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Chapter 2

ABSTRACT

Background

DNA methylation has been recognized as a key mechanism in cell differentiation. Various 
studies have compared tissues to characterize epigenetically regulated genomic regions, but 
due to differences in study design and focus there still is no consensus as to the annotation 
of genomic regions predominantly involved in tissue-specific methylation. We used a new 
algorithm to identify and annotate tissue-specific differentially methylated regions (tDMRs) 
from Illumina 450k chip data for four peripheral tissues (blood, saliva, buccal swabs and hair 
follicles) and six internal tissues (liver, muscle, pancreas, subcutaneous fat, omentum and 
spleen with matched blood samples).

Results

The majority of tDMRs, in both relative and absolute terms, occurred in CpG-poor regions. 
Further analysis revealed that these regions were associated with alternative transcription 
events (alternative first exons, mutually exclusive exons and cassette exons). Only a minority 
of tDMRs mapped to gene-body CpG islands (13%) or CpG islands shores (25%) suggesting a 
less prominent role for these regions than indicated previously. Implementation of ENCODE 
annotations showed enrichment of tDMRs in DNase hypersensitive sites and transcription 
factor binding sites. Despite the predominance of tissue differences, inter-individual 
differences in DNA methylation in internal tissues were correlated with those for blood for a 
subset of CpG sites in a locus- and tissue-specific manner.

Conclusions

We conclude that tDMRs preferentially occur in CpG-poor regions and are associated with 
alternative transcription. Furthermore, our data suggest the utility of creating an atlas 
cataloguing variably methylated regions in internal tissues that correlate to DNA methylation 
measured in easy accessible peripheral tissues.

Supplementary figures can be found in Appendix I
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BACKGROUND 

Epigenetic mechanisms, including DNA methylation, are essential in mammalian development 
and cell differentiation (Cedar and Bergman, 2012). Several studies have compared genome-
wide DNA methylation patterns, particularly of cytosine at CpG dinucleotides, between 
human cell types and tissues to identify general characteristics of genomic regions that define 
epigenetic differences between tissues (Byun et al., 2009; Illingworth et al., 2008; Rakyan et 
al., 2008). However, these studies often focused on a subset of regions either because of a priori 

hypotheses or due to the limited coverage of the DNA methylation profiling technology used. 
For example, while many studies have explored and identified tissue-specific differentially 
methylated regions (tDMRs) at promoter sequences (Byun et al., 2009; Chatterjee and 
Vinson, 2012; Illingworth et al., 2008; Laurent et al., 2010; Nagae et al., 2011; Song et al., 
2009), differential methylation at other genomic regions has been investigated less widely and 
consistently. Several studies focussed on CpG islands (CGIs), which are genomic regions with 
a high density of CpGs, and reported the predominant occurrence of tDMR CGIs located in the 
gene bodies (Davies et al., 2012; Deaton et al., 2011; Irizarry et al., 2009; Maunakea et al., 2010) 
and described their potential role in regulating alternative transcription start sites (Maunakea 
et al., 2010). One study highlighted the 2 kb region flanking CGIs (that is, CGI shores) as a 
frequent target of tissue-specific methylation (Irizarry et al., 2009), but this finding was not 
replicated in a mouse study (Deaton et al., 2011).
 To study the contribution of epigenetic variation to human disease risk, it is necessary 
not only to study tissue differences, but also to explore the correlation of DNA methylation 
signatures between tissues. Many diseases involve internal organs (IOs) that cannot be 
sampled in human subjects participating in epidemiological studies. Studies of such diseases 
would be facilitated if methylation of DNA from peripheral tissues could be used as a proxy; 
that is, if inter-individual variation in DNA methylation levels at a genomic region that is 
observed in a population is positively correlated with that in an (unmeasured) internal organ. 
Although candidate region (Talens et al., 2010) and genome-wide (Davies et al., 2012) studies 
suggested that correlated DNA methylation across tissues may occur, little is known about the 
prevalence of such correlations.
 In this study, we explored genome-wide DNA methylation in six internal and 
four peripheral tissues in two independent datasets using the Illumina 450k methylation 
chip (Dedeurwaerder et al., 2011; Roessler et al., 2003). Apart from systematically covering 
promoter regions, CGIs and CGI shores, the chip targets sufficient CpG dinucleotides outside 
these regions to study other annotations. We implemented an algorithm to identify tDMRs, 
which allowed us to detect statistically robust and biologically relevant tDMRs in 450k data. 
This allowed us to evaluate previously indicated annotations of tDMRs systematically in a 
single study. In addition, we explored annotations utilizing more recent insights on genome 
biology including those from the ENCODE project. Finally, we evaluated the occurrence of 
correlated DNA methylation across tissues.
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Chapter 2

RESULTS 

Identification of tDMRs 

Genome-wide DNA methylation data was generated from four peripheral tissues (blood, saliva, 
hair follicles and buccal swabs) from five individuals, and six internal tissues (subcutaneous 
fat, omentum, muscle, liver, spleen and pancreas) and blood from six individuals, using 
Illumina 450k DNA methylation chips (Table S1). The DNA methylation patterns observed 
in the tissues were in concordance with previously described characteristics: the distribution 
of DNA methylation was bimodal with a minority of CG dinucleotides showing intermediate 
DNA methylation levels (Figure S1A and S1B); the canonical pattern of low DNA methylation 
around transcription start sites (TSSs) was observed (Figure S2A); and, finally, adjacent CpGs 
within 1 kb had similar DNA methylation levels (Figure S2B).
 Tissue types tended to cluster together according to genome-wide DNA methylation 
data indicating the occurrence of tissue-specific methylation patterns (Figure S1E and S1F). 
To study these patterns in more detail, we developed an algorithm to identify tissue-specific 
differentially methylated regions systematically using 450k methylation data as described in 

1.Linear mixed model
Methylation = β₀+tissue·β1 + Individual·b + ε
P value <10-7  (Bonferroni)

2.Effect size
Mean sum of squares >(10%)2
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Figure 1. Example of the tDMR finder algorithm used for the HOXD3 gene. Tissue-specific differentially 
methylated regions were identified in a two-step approach: first, we identified tDMPs. CpGs were 
considered to be tDMPs when there was a genome-wide significant mean difference of ≥10%. The 
mean difference was expressed as a mean sum of squares. A difference ≥10% equals a mean sum of 
squares ≥ 0.01 (square of 10% = 0.12). To test whether the difference was significant, we applied a 
linear model per CpG site, with a random effect for each individual to correct for any inter-individual 
variation. From this linear model we obtained a P value (F-test) per CpG site and used a multiple 
testing corrected P value as a cut-off (10-7). Second, we identified tDMRs as regions with at least 
three tDMPs with an inter-CpG distance of at most 1 kb and a maximum of three non-tDMPs. Mb, 
megabase; tDMP, tissue-specific differentially methylated position; tDMR, tissue-specific differentially 
methylated region
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Figure 1 (also see Methods). Briefly, first tissue-specific differentially methylated positions 
(tDMPs) were identified. tDMPs were defined as CpGs with a DNA methylation difference 
between tissues that was: (1) genome-wide significant (P < 10-7) and (2) had a mean sum 
of squares ≥ 0.01 (equals (10%)2, that is, the mean of the difference between the individual 
tissues and the overall mean across tissues should be greater than 10%). Next, differentially 
methylated regions (DMRs) were identified as regions with at least three differentially 
methylated positions (DMPs) with an inter-CpG distance ≤ 1 kb, interrupted by at most three 
non-DMPs across the whole DMR (see Methods; the algorithm is in Additional Data 1). The 
algorithm detected 3,533 and 5,382 tDMRs in the peripheral and internal tissue datasets, 
respectively (Table 1 and Table S2). There were 4,877 unique (that is, non-overlapping) 
tDMRs between datasets. Interestingly, 2,019 tDMRs were detected in both peripheral and 
internal tissues (9,388 CpGs in common, P < 0.001). The tDMR distribution over the genome 

CpG island Shelf

Peripheral tissues Internal tissues

non CGI

D
istal prom

oter
G

ene body
D

ownstream
 region

Intergenic region

Shore

Proxim
al prom

oter

0.5
1.0
2.0
3.0
4.0

0.5
1.0
2.0
3.0
4.0

0.5
1.0
2.0
3.0
4.0

0.5
1.0
2.0
3.0
4.0

0.5
1.0
2.0
3.0
4.0

O
dd

s 
ra

tio
 (

lo
g2

)

*

* *

**

* *

Figure 2. Enrichment with tDMRs in the gene- and CpG-density centric annotation. Differences were 
observed between CGI and non-CGI regions, especially in proximal promoters and downstream regions. 
Shores in distal promoters and downstream regions were enriched with tDMR CpGs. Enrichment with 
tDMR CpGs in non-CGI features was limited to distal promoters and proximal promoters. * P < 10-5. 
CGI, CpG island; tDMR, tissue-specific differentially methylated region.
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was similar for the two datasets (Figure S2C). A further indication of the validity of the tDMRs 
was obtained from a visualization of the tDMRs in a heatmap according to tissue, which 
showed the expected clustering by germ layer and confirmed the previously reported cellular 
similarities between blood and saliva, and between hair and buccal swabs (Figure S3) (Thiede 
et al., 2000).

tDMRs accumulate near genes expressed in specific tissues 

tDMRs were mapped to their nearest gene and the TiGER database was used to verify the 
expectation that these genes are preferentially expressed in investigated tissues (Liu et al., 
2008). This was indeed the case (Figure S4A, Table S2). For example, tDMRs in the internal 
tissue dataset mapped preferentially to liver-specific genes (odds ratio for internal organs 
ORI = 5.01, P < 10-5). In contrast, this was not observed in the peripheral tissue dataset (odds 
ratio for peripheral tissues ORP = 1.02, P = 0.13). Enrichment of the blood-specific expression 
of genes adjacent to identified tDMRs was observed in both datasets (ORP = 2.42, P < 10-5; 
ORI = 1.88, P < 10-5). Furthermore, tDMRs mapping to genes with tissue-specific expression 
were hypomethylated in the tissue in which the gene is preferentially expressed compared 
with other tissues. This is in line with an inverse relationship between DNA methylation and 
expression (Figure S4B). Taken together, these analyses indicate that our algorithm detected 
a tDMR set that is not only statistically robust but also biologically relevant.

tDMRs associate with specific genomic annotations 

In order to systematically assess previous observations regarding tDMR annotations and 
to further explore annotations that became available more recently, we created extensive 
annotations of CpG sites interrogated with the 450k chip (the annotations can be found 
in Additional Data 2) and evaluated their enrichment in tDMRs. First, tDMR CpGs were 
annotated according to the location relative to genes. This showed that the occurrence of 
tDMRs in proximal promoters (defined as -1500 to +500 from a TSS) was depleted, whereas 
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Figure 3. Enrichment of tDMR CpGs in genes that are preferentially expressed in studied tissues. 
Differential methylation of a non-CGI proximal promoter was strongly associated with tissue-
specific expression (TiGER database (Liu et al., 2008)) of the adjacent gene and much more so than 
for differentially methylated CGI proximal promoters. tDMR CpGs were significantly enriched in all 
tissues in both proximal promoters with an island and proximal promoters without a CpG island (P < 
10-5). PT, peripheral tissue; tDMR, tissue-specific differentially methylated region.
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it was enriched in other gene-centric annotations (Figure S5). This pattern was highly 
concordant between internal and peripheral tissues (for example, for proximal promoters ORP 
= 0.70 and ORI = 0.68, P < 10-5). Next, we combined the gene-centric annotation with a CGI-
centric annotation (Figure 2). The combined annotation revealed that the overall depletion 
in proximal promoters was due to a strong underrepresentation of tDMRs in CGI proximal 
promoters (Figure 2, ORP = 0.15, ORI = 0.19, P < 10-5). Conversely, non-CGI proximal promoters 
were strongly enriched for differential methylation (ORP = 3.10, ORI = 2.83, P < 10-5). Also in 
absolute terms, more tDMRs mapped to non-CGI proximal promoters (nP = 781, nI = 1,100) than 
CGI proximal promoters (nP = 168, nI = 313; Table S3 and Table S2). In proximal promoters, 
no enrichment of CGI shores was observed (ORP = 0.82, ORI = 0.80), while CGI shelves (that 
is, a 2 kb region flanking a CGI shore) showed a similar enrichment compared to the non-
CGI proximal promoters (ORP = 3.10, ORI = 3.10, P < 10-5). In accordance with the preferential 
occurrence of tDMRs at non-CGI proximal promoters, the genes adjacent to these tDMRs were 
strongly enriched for tissue-specific gene expression, much more so than for CGI proximal 
promoters (Figure 3).
 Other regions showing evidence for enrichment for tissue-specific methylation 
included CGIs in downstream regions (defined as the 3’ end to +5 kb relative to the 3’ end; 
ORP = 1.46, P = 0.017; ORI = 1.76, P < 10-5), CGI shores in distal promoters (ORP = 1.59, ORI = 
1.78, P < 10-5) and CGI shores in downstream regions (ORP = 1.67, P = 4 · 10-4; ORI = 1.58, P = 
1.2 · 10-4). Of note, no enrichment was observed for gene-body CGIs (defined as +500 kb to the 
3’ end relative to the gene). Of the total number of tDMRs detected, ~25% overlapped with a 
CGI shore and a similar percentage with a CGI (Table S3 and Table S2). The number of tDMRs 
overlapping with CGI shelves was lower (~6%).

tDMRs are enriched in alternative transcription start sites 

It has been suggested that DNA methylation regulates alternative transcription (Numata et al., 
2012), which may be the mechanism underlying its contribution to tissue-specific expression. 
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Figure 4. Enrichment of alternative event regions with tDMR CpGs. *P < 10-5. A3SS, alternative 3’ 
splice site; A5SS, alternative 5’ splice site; ALE, alternative last exon; ATSS, alternative transcription 
start site; CE, cassette exon; CNE, constitutive exon; EI, exon isoforms; II, intron isoforms; IR, intron 
retention; MXE, mutually exclusive exon; tDMR, tissue-specific differentially methylated region.
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In support of this hypothesis, we observed enrichment of tDMRs in alternative transcription 
start sites (ORP = 2.34, ORI = 2.58, P < 10-5; an example is given in Figure S6; see also Table S2). 
This was also reflected in the number of tDMRs associated with alternative transcription start 
sites (PT: 18.8%, IO: 20.9%). In addition, significant enrichment was observed at mutually 
exclusive exons (ORP = 1.47, ORI = 1.45, P < 10-5) and cassette exons (ORP = 1.37, ORI = 1.43, P < 
10-5) (Figure 4). Overall, 47.9% of tDMRs detected in the peripheral tissue dataset and 49.8% 
of the tDMRs detected in the internal organ dataset mapped to an alternative transcription 
event. It was previously indicated that methylation of CGIs primarily mediates the effects on 
alternative transcription (Maunakea et al., 2010). We could replicate the presence of a tDMR 
at a CGI in the SHANK3 gene body, which was found to regulate alternative transcription 
(Figure S7) (Maunakea et al., 2010). However, only a minority of tDMRs mapping to alternative 
transcription start sites (denoted by the occurrence of alternative first exons) were CGIs (PP = 
14.5%; PI = 20.5%). The majority were non-CGI sequences (PP = 52.5%; PI = 48.3%) indicating 
a role for CpG-poor regions in the regulation of alternative transcription.
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Figure 5. Enrichment of GO terms with nearest genes of tDMRs. Different colours represent the distinct 
major classes. Notice the difference in major classes between genes enriched with tDMRs that have 
a CGI or CGI flanking region and those which do not. When no CGI is present, tissue-specific genes 
are observed, while when there is a CGI present, the genes enriched with a tDMR are more often 
involved in embryonic developmental processes and gene regulation genes. Genes with a differentially 
methylated shelf overlapping with the proximal promoter, were associated with developmental -, 
housekeeping -, and tissue-specific GO terms. CGI, CpG island; GO, gene ontology; tDMR, tissue-
specific differentially methylated region
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Functional annotation of tDMRs

tDMRs were mapped to their nearest gene and enrichment analysis of gene ontology (GO) 
terms was used to describe functional categories. Non-CGI proximal promoters harbouring 
a tDMR were found to be involved in regulating tissue-specific processes reinforcing our 
previous observations of this class of tDMRs (Figure 5). In contrast, CGI proximal promoters 
harbouring a tDMR were largely associated with embryonic development processes. CGI shore 
proximal promoters with a tDMR were associated with similar processes as CGI proximal 
promoters with a tDMR, whereas CGI-shelf proximal promoters with a tDMR resembled non-
CGI proximal promoters with a tDMR. The functional annotations of other tDMRs classes are 
given in Figure S8.

tDMRs are enriched for regulatory regions

Regulatory DNA is marked by DNase I hypersensitive sites (DHSs) (Maurano et al., 2012). 
DHSs were enriched for tDMRs (ORP = 1.36, ORI = 1.37, P < 10-5; Table S2 and Figure S9). 
Using ENCODE data on transcription factor binding sites (TFBSs) (ENCODE, 2012) we observed 
enrichment for tissue-specific methylation at the binding sites BCL11A (ORP = 3.22, ORI = 2.52, 
P < 10-5), SUZ12 (ORP = 1.71, ORI = 2.17, P < 10-5) and FOXA2 (ORP = 1.12, P = 0.30; ORI = 1.61, P < 
10-5). Hypomethylation at TFBSs was observed in tissues in which the transcription factor is 
expressed (Figure S10). For example, FOXA2 is active in the liver (Kuang et al., 2011), pancreas 
(Gao et al., 2008) and potentially hair follicles (Richards et al., 2008), and FOXA2 binding sites 
were relatively hypomethylated in these tissues. tDMRs, however, were depleted for many 
other TFBSs, including for methylation-sensitive transcription factors YY1 (ORP = 0.23, ORI = 
0.25, P < 10-5), Egr-1 (ORP = 0.41, ORI = 0.41, P < 10-5) and NFkB (ORP = 0.44, ORI = 0.41, P < 10-5).

Correlation of inter-individual variation across tissues 

We investigated the occurrence of inter-individual variation in the internal tissue dataset 
after exclusion of CpG sites overlapping with known SNPs. Although tissue-differences were 

 Figure 6. Within-individual correlation in DNA methylation between tissues. (A) Relation between 
differences within two individuals in blood versus one other tissue. (B) Venn diagram of the number of 
CpGs sites that are correlated between blood and one or more tissues. (C) Top: A variably methylated 
CpG site in muscle that is correlated with DNA methylation in blood. Bottom: A variably methylated 
CpG site that is correlated across all tissues likely due to the influence of SNPs. SC, subcutaneous; SNP, 
single nucleotide polymorphism
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the main driver of variation in DNA methylation, we observed inter-individual variation for 
15,803, 11,719, 46,437 and 8,415 CpGs in the liver, subcutaneous fat, omentum and skeletal 
muscle, respectively (defined as a mean sum of squares > 0.025). The large number of variable 
CpGs observed in omentum may reflect the cellular heterogeneity of this tissue. For the 
variable CpG sites identified, we calculated the correlation between the between-individual 
difference for the internal tissue and the between-individual difference for blood (Figure 6A). 
When restricting these CpG sites to those with a correlation >0.8, the within-individual DNA 
methylation in blood correlated to variable DNA methylation in the liver, subcutaneous fat, 
omentum and skeletal muscle for 5,532, 3,909, 10,905 and 2,446 CpGs, respectively. Many 
of the correlated CpG sites were unique for a single internal tissue and blood but others were 
correlated across multiple tissues (Figure 6B). While the former may represent a genuine 
epigenetic correlation, in particular CpGs correlating across all tissues may frequently be 
driven by genetic variation influencing local DNA methylation (Figure 6C).

DISCUSSION 
In this study we report on genome-wide methylation patterns generated using multiple 
peripheral and internal tissues from two independent sets of donors using 450k methylation 
chips. Although the 450k platform interrogates a small subset of the ~28M CpG sites in the 
human genome, it relatively comprehensively evaluates promoter regions and CpG islands, 
and also covers other potentially relevant features, including downstream genic and intergenic 
regions. A new algorithm was able to identify statistically robust tDMRs as illustrated by a 
statistically significant overlap in the location of tDMRs between the datasets. The biological 
relevance of the identified tDMRs was highlighted by the observation that they mapped to 
genes with tissue-specific expression and also showed hypomethylation specifically in the 
tissue expressing those genes. Annotation of tDMRs showed that they can occur irrespective 
of their position relative to genes or local CpG density. Tissue-specific DNA methylation was 
most evident, however, both absolutely and relatively, in regions outside CGIs or CGI flanking 
regions. This confirms previous studies reporting a high prevalence of CpG-poor regions near 
genes with tissue-specific expression both in humans (Byun et al., 2009; Nagae et al., 2011; 
Rakyan et al., 2008) and animals (Liang et al., 2011; Yagi et al., 2008).
 One of our key findings is that the role of non-CGI tDMRs may frequently involve 
the regulation of alternative transcription. Tissue-specific methylation was associated with 
alternative transcription start sites and, despite being sparsely covered by the 450k chip, 
mutually exclusive exons and cassette exons. A previous study adopting a descriptive approach 
combined with functional validation suggested a primary role for DNA methylation at CGIs in 
alternative transcription (Maunakea et al., 2010). Although we could confirm tissue-specific 
methylation at CGIs with a validated effect on alternative transcription from that study, our 
statistical approach highlighted the role of non-CGI regions in alternative transcription start 
sites. Interestingly, a recent study also supported a role for DNA methylation in controlling 
mutually exclusive exons underlining the validity of our results (Zhou et al., 2012). The link 
between DNA methylation, non-CGI sequences and alternative transcription arising from 
our data is in line with their hypothesized role in vertebrate evolution (Mohn and Schübeler, 
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2009).
 Recent studies of differential methylation between tissues emphasized the occurrence 
of tDMRs outside non-CGI and CGI proximal promoters. For example, studies of animal models 
(Deaton et al., 2011; Song et al., 2009) and subsequently humans underscored the occurrence 
of tDMRs in gene-body CGIs (Davies et al., 2012). Although the 450k chip comprehensively 
assesses methylation at CGIs, only ~4% of the tDMRs detected in our study mapped to a gene-
body CGI. Another feature that attracted significant attention is CGI shores, which are the 2 
kb regions flanking CGIs. Irizarry et al. reported that 76% of the tDMRs identified overlapped 
with CGI shores (Irizarry et al., 2009). Inspired by this work, the 450k chip was designed with 
the specific aim of covering CGI shores. Nevertheless, the percentage of CGI-shore tDMRs 
in our data was limited to ~25% of the total number of tDMRs. However, our data indicated 
that tissue-specific methylation at CGIs and CGI shores may be more relevant at downstream 
genic regions, which remain poorly studied. Of note, we found that differentially methylated 
CGI shores were associated with genes involved in housekeeping and developmental processes 
analogous to differentially methylated CGIs. tDMRs overlapping with so called CGI shelves 
(the regions flanking CGI shores) mapped to genes associated with tissue-specific processes, 
as was observed for non-CGI tDMRs. Our results indicate that the occurrence of tDMRs may 
be less biased towards previously suggested annotations including gene-body CGIs and 
CGI shores, and reinforce the potential utility of reconsidering current definitions of CGI 
annotations (Glass et al., 2007; Hackenberg et al., 2006; Irizarry et al., 2009; Wu et al., 2010).
The annotation of tDMRs has thus far primarily focussed on CG content and location relative 
to genes. Increasing knowledge of genome biology can give a more in-depth annotation. 
The ENCODE project mapped DNase I hypersensitive sites (DHSs), informative markers of 
regulatory DNA and transcription factor binding sites (TFBSs) across 349 cell lines (Maurano 
et al., 2012). Both DHSs and TFBSs were enriched for tDMRs in our study. TFBS enrichment was 
observed for transcription factors (TFs) with a tissue-specific function and the TFBSs for these 
TFs were hypomethylated at TFBSs in the tissue in which they are expressed. These results 
are in accordance with the hypothesis that TF binding is associated with hypomethylation of 
TFBSs (Stadler et al., 2011; Thurman et al., 2012).
 Although the largest variation in DNA methylation was observed between tissues, it 
is more relevant to investigate inter-individual variation from the perspective of epigenetic 
epidemiology, which aims at identifying epigenetic risk factors for disease. Epidemiological 
studies, however, often have to rely on accessible peripheral tissues as proxies for internal 
organs directly involved in the aetiology of the disease of interest (Heijmans and Mill, 2012). 
Our exploration of the concordance between blood and internal tissues at CpG sites with 
variable DNA methylation suggested the presence of good correlations for a subset of variable 
CpG sites, many of which were locus and tissue-specific. Variable CpGs correlating across blood 
and all internal tissues may be primarily mediated by the effects of SNPs on DNA methylation 
(Bell et al., 2011) and may not necessarily represent a genuine epigenetic correlation. The initial 
evidence that blood DNA methylation may correlate to that of internal tissues as presented 
here and brain regions as reported previously (Davies et al., 2012) warrants investigations of 
more individuals and more tissues, such as the GTEx project (Lonsdale et al., 2013), to work 
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towards an atlas cataloguing those variably methylated regions in internal tissues that could 
potentially be studied indirectly by assessing their DNA methylation in specific peripheral 
tissues.

CONCLUSIONS
In conclusion, using an effective approach to detect and annotate tDMRs in 450k methylation 
data, we highlight the importance of non-CGI regions in tissue-specific DNA methylation 
and provide further evidence for a role of differential DNA methylation in the regulation of 
alternative transcription. Moreover, our data suggest that peripheral tissues may to some 
extent be used to assess inter-individual differences in DNA methylation in internal organs 
that frequently remain inaccessible in epidemiological studies.

METHODS

DNA isolation and Illumina 450k BeadChip

For the peripheral tissue dataset, five healthy volunteers from laboratory personnel (mean 
age 28 years, SD = 6.1) donated blood, saliva, hair and buccal swabs after providing informed 
consent. DNA was isolated from the blood using the Qiagen mini kit (Qiagen, Germany) using 
the manufacturer’s protocol. DNA from hair follicles was also isolated using Qiagen mini kits, 
with the addition of 3 μL dithiothreitol (DTT) during lysis to enhance the lysis of the hair 
follicles. DNA was isolated from saliva using Oragene Discover kits (OGR-250, DNA Genotek 
Inc). DNA from buccal swabs was isolated using a chloroform/isoamyl alcohol protocol (Min 
et al., 2006). For the internal tissue dataset, samples were taken from six cadavers within 
12 h post-mortem (mean age 65.5 years, SD = 7.2; Table S1). Blood was collected from the 
thoracic cavity in ethylenediamine-tetraacetic acid disodium salt dihydrate (EDTA) tubes (BD, 
United Kingdom). Tissue samples were collected and snap frozen onto a cork template with 
Tissue-Tek (Tissue-Tek, Netherlands). Samples were stored at -80ºC until DNA extraction. 
To enhance lysis, tissues were sliced into 30-μm slices using a cryostat (Leica, Germany). For 
microscopic inspection, one 5-μm slice was stained with haematoxylin and eosin (HE). HE 
tissue slides were microscopically inspected to verify tissue integrity and homogeneity and 
to exclude inflammatory infiltrate. DNA was extracted using a chloroform/isoamyl alcohol 
protocol. DNA concentrations were determined using a PicoGreen dsDNA quantitation assay 
(Invitrogen). Bisulphite reactions were performed using the EZ-96 DNA methylation kit 
(Zymo Research, Orange County, USA) with an input of 1 μg of genomic DNA. After bisulphite 
conversion, each sample was whole-genome amplified, enzymatically fragmented, and 
hybridized to the Illumina HumanMethylation450 BeadChip.

Ethics statement 

This study was conducted according to the principles expressed in the Declaration of Helsinki. 
All samples were anonymized and procedures were performed according to the ethical 
guidelines in the Code for Proper Secondary Use of Human Tissue in The Netherlands (Dutch 
Federation of Medical Scientific Societies).
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(Pre-)processing of the Illumina 450k BeadChip data

All analyses were performed in using R statistics, version 2.15.1. SNPs on the array were 
used to confirm that tissue samples were from the same individual and CpGs on the X and Y 
chromosome were used to confirm gender. CpGs with a detection P value (a value representing 
the measured signal compared to negative controls) over 0.05 were removed from the data. 
Cluster analysis (based on Euclidian distance) did not reveal signs of batch effects. The 
distributions of the six different signals on the 450k array (Type I (red/green and methylated/
unmethylated) and Type II (red/green)) were quantile normalized separately. Quality control 
plots were obtained using functions from the R package minfi and custom scripts (Aryee et 
al., 2014).

tDMR identification

Using the R package IlluminaHumanMethylation450k.db, Illumina identifiers were mapped to 
the hg19 genome build (Triche Jr, 2012). In order to objectively identify tDMRs we applied a 
newly developed algorithm (Figure 1). First differentially methylated positions were identified. 
The algorithm identifies tDMRs in two steps. CpGs were considered a tDMP on the basis of 
statistical significance and effect size. First we applied two linear models per CpG site, one 
with a fixed effect for tissue and one without (Figure 1):

yj = β0 + β1 · T + b1 · I + ε    (1)
yj = β0 + b1 · I + ε     (2)

where yj is the methylation value for CpG j, β1 the fixed effect for tissues and b1 is a random 
effect term for the individual. We tested whether the model with the fixed effect for tissue 
fitted the data better with the F test and used a Bonferroni corrected P-value ≤ 10-7 (0.05/471k 
autosomal CpGs) as the threshold for statistical significance after correction for multiple 
testing. Statistical analysis was performed using the R package lme4 (Bates et al., 2012). Since 
individual CpG sites were evaluated, the statistical test was not influenced by the systematic 
difference between type 1 and type 2 probes on the 450k chip. Secondly, we calculated the 
measure for effect size and we used the mean sum of squares (analogous to the effect size 
parameter evaluated in the F test), which was calculated as:

 
∑ ( yi,j����-yj�  )²

�   

 

   (3)

where yi,j  is the mean methylation of tissue i of CpG j, yi is the overall mean methylation of 
CpG j and n the number of tissues studied. The cut-off we used for the effect size was a 20% 
difference in DNA methylation between two tissues, which equals a ≥10% difference from the 
overall mean (≥10% difference equals a mean sum of squares ≥0.01 since the square of 10% 
= 0.12). Using both an effect size and the P value cut-off, CpG sites were classified as tDMP or 
non-tDMP. In the second stage of the algorithm, we used the DMP status to identify DMRs, 
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which were defined as ≥3 DMPs with an inter-CpG distance of ≤ 1 kb while allowing ≤ 3 non-
DMPs in the complete DMR. This procedure assumes that the DNA methylation level of CpGs 
not measured using the 450k chip, but located in a tDMR called by the algorithm, are similar 
to the CpGs that were measured and led to the calling of a tDMR. This assumption is based on 
previous studies that reported high levels of co-methylation at shorter genomic distances (<1 
kb) particularly in non-repeat regions (as interrogated using the 450k chip), for example, in 
candidate loci (Talens et al., 2010), in 27k data (Bell et al., 2011) and in whole genome bis-seq 
data (Li et al., 2010). The presence of co-methylation was confirmed in the current dataset 
(Figure S2B). Different settings for the inter-CpG distance (1.5 kb and 2 kb instead of 1 kb) 
or mismatches (1, 2, 4 and 5 instead of 3) did not appreciably alter the number and length 
of detected tDMRs, indicating the stability of the algorithm. The DMR finder algorithm was 
implemented in R statistics and the script is available in Additional Data 1. The DMR finder 
can be used for 450k data (using Illumina CpG identifiers) as well for other types of DNA 
methylation data (using genomic locations).

Annotation and enrichment tests 

CpGs on the 450k chip were annotated in multiple ways. First, the genome was divided 
according to five gene-centric regions: the inter-genic region (>10 kb from the nearest TSS), 
the distal promoter (-10 kb to 1.5 kb from the nearest TSS), the proximal promoter (-1.5 kb 
to +500 bp from the nearest TSS), the gene body (+500 bp to 3’ end of the gene) and the 
downstream region (3’ end to +5 kb from 3’ end). Next, CpGs were annotated as non-CGI, 
CGI, CGI shore or CGI shelf. Genomic locations of CpG islands were obtained from the UCSC 
browser (Kent et al., 2002). CGI shores were defined as 2 kb flanking the CpG island up- and 
downstream and CGI shelves as 2 kb flanking the CGI shore. Genes displaying tissue-specific 
expression were obtained from the TiGER database (Liu et al., 2008). Alternative transcription/
splicing events were downloaded from Ensembl (Flicek et al., 2011; Koscielny et al., 2009; Wang 
et al., 2008). The DNase hypersensitive sites and transcription factor binding sites clustered 
for multiple cell lines as part of the ENCODE project (ENCODE, 2012) were downloaded from 
the UCSC browser. All annotations used in this paper are available from Additional Data 2, 
Additional Data 3, Additional Data 4 and Additional Data 5 as RData objects; these include 
annotations of genomic features, alternative events, DHSs and transcription factor binding 
sites. All annotations are based on human genome build 19.
 Enrichments, that is, the gene and CpG density centric enrichments, tissue-specific 
expressed genes, the alternative events, the transcription factor binding sites and the DHSs 
were calculated using the individual CpG sites within tDMRs. All odds ratios were corrected for 
background enrichment, which is required because not all CpG sites on the array can become a 
tDMR as a result of the varying density of the chips. The background odds ratio was determined 
by identifying tDMR-like regions, that is, regions with an inter-CpG distance smaller than 1 kb 
with an average length of 5 CpGs per tDMR-like regions (cf. the number of CpGs in identified 
tDMRs) resulting in ~8 × 104 tDMR-like regions. Reported odds ratios are the calculated odds 
ratio divided by the background odds ratio. For each enrichment test, we performed 200,001 
permutations with 4,500 tDMR-like regions each. Using the resulting empirical distribution, 
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we determined the two-sided P value for enrichment.

Gene ontology term analysis

tDMRs overlapping with an annotation were mapped to the nearest gene using GREAT (McLean 
et al., 2010). Extracted genes were tested for enrichment of GO terms using the GO_BP_FAT 
table from the DAVID tool (Huang et al., 2009a, b). To gain further insights regarding the 
major classes within the significant GO terms, the REVIGO tool was used to cluster and prune 
GO terms on the basis of P-values obtained from DAVID, with a medium allowed similarity 
(Supek et al., 2011). Gene region Figures were generated using the R package Gviz (Hahne et al., 
2012) and graphs with the R package ggplot2 (Wickham, 2009).

Individual variation

To determine individual variation we used liver, subcutaneous fat, omentum and muscle 
from six autopsy subjects from which we obtained all these tissues. CpGs were mapped to the 
nearest flanking SNP using the Phase I/II CEU SNPs from the 1000 Genomes project. All SNPs 
in the probe and CpG SNPs were removed from the data (n = 147,963). To determine inter-
individual variation we calculated the mean sum of squares for all CpG sites and selected the 
CpGs with a mean sum of squares >0.025. Correlations between blood and internal tissues 
were calculated by determining the correlation between all inter-individual comparisons in 
blood, compared to all inter-individual comparisons in one internal tissue and CpGs with a 
correlation over 0.8 were selected.
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