fitting Gaussian, respectively. We find that ap-
plying the best-fitting shift to the photometric redshift distributions
leads to an even stronger underestimate of the true median redshift
of the galaxy sample (closed circles) for the lower two redshift bins.
However, the Gaussian model (closed squares) results in a zbias that
is consistent with zero. The total errors consist of the bootstrap
resampled errors from the spectroscopic redshifts added in quadra-
ture with the errors from the best-fitting values. The latter could
potentially be slightly underestimated, as we ignore the covariance
matrices between the spectroscopic bins.

From this analysis, we can conclude that modelling errors under
the assumptions that the shape of the redshift distribution is ac-

curate, and that the bias can be represented by a linear shift in the
distribution is insufficient to capture the true underlying distribution
when dealing with real data. Our linear-shift model, also advocated
by The Dark Energy Survey Collaboration et al. (2015) and tested in
Appendix A, was based on the well-modelled catastrophic outliers
within CFHTLenS. It does, however, overlook the potential for the
width of the main peak in the distribution to vary. For example, if
the width were underestimated in the �j(z), the model would under-
estimate the amplitude of the cross-correlation with both adjacent
redshift bins. A shift, in contrast, appears as an underestimate of the
signal in one of the adjacent bins, with an overestimate in the other
adjacent bin. We see some evidence of this behaviour in the i < 23
sample.

Our Gaussian �j(z) model allows us to test the effects of being
able to change the width of the redshift distribution as well as the
mean, with the caveat that our single-moded Gaussian �j(z) are too
simple to characterize catastrophic outliers. In this bright-galaxy
measurement of bias in the main peak of the redshift distribution,
the Gaussian model provides the most robust result.

4.3 Photometric redshift accuracy in RCSLenS

In this section, we repeat the cross-correlation analysis for the RC-
SLenS survey, but now with two spectroscopic surveys, BOSS
(shown in Fig. 6) and WiggleZ (shown in Fig. 7). Comparing
the measurements between RCSLenS and CFHTLenS (in Fig. 3),
we find the amplitude and shape of the diagonal panels for the
CFHTLenS and RCSLenS cross-correlations with BOSS are sim-
ilar; however, these are qualitatively different from the RCSLenS
cross-correlations with WiggleZ. This difference reflects the con-
trasting nature of the BOSS galaxy population with galaxy biases
given by bLOWZ = 1.6 (Chuang et al. 2016) and bCMASS = 1.9
(Sánchez et al. 2014) compared with the WiggleZ galaxy popula-
tion with bWiggleZ = 1.0 (Blake et al. 2010). There are higher ampli-
tudes of correlation between the BOSS galaxies (with their higher
mean galaxy bias) and both CFHTLenS and RCSLenS galaxies
compared to the lower amplitudes of correlation between the Wig-
gleZ galaxies (with their lower mean galaxy bias) and RCSLenS
galaxies. The typical signal to noise for RCSLenS–WiggleZ mea-
surements is markedly less than for either the CFHTLenS–BOSS
or the RCSLenS–BOSS cross-correlations.

In terms of the nature of the off-diagonal panels which reveal
the strength of the photometric redshift errors, there is a difference
between the measurements for CFHTLenS–BOSS and RCSLenS–
BOSS highlighting the poorer quality of the four-band RCSLenS
photometric redshifts. The RCSLenS–BOSS off-diagonal measure-
ments show positive signals, particularly in the cross-correlations
between the lowest spectroscopic redshift range and the highest pho-
tometric redshift ranges (top-right corner) and between the lowest
photometric ranges and all spectroscopic ranges (left-most column).
This signal indicates the significant presence of catastrophic outliers
in the photometric redshifts for RCSLenS, which is consistent with
the characterization of the photometric redshifts when compared
directly against spectroscopic redshifts in RCSLenS as compared
to CFHTLenS (Hildebrandt et al. 2016).

The orange band in Fig. 6 is the magnification signal computed
in the same way as for Fig. 3 with α values of [0.61, 0.42, 0.68,
0.94, 0.85, 1.29, 1.53, 1.13]. In contrast to CFHTLenS, the α values
are greater than one for the three highest redshift bins, leading to
a positive magnification signal as seen in the top-right corner of
Fig. 6. Focusing on 0.15 < zs < 0.29 cross-correlated with 1.1
< zB < 1.3, the orange band shows agreement with the measured
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Figure 6. As in Fig. 3, cross-correlating RCSLenS (photometric redshift) bin j and BOSS (spectroscopic redshift) bin i galaxies. The data points are weighted
means over the six RCSLenS fields that overlap BOSS, with the weights given by the number of pairs (DiDj)θ (see equation 3).

cross-correlations for the first two θ bins, but the overall shape is
qualitatively different. This is likely caused by an interplay between
magnification and clustering of catastrophic outliers; the latter has
not been accounted for in the �j(z) and thus is not reflected in
our model. There are no orange magnification prediction bands for
Fig. 7, as the WiggleZ galaxies are typically less massive than the
BOSS galaxies, and the amplitudes of their magnification signals
are likely correspondingly lower in the one-halo regime. In the two-
halo regime, only a couple of the cross-correlation measurements
have a S/N over 2 (the highest is 2.7), thereby obviating the need
for magnification modelling.

4.3.1 Improved RCSLenS photometric redshift distributions

As in Section 4.1.1, we apply the methods of Section 2.5 to RC-
SLenS and summarize the best-fitting values for each survey combi-
nation in Table 1. We again assign free parameters to the photometric
redshift bins that have at least one adjacent spectroscopic bin. We
impose a similar prior as in Section 4.1.1, except we extend the

maximum possible shift to 0.3 for the j = 4 and j = 5 bins. For
the shifting method, we additionally exclude the first redshift bin
(the first row and column of Fig. 6) from our analysis due to the
high catastrophic outlier rates indicated by the measurements. The
BPZ �j(z) (and hence our model) do not account for these catas-
trophic outlier rates and no amount of shifting will aid the cause.
For RCSLenS-BOSS, we fit four free parameters for shifting the
BPZ �j(z) in the photometric redshift bins in the range 0.29 < zB <

0.9, obtaining values of zj ranging from −0.095+0.007
−0.007 for j = 2 to

0.236+0.026
−0.019 for j = 4. WiggleZ extends to slightly higher redshifts,

thereby allowing us to fit five free parameters for the photometric
redshift bins from 0.29 to 1.1 for the case of RCSLenS–WiggleZ,
obtaining values of zj ranging from −0.040+0.029

−0.028 for j = 6 to
0.070+0.019

−0.019 for j = 2. The best-fitting shift model is again repre-
sented by the cyan band for RCSLenS–BOSS in Fig. 6 and for
RCSLenS–WiggleZ in Fig. 7.

We also fit a Gaussian �j(z), each with a mean, μzj, and a stan-
dard deviation, σ zj. As for CFHTLenS, we do not fit the model to
any data points corresponding to zB > 0.9 for RCSLenS–BOSS
and zB > 1.1 for RCSLenS–WiggleZ because the outliers cannot
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Figure 7. As in Fig. 3, cross-correlating RCSLenS (photometric redshift) bin j and WiggleZ (spectroscopic redshift) bin i galaxies. The data points are
weighted means over the five RCSLenS fields that overlap WiggleZ, with the weights given by the number of pairs (DiDj)θ (see equation 3). Note that there is
no magnification prediction plotted here.

be well modelled by a single Gaussian. We impose similar priors
to those described in Section 4.1.1, but we extend the maximum
possible σ zj by adding a value to account for photometric redshift
scatter. Specifically, we apply the prior 0.001 < σ zj < (zmax, j −
zmin, j) + 0.08(1 + zmid, j) with zmid, j being the midpoint between
zmin, j and zmax, j. For RCSLenS–BOSS, we fit 10 free parameters.
For RCSLenS–WiggleZ, we fit 12 free parameters. Both sets of
best-fitting parameters are summarized in Table 1. The best-fitting
Gaussian model is represented by the purple band for RCSLenS–
BOSS in Fig. 6 and for RCSLenS–WiggleZ in Fig. 7. The best-fitting
Gaussian model also fails to reproduce the large signals seen in the
cross-correlation between 0.15 < zs < 0.29 and the three photo-
metric redshift bins in the range 0.15 < zB < 0.57 in Fig. 6 (and to
a lesser extent in Fig. 7).

For the sake of comparison, we provide the χ2/DOF. The DOF for
RCSLenS–BOSS is 752 = 756 data points – 4 fit parameters for the
shifted �j(z) and 662 = 672 data points – 10 fit parameters for the
Gaussian �j(z). The DOF for RCSLenS–WiggleZ is 835 = 840 data
points – 5 fit parameters for the shifted �j(z) and 863 = 875 data
points – 12 fit parameters for the Gaussian �j(z). The χ2/DOF for

RCSLenS-BOSS are: χ2
no−shift = 1280.44/752 = 1.70 for the orig-

inal BPZ �j(z), χ2
shift = 967.93/752 = 1.29 for the BPZ �j(z) af-

ter application of the best-fitting shifts, and χ2
Gauss = 1155.4/662 =

1.75 for the best-fitting Gaussian �j(z). The χ2/DOF for RCSLenS-
WiggleZ are: χ2

no−shift = 907.84/835 = 1.09 for the original BPZ
�j(z), χ2

shift = 891.59/835 = 1.07 for the BPZ �j(z) after applica-
tion of the best-fitting shifts, and χ2

Gauss = 823.94/863 = 0.95 for
the best-fitting Gaussian �j(z).

Fig. 8 shows the comparison of the best-fitting �j(z) shifts and
best-fitting Gaussian μzj and σ zj. Ideally, the best-fitting parame-
ters from the BOSS cross-correlation with RCSLenS would agree
with those from the WiggleZ cross-correlation with RCSLenS.
The best-fitting �j(z) shifts are significantly discrepant, whilst there
is better agreement for the best-fitting Gaussian parameters. We
posit that the main source of this disagreement stems from our
estimates of �j(z) (from BPZ or Gaussians) being a poor character-
ization of the underlying redshift distribution. Future work might
benefit from a more sophisticated model that retains the ability to
model both the catastrophic outliers and the width of the redshift
distribution.

MNRAS 463, 3737–3754 (2016)



Testing photometric redshift distributions 3749

Figure 8. Comparison of best-fitting parameters for RCSLenS from the
cross-correlation with BOSS and WiggleZ. The top panel shows the best-
fitting shifts when the input models are the BPZ �j(z). The lower two panels
show the best-fitting means and standard deviations when the input models
are Gaussians. The middle panel contains dashed grey lines to indicate the
boundaries of the redshift bins. The values and errors are summarized in
Table 1. Note that the plotted error bars correspond to 2σ , and there are no
constraints for z1, as explained in Section 4.3.1.

5 C O N C L U S I O N S

In this paper, we have extended the formalism of Benjamin et al.
(2010) with the initial aim to verify galaxy redshift distributions of
a sample of galaxies, as determined from the sum of their photomet-
ric redshift probability distributions, �j(z). By cross-correlating the
galaxy positions of different photometric redshift bins, Benjamin
et al. (2013) showed that the measured galaxy clustering between
photometric redshift bins was consistent with the level of clustering
expected when the redshift distributions are estimated from BPZ
in this way. For the cosmological analyses of CFHTLenS that then
followed (Benjamin et al. 2013; Heymans et al. 2013; Kilbinger
et al. 2013; Simpson et al. 2013; Fu et al. 2014; Kitching et al.
2014), the photometric error distribution was therefore assumed to
be known with zero uncertainty. In this analysis, we have increased
the fidelity of this test by using overlapping spectroscopy from
BOSS and, in the case of the RCSLenS, also from WiggleZ. Cross-
correlating photometrically selected galaxy samples with galaxies
binned by spectroscopic redshift significantly enhances the signal
to noise in the measured clustering between different redshift bins,
thus allowing for a more stringent test of the photometrically de-
rived redshift distributions. For CFHTLenS, we can draw the same
conclusions as Benjamin et al. (2013), that the catastrophic outlier
rate is well predicted by the �j(z). This can be seen by compar-
ing the measured clustering signal with the model prediction, for
widely separated bins (z > 0.2), in Fig. 3. Where the model is
seen to fail, however, is around the peak of the redshift distribution,
where significant deviations between the signal and model are seen
for the first and fourth CFHTLenS redshift bin with 0.15 < zB <

0.29 and 0.57 < zB < 0.7. A direct comparison between spectro-
scopic and photometric redshifts for a bright sample in Fig. 5 also
indicates that the �j(z) model also fails in terms of the width or
scatter in the redshift distribution. This analysis implies that the
cosmological analyses of CFHTLenS should have included sys-
tematic error terms in their analysis to account for bias and scatter

in their redshift distributions that were not accurately modelled by
the �j(z).

For RCSLenS, the conclusion that we can draw from this type of
analysis about the catastrophic outlier rate is complicated by the fact
that the lowest photometric redshift bin (0.15 < zB < 0.29) exhibits
a strong catastrophic outlier rate when galaxy photometric redshifts
are individually compared to their directly measured spectroscopic
redshifts (Hildebrandt et al. 2016). This outlier rate is not predicted
by the �j(z) in this redshift range. Model predictions for the cross-
correlation of this low-redshift bin with higher photometric redshift
bins will therefore be incorrect, as they depend on the measured
autocorrelation signal in this low-redshift bin (see equation 13). A
disagreement between model and signal for cross-correlations with
this bin will therefore exist, even if the catastrophic outlier rate is
accurately represented in the higher redshift bins, as suggested by
the direct comparison in Hildebrandt et al. (2016). Excluding this
low-redshift bin from our analysis, we find that the catastrophic
errors scattering galaxies from high redshift down to z > 0.29 are
well represented by the �j(z). Around the peak of each redshift
distribution, however, significant deviations are again found, this
time for the four bins spanning 0.29 < zB < 0.9.

As discussed in Section 2.5, we can use our derived formalism
to determine joint offsets in the peaks of the tomographic redshift
distributions which are close in redshift to a spectroscopic sample.
To undertake this analysis, we need to assume that the overall shape
of each distribution is sufficiently accurate (i.e. that the catastrophic
outliers are well represented). The offsets for each redshift bin that
satisfy these constraints are given in Table 1, showing significant
biases up to z ∼ 0.236. We found that whilst the catastrophic out-
liers were well modelled by the �j(z), the scatter was not, leading
to inconsistencies when directly comparing our results with deep
spectroscopic surveys in Section 4.2 and when comparing results
between the BOSS and WiggleZ surveys. We therefore also deter-
mine the best-fitting Gaussian �j(z) for each bin which provides a
more accurate estimate of the bias and scatter in each photometric
redshift bin. By definition however, this single-moded Gaussian is
unable to model catastrophic outliers.

We have investigated the influence of the astrophysical features
of galaxy bias and magnification, as well as the systematic effects
of object detection and deblending. We found that these features
do not impact upon the conclusions presented here but will need
to be investigated in more detail for future studies seeking to draw
tighter constraints on redshift distributions. With the expected signal
to noise of upcoming deeper surveys, magnification may play a
more significant role in the angular cross-correlation signal between
bins widely separated in redshift. Complete simulation pipelines
including a full picture of the underlying physics (clustering and
lensing) and the observing, object detection and cataloguing process
will be necessary to fully understand and disentangle the physical
and systematic effects.

5.1 Impact on cosmological parameter estimation with
CFHTLensS

Our methodology has been shown to provide a robust tool to verify
redshift distributions for photometric surveys where overlapping but
incomplete spectroscopy exists. The recent existence of this ‘same-
sky’ survey data has allowed us to test the photometric redshift
distributions used in the CFHTLenS weak lensing analyses with
much higher fidelity than was previously possible. We can use
the results of our analysis and scaling-relations from Jain & Seljak
(1997) to estimate the impact on cosmological parameter estimation

MNRAS 463, 3737–3754 (2016)



3750 A. Choi et al.

from using inaccurate redshift distributions in previous CFHTLenS
analyses, for example, Heymans et al. (2013).

Weak lensing is most sensitive to a combination of the clustering
amplitude σ 8 and the matter density parameter �m. Defining S8 =
σ8�

0.47
m , the two-point shear correlation function ξ+ for a flat �cold

dark matter cosmology is related to S8 as

ξ+ ∝ z1.52
s S2.58

8 , (15)

for a single-lensed source redshift slice at zs (Jain & Seljak 1997).
We can use this as a ‘toy-model’ to indicate how errors in the source
redshift propagates into biases on cosmological parameters. Con-
sidering the largest correction from Table 1, a bias of 0.049 in the
photometric redshift bin spanning 0.57 < zB < 0.7 would corre-
spond to an overestimate in the recovered S8 parameter from this
tomographic bin by 4 per cent. The second largest correction from
Table 1 is for the lowest redshift bin which was already excluded
from all CFHTLenS analyses as a result of concerns over the pho-
tometric redshift accuracy in this bin (Hildebrandt et al. 2012). We
refer the reader to Joudaki et al. (2016) where the CFHTLenS to-
mographic cosmological analysis is revisited, taking into account
the photometric redshift errors uncovered in this work.
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A P P E N D I X A : VA L I DAT I O N T E S T S O N M O C K
G A L A X I E S

We test the methodology described in Sections 2.2–2.5 on an ideal-
ized case consisting of lognormal distributions of 1000 000 sources
of known clustering in a lightcone of area 25 deg2, with an underly-
ing Gaussian �j(z) with mean of 0.4 and a standard deviation of 0.3,
cut in the range 0.1 < z < 0.7. 10 000 sources are randomly picked
as spectroscopic ‘BOSS’ sources. 200 000 sources are randomly
picked as photometric redshift ‘CFHTLenS’ sources. The photo-
metric redshift sources are assigned Gaussian scatters with mean of
0 and a standard deviation of 0.05. To simulate BPZ-like redshift
probability distributions, each source is assigned a p(z), peaking
at the scattered photometric redshift value. The spectroscopic and
photometric sources are divided into six redshift bins of width 0.1
in the range 0.1 < z < 0.7, and cross-correlations are measured. We
followed the steps outlined in Section 2.3 and show the measured
cross-correlations compared with the predicted cross-correlations
in Fig. A1. Fig. A2 shows the results of MCMC sampling shifts of
the redshift distributions for each of the bins (described in Section
2.5. The best-fitting shifts are consistent with 0, as was input into
the mocks, thus validating our method in this idealized scenario.

Figure A1. Mock analysis: the measured cross-correlations between the mock photometric galaxies and the mock spectroscopic galaxies.
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Figure A2. Mock-analysis: best-fitting shifts in the redshift distributions
for six photometric redshift bins using joint MCMC sampling.

A P P E N D I X B: H A L O MO D E L

The halo model provides an analytic framework for describing how
galaxies occupy dark matter haloes, and the CHOMP software used
in this work follows the formalism of Seljak (2000). We assume
cosmological parameters from Planck Collaboration et al. (2014),
with �m = 0.315, �� = 0.685, σ 8 = 0.829, ns = 0.9603 and �bh2

= 0.022 05. Using the mass function from Sheth & Tormen (2002),
the density profile from Navarro, Frenk & White (1996), and a halo
bias model, we can derive correlation functions. To describe the
numbers of central and satellite galaxies as a function of halo mass,
we assume the functional forms given in Zheng, Coil & Zehavi
(2007), using the best-fitting parameters from Parejko et al. (2013)
for the LOWZ sample and v1 of Miyatake et al. (2013) for the
CMASS sample into these functional forms. The number of central
galaxies is given by

Nc(M) = 1

2

[
1 + erf

(
log(M) − log(Mmin)

σlog M

)]
, (B1)

where Mmin is the minimum mass for a halo to host a central galaxy,
and σ log M is the width of the cutoff. The satellite term follows

Ns(M) = Nc(M)

(
M − M0

M
′
1

)α

, (B2)

where M0 is the minimum mass for a halo to host satellite galaxies,
and M

′
1 is the mass differential at which a halo is expected to

have one satellite galaxy. Adding the central and satellite terms
together gives the average number of galaxies occupying a halo of
mass M.

The LOWZ parameters, taken from table 3 of Parejko et al.
(2013), are log 10(Mmin/M�) = 13.25 ± 0.26, log 10(M

′
1/M�) =

14.18 ± 0.39, σ log M = 0.98 ± 0.57, κ = 1.04 ± 0.71, and α = 0.94 ±
0.49. Their κ corresponds to our M0/Mmin. The CMASS parameters
were originally taken from table 2 of v1 of Miyatake et al. (2013)
as log 10(Mmin/M�) = 13.21+0.13

−0.11, log 10(M
′
1/M�) = 14.15+0.09

−0.08,

σlog M = 0.56+0.11
−0.09, κ < 0.58, and α = 1.06 ± 0.49+0.11

−0.13. The final
published CMASS parameters appear in table 1 of More et al. (2015)
for three stellar mass sub-samples. The parameter values we use in
this work fall within the range of values spanned by the three stellar
mass sub-samples in More et al. (2015).

APPENDI X C : EFFECTS O F O BJECT
D E T E C T I O N A N D D E B L E N D I N G O N
CLUSTERI NG MEASUREMENTS

Clustering signals can contain not only contributions from physical
phenomena like spatial correlation and magnification but also from
systematic effects from the object detection and selection process
itself. In this section, we first confirm that not accounting for small-
scale (<9 arcsec) selection features in the random catalogues can
affect the measured clustering on a range of scales; we next investi-
gate how object detection and deblending might affect the number
of faint photometric galaxies in the vicinity of bright spectroscopic
galaxies; finally, we perform a brute-force check by re-running our
analysis on the data with photometric masks placed over the loca-
tions of known spectroscopic galaxies.

First, we set up a toy experiment to investigate how small-
scale (<9.3 arcsec) selection features in the random catalogues can
affect the measured clustering on a range of scales by creating three
mock galaxy catalogues based on the public N-body simulations
described in Harnois-Déraps, Vafaei & Van Waerbeke (2012):8 a
‘BOSS-like’ clustered galaxy catalogue with bg = 2 and a num-
ber density of 1 arcmin−2, a ‘photometric-like’ clustered galaxy
catalogue with bg = 1 and a number density of 10 arcmin−2, and
a ‘no-clustering’ galaxy catalogue with Poisson distribution and a
number density of 10 arcmin−2. For the photometric-like (PHOT)
and no-clustering (NC) galaxy catalogues, we have full versions
and masked versions where all of the PHOT/NC galaxies within a
9.3 arcsec radius of a galaxy from the BOSS-like catalogue are cut
out. The 9.3 arcsec radius is convenient because it corresponds to
2 pixels in the original N-body simulation. All galaxies are at a sin-
gle redshift z = 0.525. We measure the w(θ ) using equation (3) for
six different combinations quoted as [data sample 2, random sample
2]. Data sample 1 is always the BOSS-like catalogue, and random
sample 1 is always a full (unmasked) NC sub-sample. Where there
are multiple sub-samples from the NC galaxy catalogue used in the
w(θ ) measurement (e.g. if both data sample 2 and random sample
2 are both drawn from the NC galaxy catalogue), we ensure that
the sub-samples are mutually exclusive and do not share any of
the same galaxies. The combinations are: (1) [full PHOT, full NC],
(2) [masked PHOT, full NC], (3) [masked PHOT, masked NC], (4)
[full NC, full NC], (5) [masked NC, full NC], and (6) [masked NC,
masked NC]. The results are shown in Fig. C1 where the combina-
tions go from top left to top right and continue from bottom left to
bottom right. The left-most and right-most columns show the true
cross-correlations when the random catalogues properly account for
the properties of the data catalogues. The top-middle panel shows a
dip at small θ in the cross-correlation between a BOSS-like sample
and a masked PHOT sample with a corresponding random sam-
ple that is not masked. Similarly, the lower-middle panel shows an
anti-correlation for the w(θ ) between a BOSS-like sample and a
masked NC sample with a corresponding random sample that is not
masked.

8 http://www.cfhtlens.org
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Figure C1. Clustering measurements for different combinations of data
and random mocks. All combinations are measured with equation (3) and
involve a BOSS-like catalogue (data sample 1) and a corresponding random
catalogue (random sample 1) that reflects the geometry of the BOSS-like
catalogue. The different combinations are labelled as [data sample 2, random
sample 2], where the samples are drawn from either ‘masked’ or ‘full’
photometric-like (PHOT) or a no-clustering (NC) catalogues as described
in the text. The left-hand and right-hand columns of panels illustrate the
case where the random sample properly accounts for the masking of the
data sample. However, the middle column of panels shows that the signal
is damped if masked galaxies in the data sample are not correspondingly
masked in the random sample.

The small-scale selection effects of object detection and deblend-
ing have been studied in the context of cluster galaxies which (typ-
ically bright, large in size, and residing in crowded fields) obscure
nearby fainter or smaller galaxies (Applegate et al. 2014; Mel-
chior et al. 2015; Simet & Mandelbaum 2015). The obscuration
could, in principle, lead to a dearth of objects detected close to the
brighter galaxies and masquerade as a spurious magnification sig-
nal. Because the impact is uncertain, these selection effects are not
included in the CFHTLenS/RCSLenS masks. We investigate possi-
ble systematic contributions to the clustering signal around BOSS
galaxies from the cataloguing process by running simulations with
BALROG.9 This public software allows us to add simulated galax-
ies to CFHTLenS images around known BOSS galaxies and run
SEXTRACTOR with the same object detection and deblending param-
eters used for the actual catalogues. We can repeat the process many
times and measure the recovered fraction of objects as a function
of the angular separation from the BOSS galaxies. The results are
shown in Fig. C2, and a horizontal line marks the average level at
which objects at any location in an image can be recovered (due
to noise). Fig. C2 indicates that there is a lower fraction of objects
recovered at angular scales smaller than 20 arcsec.

The conclusion we can draw from this analysis is that if the ran-
dom catalogue does not include small-scale selection effects, the
measured w(θ ) will be diluted out to very large scales. We re-run
the analysis with photometric catalogues that have 1 arcmin and
30 arcsec masks centred on the BOSS galaxy positions in both
the data and random catalogues. For both mask radii, the S/N ren-
ders the masked w(θ ) consistent with the w(θ ) measured before
masking. Therefore, we conclude that this is not a dominant sys-
tematic in our analysis but flag it as an important systematic in
the future. We leave further tests to future work. Much more so-

9 https://github.com/emhuff/Balrog

Figure C2. Fraction of recovered objects from simulations.

phisticated image simulations and mock galaxy catalogues will be
required to fully disentangle physical effects (magnification) from
systematic effects introduced in the observation and measurement
process.

A P P E N D I X D : FU L L MC M C FO R
CFHTLENS– BOSS

In Fig. D1, we show the results of MCMC sampling the redshift bias
parameters corresponding to all eight redshift bins ([0.15, 0.29],
[0.29, 0.43], [0.43, 0.57], [0.57, 0.7], [0.7, 0.9], [0.9, 1.1], [1.1,
1.3], [1.3, 3.5]). This example corresponds to the overlap between
CFHTLenS and BOSS. As the spectroscopic coverage of BOSS
only extends to the first four redshift bins, there are clear degen-
eracies in the lower half of Fig. D1 which reflect the fact that the
spectroscopic redshifts up to z∼0.7 can offer only limited informa-
tion to constrain the higher redshift photometric galaxies.

In Fig. D2, we show the results of MCMC sampling Gaussian
�j(z) described by their means μzj and standard deviations σ zj for
the same data set.

Figure D1. MCMC sampling of the redshift bias parameters for all eight
redshift bins for CFHTLenS-BOSS.
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Figure D2. MCMC sampling of the best-fitting Gaussian �j(z) for five redshift bins for CFHTLenS–BOSS. The redshift bin limits are given by [0.15, 0.29],
[0.29, 0.43], [0.43, 0.57], [0.57, 0.7] and [0.7, 0.9].
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