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Chapter 8

Appendixes

8.1 Abbreviations used in this thesis

Below, we collect the full list of abbreviations, used throughout this thesis.

ΛCDM — standard cosmological model

νMSM — Neutrino Minimal Standard Model

ACIS — Advanced Advanced CCD Imaging Spectrometer on-board Chandra

ARF — ancillary response function (effective area)

BBN — Big Bang Nucleosynthesis

BOSS — Baryon Oscillation Spectroscopic Survey, a part of SDSS-III

BURK — Burkert density distribution

CCD — charge coupled device

CDM — cold dark matter

Chandra — Chandra X-ray observatory

CMB — cosmic microwave background radiation

CWDM — cold plus warm dark matter

DM — dark matter

dSph — dwarf spheroidal galaxy

EPIC — European Photon Imaging Camera on-board XMM-Newton

FoV — field-of-view

FSH — free-streaming horizon

FWHM — full width at half-maximum

HDM — hot dark matter

HEASARC — High-Energy Astrophysics Science Archive Research Center

IS2 — modified pseudo-isothermal density distribution
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ISO — pseudo-isothermal density distribution

KiDS — Kilo-Degree Survey

LHC — Large Hadron Collider

LMC — Large Magellanic Cloud

LSS — Large Scale Structure of the Universe

LSST — Large Synoptic Survey Telescope

M31 — Andromeda galaxy

MOS—Metal Oxide Semiconductor camera. Two EPIC cameras (MOS1 and

MOS2) on board of XMM-Newton

MW — Milky Way galaxy

NFW — Navarro-Frenk-White density distribution

NRP — production of sterile neutrinos through non-resonant oscillations of

active neutrinos

PN — p-n (positive-negative) transition. One of the EPIC cameras on board

of XMM-Newton

RMF – redistribution matrix file (energy resolution)

RP — production of sterile neutrinos through resonant oscillations of active

neutrinos

SDSS — Sloan Digital Sky Survey

SMC — Small Magellanic Cloud

TG — Tremaine-Gunn

VLT — Very Large Telescope of European Southern Observatory

WDM — warm dark matter

WFIRST — Wide-Field Infrared Survey Telescope

WIMP — weakly interacting massive particle

WMAP — Wilkinson Microwave Anisotropy Probe

XIS – X-ray Imaging Spectrometer on-board Suzaku

XMM-Newton SAS — XMM-Newton Science Analysis Software

XMM — XMM-Newton, X-ray Multi-Mirror X-ray mission

XRB – cosmic X-ray background

XSPEC — X-Ray Spectral Fitting Package
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8.2 Appendixes for Chapter 2

8.2.1 Entropy for different distributions

In this Appendix we will calculate the entropy for several phase-space dis-

tributions, including those of (2.4), (2.20), (2.5), and explore its relation with

the quantity Q, defined in (2.7).

The entropy of an ideal Fermi gas is given by the expression [420]

S = −
∫

d3pd3rf(r, p) log

(

(2π~)3f(r, p)

g

)

+ (8.1)

+

(

g

(2π~)3
− f(r, p)

)

log

(

1− (2π~)3f(r, p)

g

)

.

If the distribution function f(r, p) ≪ g
(2π~)3 , we obtain the expression for the

entropy of a non-degenerate ideal gas:

S = −
∫

d3pd3rf(r, p)

[

log

(

(2π~)3f(r, p)

g

)

− 1

]

. (8.2)

8.2.1.1 Ideal Boltzmann gas

We start with the case of ideal Boltzmann gas:

f(r, p) = f0e
− p2

2mT . (8.3)

Substituting it into Eq. (8.2), we arrive to the well-known expression (c.f. e.g.

Sec. 42 of [420]):
S

N
=

5

2
+ log

(

gV

N

(mT )3/2

(2π~2)3/2

)

, (8.4)

where V is the volume of the system, N is a number of particles. Express-

ing S/N as a function of ρ̄ and 〈v2〉, we finally obtain relation between the

entropy and Q in the form (2.10)

S

N
= logCB − log

Q~
3

m4
, CB = g

e5/2

(6π)3/2
≈ g × 0.1489 . . . (8.5)

8.2.1.2 Isothermal phase-space density distrubution

Next, we consider the case when the phase-space density distribution can be

approximated by (pseudo)-isothermal sphere (c.f. (2.5)):

fiso(r, p) =
9σ2

4πGN (2πm2σ2)3/2(r2 + r2c )
e−

p2

2m2σ2 . (8.6)
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The number of particles in such a system, as well as the total entropy, di-

verges for large r, however the entropy per particles grows logarithmically

at large r and therefore the exact value of cut-off is not important.

Truncating the expression for the entropy at some rmax and taking rmax ≫
rc, we obtain

S

N
= − log

Q~
3

m4
+ logCiso, Ciso =

g exp(1/2)√
3(2π)3/2

≈ g × 0.0604 . . . (8.7)

8.2.1.3 Non-resonantly produced sterile neutrinos

Next, we analyze the case of primordial momentum distribution, which has

the form of (rescaled) relativistic Fermi-Dirac.

f(p) =
g

(2π~)3
F

eǫ(p)/T + 1
, ǫ(p) = p . (8.8)

For now we keep both F and T to be arbitrary. The distribution in the

form (8.8) accounts for both (2.4) and (2.20) cases. The entropy ofN particles

with distribution (8.8) is given by the expression (8.1), which reduces to

S =
gV T 3

2π2~3
I(F ), (8.9)

where function I(F ) is given by

I(F ) ≡ −
∫ ∞

0

dzz2
[

F

ez + 1
log

(

F

ez + 1

)

+

(

1− F

ez + 1

)

log

(

1− F

ez + 1

)]

.

(8.10)

The integral (8.10) can be computed numerically. At F ≪ 1 the expres-

sion (8.10) can be approximated by

I(F ) ≈ 3

2
ζ(3) (F − F logF ) + F

∫ ∞

0

dzz2

ez + 1
log(ez + 1). (8.11)

The specific entropy S/N equals to

S

N
=

gm4I(F )

2π2~3

(

ζ(3)

15ζ(5)

)3/2 〈v2〉3/2
ρ̄

=
g I(F )

2π2

(

ζ(3)

15ζ(5)

)3/2
m4

Q~3
. (8.12)

Therefore, we see that for the distributions of the form (8.8) relation between

the entropy per particle and Q is not given by the simple expression (2.10).

Up until this moment we kept parameters F and T in (8.8) independent.

However, we are mostly interested in two particular cases: (i) F = 1 while
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T = TFD – arbitrary (distribution (2.4)); and (ii) F < 1 having arbitrary

value, while T being fixed to Tν – the temperature of neutrino background,

related to the temperature of the cosmic microwave background today via

Tν0 = (4/11)1/3TCMB,0 (distribution (2.20)).

We start with the case (i). Expressing ρ as a function of TFD, we obtain

Q =
gm4

~3
q , (8.13)

where numerical constant q is given by (c.f. [175]):

q =
ζ5/2(3)

20π2
√
15ζ3/2(5)

≈ 1.96...× 10−3 . (8.14)

As a result for the distribution (2.4) and fixed number of particles, the quant-

ity Q is independent on TFD, volume or N . The entropy per particle is also

independent on both TFD and V and is given by

S

N
= s = I(1)

2

3ζ(3)
≈ 4.20 . . . (8.15)

Although both quantities S/N and Q are simply constants, we find it con-

venient to choose them in the form (2.10):

S

N
= − log

(

Q~
3

m4

)

+ logCFD, CFD = g · q · es ≈ g × 0.1311 . . . (8.16)

In case (ii) when F ≪ 1 we obtain for S/N :

S

N
=

2

3ζ(3)

I(F )

F
≃ (1− logF ) +

2l

3ζ(3)
. (8.17)

Similarly to (8.13)–(8.14)
Q~

3

m4
= g qF . (8.18)

Combining (8.17)–(8.18) we can write

S

N
= − log

(

Q~
3

m4

)

+ logCNRP , CNRP = g q exp
(

1 +
2l

3ζ(3)

)

≈ g × 0.137 . . .

(8.19)

8.2.2 Mass bounds from the average phase-space density
evolution

For illustration purposes we provide in Table 8.1 the average phase-space

density estimator Q for all the dSphs, considered in this work, as well as
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dSph Qf mFD,HD mNRP,HD
[

M⊙

pc3

(

km
sec

)−3
]

[keV] [keV]

Sextans 5.68+10.67
−3.07 ·10−6 0.324+0.098

−0.057 1.04+0.44
−0.24

Fornax 8.86+12.77
−4.40 ·10−6 0.362+0.091

−0.051 1.20+0.42
−0.25

Leo I 1.55+3.08
−0.85 ·10−5 0.416+0.131

−0.075 1.45+0.64
−0.34

UrsaMinor 1.78+2.70
−0.90 ·10−5 0.431+0.112

−0.070 1.52+0.55
−0.32

Bootes 3.78+2.24
−1.48 ·10−5 0.520+0.064

−0.061 1.95+0.33
−0.30

Draco 3.21+1.27
−0.82 ·10−5 0.499+0.044

−0.036 1.85+0.22
−0.17

Carina 2.60+3.42
−1.25 ·10−5 0.474+0.111

−0.072 1.72+0.56
−0.34

Sculptor 5.93+4.30
−2.35 ·10−5 0.582+0.085

−0.069 2.27+0.45
−0.35

Leo II 6.39+6.60
−2.73 ·10−5 0.593+0.115

−0.077 2.32+0.62
−0.40

Canes Venatici I 6.16+4.11
−1.94 ·10−6 0.330+0.045

−0.030 1.07+0.20
−0.13

Ursa Major I 1.94+1.74
−0.84 ·10−5 0.440+0.077

−0.058 1.56+0.37
−0.27

Hercules 2.68+4.45
−1.53 ·10−5 0.477+0.132

−0.091 1.74+0.67
−0.43

Leo T 6.26+9.78
−3.16 ·10−5 0.590+0.157

−0.095 2.31+0.85
−0.48

Ursa Major II1 1.13+1.61
−0.55 ·10−4 0.685+0.169

−0.104 2.81+0.96
−0.55

Leo IV 3.35+40.91
−2.27 ·10−4 0.898+0.814

−0.221 4.04+5.51
−1.27

Canes Venatici II 5.91+10.61
−3.16 ·10−4 1.03+0.30

−0.18 4.88+1.99
−1.10

Coma Berenices 5.46+8.96
−2.61 ·10−4 1.01+0.28

−0.15 4.75+1.82
−0.92

Table 8.1: The mass bounds, based on the evolution of the average phase-space

density Q [175, 176]. The bound is provided for illustration purposes only (see Ap-

pendix 8.2.2 for discussion).

the lower mass bounds, based on the inequality (2.9) for Q during the evol-

ution [175, 176] (for detailed discussion see Section 2.2). The value of Qf ,

shown in the second column of the Table 8.1 is calculated from the data in

the columns (3–4) of the Table 2.4, using formula (2.26) (with η = 1) and

Qi is defined via (2.8) for the momentum distributions (2.4) and (2.20) (for

the bounds mFD,HD and mNRP,HD correspondingly). The results for Leo IV are

quoted in (2.43) (Section 2.6).
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8.3 Appendixes for Chapter 3

8.3.1 Selection criteria for dark matter distributions

We have collected from the literature 1095 dark matter profiles for 357 ob-

jects (from dwarf spheroidal galaxies to galaxy clusters, see Table 3.1 below).

For each dark matter profile in our sample we have performed a number of

checks. Those profiles have not passed these checks were rejected from sub-

sequent analysis. As a result of the selection process we were left with 805

dark matter profiles for 289 objects.

– When analysing the data, we realized that for some objects the value of r⋆

lies well outside the region covered by the observational data, Rdata. Such

objects systematically show extremely high values of r⋆. For example, we

found 37 galaxy profiles having r⋆ > 100 kpc, while their kinematic data

usually extends only up to Rdata ∼ 10− 30 kpc.

Therefore, we select only dark matter profiles having r⋆ < 2.75Rdata. The

coefficient 2.75 is justified by the following argument. The circular velocity

in an NFW halo is given by

v2c (r) =
GNMNFW(< r)

r
= 4πGNρsr

3
s

log(1 + r
rs
)− r

r+rs

r
. (8.20)

For r ≪ rs this function can be approximated as

v2c (r) ≈ 2πGNρsrs

(

r − 4r2

3rs
+ . . .

)

(8.21)

In the part of the velocity curve where 4r2

3rs
is much less than the errors

on the velocity dispersion one cannot reliably determine rs and ρs (since

v2c (r) is indistinguishable from a straight line, proportional to ρsrs). It is

important to have data points in the region where the contribution of the

quadratic term becomes noticeable to reliably extract both NFW paramet-

ers. We chose to set 2.75Rdata ≥ r⋆, which corresponds to a ∼ 50% con-

tribution from the second (quadratic) term to v2c (r). Similar criteria are

used for ISO and BURK profiles. This reduces the number of considered

profiles from 1095 to 891.

– For 76 objects both NFW and ISO (or BURK) dark matter profiles were

available. For these objects we checked the relation between the paramet-

ers of these profiles against the results shown in Eq. (3.16) (or Eq. (3.18)
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for BURK). Results of this comparison for the NFW and ISO profiles are

shown in Fig. 3.4. This figure shows that there is indeed a maximum

in the region defined by Eq. (3.16) but also that the scatter around this

maximum is pretty large and that the difference between measured and

expected ratios of NFW and ISO parameters can be as large as a factor of

ten. Therefore we decided to exclude from our sample all objects with a

ratio ρs/ρc, rs/rc, (or ρs/ρB, rs/rB for BURK profiles) larger than a factor

5 with respect to the theoretical prediction shown in Eq. (3.16) or (3.18).

– Finally, in several cases parameters of dark matter density profiles were

quoted with very large uncertainties. We decided to select only those pro-

files for which the ratio between the 1σ upper and lower bounds of quoted

parameters (radius r⋆ or the density ρ⋆) was smaller than a factor of 10.

To compare the S −Mhalo relation for selected objects with N-body simu-

lations, we used the results from [307]. This suit of ΛCDM numerical simu-

lations probed the halo mass range 1010 − 1015M⊙. For each simulated halo

of [307] we computed Mhalo, fit the particle distribution to the NFW density

profile and calculate S using Eqs.(3.9) and the definition (3.7). The observa-

tional data together with results from simulations is plotted of the Fig. 8.1.

The small scatter of the simulation points at Mhalo & 1014M⊙ is explained by

the finite size of the simulation box. The simulations with the large box size

(e.g. [310]) verify that the scatter does not reduce at large masses (c.f. the

pink shaded region on the Figure 1).

8.3.2 Summary of collected dark matter distributions

We collected from the literature 1095 dark matter density profiles for 357

unique objects ranging from dSphs to galaxy clusters. For each dark matter

profile found in our sample we have applied uniform selection criteria:

– If for an object several independently determined profiles were available

and all of them but one agreed in the values of r⋆ and ρ⋆ within a factor of

5, we rejected the outlier.

– For some objects the best-fit value of the characteristic radius r⋆ was ex-

trapolated well outside the region covered by the observational data, Rdata.

In this case the parameters of the density profile had extremely large un-

certainties. We have thus rejected objects with r⋆ < 2.75Rdata.
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Figure 8.1: Dark matter column density as a function of the halo mass. Sim-

ilar to the Figure 1, we plot 289 objects, selected in Section 8.3.1 above (coloured

shapes) superimposed on the simulation data for isolated halos [307] (open black

circles).

– We rejected profiles for which the uncertainty in any quoted parameter (r⋆

or ρ⋆) was higher than a factor of 10.

– For objects with more than one profile selected, the average value of S and

Mhalo was used in the subsequent analysis.

– When processing the data of N-body simulations we used the fit of particle

distribution by the NFW density profile and computed S, using equa-

tion (3.7).

– If the same observational data is fit by several different dark matter pro-

files (e.g. NFW, ISO, and BURK), one can then find a relation between

characteristic scales r⋆ and densities ρ⋆ of these profiles. Provided such a

relation holds, the difference between the column densities SNFW, SBURK

and SISO turns out to be less than 10%. Qualitatively, this can be un-
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derstood as follows: to explain the same velocity data, two dark matter

profiles should have roughly the same mass within some radius R0. If

both profiles happen to have the same behaviour at large distances, their

S values, averaged over R0 will be essentially equal. This explains the use

of S as a characteristic of dark matter halos.

8.4 Appendixes for Chapter 5

8.4.1 Cleaning of soft proton flares

EPIC external “flaring” background is caused by protons of energies less

than a few ×100 keV, collected by the X-ray mirrors. These protons originate

in the Earth’s magnetosphere. During the flaring periods, the background

level increases by one-two orders of magnitude. According to [329] they have

very hard and unpredictable spectral shape usually dominating at high en-

ergies which makes their modeling technically challenging. In addition to

that, due to their different convolution with effective area comparing to X-

ray photons they are responsible for some artificial line-like features, for

instance at ∼2.5 keV [323].

Several different procedures have been developed by different authors.

For completeness we present their brief overview here.

1. The “standard” method used by [334] is based on the construction of

≥ 10 keV lightcurves for single pixel events binned by 100 s. The inter-

vals having more 0.2 cts/s for MOS1/MOS2 and 0.45 cts/s for PN cam-

eras in this energy range are rejected. However, the authors find that

some flares “survive” after this procedure creating the variability in 1-

10 keV band. This effect is attributed to the existence of lower energy

protons at the edges of the encountered proton “clouds”. Therefore, the

additional screening at 1-10 keV range (allowing MOS countrates to be

smaller than 1.15 cts/s) is performed.

2. In [330], the authors developed an algorithm to obtain an automated

and homogeneous screening from the flaring non-X-ray background.

During the first step, the 0.4-12 keV MOS lightcurves were extracted

from events coming to the instrument’s FoV and binned by 30 s inter-

vals. Then, the histogram of count rates is created. After fitting this

histogramwith a Gaussian function, the intervals having the countrate
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more than 3.3 σ larger than the mean value are rejected. After the re-

jection, additional test of the high-energy countrates is performed by

using the events from parts of MOS CCDs located not in the instru-

ment’s FoV. Because at high energies (& 5 keV) the blank-sky spectrum

is dominated by the instrumental background [326, 334], comparison

of in-FoV and out-FoV countrates at these energies may idenfity the

additional in-FoV high-energy component caused by soft proton flares

passed through their 3.3 σ filter.

3. In [326], the authors used the “double filtering” procedure removing

time intervals with either high-energy (9.5-12 keV for MOS, 10-14 keV

for PN) and low-energy (1-5 keV) countrates deviating more than by

20 % for the average values. Such a filtering removed ∼ 35 % of MOS

and ∼ 45 % of PN uncleaned exposure.

4. In [353], the authors first apply the lightcurve filtering in a wide band

(0.2-12 keV forMOS) camera. After removing time intervals with coun-

trate above 2-2.5σ above the mean level, they perform the point source

detection procedure. After removal the point sources, they again per-

form the lightcurve cleaning. Due to removal of point sources, the sens-

itivity for for faint flare search is significantly increased allowing them

to exclude additional ∼10 % of exposure affected by the smallest flares.

5. In [329], the authors idenfitied the flaring intervals using the proced-

ure similar to [330]. By cleaning time intervals with 2.5-8.0 keV MOS

countrates exceeding more than by 2.5 σ the mean value, they remove

∼ 36 % of MOS uncleaned exposure. In addition, the authors model the

remaining soft proton component with the broken powerlaw (without

convolving with the instrument effective area) with Ebr ≃ 3.2 keV.

6. In [328], the authors first exclude time bins where the high-energy (10-

12 keV) MOS countrate is larger than 0.2 cts/s (for 100 s bins). After

that, a 2-5 keV histrogram is produced and modeled similar to [330]

and all bins with countrates more than 3σ above the mean value are

also rejected. Finally, Fin − Fout diagnostic of [330] is used to estim-

ate the residual soft proton flare contamination. All observations with

Fin − Fout less than 1.5 were used for subsequent analysis.

7. In [421, 422], the authors use the procedure mos-filter , developed
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by the authors of [329] as a part of XMM-Newton Extended Sources

Analysis Software (XMM-ESAS), now the part of XMM SAS. In this

procedure, 2.5-12 keV lightcurve is binned by 1 s intervals and all in-

tervals with count rates different from mean value more than by 1.5 σ

were rejected.

8.4.2 Modeling closed-filter spectra.

In this Section, we model closed-filter spectrum in Xspec using very simple

powerlaw model in 2.3-10.0 keV energy range. The energy bins around

strong instrumental lines (namely, 5.3-5.7, 5.8-6.0, 6.3-6.6, 7.4-7.7, 8.0-8.2,

8.5-8.8, 9.5-9.8 keV for MOS cameras and 5.3-5.7, 5.8-6.0, 6.3-6.6, 7.0-9.1,

9.3-9.7 keV) are removed. The results of fit are very good, see Table 8.2 and

Fig. 8.2 for details. The measurements of the powerlaw index are consistent

with previous results of [334] (who obtained αhard ∼ 0.2, αsoft ∼ 0.8 and

Ebr ∼ 1 keV for MOS cameras) and [326] (who obtained αsoft = 0.7 − 0.8,

Ebr = 1.3 − 1.5 keV and αhard = 0.4 for PN and αhard = 0.1 − 0.2 for MOS

cameras). The large difference between the values αhard between MOS and

PN cameras is not unexpected. According to [334], about ∼ 99 % of cosmic

rays are rejected by internal electronics by using multiple pixel analysis (due

to large energy deposition of cosmic rays they mostly interact with several

adjacent CCD pixels). The sizes of CCD pixels for MOS (1.1 arcsec) and PN

(4.1 arcsec) are very different, so we expect the very different outcome of

internal rejection of cosmic rays in these cameras.

MOS1 MOS2 PN

Fit quality, total χ2/d.o.f. 360.5/369 373.6/369 831.0/849

Powerlaw index 0.183±0.007 0.177±0.007 0.402±0.010

Norm., cts/s/keV at 1 keV 0.0480±0.0006 0.0464±0.0006 0.090±0.002

Table 8.2: Model parameters of closed filter background on powerlaw continuum

(without RMF or ARF).

8.4.3 Adding simulated lines to the combined dataset

Line simulations are performed using standard routine fakeit , a part of

Xspec spectral fitting package [409]. We adopt the following procedure of
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Figure 8.2: Best-fit continuum model and fit residuals for closed-filter background

spectra from MOS1 (left), MOS2 (centre) and PN (right) cameras. The energy ranges

containing strong instrumental lines are excluded from the fit, see text for de-

tails. The resulting energy bins are well modeled with simple powerlaw continuum,

see 8.2 for details. This result ensures that we may really use modeling of closed-

filter background, instead of subtracting it.

line simulation. First, we simulated a narrow line for each observation hav-

ing the same flux (in photons cm−2s−1). The initial line energy and disper-

sion (set to 1 eV)2 are kept the same. We repeat many times, adding the

line to each individual observation, prior to stacking them together. In each

energy bin (15 eV for MOS camera and 5 eV for PN camera) the total num-

ber of counts is allowed to vary according to Poisson distribution allowing to

create different realizations of the line. The actual shapes of line broadening

and effective area is taken into account by using instrument responses for

each observation contained in RMF and ARF files, see Sec. 5.2.4 for details.

After simulating spectra for each observation of our combined dataset, the

spectra from each camera (MOS1, MOS2, PN) are dumped to text format

using FTOOL fdump , binned by 60 eV per bin.

2Predicted internal dispersion of dark matter decay line due to Doppler broadening is about

10−3 times line energy for galaxies [229]. However, because total dispersion is the root of the

squared sum of initial dispersion (. 10 eV) and line broadening (& 50 eV), the corresponding

error on total dispersion does not exceed 2% and is neglected henceforth.
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