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1
1. Cancer

Despite continuous efforts in the past decades to unravel the molecular mechanisms 
underlying cancer initiation and progression and to translate findings into preventive 
and therapeutic strategies in order to reduce cancer mortality and morbidity rates, overall 
cancer mortality remains 8.2 million per year worldwide (1). This number accounts for 
almost 15% of worldwide deaths (1, 2), occupying second place in the top ten of leading 
causes of death (3). Cancer mortality is mainly caused by metastatic disease, rather than the 
primary tumor. Although mortality rates are decreasing, cancer incidence is rising (4) and is 
expected to keep rising in the next two decades (5). This increase is partly due to improved 
diagnostics and population screening efforts, but nevertheless reflects increased cancer 
burden and underlines the need for more effective anti-cancer strategies.

1.1. Breast cancer
As the most commonly diagnosed cancer in women, breast cancer accounts for 6.4% of 
total cancer deaths worldwide (1). Risk factors for breast cancer development include 
hereditary mutations, age, obesity, smoking and hormonal changes (e.g. pregnancy or 
menopause). Breast tumors are staged from 0 to 4, depending on tumor size, invasiveness, 
lymph node involvement and metastatic spread (6). Based on molecular characteristics, 
three main subtypes of breast cancer have been established (7). First, the luminal tumors 
are the most common breast cancer subtype and are characterized by high expression 
of estrogen receptor (ER) and progesterone receptor (PR) and generally have a good 
prognosis (8-10). Second, basal-like tumors are generally negative for ER, PR and human 
epidermal growth factor receptor 2 (HER2), therefore often referred to as triple negative 
(8). This subtype is particularly aggressive and has a poor prognosis (11). The third subtype 
consists of HER2 overexpressing tumors, which are generally negative for both ER and 
PR (12). Although these tumors usually respond well to treatment, relapse rates are high 
resulting in a poor prognosis (9, 10, 13). Primary treatment for all subtypes of breast 
cancer is surgical removal of the primary tumor, complemented with adjuvant chemo-,  
radiation- or hormonal therapies (14). 

1.2. Colorectal cancer
Representing 8.5% of all cancer deaths, colorectal cancer (CRC) represents a significant 
proportion of cancer-related deaths. This third most common type of cancer is slightly 
more common in men than in women and appears mostly in developed countries (4). 
CRC risk factors include age, obesity and smoking, but also Western-type diets have 
been shown to increase CRC risk. Most colorectal cancers arise from premalignant polyps 
(adenomas) by acquiring additional genetic mutations in the epithelial cells. Subsequent 
mutations result in growth of non-invasive carcinoma in situ, which eventually progress to 
invasive tumors, which then progress through different stages (Fig. 1). Colorectal tumors 
are staged at diagnosis using the TNM classification (15), which is shown in Table 1. As for 
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breast cancer, the primary treatment for CRC is surgical removal of the tumor. Dependent 
on tumor staging, this therapy is complemented with pre- or post-surgical radiation or 
chemotherapy. Stage III and IV CRC patients receive adjuvant chemotherapy or radiation, 
whereas for stage I and II CRC patients, adjuvant treatment is not typical (16). 

                          

Stage III Stage IV 

Lymph invasion Metastatic spread 

Stage I Stage II 

Mucosa 

Muscle layer 

Serosa 

Intestinal 
lumen 

Lymph node 
Blood vessel 

Figure 1. Schematic representation of the diff erent stages of CRC development. Stage-I is characterized by 
the formation of a small tumor mass which invades through the intestinal mucosa into the muscle layer. 
During progression to stage-II CRC, angiogenesis is induced and tumor cells start to invade the serosa. 
Stage-III is marked by lymph node involvement, whereas metastatic spread to distant organs is one of the 
characteristics of stage-IV CRC.

Table 1. Colorectal cancer staging

Stage Characteristics
0 Carcinoma in situ 
I Tumor invades colonic mucosa and muscular layer, no lymph nodes involved
II Tumor invades through intestinal wall, no lymph nodes involved
III Tumor invades through intestinal wall, one or multiple lymph nodes involved
IV Tumor has spread to distant one or more distant sites of the body
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2. Tumor microenvironment

Cancerous growth starts from genetic mutations in epithelial cells, which allow unlimited 
proliferation and activation of growth stimulatory pathways (17). Therefore, initial cancer 
therapies were focused on targeting the mutated epithelial cells. This approach resulted in 
therapies which showed initial response, but because of the high mutation rate in epithelial 
cells, tumors rapidly became resistant to therapy. One molecular pathway in which the 
genes encoding signaling transducers are frequently mutated in epithelial tumor cells is 
the transforming growth factor (TGF)-β signaling pathway.
In recent years, the tissue surrounding the tumor, also called the tumor microenvironment 
(TME) or stroma, has been recognized to play an important role in tumor progression and 
metastasis (18). The TME consists of endothelial cells, establishing the tumors’ vascular 
system, immune cells, cancer-associated fibroblasts (CAFs) and extracellular matrix (19) 
(Fig. 2). The total stromal compartment has been shown to be an independent factor 
predicting patient survival, at least in CRC and certain breast cancer subtypes (20-22). Since 
the realization that the TME plays a pivotal role in cancer progression, a number of drugs 
have been developed targeting specific components of the TME. This thesis focuses on the 
role of specific TME cellular subsets in tumor progression and metastasis and their potential 
for therapeutic targeting. One of the pathways affecting almost all components of the TME 
is the TGF-β signaling pathway.

TGF-β signaling plays a dual role in cancer due to its cancer stage-dependent effects on, 
amongst others, epithelial tumor cells. The TGF-β family consists of more than 30 structurally 
and functionally related family members and is extensively involved in almost all processes 
in the human body (23). Members include the TGF-βs, bone morphogenetic proteins 
(BMPs) and activins. The role of TGF-β signaling in embryonic development and tissue 
homeostasis has been extensively researched and discussed in detail (24, 25). Different 
TGF-β family members bind to distinct receptors, but canonical signaling is generally 
induced by similar mechanisms. Signaling is initiated by binding of the ligand to its type 
II receptor, which subsequently recruits and transphosphorylates the type-I receptor. As 
a result, downstream receptor-regulated Smads are activated by phosphorylation. Upon 
complex formation with the co-Smad, i.e. Smad4, these dimeric or trimeric complexes 
can translocate to the nucleus and regulate gene transcriptional responses (26). Which 
genes are induced or repressed is highly dependent on cellular context, for example on 
which receptors or downstream Smads become activated and which Smad interacting 
transcription factors are present (27, 28). Although TGF-β was first recognized as a growth 
factor, stimulating fibroblast proliferation (29), it has become clear that in normal tissues, 
TGF-β mainly functions as an anti-proliferative factor. In cancer, TGF-β displays a dual effect. 
In early stages of cancer, TGF-β inhibits tumor cell proliferation, whereas in more advanced 
tumors TGF-β functions as a tumor promoting cytokine (30), both via effects on the 
epithelial tumor cells as well as on other components of the TME. Although tissue specific 
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inactivation of TGF-β signaling components often does not result in spontaneous tumor 
formation (31-33), its important tumor suppressive role becomes apparent upon tissue 
damage or oncogenic stimuli, as shown in models for CRC (32, 34) and breast cancer (35). 
Several components of the TGF-β signaling pathway are mutated and inactivated in cancer, 
being one mechanism by which TGF-β loses its inhibitory effect on cell proliferation. One 
of the tumor promoting actions of TGF-β is the induction of epithelial to mesenchymal 
transition (EMT) (36, 37), which aids in tumor cell invasiveness and therefore increases 
metastatic capacity (38-40). Moreover, TGF-β can promote tumor cell proliferation by 
inducing the production of mitogenic factors by the tumor cells themselves (41). The role 
of TGF-β in metastasis has been intensely studied and it appears that its role in facilitating 
metastasis is highly tumor- and context-dependent. For example, TGF-β affects the ability 
of breast cancer cells to metastasize to the lung or bone, although through two different 
mechanisms (42-44). A role for TGF-β in preparing and maintaining the metastatic niche 
was reported, for example in bone metastasizing breast cancer (45). Also, the ability of 
TGF-β to induce factors stimulating angiogenesis aids in outgrowth of distant metastases 
(46). Finally, other TME components are also affected by TGF-β, for example resulting in 
increased production and modulation of extracellular matrix by CAFs or suppression of the 
immune system. 

Tumor cell 

NK cell 

T-cell 

Macrophage 

Neutrophil 

Fibroblast 

ECM 

Figure 2. The tumor microenvironment. Epithelial tumor cells are surrounded by the tumor 
microenvironment which exists of endothelial cells, fibroblasts, extracellular matrix and a variety of 
infiltrated immune cells. 

Although TGF-β signaling is involved in almost all physiological processes, many efforts have 
been made to target this pathway in cancer. Clinical and preclinical studies have investigated 
the effects of interrupting TGF-β/TGF-β receptor interaction by antibodies and ligand traps, 

41599 Madelon Paauwe_9,5.indd   14 02-12-16   15:52



General introduction

15

1
inhibiting TGF-β at gene expression level and by blocking TGF-β receptor activity using 
kinase inhibitors (47). Preclinical data showed that, although TGF-β targeting had a limited 
effect on epithelial cell proliferation (48-50) tumor inhibiting effects were accomplished by 
affecting the TME, like fibroblasts (51, 52), endothelial cells (53-56) and immune cells (57-
67). Additionally, simultaneous targeting of TGF-β receptors I and II resulted in decreased 
metastatic spread of CRC cells in a mouse model for CRC metastasis (68). Multiple phase I 
and some phase II clinical studies have been performed, mainly showing increased immune 
response upon targeting TGF-β signaling (69-71) and some cases of disease stabilization 
(69, 70, 72) and improved survival were observed (NCT01246986). In addition, clinical trials 
targeting TGF-β specifically in tumor vessel formation are ongoing, based on the crucial 
role of TGF-β in this process.

2.1. Endothelial cells
Endothelial cells form all vascular structures in the body and play an important role in tumor 
progression by regulating blood and nutrient supply, removal of waste products, secretion 
of cytokines and attracting immune cells (73, 74). Solid tumors require the formation of 
their own vascular network (angiogenesis) to provide nutrient and oxygen supply in order 
to sustain tumor growth (73). Additionally, the newly formed vessels provide a route of 
dissemination to other organs, rendering angiogenesis indispensable for metastatic spread 
(75). Based on these characteristics, anti-angiogenic therapies have been widely used in 
treatment of solid tumors, including breast- and colorectal cancer. In the early 1970’s Judah 
Folkman already discovered that when tumors grow beyond a few mm3, the tumor core 
becomes hypoxic. As a response, epithelial tumor cells start producing pro-angiogenic 
factors, which lead to proliferation and differentiation of endothelial cells, ultimately 
resulting in increased tumor vessel density (75) (Fig. 3). Pro-angiogenic factors secreted by 
tumor cells include vascular endothelial growth factor (VEGF) (75), TGF-β family members 
TGF-β and bone morphogenic protein (BMP)-9 (76, 77), and IL-8 (78-80).

2.1.1. VEGF
VEGF was recognized as a major pro-angiogenic factor, being indispensable for both 
developmental and tumor angiogenesis and was therefore the first factor that was 
therapeutically targeted in cancer therapy (75, 81, 82). Although results from preclinical 
studies using the first anti-VEGF antibody bevacizumab (Avastin®) looked very promising, 
efficacy in the clinic as a monotherapy proved to be limited. This lead to withdrawal of Food 
and Drug Administration approval for bevacizumab as adjuvant treatment in metastatic 
HER2-negative breast cancer (83). In CRC, bevacizumab remains approved for treatment 
of metastatic disease in combination with various regimens of chemotherapy, including 
5FU-based therapy (84). Additional to antibodies targeting pro-angiogenic factors or 
their receptors, kinase inhibitors that target receptor activity have been developed. For 
example, SU5416, which is a VEGF receptor kinase inhibitor, was tested in clinical trials as 
an adjuvant treatment in CRC. However, the phase III clinical trial was stopped due to a lack 
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of clinical benefit (NCT000212810). One of the main reasons for limited clinical effects is 
the development of therapy resistance, characterized by initial therapeutic response (e.g. 
tumor shrinkage), followed by disease progression (85). Therapy resistance can occur by 
upregulation of alternative pro-angiogenic pathways (86), like the TGF-β signaling route. 

VEGF 

VEGF 
VEGF 

VEGF 

VEGF 

VEGF 
VEGF 

VEGF 

VEGF 

VEGF 

VEGF 

VEGF 

VEGF 

VEGF 

BMP-9 

BMP-9 

BMP-9 
BMP-9 

VEGF 

VEGF 
VEGF 

VEGF 

VEGF 

VEGF 

BMP-9 

BMP-9 

VEGF receptor 
Endoglin/ALK-1 
Endothelial cell 

Figure 3. The process of tumor angiogenesis. In response to hypoxia, due to tumor growth, tumor cells start 
to secrete pro-angiogenic factors like VEGF and BMP-9. Endothelial cells sense increased concentrations 
of VEGF or BMP-9 with the VEGF receptor II or endoglin/ALK1, respectively. As a result, endothelial cells 
proliferate and migrate towards the increased concentration and establish novel tumor vasculature.

2.1.2. Endoglin & ALK-1
Angiogenic processes are also stimulated by TGF-β signaling, contributing to tumor 
growth and tumor cell dissemination (87). In endothelial cells, TGF-β signaling can occur 
through heteromeric complex formation of the TGF-β receptor II (TGFβRII) with TGF-β type 
I receptors, activin receptor-like kinase (ALK)-5 or ALK-1 (88). Recruitment of ALK-5 receptor 
inhibits angiogenesis, while ALK-1 stimulates an angiogenic response (89). Although 
TGF-β ligands can signal directly through TGFβRII and ALK-1, expression of the TGF-β co-
receptor endoglin potentiates this signaling pathway (90, 91) and enhances the angiogenic 
response by increasing endothelial cell proliferation and migration (92). Moreover, the 
presence of endoglin also inhibits the anti-angiogenic effects of TGF-β (90, 93). BMP-9 
can bind directly to both ALK-1 and endoglin, without the recruitment of additional BMP 
receptors (94, 95). The importance of ALK-1 and endoglin in angiogenesis is underlined by 
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embryonic lethality upon knock out (96-99) and the formation of vascular malformations 
in endoglin heterozygote mice and humans (Reviewed in (100) and discussed in chapter 
3). Additionally, in cancer an increased number of vessels expressing endoglin correlates 
with poor patient survival in various solid tumors (101). Also, ALK-1 expression has been 
shown to correlate to metastatic disease in breast cancer patients (102). Based on their 
importance in angiogenesis, both ALK-1 and endoglin are considered to be promising 
targets in anti-angiogenic therapy and are therefore developed clinically. In order to 
prevent therapy resistance, simultaneous targeting of multiple pro-angiogenic pathways 
could pose an effective method and is therefore currently being explored in clinical trials 
(e.g. NCT01648348, NCT01727089, NCT01975519, NCT01306058, NCT01806064).
One strategy to target ALK-1-mediated signaling is the use of ALK-1-Fc. This fusion 
protein consists of the extracellular domain of ALK-1 fused to the Fc-part of an antibody 
and functions as a ligand trap, thereby preventing BMP-9 binding to ALK-1 and inhibits 
angiogenesis (103). Pre-clinical studies have shown that this strategy decreased tumor 
angiogenesis in a model for pancreatic cancer and inhibited metastatic spread in a mouse 
breast cancer model (102, 103). Another approach, which is under clinical development, is 
the use of anti-ALK-1 antibodies (104). These antibodies prevent ligand-induced receptor 
complex formation between endoglin and ALK-1 (105), and thereby inhibit angiogenic 
signaling. 
In addition to ALK-1, endoglin targeting is being explored as a target for anti-angiogenic 
therapy. Endoglin targeting can be accomplished by using an endoglin-Fc fusion protein, 
sequestering endoglin ligands. Furthermore, an endoglin neutralizing antibody, TRC105, is 
being developed by Tracon Pharmaceuticals. This antibody specifically inhibits binding of 
the endoglin ligand BMP-9 (106). Additionally, TRC105 induces apoptosis of targeted cells 
through antibody-dependent cytotoxicity. This antibody is currently under development 
in phase II clinical studies as anti-angiogenic therapy in metastatic disease for various 
tumor types (NCT01375569, NCT01090765, NCT01328574, NCT01381861, NCT01778530). 
Underlying the importance of endoglin expression, Anderberg et al. showed that endoglin 
heterozygosity disrupted vascular integrity, thereby enhancing the formation of breast 
cancer metastases in vivo (107). Therefore, the occurrence of metastatic spread should be 
closely monitored during therapeutic endoglin targeting.

2.2. Cancer-associated fibroblasts
Next to endothelial cells, cancer-associated fibroblasts (CAFs) comprise a major part of the 
TME and have been shown to interact with malignant cells and other stromal cells (108, 
109). Due to the lack of one specific marker to identify CAFs, the generally accepted marker 
is α-Smooth Muscle Actin (αSMA) expression (110), although αSMA-negative CAFs also 
exist (111). In both breast cancer and CRC, the percentage of αSMA-positive tumor stroma 
was shown to be an independent factor in predicting prognosis (112, 113). However, it 
was recognized in the past decade that different subsets of CAFs exist, which cannot be 
distinguished solely based on αSMA expression (114, 115). The difference in CAF subsets 
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can partly be ascribed to different cells of origin of CAFs and by the differential expression 
of cell surface markers, which affect CAF function. As can be expected, there are tumor-
promoting and -restraining effects of CAFs, partly explained by the existence of different 
subsets and environmental context (116).

2.2.1. Origin of CAFs
As mentioned above, several hypotheses exist on the cell type of origin of CAFs. The 
most widely accepted hypothesis describes the differentiation of local fibroblasts and 
tissue resident fibroblast precursors into CAFs (117). Tumor cells produce a wide variety of 
cytokines, of which TGF-β is highly involved in the differentiation of local fibroblasts into 
CAFs (118, 119). However, these cytokines also have long-ranging effects that play a role in 
attracting bone marrow-derived cells (BMCs) which have the ability to differentiate into CAFs 
(120-124). Additionally, BMCs have the ability to attract local fibroblasts which, once in the 
tumor, adopt a CAF phenotype (125). Mesenchymal stem cells (MSCs) have been suggested 
as an important BMC in this process, based on their ability to differentiate into various 
stromal cell types (126, 127). Next to recruitment of cells, proliferation of myofibroblasts 
already present in the tissue can be a source for CAFs (128). Another hypothesis is based on 
the process of epithelial-to-mesenchymal transition in which tumor cells differentiate from 
epithelial cells into cells with mesenchymal characteristics, showing overlap with CAF-like 
properties (129). This same process has also been described for endothelial cells (EndMT), 
resulting in stromal cells expressing both αSMA and the endothelial marker CD31 (130). 
Finally, smooth muscle cells covering blood vessels (pericytes) have also been suggested as 
a cell of origin for CAFs (131). Based on the wide variety of CAF sources, this partly explains 
the heterogeneity in CAF subsets.

2.2.2. Tumor promoting effects 
CAFs play an important role in tumor initiation, progression and metastasis by a variety 
of mechanisms (Fig. 4). The role of CAFs in tumor initiation has been demonstrated by 
introducing genetic changes specifically in fibroblasts, which resulted in tumor formation. 
For example, Bhowmick et al. knocked out TGFβRII specifically in fibroblasts and found 
spontaneous tumor formation in mouse prostate and stomach (132). Additionally, 
fibroblast-specific deletion of the BMP receptor II was reported to induce epithelial 
hyperplasia in the mouse colon (133). This does not only underline the role of fibroblasts in 
tissue homeostasis and tumor initiation, but also implies an important role for TGF-β/BMP 
signaling in tumor formation. More than two decades ago, the importance of CAFs in tumor 
progression was recognized when tumor cells derived from fibroblast-rich tumors proved 
to be more invasive in diverse in vitro assays than the parental cells (134). The mechanism 
underlying pro-tumorigenic effects of CAFs was further investigated and paracrine 
signaling between tumor cells and fibroblasts proved to be a major factor. As an example, 
CAF-secreted proteases can enhance tumor invasion (135). Moreover, in vitro it has been 
shown that fibroblast-mediated invasion of CRC cells is dependent on TGF-β (136). These 
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results were confirmed in vivo by Calon et al., who showed that TGF-β production by CRC 
cells induced a pro-metastatic gene profile in CAFs and resulted in increased metastatic 
spread. Additionally, inhibition of TGF-β signaling diminished the number of metastases in 
various mouse models for CRC (137). 
CAFs secrete a wide variety of cytokines and chemokines that highly affect both the tumor 
cells and the tumor stroma. When CRC cells, in vitro or in vivo, were stimulated with CAF 
conditioned medium, migration and invasion of tumor cells increased (138, 139). Moreover, 
CAF-derived extracellular matrices were shown to stimulate breast cancer cell spread in 
vitro, suggesting a role in metastasis (140). Additional to direct interactions with tumor 
epithelial cells, CAFs secrete large amounts of proteases and extracellular matrix. As a 
consequence, matrix-bound VEGF is released and activated, leading to increased tumor 
angiogenesis and ultimately contributing to tumor progression and metastasis (141). 
Moreover, remodeling of the extracellular matrix leads to decreased matrix – tumor cell 
interaction and a physically more invasive matrix, thereby increasing tumor metastasis 
(142). Additional to matrix remodeling, it has been observed in squamous cell carcinoma 
that CAFs not only create a path through the ECM, but also physically lead cancer cell 
invasion (142).

Besides (in)direct effects on epithelial tumor cells, CAFs also play an important role in 
regulating the immune status of solid tumors (143, 144). For example, Kraman et al. 
showed that upon depletion of a CAF subset expressing fibroblast activation protein 
(FAP), established lung cancers showed rapid immune-dependent tumor reduction (145). 
Mechanistic studies have been performed to identify specific factors and signaling pathways 
in CAF – immune cell interaction. This research showed that CAFs express a broad variety 
of pro-inflammatory chemokines and cytokines involved in recruitment of various immune 
cells (reviewed in (146)). Although CAFs secrete pro-inflammatory chemokines, attracting 
immune cells, they drive the differentiation of these cells to an anti-inflammatory state once 
infiltrated in the tumor (147). This immunosuppressive differentiation is induced by CAF 
excreted factors (148). Moreover, CAFs physically surround tumor cells with extracellular 
matrix, thereby protecting them from immunogenic recognition (149). 
Based on these tumor promoting properties, CAFs pose a promising target in treating 
cancer. Different clinical studies have already assessed the possibility of targeting CAFs by 
inhibiting FAP activity in various solid tumors (150, 151). Currently, more phase I clinical 
trials are ongoing in patients with metastatic CRC (NCT00004042) and other advanced 
solid tumors (NCT02558140, NCT02627274).
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Figure 4. Pro-tumorigenic interactions of CAFs. CAFs stimulate tumor progression and metastasis by 
interacting with all cell types in the TME and by remodeling the extracellular matrix (ECM).

2.3. Immune cells
The final component of the TME to be discussed are immune cells. Initially, immune 
infiltration in a tumor was viewed as an attempt of the body to attack and destroy the 
tumor (152). This hypothesis was strengthened by the observation of increased tumor 
burden in immunodeficient mice, when compared with immunocompetent animals (153, 
154). Additionally, high infiltration of cytotoxic T-cells (CTL) and natural killer (NK) was 
correlated to improved survival in CRC (155). 
However, more recent research has shown that immune infiltrate can also enhance 
tumorigenesis and progression (147, 156-158). Tumors have been described as “wounds 
that do not heal” (159), due to their resemblance to chronically inflamed wounds, which are 
characterized by persistent presence of inflammatory cells, in particular macrophages and 
neutrophils, that are essential in wound healing (160). In a tumor though, this persistently 
inflamed state allows the tumor to grow and progress by the stimulatory factors secreted 
by these immune cells (161). Additional to subverting the inflammation process, tumor 
cells also secrete factors which suppress the function of anti-tumor CTLs and NK cells (162, 
163). Also recruitment of immunosuppressive cells, like regulatory T-cells, aid in creating 
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a tumor promoting microenvironment (164). In this process, TGF-β functions as a potent 
immunosuppressor by inhibiting pro-inflammatory and stimulating immunosuppressive 
cellular subsets (Reviewed in (165)).
Although B- and T-cells play important roles in tumor progression (166, 167) and their 
targeting is currently clinically applied, these cells will not be discussed in detail in this 
thesis. Macrophages and neutrophils in particular have been shown to play important roles 
in creating a tumor-promoting environment and will therefore be discussed in more detail 
below and illustrated in figure 5.

Anti-tumorigenic Pro-tumorigenic 

Proteases releasing growth factors 
VEGF and IL-8 enhance angiogenesis 
Proteases degrading ECM 
Metastasis promotion 

Chemokines attracting T-cells 
Tumor cells lysis (M1) 

Tumor-associated 
macrophages 

Tumor-associated 
neutrophils 

Pro-tumorigenic 

ROS release promotes genetic instability 
ROS release promotes protease activity 
Expression of pro-angiogenic factors 
Secretion of immunosuppressive factors 
Promote metastatic spread 

Anti-tumorigenic 

Prevention of metastasis at distant 
sites 

Tumor cell attack (subset) 

Figure 5. Pro- and anti-tumorigenic properties of macrophages and neutrophils. Macrophages and 
neutrophils are often observed in solid tumors and were reported to have both pro- and anti-tumor effects.

2.3.1. Macrophages
Tumors secrete various chemokines in order to recruit monocytes from the circulation and 
to initiate macrophage differentiation (168-172). Expression of specific chemokines and 
cytokines promotes monocyte differentiation into tumor promoting M2 macrophages, 
rather than the anti-tumor M1 macrophage subset. M2 macrophages produce chemokines 
involved in regulatory T-cell recruitment and promote wound healing, angiogenesis and 
tissue remodeling (173). Tumor-associated macrophages (TAMs), which resemble the M2 
subtype, are known to express several proteases, which play an important role in tumor 
progression by releasing growth factors from the extracellular matrix (174). Additionally, 
macrophages secrete the pro-angiogenic cytokines VEGF and interleukine-8 (IL-8) (175, 
176). TAM-secreted proteases not only enhance angiogenesis, but by degrading the 
extracellular matrix, also play an important role in tumor progression through the release 
of growth factors (177, 178). Finally, the presence of macrophages has been shown to 
correlate with the metastatic potential of various tumors, including breast cancers (179-
181). These observations were further strengthened by a study in which lung metastasis in a 
mouse breast cancer model was reduced upon macrophage depletion (182). Based on their 
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tumor promoting characteristics, therapeutic targeting of macrophage subpopulations 
is being clinically explored in diverse solid tumors, including CRC and breast cancer (e.g. 
NCT02448810, NCT00262808 and NCT00257322).

2.3.2. Neutrophils
The role of neutrophils in cancer growth and progression is less well characterized, but in 
recent years this area of research has evolved. The tumor promoting effects of neutrophils 
are mediated by the release of reactive oxygen species (ROS) which enhance the genetic 
instability of cancer cells (183, 184), and enhances the activity of the protease matrix 
metalloproteinase (MMP)-9, promoting tumor cell invasion (185). Also, secretion of a wide 
variety of pro-angiogenic factors contributes to the tumor progressive effect of neutrophils 
(186, 187). A role for neutrophils in metastasis has also been shown in multiple publications. 
For example, paracrine interactions between breast cancer cells and neutrophils resulted in 
increased VEGF production by tumor cells, contributing to tumor cell invasiveness in vitro 
(188). Moreover, in a mouse model for melanoma recruited neutrophils have been shown 
to enhance metastatic spread to the lungs (189). However, studies reporting opposite 
findings suggest anti-metastatic effects of neutrophils (190) and show a role for TGF-β in 
differentiation of neutrophils into pro- or anti-tumorigenic subsets (191). The important role 
of neutrophils in colorectal cancer was highlighted by depletion studies in a chemically-
induced mouse model for CRC in which neutrophil depletion resulted in decreased tumor 
number and size (192, 193). Therapeutic targeting of neutrophils and neutrophil function is 
currently being explored in pre-clinical and clinical research, for both breast- and colorectal 
cancer.

3. Endoglin on non-endothelial cells

As described above endoglin is highly expressed on activated endothelial cells the TME. 
Additionally, limited studies have described endoglin expression on other cell types, where 
it influences the invasive or migratory capacity of these cells. 
Endoglin has been reported to be expressed by some epithelial (tumor) cells. For example, 
keratinocytes have been shown to express endoglin under both physiologic and pathologic 
conditions (194). In an animal model for skin cancer, endoglin heterozygosity lead to 
reduced growth of skin lesions, however the progression to malignant carcinomas was 
increased (194). Reduced endoglin expression decreased proliferation, but increased EMT 
in keratinocytes (195), suggesting that endoglin has a dual role in cancer, as was reported 
for TGF-β. Endoglin expression has also been observed in various human breast cell lines. 
One of these being the non-tumorigenic MCF10, which showed increased in vitro invasion 
upon oncogene activation, when endoglin was knocked down (196). Moreover, expression 
of endoglin in endogenously endoglin-negative breast cancer cells, reduced invasion and 
metastasis in vivo. Finally, in clinical samples, endoglin expression on breast cancer cells 
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was found to correlate to improved patient survival (196). Another study showed that 
endoglin expression in esophageal squamous carcinoma cells is decreased by epigenetic 
silencing. Overexpression of endoglin in cell lines led to less invasion and decreased tumor 
growth when engrafted in vivo (197). Endoglin is also expressed by Ewing sarcoma cells and 
in Ewing sarcoma patients, expression of endoglin is associated with poor patient survival 
(198). Finally, one study showed that endoglin is expressed in uterine leiomyosarcomas, 
where it correlates with poor patient survival, increased migration and invasion. Based on 
the limited number of studies on endoglin on epithelial cells, it appears that its role is both 
tumor type- and context-dependent.
An important role for endoglin was reported in the recruitment of tumor promoting CAFs 
in prostate cancer models. Endoglin is highly expressed on these CAFs and crucial for their 
survival (199). Endoglin heterozygosity in this model decreased metastatic potential, while 
it increased primary tumor growth (199). Interestingly, tumors in endoglin heterozygous 
mice comprised significantly less CAFs than their wild type controls. In vitro, conditioned 
medium from endoglin heterozygous fibroblasts reduced cancer cell migration, when 
compared with controls (199).
Although it appears that endoglin expression on CAFs might play a role in tumor metastasis, 
additional research has to be performed.

4. In vitro models for cell-cell interactions

The pro-tumorigenic interaction between tumor cells and the different cell types in the TME 
is of high importance for tumor growth and metastasis. Therefore, therapies targeting these 
interactions are (pre-)clinically explored. In order to evaluate these interactions in vitro, a 
broad range of co-culture models have been established. One experimental possibility is to 
use conditioned medium from one cell type to stimulate the second cell type and thereby 
mimic paracrine interactions. To study the effect of direct cell-cell contact culturing of both 
cell types of interest in mixed co-cultures is an often used method (200). However, this 
model is not suitable to distinguish effects of these interactions in the individual cell types 
(201). 
Effects of paracrine signaling or inhibition of signaling pathway components, can be 
assessed using different experimental set-ups, dependent on the cell type of interest. 

4.1. In vitro angiogenesis
The angiogenic properties of endothelial cells can be analyzed in vitro by 2- and 
3-dimensional assays assessing tube formation or endothelial sprouting. Importantly, the 
extracellular matrix which forms the basement membrane on which endothelial cells grow 
in vivo is highly involved in both in vitro assays (202, 203). 
In the 2-dimensional cord formation assay, endothelial cells are seeded onto a matrix-
coated surface and tube formation is rapidly induced in the presence of angiogenic growth 
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factors (204). Angiogenic capacity can be quantified by different methods, including 
counting the number of branches per branch point or the quantification of the number of 
closed polygons (205). This model takes most steps of angiogenesis into account, however, 
the 3-dimensional structure in which angiogenesis occurs in vivo is not adequately 
modeled by this system. Therefore, the use of 3-dimensional endothelial spheroids is often 
used as a more complex model for angiogenesis (203). Endothelial spheroids are formed 
on methocell-coated surfaces which results in formation of multicellular aggregates (206). 
Spheroids are subsequently embedded in a collagen-I matrix, which inhibits endothelial 
cell proliferation, and endothelial tube formation is induced by angiogenic factors, like 
VEGF (207, 208). This model more closely resembles the angiogenic process in vivo than the 
tube formation assay. Both in vitro models proved to be a useful tool in screening of novel 
anti-angiogenic drugs and pose a good intermediate between monolayer cell culture and 
in vivo experiments.

4.2. CAF invasion in vitro
As for the process of angiogenesis, CAF invasion can be studied in vitro using different 
models, differing in level of complexity. To study chemotaxis-mediated invasion, the 
Boyden chamber is often used (209). In this assay, cells are seeded on top of a matrix-coated 
membrane and left to migrate towards a gradient of chemoattractant or conditioned 
medium for a fixed duration. At the end of the experiment, invaded cells are quantified 
and stimulating or inhibiting effects on invasive behavior can be assessed. A more complex 
invasion assay, taking the extracellular matrix and 3-dimensional conformation into 
account, is the spheroid invasion model. Closely resembling the endothelial sprouting 
assay on a technical level, this model determines fibroblast invasion into a collagen-I 
matrix. The use of stimulating ligands and inhibitory antibodies can be tested in this model, 
and even conditioned medium can be used to assess the effects on fibroblast invasion. 
The use of co-cultures of fibroblast with epithelial cancer cells has been reported to study 
the pro-invasive role of fibroblasts in cancer (210, 211). Co-culture spheroids can be used 
to study tumor biology and to closely investigate targeting of cell-cell interactions in an 
in vitro system that resembles in vivo situations, thereby posing a valuable tool in cancer 
research (212).

5. Zebrafish models in cancer

As a model system between complex in vitro experiments and mouse studies, zebrafish 
models for cancer have emerged in the past two decades (213). Zebrafish show high 
homology with humans on both the genetic and physiologic levels (214-219) and 
approximately 70% of all genes involved in human disease have homologs in zebrafish (220). 
Additionally, the rapid development of the zebrafish and the relatively inexpensive housing 
and food render zebrafish a suitable model for large scale drug screening and modeling of 
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human disease development, including cancer. One frequently studied process of cancer 
development in zebrafish is tumor angiogenesis. Anti-angiogenic drug delivery can be 
achieved through direct injection into the zebrafish embryos or by supplementing the 
water of the fish. The translucency of zebrafish embryos and the availability of a transgenic 
zebrafish line with green fluorescent protein (GFP) expressing vasculature allow easy 
monitoring of anti-angiogenic effects using confocal microscopy (221-223). Additionally, 
these properties make it relatively easy to follow the spread of fluorescently labeled tumor 
cells and zebrafish are therefore often used as a model for metastasis (221, 224). However, 
there are some drawbacks of the use of zebrafish in cancer research, which include the 
presence of multiple copies of a gene in zebrafish, complicating complete deletion. Also 
the lower temperature of fish maintenance (28°C) may impact on human cells and the 
administration of water-insoluble drugs might hamper drug delivery (213, 225). Finally, 
zebrafish embryos lack a functional immune system, further complicating accurate analysis 
of therapeutic efficacy (213).

6. Mouse models

To study the complicated communication patterns involving direct cell-cell contact 
and paracrine signaling without excluding any involved cell type, matrix component or 
cellular interaction, in vivo cancer models are used (226). Different mouse strains exist, 
all with their own characteristics, e.g. allowing for different tumor induction methods or 
the use of human cells in mice. Although the information obtained from animal studies 
is very valuable, a one-on-one translation to clinical effects is hardly ever feasible and 
should always be considered when implementing pre-clinical data in clinical studies. For 
the studies in this thesis, several different mouse models were used of which two will be 
discussed in more detail.

6.1 Orthotopic breast cancer model
Breast cancer researchers use different methods to implant tumors, of which subcutaneous 
injection is a widely used model. However, the use of orthotopic breast cancer models, in 
which tumor cells are transplanted to the organ of origin, take the original TME into account 
and have been shown to more efficiently promote tumor progression and metastasis than 
subcutaneous models for breast cancer (Reviewed in (227)). In our experiments, invasive 
lobular breast cancer was studied in an orthotopic transplantation model, using mouse 
breast cancer cells. The mouse breast cancer cell line KEP1-11 (228) was used to circumvent 
interspecies complications and to assure interaction between tumor cells and the TME. 
Balb/c nude mice, which lack a thymus and are therefore immunodeficient, showed most 
efficient tumor take and were therefore used in our studies. Therefore, any effects of the 
adaptive immune system cannot be assessed using this mouse strain. However, the innate 
immune system is present and shows normal activity.
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In our experiments breast tumors were induced by exposure of the fourth mammary fat 
pad by a small incision in the skin (Fig. 6A) and injection of luciferase-expressing KEP1-11 
cells. Tumor growth was assessed by bioluminescent imaging (Fig. 6B). To closely mimic 
clinical situations, we used a breast cancer resection model in which primary tumors are 
surgically removed (Fig. 6C). As in the clinic, in this model treatment starts after tumor 
resection and metastatic spread is followed over time using bioluminescence (Fig. 6D). 
Using this model, we have assessed tumor angiogenesis and metastatic spread of breast 
tumors and delivery of chemotherapeutic agents.

A C B D 

Figure 6. Orthotopic breast cancer model. Mouse breast cancer cells are transplanted to the mammary fat 
pad (A), and tumor growth is monitored by bioluminescence (B). For the resection model, the primary tumor 
was resected after four weeks (C) and metastatic spread was followed over time (D).

6.2 Colorectal cancer model
Different in vivo models for CRC cancer have been developed, each with their own advantages 
and limitations. Four main models can be distinguished (229); 1. Genetic models in which 
germ line mutations result in spontaneous tumor formation. 2. Xenotransplant models in 
which human CRC tissue is used in immunodeficient mice. 3. Syngeneic transplantation of 
mouse tumor tissue to immunocompetent mice. 4. Chemically induced models in which 
carcinogens are used to induce tumor growth. The advantages of chemically induced 
models include relatively short tumor induction period and the resemblance to some 
characteristics of human CRC (229). 
The carcinogen azoxymethane (AOM) has been described to induce colorectal tumors, 
which share histopathological characteristics with human CRC (230, 231). In combination 
with dextran sodium sulphate (DSS), AOM-induced tumor formation was shown to be 
highly accelerated (231). The protocol of our model included one intraperitoneal injection 
with AOM, followed by three 21-day cycles of DSS. During the experiment, mice develop 
colitis, resulting in weight loss, rectal blood loss and occasionally rectal prolapse (Fig. 7A). 
Mild colitis-induced symptoms disappeared during the “off” period of the cycles. Tumor 
initiation and growth in this model can be assessed using mouse endoscopy as shown in 
figure 7B, allowing for monitoring of tumor growth in time. Both gross morphology and 
histochemical analysis at the end of our experiments readily showed tumor formation in 
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the colorectum (Fig. 7C). This chemically induced model allows for effi  cient in vivo studies 
of CRC, taking human tumor characteristics into account.

A C B 

Figure 7. Chemically-induced mouse model for CRC. Colorectal tumor growth is induced by AOM/DSS 
treatment. During DSS cycles mice suff er from colitis, which, in combination with tumor growth, results in 
rectal blood loss and occasionally rectal prolapse (A). Tumor growth in this model can be monitored using 
mouse endoscopy (B, T indicates tumor). Upon termination of the experiment, tumor formation was clearly 
visible on both gross morphology and histochemical analysis.
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