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ABSTRACT
The potential of tidal disruption of stars to probe otherwise quiescent supermassive black
holes cannot be exploited, if their dynamics is not fully understood. So far, the observational
appearance of these events has been derived from analytical extrapolations of the debris
dynamical properties just after disruption. By means of hydrodynamical simulations, we
investigate the subsequent fallback of the stream of debris towards the black hole for stars
already bound to the black hole on eccentric orbits. We demonstrate that the debris circularize
due to relativistic apsidal precession which causes the stream to self-cross. The circularization
time-scale varies between 1 and 10 times the period of the star, being shorter for more eccentric
and/or deeper encounters. This self-crossing leads to the formation of shocks that increase
the thermal energy of the debris. If this thermal energy is efficiently radiated away, the debris
settle in a narrow ring at the circularization radius with shock-induced luminosities of ∼10–
103 LEdd. If instead cooling is impeded, the debris form an extended torus located between
the circularization radius and the semi-major axis of the star with heating rates ∼1–102 LEdd.
Extrapolating our results to parabolic orbits, we infer that circularization would occur via the
same mechanism in ∼1 period of the most bound debris for deeply penetrating encounters
to ∼10 for grazing ones. We also anticipate the same effect of the cooling efficiency on the
structure of the disc with associated luminosities of ∼1–10 LEdd and heating rates of ∼0.1–
1 LEdd. In the latter case of inefficient cooling, we deduce a viscous time-scale generally shorter
than the circularization time-scale. This suggests an accretion rate through the disc tracing the
fallback rate, if viscosity starts acting promptly.

Key words: accretion, accretion discs – black hole physics – hydrodynamics – galaxies:
nuclei.

1 IN T RO D U C T I O N

Most galaxies have been found to contain a supermassive black hole
(SMBH) at their centre orbited by stars. If one of these stars wanders
within the tidal radius of the black hole, the tidal force of the black
hole exceeds the star’s self-gravity and the star is torn apart. Such an
event is called a tidal disruption event (TDE). After the disruption,
the stellar debris evolve to form an elongated stream of gas that falls
back towards the black hole. In the standard picture of TDEs, these
debris then circularize to form an accretion disc where they accrete
viscously emitting a thermal flare mainly in the UV-to-soft X-ray
band (Lodato & Rossi 2011). This flare could also be accompanied
by a radio signal associated with a relativistic jet originating from
the inner region of the disc (Giannios & Metzger 2011). A handful
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of candidate TDEs have been detected so far in these bands (e.g.
Komossa et al. 2004; Esquej et al. 2008; Gezari et al. 2009; van
Velzen et al. 2011; Zauderer et al. 2011).

TDEs are powerful tools to detect SMBHs in otherwise quiescent
galaxies. Furthermore, they can in principle be used to estimate the
properties of both the black hole and the disrupted star and to probe
the physics of accretion and relativistic jets. In practice, deriving
such constraints from observations is challenging as it requires a
precise understanding of the dynamics of TDEs. The latter has
been the focus of many analytical and numerical investigations
undertaken since the 1980s. A distinctive feature of the pioneering
works by Lacy, Townes & Hollenbach (1982), Rees (1988), Evans &
Kochanek (1989) and Phinney (1989) is a t−5/3 decrease of the rate at
which the stellar debris fall back towards the black hole.1 The same

1 This rate was later shown to be dependent on the stellar structure (Lodato,
King & Pringle 2009; Guillochon & Ramirez-Ruiz 2013).
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slope is generally fitted to the observed TDE light curves (Esquej
et al. 2008; Gezari et al. 2008, 2009; Cappelluti et al. 2009) although
it is only expected in the X-ray band (Lodato & Rossi 2011). It
assumes that the accretion rate, and therefore the luminosity, traces
the fallback rate of the debris. In turn, this requires that the debris
circularize to form a disc and that this disc is accreted faster than
it is fed from the fallback stream. However, the mechanism driving
the circularization is still unknown.

Various effects are likely to be involved in this process, whose
common feature is to dissipate the kinetic energy of the debris,
injecting a large amount of thermal energy into the newly formed
disc. However, the efficiency of this energy transfer is certainly
dependent on the mechanism considered. The main candidates are
the following (Evans & Kochanek 1989; Kochanek 1994).

(i) Pancake shock: as the star is disrupted, part of its material is
accelerated out of the initial orbital plane. As a result, the debris
inside the stream have a range of inclinations. Their orbits are
therefore vertically focused and intersect the orbital plane close to
pericentre. At this point, the stream is strongly compressed, leading
to the formation of a pancake shock.

(ii) Self-crossing: when they reach pericentre, the debris experi-
ence changes of their apsidal angles driven by relativistic apsidal
precession or hydrodynamical effects. This can lead to the self-
crossing of the stream: as the leading parts move away from the
black hole after pericentre passage, they collide with the part that is
still falling back, generating shocks.

(iii) Shearing: as the stream comes back to pericentre, the or-
bits of the debris are radially focused due to their large range of
apocentres but small range of pericentres. This effect is similar to a
passage into a nozzle. The debris experience shearing at this point
as they have a range of apsidal angles and eccentricities induced
by the disruption of the star. This effect is enhanced by relativistic
apsidal precession: as they have a range of pericentre distances, the
orbits of the debris precess by different angles, leading to further
shearing.

If an accretion disc forms from the debris, its structure and
evolution are two additional uncertainties in the models of TDEs.
They depend on the relative efficiency of three processes (Evans &
Kochanek 1989): circularization, viscous accretion and radiative
cooling. Denoting the time-scales of these processes by tcirc, tvisc

and tcool, respectively, three limiting regimes are to be expected.
In the case tvisc < tcirc, viscosity may be important during the cir-
cularization process. If instead tvisc > tcirc, accretion begins only
once a disc is formed. In this case, if tcool < tcirc, the disc cools
during its formation and is therefore geometrically thin. If instead
tcirc < tcool, the disc puffs up while it forms due to its excess of
thermal energy. Many authors have assumed that the disc is geomet-
rically thin or slim (Cannizzo & Gehrels 2009; Strubbe & Quataert
2009; Cannizzo, Troja & Lodato 2011; Lodato & Rossi 2011; Shen
& Matzner 2014) using the standard α parametrization (Shakura
& Sunyaev 1973). Other investigations considered the possibility
of a geometrically thick disc (Loeb & Ulmer 1997; Coughlin &
Begelman 2014).

Numerical simulations of tidal disruptions (Evans & Kochanek
1989; Lodato et al. 2009) have often used smoothed particle hydro-
dynamics (SPH) primarily because of its ability to deal with large
regions of space devoid of gas. This technique is also well suited
to simulate the subsequent fallback of the debris towards the black
hole. The computational cost of such a simulation scales with the to-
tal number of SPH particles used to model the stream. To accurately
follow their evolution, each part of the stream must contain enough

particles. This condition is hard to fulfil for a long stream because
the SPH particles are spread on a large volume. The length of the
stream increases with the stellar to black hole mass ratio q and with
the eccentricity e of the star. The typical values of these parameters
are q = 106 and e = 1. This extreme value of e comes from the fact
that most disrupted stars are scattered from the sphere of influence
of the SMBH, which is much larger than the tidal radius (Frank &
Rees 1976). For the Milky Way, the ratio of these two distances is
∼105. However, as noted by Ayal, Livio & Piran (2000), following
the fallback of the debris for these typical values of q and e numeri-
cally is a computational burden. In their simulation, the leading part
of the stream is composed of very few SPH particles that come back
almost one by one towards the black hole. As a result, the evolution
of these particles cannot be followed accurately. Even if they use
a relatively low number of particles (N = 4295), this issue is so
extreme that it is likely to persist for larger particle numbers. The
high computational cost of such a simulation is not limited to SPH
but generalizes to other computational techniques.

In the few other investigations of this problem, either q or e has
therefore been lowered. The first option has been chosen by several
authors (Ramirez-Ruiz & Rosswog 2009; Guillochon, Manukian
& Ramirez-Ruiz 2014) who investigated q = 103 and e = 1. The
physical motivation in this case is the tidal disruption of a star by
an intermediate-mass black hole. Both pancake shock and shearing
were shown to be inefficient at circularizing the debris in this case.
Instead, the main effect seen in these simulations is the expansion of
the stream caused by its pericentre passage. Circularization is more
likely driven by self-crossing either induced by this expansion or
by relativistic apsidal precession. Hayasaki, Stone & Loeb (2013)
made the second choice, as in the present paper, which corresponds
to tidal disruptions of bound stars. They considered q = 106 and e
= 0.8 and found that self-crossing driven by relativistic precession
efficiently drives the circularization of the debris in this case.

Several mechanisms are able to put a star on a bound orbit enter-
ing the tidal radius of an SMBH. The first involves an unequal-mass
SMBH binary interacting with a surrounding stellar cusp. In this
situation, bound stars can be scattered inside the tidal radius of the
primary black hole through a combination of Kozai interactions and
close encounters with the secondary black hole (Chen et al. 2009,
2011). The second mechanism takes place during the coalescence of
an SMBH binary. Due to the anisotropic emission of gravitational
waves in this phase, the remnant black hole undergoes a kick. It can
lead to close encounters between the black hole and the surround-
ing stars leading to their tidal disruptions (Stone & Loeb 2011).
Furthermore, mean-motion resonances can pull surrounding stars
inwards during the final phase of the SMBH merger (Seto & Muto
2010), enhancing the rate of tidal disruptions of bound stars by this
mechanism. The third mechanism takes place after the tidal sepa-
ration of a stellar binary by a black hole, which places one of the
components on an eccentric orbit. Due to both encounters with the
other stars orbiting the SMBH and gravitational wave emission, its
orbit shrinks and circularizes. Under certain conditions, it can then
be tidally disrupted by the SMBH on a bound orbit (Amaro-Seoane,
Miller & Kennedy 2012).

In this paper, we use SPH simulations to investigate the circular-
ization process leading to the formation of the disc. We also char-
acterize the structure and evolution of this disc. Relativistic apsidal
precession, involved in the circularization process, is treated ex-
actly while most previous studies (Ramirez-Ruiz & Rosswog 2009;
Hayasaki et al. 2013; Guillochon et al. 2014) used an approximate
treatment of this effect. The parameters that are likely to play a
significant role in the circularization process have also been varied.
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Two extreme cooling efficiencies, encoded in the equation of state
(EOS) of the gas, have been considered. The effect of the orbit of the
star has also been examined, by varying both its penetration factor
and its eccentricity. Our results demonstrate that circularization is a
fast process, happening in a few orbits of the debris around the black
hole, and driven mostly by relativistic apsidal precession. They also
confirm the expected effect of the cooling efficiency on the struc-
ture of the resulting disc. In addition, we found different channels
of circularization for different orbits of the star. In particular, by
increasing its eccentricity, we got insight into the circularization
process at work in the standard parabolic case.

This paper is organized as follows. In Section 2, we describe
the SPH simulations performed. The results of these simulations
are presented in Section 3 varying the following parameters: the
gravitational potential, the EOS, the depth of the encounter and the
eccentricity of the star. The effect of the resolution on these results
is also examined. These results are discussed in Section 4 and
compared to other studies by Shiokawa et al. (2015) and Hayasaki,
Stone & Loeb (2015) that appeared at the same time as this paper.

2 SPH SIMULATIONS

We investigate the tidal disruption of a star of mass M∗ = 1 M�
and radius R∗ = 1 R� by a non-rotating black hole of mass Mh =
106 M�. In this configuration, the tidal radius is Rt = R∗(Mh/M∗)1/3

= 100 R�. Several initial elliptical orbits of the star are considered.
They have different pericentre distances Rp defined via the penetra-
tion factor β = Rt/Rp by setting β = 1 and β = 5. It corresponds to
pericentre distances Rp = 100 and 20 R�, respectively. For β = 1,
only an eccentricity e = 0.8 is considered. For β = 5, two different
values e = 0.8 and 0.95 are investigated. For these orbits, all the
debris produced by the disruption stay bound to the black hole. This
is generally the case if e < ecrit = 1 − (2/β)(Mh/M∗)−1/3, where ecrit

= 0.996 and 0.98 for β = 5 and 1, respectively. The semi-major axis
a∗ = Rp/(1 − e) of these orbits ranges between 100 and 500 R�,

corresponding to orbital periods P� = 2π
(
GMh/a

3
�

)−1/2
between

2.8 and 31 h.
Both the disruption of the star and the subsequent fallback of the

debris towards the disruption site are simulated using SPH. To in-
crease efficiency, the simulations of these two phases are performed
separately and make use of two different codes, each adapted to a
specific phase. For the disruption phase, we use a code that takes
into account self-gravity (Bate, Bonnell & Price 1995). For the
fallback phase, we do not consider self-gravity and make use of
the highly efficient code PHANTOM (Price & Federrath 2010; Lodato
& Price 2010) that is optimized for studying non-self-gravitating
problems.2 This choice is legitimate because the self-gravity force
is only needed during the disruption phase where it opposes the
tidal force of the black hole. In the fallback phase, the gravitational
interactions between the debris are negligible compared to their
hydrodynamical interactions and the tidal force of the black hole.
The disruption phase is followed until the most bound debris come
back to pericentre. Their properties are recorded at this point and
constitute the initial conditions for the simulation of the fallback
phase. As this paper’s primary focus is on the fallback of the debris,
the disruption phase is only simulated to get these initial conditions
and not discussed in detail.

2 Self-gravity is now implemented into PHANTOM. However, it was not avail-
able at the beginning of this work.

The code used for the disruption phase has already been adopted
by Lodato et al. (2009) to simulate tidal disruptions of stars on
parabolic orbits. In the present paper, we follow the same procedure
and numerical set-up but consider elliptical orbits instead. Also
using the same method, we model the star as a polytropic sphere
with γ = 5/3 containing 100 K particles. However, as explained in
Section 3.4, the fallback phase is simulated at a higher resolution
with the stream of debris containing 500 K particles.

In order to resolve the shocks, the code used for the fallback
phase, PHANTOM, includes the standard artificial viscosity prescrip-
tion that depends on the parameters αAV and βAV. In addition, the
Morris & Monaghan (1997) switch is implemented to reduce arti-
ficial dissipation away from shocks. To this end, αAV is allowed to
vary between two values αAV

min and αAV
max according to a source and

decay equation. In this paper, we use αAV
min = 0.01, αAV

max = 1 and
βAV = 2.

The orbits considered for the star have pericentre distances com-
parable with the gravitational radius Rg = GMh/c2 of the black
hole. More precisely, Rp = 47Rg and 9.4Rg for β = 1 and 5. There-
fore, relativistic effects must significantly affect the motion of the
gas when it passes at pericentre. One of these effects is relativistic
apsidal precession, a mechanism involved in the circularization pro-
cess causing the orbit of a test particle to precess at each pericentre
passage by a given precession angle. For the orbits considered, the
precession angle varies between 13.5 and 89.7 deg for β = 1 and
5, respectively. In order to investigate the influence of relativistic
effects, the black hole is modelled by an external potential that is
either Keplerian or relativistic both in the disruption and the fall-
back phase. In the following, the variables are labelled by the letter
K if they are computed in the Keplerian potential and by the letter
R if they are computed in the relativistic potential. These potentials
are, respectively, given by

�K = −GMh

R
, (1)

�R = −GMh

R
−

(
2Rg

R − 2Rg

) [(
R − Rg

R − 2Rg

)
v2

r + v2
t

2

]
, (2)

where vr and vt are the radial and tangential velocity of a test particle,
respectively. We adopt this relativistic potential, designed by Tejeda
& Rosswog (2013), because it contains an exact treatment of apsidal
precession around a non-rotating black hole. In other words, the
value of the precession angle for a test particle on a given orbit is
the same in this potential and in the Schwarzschild metric. This is
an improvement compared to most previous investigations that used
an approximate treatment of this effect (Ramirez-Ruiz & Rosswog
2009; Hayasaki et al. 2013; Guillochon et al. 2014).

For the disruption phase, the star is initially placed at the apoc-
entre of its orbit, a distance Ra = (1 + e)Rp/(1 − e) from the black
hole. Its initial velocity va is determined by conservation of specific
orbital energy and angular momentum between Ra and Rp. In the
Keplerian and relativistic potentials, the specific orbital energy is
given by

εK = 1

2

(
v2

r + v2
t

) − GMh

R
, (3)

εR = 1

2

[(
R

R − 2Rg

)2

v2
r +

(
R

R − 2Rg

)
v2

t

]
− GMh

R
, (4)

and the specific angular momentum by

lK = Rvt, (5)
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lR = Rvt

R − 2Rg
, (6)

respectively. The initial velocity of the star at apocentre is therefore

vK
a =

(
GMh

Ra

)1/2 (
2Rp

Ra + Rp

)1/2

(7)

=
(

GMh

Ra

)1/2

(1 − e)1/2 , (8)

vR
a =

(
GMh

Ra

)1/2 21/2Rp(Ra − 2Rg)

Ra((Ra + Rp)(Rp − 2Rg) + 2RgR2
p)1/2

, (9)

depending on the potential.
In order to demonstrate the correct implementation of the rela-

tivistic potential into the SPH codes, we anticipate the next section
and analyse the motion of the gas in the simulation associated with
model RI5e.8. In this model, the relativistic potential is used and the
orbit of the star has a penetration factor β = 5 and an eccentricity e
= 0.8. Fig. 1 shows the trajectory of the centre of mass of the gas in
the simulation corresponding to model RI5e.8 compared to that of a
test particle on the same orbit in the relativistic potential and in the
Schwarzschild metric. The trajectory of the test particle in the rela-
tivistic potential and in the Schwarzschild metric is followed for four
orbits. That of the centre of mass of the gas is followed during both
the disruption of the star and the fallback of the debris until t/P� = 8.
The trajectory of the test particle is the same in the relativistic po-
tential and in the Schwarzschild metric, confirming that apsidal
precession is treated accurately in the relativistic potential as found
by Tejeda & Rosswog (2013). During the disruption and the begin-
ning of the fallback phase, the centre of mass of the gas and the test
particle have the same trajectory, validating the implementation of
the potential into the SPH codes. After a few pericentre passages,
the two trajectories start to differ as the hydrodynamical effects
on the debris become dominant. This evolution will be investigated
in detail in the next section.

The accretion on to the black hole is modelled by an accretion
radius fixed at the innermost stable circular orbit of 6 Rg for a non-
rotating black hole. Particles entering this radius are removed from
the simulations.

The simulation of the fallback phase is performed for two dif-
ferent EOS for the gas: locally isothermal and adiabatic. For the
locally isothermal EOS, each SPH particle keeps their initial spe-
cific thermal energies. Physically, these two EOS represent the two
extreme cases for the rate at which an excess of thermal energy is
radiated away from the gas. For the locally isothermal one, every
increase of thermal energy is instantaneously radiated away while
for the adiabatic one, none of this energy is radiated.

Four parameters are therefore considered to simulate the fallback
of the debris: the potential, the EOS, the penetration factor β and the
eccentricity e. The values of these parameters for the eight models
investigated in this paper are shown in Table 1.

3 R ESULTS

In this section, we present the results of the simulations for the fall-
back phase.3 The time is scaled by the period of the star P� with the

3 Movies of the simulations presented in this paper are available at
http://home.strw.leidenuniv.nl/∼bonnerot/research.html.

Figure 1. Trajectory of the centre of mass of the gas in the simulation
corresponding to model RI5e.8 (black solid line) compared to that of a test
particle on the same orbit in the relativistic potential (red dashed line) and in
the Schwarzschild metric (blue dotted line). All the trajectories start at the
initial position of the star indicated by the brown point on the right of the
figure. The black arrow specifies the direction of motion. The trajectory of
the test particle in the relativistic potential and in the Schwarzschild metric
is followed for four orbits. That of the centre of mass of the gas in the
simulation is followed during the disruption of the star and the fallback of
the debris until t/P� = 8. The transition between the disruption and the
fallback phase, treated with two different codes, is indicated by the green
dash perpendicular to this trajectory. After a few pericentre passages, the
motion of the gas is affected by hydrodynamical effects and the trajectory
of its centre of mass differs from that of a test particle.

Table 1. Name and parameters of the different models.

Model Potential EOS β e

RI5e.8 Relativistic Locally isothermal 5 0.8
KI5e.8 Keplerian Locally isothermal 5 0.8
RA5e.8 Relativistic Adiabatic 5 0.8
KA5e.8 Keplerian Adiabatic 5 0.8
RI1e.8 Relativistic Locally isothermal 1 0.8
RA1e.8 Relativistic Adiabatic 1 0.8
RI5e.95 Relativistic Locally isothermal 5 0.95
RA5e.95 Relativistic Adiabatic 5 0.95

starting point (t/P� = 0) being when the most bound debris of the
stream come back to pericentre. The circularization process is in-
vestigated through the evolution of both the position and the specific
orbital energy of the debris. They will be, respectively, compared
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to the so-called circularization radius and specific circularization
energy.

These two quantities are defined as follows. Before the disruption,
the distribution of angular momentum of the gas inside the star is
sharply peaked around that of the star. As this distribution is not
significantly affected by the disruption, the debris still have similar
angular momenta. Assuming that they then move from their initial
eccentric orbits to circular orbits each of them conserving their
angular momentum, these circular orbits will form at similar radii. It
allows one to define a characteristic circularization distance, called
the circularization radius, obtained by equating the specific angular
momentum of the star, given by equations (5) and (6) evaluated at
apocentre, and the specific circular angular momentum given by

lK
c = (GMhR)1/2, (10)

lR
c = (GMh)1/2R

(R − 3Rg)1/2
. (11)

This yields a circularization radius of

RK
circ = R2

a v
2
a

GMh
= (1 + e)Rp, (12)

RR
circ = R4

a v
2
a + (R4

a v
2
a (−12 GMh(Ra − 2Rg)2Rg + R4

a v
2
a ))1/2

2GMh(Ra − 2Rg)2
,

(13)

where va is obtained from equation (7) or (9) depending on the
potential. The associated specific orbital energy, called specific cir-
cularization energy, is equal to the specific circular orbital energy
evaluated at the circularization radius. In the two potentials, it is
given by

εK
circ = − GMh

2RK
circ

= − GMh

2(1 + e)Rp
, (14)

εR
circ = − GMh

2RR
circ

(
RR

circ − 4Rg

RR
circ − 3Rg

)
. (15)

3.1 Impact of relativistic precession

As mentioned in the previous section, relativistic precession mod-
ifies the trajectory of the debris at pericentre. This effect is the
strongest for the orbit with β = 5 and e = 0.8 where the precession
angle reaches 89.7 deg. This is because this orbit has the lowest
pericentre distance Rp = 9.4Rg and, to a smaller extent, the lowest
eccentricity. We investigate the role of relativistic precession for a
star on this orbit by comparing models RI5e.8 and KI5e.8. In model
RI5e.8, the relativistic potential is used and apsidal precession is
taken into account. In model KI5e.8, the debris are forced to move
on closed orbits by using a Keplerian potential. In both models, a
locally isothermal EOS is adopted for the gas.

We discuss model RI5e.8 first. The evolution of the debris can be
seen in Fig. 2 (upper panel), which shows snapshots of their fallback
towards the black hole at different times t/P� = 0, 1.2, 3 and 8. The
stream remains unaffected until t/P� � 1.2, corresponding to its
second pericentre passage. At this time, the stream self-crosses due
to apsidal precession leading to the formation of shocks that convert
kinetic energy into thermal energy. However, as a locally isothermal
EOS is used, this excess thermal energy is instantaneously removed
from the gas. The net effect of these shocks is therefore to reduce
kinetic energy. This results in a decrease of the average specific

orbital energy of the debris, whose evolution is shown in Fig. 3
(black solid line). As self-crossings occur at each pericentre pas-
sage, this decrease continues for t/P� � 1.2 through periodic phases.
These phases of decrease also become progressively steeper as
the self-crossings involve a larger fraction of the stream. Accord-
ingly, the specific orbital energy distribution, shown in Fig. 4 (upper
panel), shifts towards lower energies. Owing to this orbital energy
decrease, the debris progressively move from their initial eccentric
orbits to circular orbits. At t/P� � 8, their average specific orbital
energy reaches a value similar to the specific circularization energy
(Fig. 3, black solid line). By this time, they have settled into a thin
and narrow ring of radius comparable to the circularization radius
(Fig. 2, upper panel).

As can be seen from Figs 2 (upper panel) and 3 (black solid line),
the final specific orbital energy of the debris is somewhat larger than
the specific circularization energy, which results in a ring forming
slightly outside the circularization radius. These small discrepancies
are due to redistribution of angular momentum between the debris
during the shocks where a fraction of them (3 per cent at t/P� = 8)
loses enough angular momentum to be accreted on to the black hole.
This causes an excess angular momentum shared by the remaining
debris, which therefore settle into circular orbits at radii larger than
the circularization radius. Notably, these discrepancies are reduced
when the resolution of the simulations is increased, as will be shown
in Section 3.4.

We now discuss model KI5e.8 for which the evolution of the
debris, shown in Fig. 2 (lower panel), is very different. As there is
no apsidal precession, the stream does not self-cross. Therefore, no
kinetic energy is removed from the debris and their specific orbital
energy remains constant (Fig. 3, red dashed line). Their specific
orbital energy distribution also stays peaked around its initial value
although it spreads somewhat due to tidal effects (Fig. 4, lower
panel). Consequently, the debris do not move to circular orbits and
settle instead at t/P� � 8 into an elliptical strip centred around the
initial orbit of the star (Fig. 2, lower panel).

The comparison of models RI5e.8 and KI5e.8 shows the funda-
mental role of apsidal precession in the circularization process. Our
more accurate treatment of apsidal precession confirms the results
of Hayasaki et al. (2013).

3.2 Influence of the cooling efficiency

The models discussed in the previous subsection (RI5e.8 and
KI5e.8) use a locally isothermal EOS for the gas. We now dis-
cuss models RA5e.8 and KA5e.8, which use an adiabatic EOS for
the gas instead. The potential used is relativistic for model RA5e.8
and Keplerian for model KA5e.8. The star is on the same orbit as
before with β = 5 and e = 0.8.

We discuss model RA5e.8 first. The evolution of the debris as
they fall back towards the black hole is shown in Fig. 5 at different
times t/P� = 0, 1.2, 3 and 8. The stream self-crosses at t/P� � 1.2
and experiences shocks which convert kinetic energy into thermal
energy. This early evolution is similar to model RI5e.8. However,
the subsequent behaviour differs. As the EOS is adiabatic, the ther-
mal energy produced by the shocks is not removed but kept in the
debris. As more self-crossings occur, more thermal energy is in-
jected into the stream which expands under the influence of thermal
pressure. During the expansion, the ordered motion of the stream
is suppressed and the debris depart from their initial eccentric or-
bits. This is achieved via a redistribution of their orbital parameters
which can be seen in Fig. 6 by a spread in the distributions of
specific orbital energy (upper panel) and angular momentum (lower
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Figure 2. Snapshots of the fallback of the debris at different times t/P� = 0, 1.2, 3 and 8 for models RI5e.8 (upper panel) and KI5e.8 (lower panel). For these
models, the period of the star P� is 2.8 h. The colours correspond to the column density � of the gas whose value is indicated on the colour bar. The white point
represents the black hole. The white dashed circle on the last snapshot represents the circularization radius given by equations (12) and (13) for the Keplerian
and relativistic potentials, respectively.

panel). The latter also presents a tail at large angular momenta that
reaches, at t/P� � 8, the specific circular angular momentum at the
semi-major axis of the star, indicated in the lower panel of Fig. 6
by a vertical black dotted line. Accordingly, the debris settle into a
thick and extended torus with most of the gas located between the
circularization radius and the semi-major axis of the star (Fig. 5). At
this time, the majority of the debris (91 per cent) are still bound to
the black hole as indicated by their negative specific orbital energies
(Fig. 6, upper panel).

Remarkably, a significant fraction of the debris are ballistically
accreted on to the black hole during the formation of the torus. The
fraction of accreted gas grows roughly linearly to reach 26 per cent
at t/P� � 8. Fig. 7 shows the evolution of the average specific or-
bital energy of all the debris (black solid line), the non-accreted
(red dashed line) and accreted (blue long dashed line) ones. When
all the debris are considered, their orbital energy decreases due to
the shocks where it is converted into thermal energy. However, it
does not reach the circularization energy as part of the thermal
energy is transferred back into kinetic energy during the expan-
sion. The accreted debris are those which experienced the largest
decrease of kinetic energy during the shocks as can be seen from
their lower orbital energy. They also have the largest thermal en-
ergy which is therefore advected on to the black hole. The thermal
energy of the torus is thus reduced due to both its expansion and
the accretion of the hottest debris. Instead of decreasing, the or-
bital energy of the non-accreted debris stays constant. This is due

to the accretion of debris with low orbital energies which results
in an excess orbital energy shared among the non-accreted de-
bris. As the accreted debris also have the lowest angular momenta,
their accretion leads to an increase of the angular momentum of
the remaining debris which results in a slight shift of the spe-
cific angular momentum distribution to larger values (Fig. 6, lower
panel).

A more precise analysis of the torus formed at t/P� = 8 can be
done by examining its internal configuration. Fig. 8 shows a cross-
section in the R–z plane, where z represents the height with respect
to the mid-plane and R the cylindrical radius. It exhibits funnels
around the rotation axis. It also contains a dense inner region at
z/Rt � 0.5 and R/Rt � 1 that corresponds to the semi-major axis
of the star. This dense region is surrounded by a more diffuse one
that extends from close to the black hole to R/Rt � 2.5 and z/Rt

� 1.5. To assess the internal equilibrium of the torus, we plot in
Fig. 9 azimuthally averaged ratios of the pressure force (upper
panel) and centrifugal force (lower panel) to the gravitational force
projected in the spherical radial direction as a function of R and
for different intervals of z: |z/Rt| < 0.5, 0.5 < |z/Rt| < 1, 1 <

|z/Rt| < 1.5 and 1.5 < |z/Rt| < 2. The ratio of the pressure force to
the gravitational force is roughly (Fp/Fg)r � 0.2 in the entire torus
implying that it is not hydrostatically supported. However, the ratio
of the centrifugal force to the gravitational force is larger. For |z/Rt|
< 0.5, it presents a maximum of (Fc/Fg)r � 1 at R/Rt � 0.3 and
decreases at larger radii. The same dependence exists for regions
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Figure 3. Evolution of the average specific orbital energy of the debris for
models RI5e.8 and KI5e.8. For these models, the period of the star P� is
2.8 h. The average specific orbital energy is shown relative to the specific
circularization energy given by equations (14) and (15) for the Keplerian
and relativistic potentials, respectively.

Figure 4. Specific orbital energy distributions of the debris at different
times t/P� = 0, 2, 4, 6 and 8 for model RI5e.8 (upper panel) and KI5e.8
(lower panel). For these models, the period of the star P� is 2.8 h. The specific
orbital energy is shown relative to the specific circularization energy given
by equations (14) and (15) for the Keplerian and relativistic potentials,
respectively.

further from the mid-plane but for lower maxima of (Fc/Fg)r � 0.5–
0.8. Therefore, this torus is mostly centrifugally supported against
gravity with this support being stronger in its inner region. As they
are bound to the black hole, the regions that are not supported
against gravity will stop expanding and collapse at a later time.
This collapse is likely to cause the formation of shocks in the outer
part of the torus which would increase hydrostatic support in this
region.

For model KA5e.8, the stream does not experience apsidal pre-
cession. However, it is heated when it passes at pericentre. This

is due to the formation of the pancake shock described in the in-
troduction. As a result, it expands roughly by a factor of 2 at each
pericentre passage both in the radial and vertical directions. It causes
the stream to self-cross at t/P� � 4 that is after its fifth passage at
pericentre. The subsequent evolution is similar to model RA5e.8.
The debris settle into a thick and extended torus at t/P� � 10. This
channel of disc formation is similar to that found by Ramirez-Ruiz
& Rosswog (2009). Therefore, relativistic apsidal precession is not
the only factor that can lead to circular orbits of the debris, but it is
the most efficient and operates regardless of the EOS used for the
gas.

As can be seen by comparing models RI5e.8 and RA5.8, the
cooling efficiency determines the structure of the disc formed during
the circularization process. While a thin and narrow ring forms at
the location of the circularization radius for an efficient cooling,
an inefficient cooling leads instead to the formation of a thick and
extended torus located between the circularization radius and the
semi-major axis of the star.

3.3 Dependence on the orbit of the star

So far, the fallback of the debris has been investigated for a fixed
orbit of the star with β = 5 and e = 0.8. We now consider two
new orbits obtained by decreasing the penetration factor (Section
3.3.1) and increasing the eccentricity (Section 3.3.2). Throughout
this section, the potential is fixed to relativistic. Models RI5e.8 and
RAe.8, discussed above for the initial orbit and this potential, will
be used as reference.

3.3.1 Decreasing the penetration factor

We start by decreasing the penetration factor to β = 1 keeping the
eccentricity to its initial value e = 0.8. This decrease of the penetra-
tion factor corresponds to an increase of the pericentre distance from
Rp = 9.4Rg to 47Rg. We investigate the fallback of the debris for a
star on this new orbit by discussing models RI1e.8 and RA1e.8. A
locally isothermal EOS is used for model RI1e.8 while an adiabatic
EOS is used for model RA1e.8. The relativistic potential is used in
both models.

We discuss model RI1e.8 first. Snapshots of the evolution of the
debris are shown in Fig. 10 at different times t/P� = 0, 2.2, 4, 6, 8
and 16. The first self-crossing of the stream occurs at t/P� = 2.2 that
is at its third pericentre passage. It causes the formation of shocks
that reduce the kinetic energy of the debris as a locally isothermal
EOS is used. However, as the stream passes further from the black
hole, relativistic precession is weaker than for model RI5e.8 with a
precession angle decreasing from 89.7 to 13.5 deg. Consequently,
the shocks happen further from the black hole and involve parts of
the stream with lower relative velocities. For this reason, they are
less efficient at removing kinetic energy from the debris. This results
in a slower and more gradual decrease of their average specific or-
bital energy, as seen from Fig. 11 that shows its evolution for model
RI5e.8 (black solid line) and RI1e.8 (red dashed line). At t/P� � 16,
the average specific orbital energy of the debris stabilizes at a value
similar to the circularization energy (Fig. 11, red dashed line) and the
debris settle into a thin and narrow ring of radius comparable to the
circularization radius (Fig. 10). As for model RI5e.8, the origin of
the small discrepancies with the specific circularization energy and
the circularization radius are due to the accretion on to the black hole
of a fraction of the debris (3 per cent at t/P� = 16) with low angular
momenta.
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Figure 5. Snapshots of the fallback of the debris at different times t/P� = 0, 1.2, 3 and 8 for model RA5e.8. For this model, the period of the star P� is 2.8 h.
The colours correspond to the column density � of the gas whose value is indicated on the colour bar. The white point represents the black hole. The white
dashed circle on the last snapshot represents the circularization radius given by equation (13) for the relativistic potential. The white dotted circle represents
the semi-major axis of the star.

Figure 6. Specific orbital energy distribution (upper panel) and specific
angular momentum distribution (lower panel) of the debris at different times
t/P� = 0, 2, 4, 6 and 8 for model RA5e.8. For this model, the period of the
star P� is 2.8 h. The specific orbital energy is shown relative to the specific
circularization energy given by equation (15) for the relativistic potential.
The specific angular momentum is shown relative to that of the star given
by equation (11) evaluated at apocentre.

For model RA1e.8, the evolution of the debris is very similar
to model RA5.8. The shocks produced by the self-crossings of the
stream lead to its expansion. The debris settle into a torus with most
of them located between the circularization radius and the semi-
major axis of the star. The only effect of modifying the orbit is to
change the value of these two limiting radii.

Figure 7. Evolution of the average specific orbital energy of all the debris,
the non-accreted and accreted ones for model RA5e.8. For this model, the
period of the star P� is 2.8 h. The average specific orbital energy is shown
relative to the specific circularization energy given by equation (15) for the
relativistic potential.

3.3.2 Increasing the eccentricity

We now keep the penetration factor to its initial value β = 5 while
increasing the eccentricity to e = 0.95. The fallback of the debris
is investigated for this new orbit by discussing models RI5e.95
and RA5e.95 which use respectively a locally isothermal and an
adiabatic EOS. The relativistic potential is adopted for both of them.

We discuss first model RI5e.95. Fig. 12 shows snapshots of the
fallback of the debris at different times t/P� = 0, 0.15, 0.25, 0.33,
0.5 and 1. The stream first crosses itself at t/P� � 0.15 just after the
first passage of its leading part at pericentre. When this occurs, most
of the debris are still falling back towards the black hole away from
the self-crossing point. This is different from model RI5e.8, for
which this self-crossing happens later and when most of the debris
are already beyond the self-crossing point (see Fig. 2). The reason
for these differences is that the stream is longer for model RI5e.95
than for model RI5e.8 owing to the larger eccentricity. After the first
self-crossing, the debris located beyond the self-crossing point are
expelled leaving the rest of the stream free to move around the black
hole. This induces a second self-crossing at t/P� � 0.33. These self-
crossings create shocks that remove kinetic energy from the debris
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Figure 8. Cross-section in the R–z plane of the torus formed at t/P� = 8
for model RA5e.8. z represents the height with respect to the mid-plane and
R the cylindrical radius. The distances are normalized by the tidal radius.
The black hole is at the origin. The colours correspond to the density ρ of
the gas whose value is indicated on the colour bar.

Figure 9. Azimuthally averaged ratios of the pressure (upper panel) and
centrifugal (lower panel) forces to the gravitational force projected in the
spherical radial direction as a function of the cylindrical radius R at t/P�

= 8 for model RA5e.8. These ratios are shown for different heights z with
respect to the mid-plane: |z/Rt| < 0.5, 0.5 < |z/Rt| < 1, 1 < |z/Rt| < 1.5
and 1.5 < |z/Rt| < 2. The distances are normalized by the tidal radius.

as a locally isothermal EOS is used. As shown in Fig. 11 (blue
long dashed line), the average specific orbital energy of the debris
therefore decreases for t/P� � 0.15. This decrease occurs faster than
for model RI5e.8 as the self-crossings involve larger fractions of the
debris. At t/P� � 1, their average specific orbital energy settles at a
value similar to the circularization energy (Fig. 11, blue long dashed
line) and they form a thin and narrow ring of gas located at a distance
comparable to the circularization radius (Fig. 12). As previously,
the discrepancies with the specific circularization energy and the
circularization radius are due to the accretion of a fraction of the
debris (4 per cent at t/P� = 1) with low angular momenta. These
discrepancies are larger for this model than for models RI5e.8 and
RI1e.8 because more debris are accreted and these debris have lower
angular momenta relative to that of the star.

For model RA5e.95, the debris evolve very similarly to model
RA5.8. They expand due to shocks produced by the self-crossings
of the stream. They settle into a thick and extended torus in which
most of the debris are located between the circularization radius and
the semi-major axis of the star. Only the value of these two limiting
radii differs for the new orbit.

3.4 Convergence of the results

The simulations of the fallback phase have been performed for three
different resolutions corresponding to about 100, 500 and 1300 K
particles. The two larger resolutions have been obtained from the
lowest one by using the particle splitting technique (Kitsionas 2003)
on the initial condition of the fallback phase. Each particle is split
into 5 or 13 additional ones with one at the position of the initial
particle and the others distributed on a tetrahedron and on a face-
centred cubic structure, respectively. In both cases, the distance
between additional particles is fixed to 1.5 times the smoothing
length of the initial one. In addition, the particles added outside the
volume defined by the initial ones have been removed. The fraction
of particles removed in this way is always less than 10 per cent. The
mass of the additional particles has then been decreased in order to
keep the total mass of the stream constant.

Minor differences have been noticed when the resolution is in-
creased. They are common to the different orbits considered. For
a locally isothermal EOS, the time at which the average specific
orbital energy of the debris settles is either advanced or delayed
by 
t � P� between the 100 and the 500 K simulations. However,
this difference becomes negligible between the 500 and 1300 K
simulations. Both for a locally isothermal and an adiabatic EOS,
increasing the resolution also results in a smaller fraction of debris
with low angular momenta being accreted on to the black hole. For
the isothermal EOS, this causes the average specific orbital energy
of the debris to settle at a value closer to the specific circularization
energy. The fraction of debris accreted during the disc formation
decreases to less than 5 per cent in this case. We therefore attribute
it to resolution. For the adiabatic EOS, the torus turns out to be
slightly more compact and centrally condensed. However, its inter-
nal structure remains the same. The fraction of accreted debris also
decreases in this case but remains larger than 25 per cent, and is
likely to be physical. The simulations presented in this paper have
been performed for 500 K particles as both the final configuration
of the debris and the time needed to reach it are unchanged above
this resolution. Overall, we conclude that the behaviour described
in the previous subsections is robust with respect to resolution.
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Figure 10. Snapshots of the fallback of the debris at different times t/P� = 0, 2.2, 4, 6, 8 and 16 for models RI1e.8. For this model, the period of the star P�

is 31 h. The colours correspond to the column density � of the gas whose value is indicated on the colour bar. The white point represents the black hole. The
white dashed circle on the last snapshot represents the circularization radius given by equation (13) for the relativistic potential. Apsidal precession is weaker
for this model than for model RI5e.8 owing to a larger pericentre, which causes the stream to self-cross further out from the black hole. At this location, relative
velocities are lower, weakening the shocks. The debris therefore move slower to circular orbits.

4 D I S C U S S I O N A N D C O N C L U S I O N

By means of SPH simulations, we investigated the circularization
process for tidal disruptions of stars on bound orbits by a non-
rotating black hole. The formation of an accretion disc from the
debris is mostly driven by relativistic apsidal precession that causes
the stream to self-cross. If cooling is inefficient, this self-crossing is
also partially caused by an expansion of the stream, when it passes
at pericentre. In addition, we showed that the structure of the disc
depends on the cooling efficiency of the gas by considering two
extreme cases. For an efficient cooling, the debris form a thin and
narrow ring of gas. For an inefficient cooling, they settle into a thick
and extended torus, which at the end of our simulation is still mostly
centrifugally supported against gravity. We also demonstrated the
existence of different regimes of circularization for different orbits
of the star. The circularization time-scale tcirc varies from ∼P� for
the largest eccentricity to ∼10P� for the lowest penetration factor
considered (see Fig. 11). In physical units, it corresponds to tens to
hundreds of hours.

The circularization process in TDEs has been the focus of sev-
eral other recent works. Shiokawa et al. (2015) simulated the tidal

Figure 11. Evolution of the average specific orbital energy of the debris for
models RI5e.8, RI1e.8 and RI5e.95. For these models, the periods of the star
P� are, respectively, 2.8, 31 and 22 h. The average specific orbital energy is
shown relative to the specific circularization energy given by equation (15)
for the relativistic potential.
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Figure 12. Snapshots of the fallback of the debris at different times t/P� = 0, 0.15, 0.5 and 1 for models RI5e.95. For this model, the period of the star P� is
22 h. The colours correspond to the column density � of the gas whose value is indicated on the colour bar. The white point represents the black hole. The
white dashed circle on the last snapshot represents the circularization radius given by equation (13) for the relativistic potential. The stream is longer for this
model than for model RI5e.8 as the eccentricity is larger. As a result, the self-crossings involve a larger fraction of the debris, causing them to move faster to
circular orbits.

disruption of a white dwarf on a parabolic orbit around a 500 M�
black hole using a general relativistic simulation while Hayasaki
et al. (2015) considered the case of bound orbits around a 106 M�
black hole. The latter use a simulation set-up similar to ours but our
treatment of apsidal precession is more accurate and we consider
a larger range of orbits. Both studies noticed the influence of the
cooling efficiency on the disc structure. In addition, Hayasaki et al.
(2015) investigated the effect of the black hole spin. As anticipated
by Dai, Escala & Coppi (2013), they found that nodal precession can
prevent the self-crossing of the stream, delaying circularization. Us-
ing Monte Carlo calculations, Guillochon & Ramirez-Ruiz (2015)

found that this delay is of one year on average for a star on a
parabolic orbit.

4.1 Thermal energy radiation

During the circularization process, thermal energy is injected into
the debris at the expense of their kinetic energy. If they cool effi-
ciently, this thermal energy increase can be estimated by subtract-
ing the final circularization energy to the initial orbital energy of
the star. It amounts to 
U = M�(εR − εR

circ) � few 1051–1052 erg
for the orbits considered, according to equations (4) and (15). For
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larger β, 
U is larger because the circularization energy is lower.
Assuming that this excess thermal energy is radiated during the disc
formation, it gives rise to a flare of luminosity Lcirc = 
U/tcirc �
few 10–103 LEdd, increasing with β, as tcirc is shorter and 
U is
larger.

As described in Section 3.2, if the excess thermal energy is not
radiated instantaneously, it is partially transferred back into kinetic
energy or advected on to the black hole. As a result, the remaining
thermal energy of the torus is ∼10 per cent of the above 
U. The
associated heating rate is therefore 
U/tcirc � few 1–102 LEdd. Note
that at the end of our simulation, the torus has not yet settled into
an equilibrium configuration as we observe outflowing material.

4.2 Viscous evolution

Debris on circular orbits are subject to viscous effects which drive
their accretion on to the black hole. Viscosity is not explicitly in-
cluded in the simulations presented above. Nevertheless, its in-
fluence can be estimated a posteriori by computing the viscous
time-scale tvisc. In our simulations, disc formation is progressive.
A fraction of the debris already forms a disc-like structure before
complete circularization. An example of such a structure can be
seen in Fig. 12 at t/P� = 0.33. We consider that viscosity can start
acting on these debris at t < tcirc which may lead to their accretion
before complete circularization if tvisc < tcirc. For simplicity, tvisc is
computed for the final configuration of the disc although it is used
to evaluate viscous effects as the debris proceed towards this con-
figuration. If the debris cool efficiently, they settle into a thin ring
around the circularization radius. At this distance from the black
hole,

tvisc

P�

= 3 × 103
( α

0.1

)−1
(

H/R

10−2

)−2 (
1 − e2

0.36

)3/2

, (16)

where α is the viscosity parameter (Shakura & Sunyaev 1973) and
H/R is the aspect ratio of the disc. The circularization radius is
obtained from equation (12) which is at the origin of the (1 − e2)3/2

factor. For all orbits considered, tvisc > tcirc, largely independently
of the values of α and H/R. Therefore, viscosity should not have a
significant effect during circularization, and most of the accretion
will occur once the ring is formed. At the end of circularization, the
viscous time-scale, given by equation (16), corresponds to an accre-
tion rate Ṁ = M�/tvisc � few 1–100 ṀEdd depending on the orbit,
ṀEdd being the Eddington accretion rate for a radiative efficiency of
10 per cent. We therefore speculate that, due to this super-Eddington
accretion, the ring will subsequently evolve into a thicker structure
under the influence of radiation pressure.

If the gas cools inefficiently, it settles into a thick torus located
between the circularization radius and the semi-major axis of the
star. At the semi-major axis of the star,

tvisc

P�

= 2
( α

0.1

)−1
(

H/R

1

)−2

, (17)

which does not depend explicitly on the orbit of the star as P� cancels
out. For the above values of α and H/R, tvisc � tcirc which is sensitive
to the values chosen for these parameters. However, when evaluated
at the circularization radius, tvisc is lower by a factor (1 − e2)3/2 �
few 10−2–10−1 depending on the orbit. The precise value of the
viscous time-scale thus depends on the mass distribution within
the torus, being shorter if more mass is close to the circularization
radius. We therefore conclude that viscosity may affect the evolution
of the debris during the circularization process causing some of them
to be accreted. During its subsequent evolution, the torus will keep

accreting matter with an accretion rate Ṁ = M�/tvisc � 104 ṀEdd

for the different orbits considered. For these highly super-Eddington
accretion rates, the subsequent evolution of the torus is difficult to
predict.

4.3 Evaluation of the cooling efficiency

In the simulations presented in this paper, two extreme cooling
efficiencies have been considered. The ability of the debris to cool
can be estimated a posteriori by computing the diffusion time-
scale tdiff defined as the time that photons take to diffuse out of the
surrounding gas. As most of the thermal energy is produced by the
shocks occurring when the stream self-crosses, the diffusion time-
scale must be evaluated at the location of these shocks. Since we
find that the gas is optically thick to electron scattering, it is given
by tdiff = Hsh τ/c, where τ = σ TρshHsh/mp is the optical depth, and
Hsh and ρsh are the width and density of the gas at the location of
the shocks. When an efficient cooling is assumed, the width of the
stream remains Hsh � R�. To ensure self-consistency, the condition
tdiff < tcirc has to be satisfied, which translates into an upper limit
on the density

ρsh < 8 × 10−7 g cm−3
( ncirc

5

) (
Hsh

R�

)−2 (
a�

100 R�

)3/2

, (18)

where ncirc = tcirc/P�. Among the different orbits considered, this
condition is satisfied only for that with β = 1. In general, we es-
timate that increasing the eccentricity e of the star tends to favour
an efficient cooling of the debris. This is because it leads to a more
extended and tenuous stream, decreasing ρsh. Condition (18) is
therefore more easily fulfilled. Instead, increasing the penetration
factor β may favour an inefficient cooling. It causes the stream to
self-cross closer to the black hole. The debris are therefore located
in a smaller volume which increases ρsh. Furthermore, they circular-
ize faster which decreases ncirc. Condition (18) is thus more difficult
to fulfil. However, these estimates are only approximate. The abil-
ity of radiation to escape depends on the precise location within
the stream at which the thermal energy is deposited by the shocks.
It also varies with the density distribution of the debris which is
highly inhomogeneous at the time when most of the shocks occur.
Furthermore, this radiation could also affect the structure of the
disc through radiation pressure. A realistic treatment of the interac-
tion between gas and radiation is therefore necessary to determine
precisely the influence of cooling during the circularization process.

4.4 Extrapolation to parabolic orbits

As mentioned in the introduction, TDEs typically involve stars on
parabolic orbits. In this paper, we chose to simulate the disruption
of stars on bound orbits instead. This choice is motivated by a lower
computational cost which allows us to explore a larger parameter
space. However, the results can be extrapolated to get insight into
the typical case of parabolic orbits.

The bound orbits considered in the simulations satisfy the con-
dition e < ecrit = 1 − (2/β)(Mh/M�)−1/3, so that all the debris are
bound to the black hole. Furthermore, all the debris have periods
similar to that of the star, P�. Instead, in the case of parabolic orbits,
part of the debris become unbound from the black hole. Therefore,
the tidal stream has a large range of periods between that of the
most bound debris tmin and +∞. This means that it features an
elongated tail of debris which will continue to fall back towards
pericentre long after the most bound ones have reached it. Due to
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apsidal precession, the leading part of the stream will inevitably
collide with this tail after its first passage at pericentre. By means
of point particle calculations in the Schwarzschild metric, we found
that this prompt self-crossing occurs in general for an eccentricity
e � 0.9 largely independent of β. As discussed in Section 3.3.2, it
happens for model RI5e.95 where e = 0.95 and β = 5 (see Fig. 12).
In this case, the self-crossing leads to circularization on a time-scale
tcirc � P�. Therefore, for a parabolic orbit with β = 5, we expect
a disc to form from the most bound debris due to this prompt self-
crossing on a time-scale tcirc � tmin, where tmin replaces P� as the
period of the most bound debris. In this case, the newly formed disc
is only composed of the tip of the stream, which falls back within
∼tmin. We expect the debris infalling later to rapidly circularize and
join this disc. The time-scale tcirc for the most bound debris to cir-
cularize is less clear for a parabolic orbit with β = 1 as apsidal
precession is weaker. For model RI1e.8 where e = 0.8 and β = 1,
it is tcirc � 10 P�. However, the presence of a tail of debris would
cause the self-crossing to affect the middle of the stream instead
of its extremities, which likely makes the shocks more disruptive.
On the other hand, the self-crossing happens further out from the
black hole. This is because the apocentre of the most bound debris
is about 10 times larger for a parabolic orbit than for a bound one
with e = 0.8. Relative velocities are lower at this location, which
likely weakens the shocks. Therefore, tcirc may remain ∼10 tmin for
a parabolic orbit with β = 1. In this case, a significant mass of
debris falls back within tcirc, while the most bound ones circularize.
Whether all this mass has circularized by tcirc is unclear.

Based on our estimates in Section 4.3, conditions for efficient
cooling are more easily met for parabolic orbits than for elliptical
ones. However, how efficient the cooling is also depends on the
penetration factor, as large β favours the formation of denser re-
gions. In general, we expect the cooling efficiency to have the same
effect on the disc structure as found in our simulations. If cooling
is efficient throughout the evolution, a thin ring forms around the
circularization radius. If it is inefficient, a thick torus forms located
between the circularization radius and around the semi-major axis
of the most bound debris. This allows us to extrapolate to the case
of parabolic orbits the discussion in Sections 4.1 and 4.2.

If cooling is efficient, the increase of thermal energy experi-
enced by the debris during circularization is equal to the total
change in orbital energy of the most bound debris. It amounts to

U = f M�(εR − εR

circ) � few 1051 erg according to equations (4)
and (15). For β = 1, this estimate assumes that all the debris falling
back within tcirc have circularized. The factor f accounts for the
fact that only a fraction of the debris reaches the black hole within
tcirc in the parabolic case. Numerically, f � 0.2–0.4 for tcirc = 1–
10 tmin assuming a flat energy distribution. If this thermal energy
is radiated during tcirc, it leads to a luminosity Lcirc = 
U/tcirc �
few 1–10 LEdd. Remarkably, it is comparable to or higher than the
peak luminosity in the soft X-ray band from the viscous accretion
through the disc (Lodato & Rossi 2011). If the thermal energy is not
immediately radiated but partly used to expand the disc or advected
on to the black hole, the remaining thermal energy of the torus is
∼10 per cent of the above 
U, a percentage extrapolated from the
case of bound orbits. The heating rate is then 
U/tcirc � few 0.1–
1 LEdd. This roughly agrees with the value found by Shiokawa et al.
(2015), scaling their results to our parameters for the black hole and
the star (Piran et al. 2015).

The effect of viscosity can be estimated in the case of parabolic
orbits by computing the viscous time-scale tvisc, obtained from equa-
tions (16) and (17) replacing P� and e by the period and eccentricity
of the most bound debris tmin and ecrit. As for bound orbits, we

expect the disc to form progressively, with a fraction of the debris
rapidly reaching a disc-like structure. For β = 1, these circularized
debris could already be present before most of the final disc mass
reaches pericentre. On these debris, viscosity may start acting even
before the disc completely settles. If cooling is inefficient, we find
that tvisc � few tmin at the semi-major axis of the most bound debris
but decreases by a factor (1 − e2

crit)
3/2 � few 10−3–10−4 at the cir-

cularization radius. The distribution of mass within the torus thus
determines the value of the relevant viscous time-scale which de-
creases if most of the debris are close to the circularization radius.
In all cases, we expect tvisc < tcirc since tcirc is estimated to be �tmin.
We conclude that a significant fraction of the torus may already be
accreted by the end of circularization. If cooling is efficient, tvisc �
few 10–100 tmin in the thin ring. In this case, tvisc > tcirc which indi-
cates that the ring is not significantly accreted during circularization.
However, if the disc geometry changes when accretion starts, the
viscous time-scale could be different. In particular, a thicker disc
may result from a super-Eddington accretion rate, shortening the
viscous time-scale.

The fact that tvisc � tmin has often been interpreted as evidence
that the accretion rate on to the black hole traces directly the fallback
rate of the debris. However, if most of the debris initially form a
disc without having the possibility of accreting, then the accretion
rate on to the black hole will be driven by viscous processes rather
than by infall, which has essentially finished once accretion starts
(Cannizzo, Lee & Goodman 1990; Shen & Matzner 2014). If disc
accretion is significantly delayed with respect to disc formation, we
thus expect a solution a la Cannizzo et al. (1990), which predicts
an accretion rate declining as t−4/3. If on the other hand accretion
already occurs while the disc is forming, we expect at late times
a t−5/3 decline in the accretion rate. Owing to a progressive disc
formation, we consider the latter scenario to be a possibility, which
seems favoured if cooling is inefficient, since tvisc < tcirc.

The simulations presented in this paper allowed us to get insight
into the circularization process during TDEs. Several extensions of
this work are possible including simulations considering a more
eccentric star, the treatment of the interaction between the debris
and the radiation emitted during the disc formation and the effect
of the black hole spin.
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