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ABSTRACT

We report on a 120 ks Chandra/HETG spectrum of the black hole GRS 1915+105. The observation was made
during an extended and bright soft state in 2015 June. An extremely rich disk wind absorption spectrum is detected,
similar to that observed at lower sensitivity in 2007. The very high resolution of the third-order spectrum reveals
four components to the disk wind in the Fe K band alone; the fastest has a blueshift of =v c0.03 . Broadened re-
emission from the wind is also detected in the first-order spectrum, giving rise to clear accretion disk P Cygni
profiles. Dynamical modeling of the re-emission spectrum gives wind launching radii of -r 10 GM c2 4 2. Wind
density values of - -n 10 cm13 16 3 are then required by the ionization parameter formalism. The small launching
radii, high density values, and inferred high mass outflow rates signal a role for magnetic driving. With simple,
reasonable assumptions, the wind properties constrain the magnitude of the emergent magnetic field to be

-B 103 4 G if the wind is driven via magnetohydrodynamic (MHD) pressure from within the diskand
-B 104 5 G if the wind is driven by magnetocentrifugal acceleration. The MHD estimates are below upper limits

predicted by the canonical α-disk model. We discuss these results in terms of fundamental disk physics and black
hole accretion modes.
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1. INTRODUCTION

Disk accretion onto stellar-mass black holes at high
Eddington fractions is dominated by thermal emission from
an accretion disk. This blackbody-like emission can be
characterized extremely well with just two parameters: fluxand
color temperature. This simplicity enables efficient traces of
disk temperature across orders of magnitude in flux (e.g.,
Reynolds & Miller 2013), but it hides the underlying physics
that mediate the accretion process.

The magnetorotational instability (MRI; Balbus & Hawley
1991) appears to supply the degree of effective viscosity
required to drive disk accretion. Alternatively, gas might
escape along poloidal magnetic field lines, transferring angular
momentum and allowing mass transfer through the disk (e.g.,
Blandford & Payne 1982). Accretion in FU Ori and T Tauri
systems suggests that these mechanisms might operate
concurrently: thermal continuum emission signals a viscous
disk, but the profiles observed in line spectra signal a rotating
disk wind (e.g., Calvet et al. 1993). If young stellar disks are
any guide, line spectra and winds may hold the key to
understanding disks around black holes.

Miller et al. (2015) recently examined the richest disk winds
found in Chandra/HETG spectra of the stellar-mass black
holes 4U1630−472, H1743−322, GRO J1655−40, and GRS
1915+105. The observations were obtained in the disk–
dominated “high/soft” or “thermal dominant” state (see, e.g.,

Remillard & McClintock 2006). The Fe K band was found to
require 2–3 velocity/ionization components when fit with new,
self-consistent XSTAR photoionization models. The spectra
also require re-emission from the dense absorbing gas, and the
emission is broadened by a degree that is loosely consistent
with Keplerian orbital motion at the photoionization radius.
This provides a means of estimating wind launching radii,
densities, outflow rates, kinetic power, and driving
mechanisms.
The observation of GRS 1915+105 treated in Miller et al.

(2015) was obtained during an extended soft state in 2007 (also
see Neilsen & Lee 2009; Ueda et al. 2009). In the spring of
2015, GRS 1915+105 was observed to be in a long decline in
the Swift/BAT (15–50 keV). The source flux eventually
became consistent with zero in single visits, indicating that
GRS1915+105 had again locked into a steady soft state. We
therefore triggered an approved Chandra target of opportunity
observation of GRS 1915+105.

2. OBSERVATIONS AND REDUCTION

GRS 1915+105 was observed for 120 ks starting on 2015
June 9 at 15:30:59 UT (“obsid” 16711), using the HETGS.
Owing to the high flux level expected in the Chandra band, the
ACIS-S array was readout in “continuous clocking” mode to
prevent photon pile-up, reducing the nominal frame time to just
2.85 ms. A 100-column “gray” filter was applied across the full
height of the S3 chip, windowing the zeroth-order aimpoint.
Within this window, 1 in 10 events was telemetered; this
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enables the wavelength grid to be reconstructed while
preserving telemetry.

CIAO version 4.7 and the associated current calibration files
were used to generate spectral files and responses. The tool
“add_grating_orders” was used to combine opposing spectra
from the first and third orders. Redistribution matrices were
created using the tool “mkgrmf” and the ancillary responses
were created using “mkgarf.”

The Fe K band traces the mostly highly ionized gas, likely
originating closest to the black hole. Following Miller et al.
(2015), we proceed to only analyze the combined third-order
HEG spectrum in the 5–8 keV band (above 8 keV, order sorting
becomes difficult and stray flux enters the extraction region)
and the combined first-order HEG spectrum over the
5–10 keV band.

3. ANALYSIS AND RESULTS

Models were fit to the data using XSPEC version 12.8.2
(Arnaud 1996). In all of the fits, “Churazov” weighting
(Churazov et al. 1996) was adopted. All of the errors reported
in this work are s1 confidence intervals.

An equivalent neutral hydrogen column density of =NISM
´ -4.0 10 cm22 2 was assumed in all fits and modeled using

“tbabs” (Wilms et al. 2000). Fits to the first-order spectrum

confirmed that the continuum can be well described with disk
blackbody (Mitsuda et al. 1984) and power-law components. The
kT 1.6 keV thermal emission dominates over the steep

(G  2.8) powerlaw (see Table 1). This characterization of the
first-order spectrum gives an unabsorbed flux of ´F 4.1

- - -10 erg cm s8 2 1 in the 0.5–30.0 keV band, corresponding to a
luminosity of ´ -L 3.7 10 erg s38 1 for =d 8.6 kpc (Reid
et al. 2014).
In order to characterize the the wind, we generated a grid of

photoionized line spectra using XSTAR version 2.2.1bo8 (see,
e.g., Kallman et al. 2009). This (newest) version of the code
includes the effects of resonant scattering when calculating
emission spectra, in addition to recombination, fluorescence, and
collisional ionization. A blackbody input spectrum with

=kT 1.6 keV and = ´ -L 3.7 10 erg s38 1 was assumed. Fol-
lowing Miller et al. (2015), a turbulent velocity of -300 km s 1,
solar abundances (except for iron, fixed at twice the solar value as
per Lee et al. 2002), a covering factor of pW =4 0.5, and a gas
density of = -n 10 cm14 3 were assumed. Via the “xstar2xspec”
function, 400 photoionization models were created, spanning
a range of  ´ ´- N6.0 10 cm 6.0 1021 2 23and 3.0

( ) xlog 6.0. The resolution of the models was set to give
100,000 spectral bins.
Photoionized absorption was included in the overall model as a

multiplicative component acting upon the continuum. It was

Table 1
Spectral Fitting Results and Derived Wind Parameters

Parameter Zone 1 Zone 2 Zone 3 Zone 4 Continuum

( )-N 10 cmH
22 2 ( )30 2 ( )0.65 5 ( )1.0 3 -

+2.5 1.2
2.5 K

log(ξ) ( )4.04 2 ( )3.87 5 ( )4.5 1 ( )4.7 5 K
( )-v c 10 3 ( )-0.70 5 ( )-6.2 3 ( )-11.0 5 ( )-30.5 5 K

( )R GM c2
-
+850 50

250
-
+3000 400

600
-30, 000 2000 -

+1200 300
300 K

θ(°) 60+7 60+7 60+7 60+7 K
emis.norm. +0.10 0.01 ( )0.21 2 ( )0.38 7 *0.5 K

( )-n 10 cm15 3 20(5) 2.4(6) 0.006(1) 2.2(3) K
˙ ( )-M 10 g swind

18 1 0.73(6) 10(1) 4.0(9) 8(8) K
˙ ( )- -

M M10 yrwind
8 1 1.2(1) 15(2) 6(2) 1(1) K

˙ ˙M Mwind accr. 0.18(2) 2.3(3) 1.0(3) 2(2) K
( )-L 10 erg skin

34 1 0.016(2) 17(2) 22(5) 30(30) K
( )-f 10 2 1.3(4) 0.06(2) 4(1) 0.1(1) K
( )Tlog wind 6.5(2) 6.0(2) 7.0(2) 7.0(2) K

∣ ∣BMHD (104 G) 2.1(8) 0.4(2) 0.06(2) 1.(1) K
∣ ∣BMCF (104 G) 80(30) 14(6) 5(2) 30(30) K
∣ ∣aB (104 G) 30–100 20–60 1.4–2.6 70–230 K

kT(keV) K K K K 1.521(3)
disknorm. K K K K ( )139 1
Γ K K K K ( )2.8 1
power-lawnorm. K K K K ( )11.0 7
σ(keV) K K K K 0.08(1)
Gauss norm.( )-10 3 K K K K 2.2(2)

Note. Results of fits to the first- and third-order spectra. The orders were fit jointly, allowing the third-order spectra to have a fiducial continuumand to set the velocity
shifts for Zones 3 and 4; all other parameters pertain to the first-order spectrum. The photoionized wind spectrum is modeled using XSTAR (parameters include the
column density NH and ionizaton parameter ξ). Each zone consists of absorption paired with re-emission. The re-emission component has zero net shiftand is blurred
with the “rdblur” function to measure dynamical broadening (giving the radius Rand inclination θ). The absorption component is shifted by v,and negative values
indicate blueshifts; the re-emission component also carries an overall flux normalization. Below the model parameters, estimates of the wind properties are given for
each zone, including the gas density (n), mass outflow rate (Ṁwind), kinetic power (Lkin), volume filling factor ( f ), temperature (Twind), and estimates of the magnetic
field strength required to launch the wind via MHD processes (e.g., MRI) within the disk (BMHD) or magnetocentrifugal driving (BMCF). The ratio of the mass-loss rate
to mass accretion rate was calculated assuming an efficiency of h = 0.1. A limit on the field strength predicted by α-disk models (Shakura & Sunyaev 1973) is also
given ( aB ); the range reflects the full range of radii for each zone. Values with an asterisk were frozen. The overall model gives c n = =1951.2 1572 1.2412 . Please
refer to the text for more details.
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characterized in terms of a column density, ionization parameter,
and velocity shift (NH,wind, x = L nr2, and v/c). Self-consistency
demands an additive re-emission component for each absorption
component. The column density and ionization parameter were
linked between the absorption and re-emission components in
each zone. The emission component carries a flux normalization,
given by ( )p= WK L d4 38 kpc

2 (where L38 is the luminosity in

units of -10 erg s38 1 and dkpc is the distance in units of kpc).
Normalization values were restricted to the 0.1–10.0 range. The
re-emission spectra are consistent with a gas at zero velocity shift,
per emission from a broad range of azimuth in a cylindrical
geometry. Emission velocity shifts were then fixed at zero.
The re-emission is broadenedand is expected to have a non-

Gaussian shape if it originates from several hundred or several

Figure 1. Third-order spectrum of GRS 1915+105. The best-fit model based on joint fits to the first- and third-order spectra is shown in red (see Table 1). Four
photoionization zones with paired absorption and re-emission are required to fit the data. The He-like Fe XXV line is resolved into intercombination and resonance lines
(rest-frame energy: 6.700 keV). Instances of H-like Fe XXVI absorption lines close to the rest-frame value of 6.970 keVand blueshifted up to 7.05 and 7.2 keV are
apparent. The Fe XXVI line shape is a doublet owing to the expected spin-orbit splitting in the H-like atom.

Figure 2. First-order spectrum of GRS 1915+105. The best-fit model is shown in red (see the textand Table 1).
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thousand radii. We therefore convolved each re-emission
component with the “rdblur” function (Fabian et al. 1989).
This Schwarzschild function differs negligibly from the
anticipated (see, e.g., McClintock et al. 2006; Miller et al.
2013) near-maximal Kerr potential far from the black hole, and
its range extends to the launching radii whereas newer Kerr
blurring functions do not. The inclination was jointly
determined between all zones (restricted to the 60
q 80 range). Tests revealed that a constant density

emissivity profile ( -r 2) gave the best fits, with the outer radius
fixed at a multiple of the inner radius for all zones. A value of
5.0 gave the lowest fit statistic ( = ´R R5.0out in), and values
reported in Table 1 reflect fits made with this scheme. Last, a
Gaussian emission feature with an energy constrained to lie in
the 6.40–6.43 keV range (Fe I–XVII) was included to account for
any distant, low-ionization emission.

Initial fits were made to the first- and third-order spectra
separately. A model with three zones is able to reproduce the
lines in the third-order spectrum below 7 keVand even an
H-like absorption doublet blueshifted by approximately 0.01c,
up to 7.05 keV. However, a weak H-like doublet is apparent at
approximately 7.2 keV. We therefore included a fourth zone in
fits to the third-order spectrum, measuring a blueshift
of ( )=v c0.0305 4 .

We next made joint fits to the first- and third-order spectra.
The continuum in the first-order spectrum is robust and
reported in Table 1, but the continuum in the thirdorder is
affected by stray continuum flux, so the continuum parameters
and column densities are not linked between the two spectra.
The first-order spectrum is generally more sensitive, and the
parameters of the third-order wind model were tied to those for
the first-order spectrum, with the exception of the third and
fourth zones, which carry higher velocity shifts. For those
zones, the velocity is determined by the third-order spectrum.

The best-fit model is detailed in Table 1. The fits are shown
in Figures 1 and 2. Figure 3 illustrates that the re-emission
spectrum is broadened. Last, Figure 4 compares the 2007 and
2015 spectra of the high/soft state in GRS 1915+105. Overall,
a good fit is achievedwith c n = =1951.2 1572 1.2412 .
Each zone is required by the data, as measured by the
F-statistic. The best two-zone model is an enormous ( s8 )
improvement over the best single-zone model. The best three-

zone model is a s5 improvement over any fit with just two
zones. The addition of the fourth zone is a s3 improvement
over any three-zone model. Re-emission from Zone 3 is not
highly broadened, suggesting a more distant origin. The re-
emission from Zone 4 is not wellconstrainedand was fixed at
a representative value of K = 0.5. In general, the re-emission
normalizations should be regarded as relative scaling factors,
since they are partially affected by small continuum disparities
between the first- and third-order spectra.
The slower components of the wind (Zones 1 and 2 in

Table 1) have lower ionizations and higher densities; in
contrast, the faster components (Zones 3 and 4 in Table 1) have
higher ionizationsand lower densities. This may be consistent
with acceleration within the absorbing region. However, the
fastest component—Zone 4—appears to originate at small
radii. The wind is likely inconsistent with a homogeneous flow
with uniform acceleration, but it may be consistent with a
complex flow with multiple stream lines.
Table 1 also gives estimates of the gas density, mass outflow

rate, kinetic power, and filling factor in each wind zone. The
gas density was obtained through the ionization parameter
(x = L nr2), utilizing the radius implied by the broadening of
the re-emission. The mass outflow rate is estimated without
assuming a density by utilizing x =L nr2, giving
˙ ( )m x= WM m v Lpwind . The kinetic power is then just

˙=L M v0.5kin wind
2. It is notable that the outflow rate is

comparable to the accretion rate in the inner disk in Zones 2,
3, and 4. Summing all zones, the kinetic power of the wind is
nominally about 0.1% of the radiative power. The thickness of
each wind zone can be estimated via D =r N n, and the
volume filling factor is then given by = Df r r . Table 1 gives
estimates of f for each zone. Depending on the geometry, it
may or may not be appropriate to multiply the mass outflow
rates and kinetic power by f, reducing both quantities. The best
fits are obtained when D =r r 5 in the blurring function; this
may indicate that the filling factor is not very small.
Radiative line driving is only effective for ( ) xlog 3

(Proga 2003); the wind cannot be driven in this manner. Thermal
driving is effective outside of the Comptonization radius,

( ( )= ´ R M M T10 cmC
10

BH C,8 (where TC,8 is the Compton
temperature in units of 108 K; Begelman et al. 1983). Other work
suggests that winds can be driven from 0.1RC (Woods

Figure 3. Dynamical broadening plays an important role in shaping the re-emission spectrum of the wind. Zones 1–4 are depicted in red, green, blue, and magenta,
respectively. Left: dynamical broadening has been removed from the model in Table 1, yielding wind re-emission lines that are much sharper than the data. Right: the
spectral model detailed in Table 1, with the blurring required by the data.
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et al. 1996; also see Proga & Kallman 2002). Approximating the
Compton temperature with the disk temperature (reasonable
under equilibrium conditions), ´R 5 10C

11 cmor
´3.3 10 GM c5 2. Thus, RC is 2–3 orders of magnitude larger

than implied by the broadening of the re-emission spectra of
Zones 1, 2, and 4 (see Table 1). The wind densities and outflow
rates also exceed estimates from thermal driving models, though
such models are evolving (e.g., Higginbottom & Proga 2015).
Emission line broadening might arise via turbulent motions in
thermal winds (e.g., Sim et al. 2010). However, this would lead
to similar line widths in emission and absorption, whereas the
emission lines are much broader than the absorption lines in our
best-fit model (see Figure 3).

If the wind is driven by MHD pressure (e.g., Proga 2003),
the magnetic pressure must equal or exceed the gas pressure in
the wind, meaning that p =B nkT8 22 or p=B nkT16 . If

magnetocentrifugal driving (Blandford & Payne 1982) dom-
inates, the magnetic field pressure must equal or exceed the ram
pressure of the wind (else the poloidal field geometry will break
down), giving p r=B v8 0.52

tot
2 or pm=B m nv4 p tot

2 (where
vtot includes radial and azimuthal velocities). We ran new
XSTAR models assuming the derived densities to ascertain the
temperature within the wind; these temperatures and the
magnetic field magnitudes are listed in Table 1. Using equation
2.19 in Shakura & Sunyaev (1973), limits on the magnetic field
strength expected in the α-disk prescription were calculated;
these are also listed in Table 1.

4. DISCUSSION AND CONCLUSIONS

We have obtained a sensitive Chandra/HETGS observation
of the black hole GRS 1915+105, in an extended soft state. The
spectrum shows strong absorption lines in the Fe K band, and

Figure 4. First-order HEG spectra of GRS 1915+105 from the soft states observed in 2007 and 2015. The spectra are shown as a ratio to the best-fit continuum, with
the best-fit wind spectrum plotted through the ratio. In this representation, the presence of accretion disk P Cygni line profiles is clear. Top: data from the 2007 soft
state, with the model of Miller et al. (2015). Middle: data from the 2015 soft state, with the corresponding best-fit model (see Figure 2 and Table 1). Bottom: the 2007
and 2015 data and respective models are plotted together. The similarity of the spectra suggests that a particular wind geometry manifests in soft states.
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weaker, broadened emission lines, together creating accretion
disk P Cygni profiles (see Figures 1–4). Four distinct wind zones
are detected in fits to the first- and third-order spectra; the fastest
has a blueshift of =v c0.03 . The broadening of the re-emission
components of the wind permits measurements of its launching
radius ( -R 10 GM c2 4 2), which in turn allow for estimates of
the wind density ( - -n 10 cm13 16 3) and other parameters. The
wind is likely driven by magnetic processes, connecting the
wind to fundamental aspects of disk accretion, including
momentum and mass transfer.

Though luminosities can be difficult to estimate even for
X-ray binaries, we observed GRS 1915+105 at an apparent
luminosity of =L L0.28 Edd, assuming the most recent
estimates of its distance and mass. This is significant because
simulations suggest that standard thin accretion disks operate at
this Eddington fraction (e.g., Reynolds & Fabian 2008; Shafee
et al. 2008). Simulations find that winds might be Comp-
tonthick very close to the disk, but do not remain so as the gas
moves upward and outward (Chakravorty et al. 2016). It is
possible but unlikely that a Compton-thick, super-Eddington
flow was observed in GRS 1915+105; all of the column
densities measured in Table 1 are significantly below

= -N 10 cmH
24 2, and the total kinetic power of the wind is

only a small fraction (0.1%) of the radiated luminosity.
Wind rotation might nominally favor magnetocentrifugal

driving (Blandford & Payne 1982), but rotation is not
necessarily unique to this mechanism. Moreover, a low filling
factor may be required in order to hold the mass outflow rate
below the accretion inflow rate (else the wind transfers more
angular momentum than the disk can supply; see, e.g.,
Reynolds 2012). Velocity profiles can shed additional light:
if an MHD wind is a momentum-conserving flow, then
azimuthal velocity should decrease linearly ( µ -v R 1); how-
ever, in the magnetocentrifugal case, azimuthal velocity
increases linearly with radius ( µv R). Associating observed
blueshifts with local escape speeds gives a poor radius estimate
(effectively an upper limit). Our results reveal no trend between
rotational broadening (traced by the radius estimate from
blurring with “rdblur”) and radius (poorly traced by outflow
speed). This is consistent with a combination of MHD and
magnetocentrifugal driving; the wind would then fail to
conserve momentum and transfer some away from the disk,
aiding mass transfer through the disk.

The magnetic field estimates made assuming that MHD
pressure drives the wind are safely below the limits predicted by
α-disk models (Shakura & Sunyaev 1973; see Table 1). This
may offer new support for the basic framework of α-disk
models, at least in the inner disk in stellar-mass black holes.
Moreover, the magnetic energy flux predicted in MRI disk
simulations by Miller & Stone (2000) appears sufficient to power
the wind launched in the soft state of GRS 1915+105. The
equatorial nature of this disk wind (and others) is also consistent
with simulations of MHD winds; indeed, the inferred wind
parameters (such as density) closely resemble some values
obtained in Proga (2003). Chakravorty et al. (2016) simulated
MHD winds in X-ray binaries and found that magnetic winds are
possible at small radii for high densities and high ionizations; this
appears to confirm AGN-focused studies of MHD flows (e.g.,
Fukumura et al. 2014, 2015). In the broadest sense, magnetic
field constraints from disk winds may mark a turning point in our
ability to probe fundamental disk physicsand the start of closer
comparisons between observations and simulations.

Observations indicate that winds and jets are anti-correlated
by spectral state (e.g., Miller et al. 2006a, 2006b, 2008; Neilsen
& Lee 2009; King et al. 2012; Ponti et al. 2012). This may also
indicate a link between disk properties, magnetic field config-
urations, and outflow modes. Begleman et al. (2015) have
proposed an association between the spectral state and the
structure of the dynamo based on an analytic description of
magnetically dominated disks supported by shearing box
simulations (Salvesen et al. 2016). The close similarity in wind
properties in soft states of GRS 1915+105 separated by eight
years signals an even closer relationship between the state of the
disk and the nature of the wind that is launched (see Figure 4).
An intriguing possibility is that winds may act to partly regulate
the operation of the disk. Obtaining sensitive spectra at a high
cadence could detect changes in the wind and disk continuu-
mand determine which geometry leads variations.

We thank the anonymous referee for suggestions that
improved this paper.
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