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Abstract

Motivation: Dispersed duplications (DDs) such as transposon element insertions and copy number

variations are ubiquitous in the human genome. They have attracted the interest of biologists as

well as medical researchers due to their role in both evolution and disease. The efforts of discover-

ing DDs in high-throughput sequencing data are currently dominated by database-oriented

approaches that require pre-existing knowledge of the DD elements to be detected.

Results: We present DD_DETECTION, a database-free approach to finding DD events in high-throughput

sequencing data. DD_DETECTION is able to detect DDs purely from paired-end read alignments. We show

in a comparative study that this method is able to compete with database-oriented approaches in re-

covering validated transposon insertion events. We also experimentally validate the predictions of

DD_DETECTION on a human DNA sample, showing that it can find not only duplicated elements present

in common databases but also DDs of novel type.

Availability and implementation: The software presented in this article is open source and avail-

able from https://bitbucket.org/mkroon/dd_detection

Contact: kye@genome.wustl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The term dispersed duplication (DD) denotes any DNA sequence

duplicated non-locally in a genome. DDs include copies of transpos-

able elements such as members of the Alu and L1 families, which are

ubiquitous in the human genome, but also less frequent duplications

such as chromosomal translocations and copies of mitochondrial

DNA sequences embedded in nuclear DNA. DDs are very common,

as estimates show that known transposable elements comprise

nearly 50% of the human genome (Lander et al., 2001). An arbi-

trary human sample may contain upwards of 1000 DDs compared

to the reference genome (Stewart et al., 2011).

DDs have been found to be disruptive to the genome, altering

gene expression and sometimes causing disease (Kazazian et al.,

1988; Miki et al., 1996). This type of structural variation has often

been considered in cohort studies aiming to link phenotypes to

causal variants. Consequently, there has been an increased effort in

developing methodologies to uncover genetic variation beyond the

single nucleotide level.

The advent of high-throughput DNA sequencing provides a new

information source for genetic variant discovery that is both fast

and is steadily becoming less expensive. However, whole-genome

sequencing output is typically bulky and non-trivial to analyze,
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highlighting the need for robust and computationally efficient ana-

lysis methods. There is a variety of tools available to find structural

variants in sequencing data [e.g. CNVnator (Abyzov et al., 2011),

GenomeSTRiP (Handsaker et al., 2011), Pindel (Ye et al., 2009) and

BreakDancer (Chen et al., 2009)]. Typically, these tools can be

applied in a resequencing setting where a reference genome is avail-

able, and the DNA sample to be investigated is sequenced with low

to moderate coverage. Short sequencing reads are produced of ap-

proximately 30–150 nucleotides long and subsequently aligned to

the reference. Current sequencing technology allows the production

of paired-end reads, where two ends of a larger fragment are

sequenced, adding more information about the expected alignment

of these reads.

Insertions of transposable elements are one important class of

DDs, and most currently available methods detect these types of

variation using a predefined database. Some of the known tools that

cover this type of variation are RetroSeq (Keane et al., 2013), TE-

Locate (Platzer et al., 2012), Tangram (Wu et al., 2014) and

Mobster (Thung et al., 2014). The usual strategy for detecting DDs

in sequencing data is to look for anomalous read alignments and try

to realign the respective reads or read-parts to a database of known

duplication sequences. A DD insertion is called when a certain num-

ber of aligned reads support the same duplication element type and

show consensus on the insertion site.

Another previously published method, named Gustaf (Trappe et

al., 2014), does not realign to a database but focuses completely on

split read alignments to identify DDs. This study aims to develop a

method to find DDs without requiring realignment to a predefined

database of known elements. Instead, detecting DDs based on the in-

formation provided by discordant alignment of read pairs and par-

tially aligned reads allows our method to find elements that have

not been included in available databases or have not even been dis-

covered yet. The method described in this article can be seen as a

complement to the existing methodology referenced earlier, as it is

applicable to situations where providing a database of known dupli-

cation elements is not desirable.

We introduce DD_DETECTION as a method that can be used in a

resequencing setting where short, paired-end reads are aligned to a

reference genome. The underlying algorithm is implemented with

adjustable parameters to allow users to have it perform according to

their custom needs and wishes. We compared the sensitivity of

DD_DETECTION with database-oriented methods using a human DNA

sample for which extensive experimental validation data are avail-

able. In addition, we tested the specificity of our method using new

human samples and performed experimental validation with Sanger

sequencing to find out how well DD_DETECTION could identify both

DDs of known structure and novel types.

2 Methods

The algorithm to find DDs uses output from a standard high-

throughput paired-end read sequencing system such as the popular

Illumina platform. The sequencing output is generated for a, typic-

ally large, number of DNA fragments whose insert sizes (i.e. frag-

ment lengths) have a mean value of FIS. Of all n fragments, both

ends are sequenced, resulting in a set of reads S ¼ fr1; . . . ; r2ng,
where r denotes a DNA sequence of some fixed length FRL with a

unique associated name nameðrÞ. We define rj ¼ mateðriÞ to denote

that reads ri and rj (where i 6¼ j) are sequenced from the same frag-

ment. After sequencing, all reads are aligned to a reference genome.

Our method is designed for use with the BWA alignment tool

(Li and Durbin, 2009). In principle, the alignment information can

be provided by any existing alignment tool that can handle paired-

end reads, such as Bowtie (Langmead et al., 2009) or NovoAlign

(http://www.novocraft.com/products/novoalign/). Additional infor-

mation provided by alignment includes is alignedðrÞ, a

Boolean value stating whether the read could be aligned to the refer-

ence genome, chrðrÞ, the chromosome to which the read is aligned,

posðrÞ, the left-most base position on the chromosome to which the

read is aligned and strandðrÞ, the strand to which the read is

aligned.

Given the alignment information as input, the algorithm pro-

ceeds in three steps. First, all reads with an abnormal alignment are

deemed potentially indicative of a DD insertion. These reads are col-

lected and clustered by strand and position in the genome. Second,

for each cluster, a potential breakpoint of a new DD insertion is esti-

mated based on either information from local split reads or, in ab-

sence of a split read signal, from the distribution of alignment

positions of the reads in the cluster. Finally, estimated breakpoints

from opposite strands are combined into duplication events, which

are then reported. The process is described below in further detail,

a graphical outline is shown in Figure 1.

2.1 Detecting clusters of discordantly mapped reads
In the first step of the algorithm, all read alignments in S are exam-

ined. Reads for which the mates align to different chromosomes or

for which the distance of the alignment positions exceeds a certain

Fig. 1. Method outline for detecting DDs. The top of the figure shows a

paired-end sequenced sample genome containing three identical elements

DD1, DD2 and DD3, where DD3 is not present in the reference genome. In

pre-processing step 0, the paired-end reads are aligned to the reference gen-

ome. Reads that originate from the region flanking the DD3 element are

aligned to the corresponding region in the reference. Reads originating from

inside the DD3 element are aligned to DD1 and DD2 in the reference genome.

Our method starts with step 1, where reads that are aligned to the region

flanking the DD3 insertion site are clustered as a group of discordantly

mapped reads (gray circle). In step 2, the method searches a read pair where

one read aligns to the flanking region and its mate can be partially aligned ad-

jacent to the assumed insertion site of DD3, giving an estimation of the break-

point on the reference genome. In the final step, the breakpoint estimation is

combined with a breakpoint estimated by a similar process on the opposite

strand and the DD event is reported
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threshold (ri ¼ mateðrjÞ and jposðriÞ � posðrjÞj > h) are marked

discordant and are collected for further processing. The threshold

parameter h ensures that the algorithm focuses on dispersed events

rather than small or local variations.

The collected discordantly aligned reads are subsequently clus-

tered by strand and by alignment position. Two reads (ri, rj) are as-

signed to the same cluster C � S if chrðriÞ ¼ chrðrjÞ and

strandðriÞ ¼ strandðrjÞ and jposðriÞ � posðrjÞj�d. The value of d
determines how close two reads must be aligned to be in the same

cluster. d is manually configurable and allows control over the num-

ber of times reads are mistakenly clustered together or conversely as-

signed to the same cluster while not supporting the same DD event.

The expected number of such mistakes also depends on read cover-

age and on the size characteristics of the paired-end read fragments

(FIS; FRL). The algorithm also enforces a maximum on the size

of the region that is spanned on the reference genome by its read

alignments to avoid adding reads bearing signals from different

duplication events to the same cluster. Formally, a cluster C is

invalid if

9ri2C;rj2CjposðriÞ � posðrjÞj > FIS � FRL:

While clustering, the reads are traversed in order of their align-

ment position on the genome, assigning them to clusters one at a

time. New clusters are created for the first read and every read that

cannot be assigned to an existing cluster without invalidating it by

the definition described above. Afterward, a noise threshold a is

applied such that all clusters of insufficient size jCj < a are

discarded.

2.2 Finding breakpoints
Having found clusters of discordant reads, the algorithm estimates

for each cluster the breakpoint location of the putative DD.

Estimation of the breakpoint is done using a split read signal pro-

vided by applying the pattern growth algorithm locally. This algo-

rithm was first described by Pei et al. (2001) and has successfully

been used in finding patterns in biological sequence data (e.g. Ye et

al., 2007, 2009; Zhang et al., 2012). In the context of finding DDs,

pattern growth is used to find partial alignments of reads (i.e. split

reads) overlapping the insertion breakpoint.

To find a breakpoint for a specific cluster C with reads aligned

to the forward strand, the left-most alignment position m ¼ minr2C

posðrÞ is determined. Given m, the algorithm finds reads r� 2 S for

which mateðr�Þ is not aligned or only partially aligned to the refer-

ence and posðr�Þ þ FRL is within the range ½m� FIS;mþ 2FIS� (i.e.

a region around the far end of the site spanned by the cluster on the

reference genome). For every r� the pattern growth algorithm is

applied to mateðr�Þ in the local area on the reference genome to find

a partial alignment. If such a partial alignment is found, a putative

breakpoint is announced at the last aligned position before the read

starts to diverge from the reference. Any announced breakpoint is

discarded if it is not at least supported by a partial alignments or if

the previously unaligned parts of the split reads can be aligned lo-

cally in the genome (in a 6h region around the breakpoint). For

clusters with reads aligned to the reverse strand of the reference gen-

ome, a similar approach is used, the right-most aligned position

being found by m ¼ maxr2C posðrÞ þ FRL and using ½m� 2FIS;m

þFIS� as the range that must overlap with posðr�Þ þ FRL.

If no breakpoint is found using split reads, it will be estimated

directly from the alignments of the reads in the cluster. Given a

cluster C with reads ðr1; . . . ; rjCjÞ aligned to the forward strand

ordered by alignment position, a breakpoint is estimated by

posðrjCjÞ þ FRL þ 1

jCj � 1

XjCj�1

i¼1

�
posðriþ1Þ � posðriÞ

�
:

For clusters with reads aligning to the reverse strand, the break-

point is calculated in similar fashion by subtracting the average dis-

tance between reads from the position of the left-most read.

2.3 Calling DD insertions
In the final step of the algorithm, DD events are called if they are

supported by breakpoints from two clusters, one with reads aligned

to the forward strand and one with reads aligned to the reverse

strand of the reference genome. Two such breakpoints are assumed

to support the same event if they are not further apart than k base-

pairs on the same chromosome. Specifically, the duplication events

are discovered by combining consecutive breakpoints from an array

of breakpoints sorted by their position on the genome.

The resulting DD events are reported with the position on the

genome estimated from read clusters on both strands, the supporting

discordant reads (i.e. those that map inside the element), the sup-

porting split reads and the alignment positions of the discordant

reads to the reference genome as provided in the input (i.e. positions

indicating alternative copies of the DD elements).

3 Results

We implemented the method presented in the previous section and

named it DD_DETECTION. The program is easy to use, configurable

and capable of processing whole-genome sequencing input on a

modern desktop computer system. For example, on a regular system

(4-core 2.4 GHz processor, 8 GB memory) with human whole-

genome sequencing data (40� coverage) as input, running

DD_DETECTION with four threads and otherwise default parameters

takes 127 min and consumes approximately 2.5 GB peak physical

(9.3 GB peak virtual) memory. The Cþþ source of the program to-

gether with installation instructions can be found online at https://

bitbucket.org/mkroon/dd_detection.

We have used DD_DETECTION to investigate the performance of

our method for both medium and high-coverage human DNA align-

ment data. DD events called on publicly available data from the

1000 Genomes project (The 1000 Genomes Project Consortium,

2012) are used to compare the performance of DD_DETECTION to that

of alternative methods. We also applied DD_DETECTION to a two-

sample human dataset and validated in corresponding DNA samples

a number of calls for both known transposon elements and elements

not present in common databases.

3.1 Comparing methods in a human sample
We used a well-studied human sample from the 1000 Genomes project

(The 1000 Genomes Project Consortium, 2012) to compare our method

against recent methods for finding transposon insertions. The particu-

lar public dataset used for this sample (NA12878, ftp://ftp.1000genomes.

ebi.ac.uk/Vol03204/ftp/technical/working/20101201_cg_NA12878) con-

tains paired-end reads from the Illumina HiSeq platform for the whole

genome with approximately 200� coverage. The read data were re-

aligned to the human reference genome GRCh37 using BWA (Li and

Durbin, 2009). DD_DETECTION was run with h ¼ 8000 bp, a ¼ 10; d
¼ 250 bp and compared to two alternative methods: RetroSeq (Keane et
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al., 2013) and Mobster (Thung et al., 2014). Gustaf (Trappe et al., 2014)

was omitted from the comparison, due to its large memory requirement

for whole-genome sequencing data, it could not be applied to this dataset

of our system.

RetroSeq, which is a database-oriented approach that uses detec-

tion of discordantly mapped reads and read realignment to find new

element insertions, was run with default settings while employing

the Repbase Update (Jurka et al., 2005) database with selected

transposon elements for human and human ancestors. Furthermore,

duplicate calls arising from homologous elements in the database

were removed from the RetroSeq output.

Mobster also has a database-oriented approach and uses realign-

ment of discordant and split reads to find new element insertions.

Mobster was run with default parameters and the transposon data-

base that came supplied with the software, which contained se-

quences for the L1, Alu and SVA families.

Calls made by each method were compared to previously validated

transposon insertion events taken from Stewart et al. (2011). The valid-

ation set contains 420 insertion events of Alu, L1 and SVA elements.

Figure 2a shows the percentage of validated events recovered by each

detection method, as computed by matching calls with validated events

within a 250 bp range. All three methods recover a decent number of

events in the validation set, with RetroSeq performing best with 91.9%

and Mobster performing worst with 81.4%.

Figure 2b shows the overlap within a 250 bp range for the calls

made by the three detection methods and the validation set. The ma-

jority of validated events overlap with the call sets of all methods.

RetroSeq and Mobster show a similar number of unique calls in the

1300–1400 range, while DD_DETECTION has nearly 2500 unique calls.

With 10 calls, Mobster has the highest number of calls overlapping

with the validation set that are unique to that particular method,

RetroSeq and DD_DETECTION follow with 8 and 1, respectively.

Estimated DD insertion locations of the three detection methods

were compared with the actual locations in the validation set. For

DD_DETECTION, using the mean of the estimations based on both

strands, we find an average distance of 37.4 bp (standard deviation

of 21.7) between the estimated insertion location and the validated

insertion location. When looking solely at the split read signal of the

DD_DETECTION calls, the average distance drops to 9.4 bp (standard

deviation of 6.9). RetroSeq shows an average distance between esti-

mated and validated locations of 16.4 (standard deviation of 16.4).

Mobster shows a distance of 10.6 bp (standard deviation of 22.3)

for the same measurement.

3.2 Validation of DDs in medium coverage data
To test the ability of DD_DETECTION to find DDs of known type and

DDs with non-database elements, we obtained a two-sample dataset

originating from a monozygous twin pair (Ye et al., 2013). The two

samples named A and C were sequenced with paired-end reads on

an Illumina HiSeq platform with medium coverage (40�). The re-

sulting reads are 100 bp in length and have a mean insert size of ap-

proximately 300 bp. The reads were aligned to human reference

genome GRCh37 using the alignment tool BWA with default set-

tings. DD_DETECTION was run for each sample separately with the fol-

lowing parameters: h ¼ 8000 bp, a ¼ 5; d ¼ 100 bp; k ¼ 100 bp.

RepeatMasker (Smit et al., 1996) was used to classify events by

masking the supporting read sequences according to the Repbase

Update (Jurka et al., 2005) transposon element database. We

noticed some events to occur in low-complexity regions of the gen-

ome. Therefore, we divided the DD events into three disjoint groups:

first, events of known type, for which >50% of their supporting

reads could be aligned to the consensus sequence of an element in

the database. Second, low complexity events, for which >50% of

the reads were identified as low complexity sequences (including sat-

ellite repeats). Last, events classified non-database are those that do

not fit the previous two descriptions. For these three groups, we

found 1825 (74.9%), 433 (17.8%) and 177 (7.27%) events,

respectively.

3.2.1 Validation of DDs with common transposon elements

For both samples combined, 1825 of the DD events called were clas-

sified as a known type in the RepBase update database. Of those,

1058 (58.0%) were detected in both samples, 329 (18.0%) were

uniquely detected in sample A and 438 (24.0%) were uniquely de-

tected in sample C. Please note that the discrepancy in calls between

the two twin samples depends on the data coverage {In our experi-

ment with medium coverage data for a human twin pair, the calls

made by DD_DETECTION were not identical for the two samples as one

might expect. We observed that approximately 42% of the calls

were unique to one of the samples, however, of those calls, more

than 75% were found in the other sample with support just below

the detection threshold a¼5 (i.e. the events would have been de-

tected in the other sample with an a value of 3 or 4). These findings

suggest that the call sets for the twin samples are more similar than

they appear in the listed results.}. Of all 1825 events, we considered

Fig. 2. Comparison of DD insertion calls made by DD_DETECTION, RetroSeq and

Mobster on a deep-sequenced human sample. (a) For each detection method,

the percentage of known elements recovered from the validation set of 420

Alu, L1 and SVA elements provided by (Stewart et al., 2011). (b) The overlap

in calls made by each detection method
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210 (11.5%) to be novel, as they were not reported in previous lit-

erature (using Hormozdiari et al., 2011; Lee et al., 2012; Stewart et

al., 2011; Wang et al., 2006 as reference). Furthermore, 436

(23.9%) of these events were called with split read support.

DD calls from both the group of novel events and known events

were selected randomly for validation. For each selected event, poly-

merase chain reaction (PCR) was applied to amplify the region of

the DNA containing the putative insertion. As the breakpoints may

be imprecise, the primers were designed to be at least 150 bp away

from the nearest breakpoint estimation. Before validation, the pre-

dicted length of the elements to be extracted was estimated from the

alignment of the discordant read pairs supporting the corresponding

event and from information provided by the Repbase Update trans-

poson database if the particular event could be classified as a known

transposon type. The actual length of the inserted elements was

determined via gel electrophoresis on the PCR products. If the meas-

ured length of a product concurred with the estimated element

length, the product was isolated and sequenced inwards from both

directions using Sanger sequencing. The resulting sequences were

aligned to the human reference genome using BLAT (Kent, 2002).

We state that an event is validated when BLAT returns an incom-

plete alignment near the putative breakpoint with the remaining

part of the sequence aligning to the consensus sequence of the elem-

ent type as identified by RepeatMasker for the respective event or

when the rest of the sequence corresponds to the supporting reads of

the event and their alignment to the reference genome.

Validation results for nine events with elements from the

Repbase Update database are listed in Table 1. Seven of the selected

events were validated successfully. Detailed information on the se-

lected events and validation experiments can be found in

(Supplementary Table S1). Pictures of electrophoresis on the PCR

products are shown in Supplementary Figs S1–S4.

3.2.2 Validation of DD events with non-database elements

DD_DETECTION found 177 events that were classified as neither pre-

sent in the transposon element database nor arising from regions of

low complexity. Fifty-five events (31.1%) were detected in both

samples, while 57 (32.2%) events were unique for sample A and 65

(36.7%) events were unique for sample C. Twenty-two (12%) of

these DDs were supported by split reads.

Eight events with non-database elements were selected for valid-

ation. We preferred events that were well-supported by discordant

reads and for which the surrounding region on the genome was suit-

able for primer design. The followed validation procedure was as

described in Section 3.2.1. Table 2 lists the validation result, three of

the events were validated successfully. Details on the selected events

and validation can be found in Supplementary Table S1 and Figs

S1–S4.

4 Discussion and conclusion

We presented DD_DETECTION, a new method to detect dispersed

duplicated DNA, an important but relatively neglected type of struc-

tural variation. The method uses the alignment information of

paired-end reads to find non-reference duplications, thereby not

relying on a predefined database of duplicated elements. As a soft-

ware package, DD_DETECTION is publicly available and has few re-

quirements for installation.

In a comparative study on public high-coverage data,

DD_DETECTION was able to compete with database-oriented methods

in finding new transposon insertions. Analysis of DDs called in me-

dium coverage data shows that DD_DETECTION is able to find both

new transposon insertions of known type as well as other DD inser-

tion events with elements not present in common databases. A num-

ber of novel DD events and DD events with non-database elements

were successfully validated using PCR and Sanger sequencing.

Table 1. Validation results for nine DDs with common transposon

elements

Chr Position Family Novel Validated

1 93167510 Alu No Yes

3 103171339 Alu No No

1 83201797 L1 Yes Yes

1 60470601 Alu No Yes

4 80883489 Alu Yes Yes

1 241908648 Alu Yes Yes

2 30670002 Alu Yes Yes

5 21207706 L1 Yes Yes

5 155290632 Alu Yes No

Seven events could be validated, of which five were considered novel events

not found in previous literature. From left to right, the table columns describe

the chromosome and genome position of the event, as averaged by the estima-

tions based on forward and reverse strand. The last three columns contain the

family to which the inserted transposon element belongs, whether it is a novel

event and whether it was validated successfully.

Table 2. Validation results for DD events with non-database

elements

Chr Position Size Val. Alternative location

Chr Position

4 88847037 NA No 6 131648736

X 586448

� � � � � �
10 98175504 NA No Y 1209696

Un_g1000220 127792

� � � � � �
4 29441246 166 No M 12836

5 134261489

11 38812664 1345 Yes 8 52431261

16 33940292

� � � � � �
8 15289364 215 No 13 74313858

12 108203260 609 Yes 7 111053153

X 136092966 4147 Yes X 41649400

1 119669113

� � � � � �
19 53602422 431 No 19 53632049

19 53019294

� � � � � �

Three out of eight events were validated successfully. From left to right, the

table columns describe the chromosome and position of the DD, as averaged

by the estimations based on forward and reverse strand. The size of the in-

serted element, as estimated by the alternative alignment positions of the

reads aligned inside the element. Whether the event was successfully validated

(Val.). The final two columns show a selection of alternative alignment pos-

itions for reads mapping inside the element. The alternative alignments were

found with BLAT having a score 80 or higher. All events have one or more

such alternative alignments, all human chromosomes contain alternative

alignment positions for the above events. There are also alternative align-

ments to mitochondrial DNA (M) and unordered sequences (e.g.

Un_gl000220). A full list of alternative positions for the events in this table is

given in the Supplementary Data.
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Predictions made by DD_DETECTION for a human twin pair

showed a discrepancy between both samples that is larger than one

may expect for near identical genomes. Additionally, we noticed

that low-complexity regions in the genome caused false-positive

calls. We think these problems are part of the trade-off that comes

with avoiding an external database of duplication elements. While it

allows our method to call events with non-database elements, it can-

not use information from a database to discard false calls. We

showed a simple post-processing step with the RepeatMasker

tool (Smit et al., 1996) that we used to filter some of these false

positives.

In the future, we want to focus on decreasing the false-positive

rate, either by extending the pipeline with a filtering step for low-

complexity DNA or by incorporating such filtering into the method.

Another goal is to have the algorithm find optimal parameter values

automatically given the input data. Currently, as a general guide

line, the value of a should not be lower than 3, to keep control over

the false-positive rate. In case of low coverage data, d and k can

be increased to gain sensitivity. A more detailed explanation of

the effects of parameter settings is given in the software

documentation.
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