
Constraining Properties of Dark Matter particles Using Astrophysical
Data
Iakubovskyi, D.

Citation
Iakubovskyi, D. (2013, February 13). Constraining Properties of Dark Matter particles Using
Astrophysical Data. Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/20523
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/20523
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/20523


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/20523 holds various files of this Leiden University 
dissertation. 
 
Author: Iakubovskyi, Dmytro 
Title: Constraining properties of dark matter particles using astrophysical data 
Issue Date: 2013-02-13 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/20523
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 2

Mass of the dark matter particles

2.1 Introduction

In this Chapter we discuss the lower bounds on the mass of dark matter

particles, coming from the analysis of dark matter phase-space distribution

in different types of dark matter dominated objects.

If the dark matter particles are fermions, there is a very robust bound

on their mass. Namely, due to the Pauli exclusion principle, there exists the

densest “packing” of the fermions in a given region of the phase space [45].

Decreasing the mass of dark matter particles, one increases their number in

a given gravitationally bound object, containing dark matter. The require-

ment that the phase-space density of the dark matter does not exceed that of

the degenerate Fermi gas leads to the lower mass bound. A weaker version

of the same bound can be generalized for the bosonic dark matter as well. We

review the existing approaches, and concentrate on two methods of deriving

such a bound. The first (model-independent) approach uses the information

about the observedmatter distribution only and applies to any type of fermi-

onic dark matter. The second method also requires an assumption about the

initial (primordial) distributions of dark matter velocities. Stronger, model-

dependent bounds are quoted for several dark matter models (thermal relics,

non-resonantly and resonantly produced sterile neutrinos, etc.). These latter

bounds rely on the assumption that baryonic feedback cannot significantly

increase the maximum of a distribution function of dark matter particles. It

turns out that the strongest bound comes from the objects with the largest

phase-space density – dwarf spheroidal galaxies (dSphs). We discuss the ob-
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servational data on dSphs as well as astronomical uncertainties in relevant

parameters.

While these considerations are very generic and rely almost exclusively

on such fundamental properties of dynamical systems like Liouville the-

orem, they provide important restrictions on possible particle physics mod-

els. For example, applying these considerations to the case of neutrino dark

matter would rule out the possibility that massive neutrinos constitute the

dominant fraction of dark matter in the Universe (the lower bound of their

mass would imply that the ΩDM ≪ 1). For the scenario in which all the dark

matter is made of sterile neutrinos produced via non-resonant mixing with

the active neutrinos (NRP) this gives mNRP > 1.7 keV/c2. Combining these

results in their most conservative form with the X-ray bounds of dark matter

decay lines, we conclude that the non-resonant production scenario remains

allowed in a very narrow parameter window only. This conclusion is inde-

pendent of the results of the Lyman-α analysis. The dark matter model in

which sterile neutrinos are resonantly produced in the presence of lepton

asymmetry remains viable. Within the minimal neutrino extension of the

Standard Model (the νMSM ), both mass and the mixing angle of the dark

matter sterile neutrino are bounded from above and below, which suggests

the possibility for its experimental search.

This Chapter is organized as follows. After an overview of the original

Tremaine-Gunn bound and its modifications (Section 2.2), we introduce the

concept of maximal coarse-graining and propose a conservative modification

of the original bound (Section 2.3). In Section 2.4 we analyze existing ob-

servational data on Milky Way and Andromeda galaxies, galaxy groups and

Milky Way satellite dSphs and use it to determine the phase-space dens-

ity of these objects. Special attention is paid to systematic uncertainties of

measured values. Our results are summarized in Section 2.6.

2.2 Dark matter mass limits

Consider a spherically symmetric dark matter-dominated object with the

mass M within the region R. One can obtain the lower bound mDEG on the

dark matter mass by demanding that the maximal (Fermi) velocity of the

degenerate fermionic gravitating gas of mass M in the volume 4
3πR

3 does
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not exceed the escape velocity v∞ =
(

2GNM
R

)1/2
:

~

(

9πM

2gm4
DEGR

3

)1/3

≤
√

2GNM

R
⇒ m4

DEG ≥ 9π~3

4
√
2gM1/2R3/2G

3/2
N

. (2.1)

Here and below g denotes the number of internal degrees of freedom of dark

matter particles, and GN is the Newton’s constant. Such a consideration,

applied to various dark matter dominated objects, leads to the mass bound,

which we will call mDEG in what follows (see Table 2.4 below).1

The above considerations assume that the dSphs are purely spherical sys-

tems. Analysis of [166] shows that ellipticity of stars in dSphs vary from

0.22+0.18
−0.22 for Leo IV to 0.80 ± 0.04 for Ursa Major I. Simulated dark matter

halos on the other hand tend to have rather moderate ellipticity, ǫDM . 0.32

[167].2 According to Section 2.5, the ellipticity of darkmatter halos can lower

the resulting limit on mDEG by . 10%.

The limit, obtained in such a way, is very robust, as it is independent of

the details of the formation history of the system. The only uncertainties

associated with it are those of astronomical nature: systematic errors in the

determination of velocity and density distribution. All these issues will be

discussed below (Section 2.4, 2.3).

For particular dark matter models (with the known primordial velocity

dispersion) and under certain assumptions about the evolution of the system

which led to the observed final state, this limit can be strengthened [45, 46,

48, 49, 157, 168–173]. The argument is based on the Liouville’s theorem (see

e.g. [168, 174]) and assumes that the collapse of the system is disipation-

less and collisionless. The Liouville theorem states that the phase-space

distribution function f(t, x, v) does not change in the course of disipationless

collisionless dynamics. The consequence of the Liouville theorem is that the

function f(t, x, v) “moves” in the phase-space, according to the Hamiltonian

flow, and therefore its maximum (over the phase space) remains unchanged.

Therefore, if one could determine the characteristics of a phase-space distri-

bution function from astronomically observed quantities (in the first place

1The spatially homogeneous dark matter distribution is only an approximation. In reality

one should consider self-gravitating degenerate fermionic gas. It is possible to show that, un-

der some external conditions, the system of weakly interating fermions undergoes a first-orger

phase transition to a nearly degenerate “fermion star” [164]. The existence of such objects may

also have insteresting astrophysical applications [165].
2Therefore it is hard to explain the ellipticity of stars in the most elongated dSphs, see the

discussion in [166].
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average density ρ̄ and velocity dispersion σ) in dSphs (or any other dark

matter dominated objects), the Liouville theorem would allow to connect the

measured values with the primordial properties of dark matter particles.

One such characteristics of the phase-space distribution is its maximum.

Any physical measurement can probe only the phase-space distribution, av-

eraged over some phase-space region – a coarse-grained phase-space density

(phase-space density) (as opposed to exact or fine-grained phase-space dens-

ity). Such a coarse-grained phase-space density, averaged over phase-space

cells ∆Π(x, v) centered around points (x, v) in the phase space, is defined via

f̄(t, x, v) =
1

vol(∆Π)

∫

∆Π(x,v)

dΠ′ f(t, x′, v′) (2.2)

(here vol(∆Π) is the volume of the phase-space cell). From the definition

(2.2) it is clear that the maximal (over the whole phase space) value of the

coarse-grained phase-space density f̄max(t) cannot exceed the maximal value

of the corresponding fine-grained phase-space density. On the other hand,

as a consequence of the Liouville theorem, the maximum of the fine-grained

phase-space density fmax does not change in time. Thus, one arrives to the

following inequality

f̄max(t) ≤ fmax . (2.3)

The inequality (2.3) allows to relate the properties of dark matter at present

time t with its primordial properties, encoded in fmax. For example, if one

assumes that initially dark matter particles possess relativistic Fermi-Dirac

distribution function with some temperature TFD (relativistically decoupled

thermal relics):

fFD(p) =
g

(2π~)3
1

ep/TFD + 1
(2.4)

and recovers from astronomical measurements that in the final state the

coarse-grained phase-space density of the system is described by the iso-

thermal sphere (see e.g. [174]) with a core radius rc and a 1D velocity disper-

sion σ, whose maximum is given by

f̄iso,max =
9σ2

4πGN (2πσ2)3/2r2c
(2.5)

the comparison of the maximum of the coarse-grained phase-space dens-

ity (2.5) with its primordial (fine-grained) value leads to the so-called Tremaine-
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Gunn mass bound [45]:

mFD ≥ mTG, where m4
TG ≡ 9(2π~)3

(2π)5/2gGNσ r2c
. (2.6)

For the case of initial distribution (2.4) this bound is stronger than the one,

based on the Pauli exclusion principle, by a factor 21/4 [45]. For different

primordial dark matter distributions this difference can be significant (as

we demonstrate later). We would like to stress, though, that these stronger

bounds make assumptions about the evolution of phase-space density, while

the one, based on the Pauli exclusion principle does not assume anything

about either primordial velocity distribution of the particles, or the forma-

tion history of the observed object and simply compares measured phase-

space density with the maximally allowed for fermions.

Another characteristics of the phase-space distribution function is the

“average phase-space density”

Q ≡ ρ̄

〈v2〉3/2 , (2.7)

introduced in [175, 176]. The value of Qf (average phase-space density

today) is simply defined in terms of the observed quantities ρ̄ and 〈v2〉 = 3σ2

and therefore serves as a convenient estimator of the phase-space density

for any dark matter dominated object. One can calculate primordial Qi for

an arbitrary homogeneous distribution function f(p)

Qi =
gm4

(2π~)3

(

∫

f(p)d3p
)5/2

(

∫

f(p)p2d3p
)3/2

(2.8)

and compare it with its value today Qf . It was claimed in [175, 176] that Q

cannot increase during the evolution of dark matter:

Qi ≥ Qf . (2.9)

Applying this inequality to the dSphs, one obtains several times stronger

mass bound, than that of [45].

To illustrate the origin of the inequality (2.9), authors of [175, 176] no-

ticed that in the case of the uniform monoatomic ideal gas, Q is related to

the usual thermodynamic entropy per particle (see Appendix 8.2.1.1) and the
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inequality for Q becomes a consequence of the second law of thermodynam-

ics. Indeed, in this case one can see that

S[f ]

N
= − log

(

Q(ρ̄, σ)~3

m4

)

+ logC[f ] , (2.10)

where in the right hand side of (2.10) functional C[f ] does not depend on the

average density and velocity of the dark matter particles.

However, because of the long-range interaction of dark matter particles,

the notion of Boltzmann entropy is well-defined only for the primordial dark

matter distribution and not for the final state of dark matter evolution (see

e.g. the discussion in [177]). Moreover, we will show below that in general

the increase of entropy does not imply the decrease of Q. Indeed, the values

of C[f ] are different for different types of phase-space distributions f and

therefore they can change with time if the shape of the (coarse-grained) dis-

tribution changes. Namely, even if initial (i) and final (f ) states both satisfy

relation (2.10) between the entropy and Q (Si,f = logCi,f − log
Qi,f~

3

m4
DM

) from

the second law of thermodynamics

Sf ≥ Si (2.11)

it only follows that

Qi ≥ Qf
Ci

Cf
. (2.12)

Therefore, in general, the inequality (2.9) does not follow from entropic con-

siderations.

Moreover, the simple relation (2.10) between the entropy and Q does not

hold for the distributions we are interested in. For example, for the Fermi-

Dirac distribution (2.4) one has:

S

N
= const

m4
FD

Q~3
(2.13)

(see Appendix 8.2.1.3 for details). The relation becomes even more complic-

ated, if one considers dark matter candidates (e.g., sterile neutrinos, grav-

itinos), which are produced out of thermal equilibrium. In general, when

the primordial distribution function depends on several parameters, both Q

and entropy are expressed through these parameters in a non-trivial way

and the simple relation (2.10) does not hold. For example, this is the case

when dark matter is produces in two stages and the dark matter distribution

2.2 Dark matter mass limits 23



shape has two components: colder and warmer one. Physically interesting

examples include: production of sterile neutrino in the presence of lepton

asymmetry [78, 87, 88]; production of gravitino thermally at high temper-

atures (see e.g. [178, 179]) accompanied by non-thermal production via late

decays of next-to-lightest supersymmetric particles (see e.g. [180]).

Keeping in mind the above considerations, one might be tempted to use

the entropy of the system as an estimator of phase-space density and util-

ize the entropy increase (2.11) instead of the inequality on Q to put a lower

bound on the dark matter mass. However, unlike Q, which by definition

is expressed solely in terms of measured quantities ρ̄ and σ, the inequal-

ity (2.11) requires the knowledge of the phase-space distribution function in

the final state (e.g. to determine the Cf in the right-hand side of Eq. (2.10)

or, more generally to express the entropy of the final state in terms of the

observed quantities). This information cannot be simply deduced from as-

tronomical observations. One possible way to formulate a conservative, ro-

bust inequality would be to find the maximal possible entropy for a given

system with measured macroscopic parameters. However, it was shown

in [168, 174, 181, 182] that such a maximum does not exist. Namely, for

a gravitating system which usually consists of a compact core and a widely

dispersed halo of finite mass, the total Boltzmann entropy of the system goes

to infinity when the halo becomes infinite. Physically, the measured dens-

ity and velocity dispersion characterize the inner part of the object. The

astronomical observations do not usually probe the outskirts of gravitating

systems (such as dSphs) and phase-space distributions (such as (2.5)) do not

describe them properly. On the other hand, to compare with the homogen-

ous initial system having a primordial velocity spectrum, we need to know

an entropy of the whole system. The large (and unknown!) fraction of this

entropy can be related to the outskirts. The entropy of the gravitating sys-

tem depends on the precise state of the halo.

As a result, it is not possible to construct a simple and robust limit, using

entropy considerations.

2.3 Maximal coarse-graining

In view of the above arguments, to derive a conservative mass bound, in this

work we will follow the original approach of Tremaine and Gunn [45] with
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some modification.

An important advantage of this approach is that the maximum of the

phase space density is likely to be located in the inner, dense part of an ob-

ject. Therefore, under this reasonable assumption, the results do not depend

on the dark matter distribution in the outskirts (see the discussion above).

As discussed already, the coarse-grained phase-space distribution in the

final state cannot be measured directly, and one has to make assumptions

to deduce its maximum. A conservative way to minimize this uncertainty is

to use the “maximally coarse-grained distribution”. It is based on a simple

fact that the mean value of a function, averaged over an arbitrary region

cannot exceed its maximal value. Therefore, the average value of coarse-

grained phase space density in a large phase-space volume can be taken as

a conservative estimate of the F̄max, independent on assumptions about the

actual form of phase-space distribution.

To this end we consider an (approximately spherically symmetric) gravit-

ating system (having in mind a dwarf spheroidal galaxy), that has the mass

M(R) confined within the radius R. The phase-space volume, occupied by

the dark matter particles, forming such a system can be approximated by

Π∞ =

(

4

3
π

)2

R3v3∞ , (2.14)

where we have introduced escape velocity v∞. The “coarsest” phase-space

density is such that the averaging (2.2) goes over the whole phase-space

volume: ∆Π = Π∞:

F̄ =
M

Π∞
=

9

16π2

M

R3v3∞
=

3ρ̄

4πv3∞
(2.15)

As an estimate for R we take half-light radius rh (i.e. the radius where sur-

face brightness profile falls to 1/2 of its maximal value). Neglecting possible

influence of ellipticity of stellar orbits (c.f. Section 2.5), assuming constant

dark matter density within rh and isothermal distribution of stars [183], we

obtain the following estimate on the average dark matter density within rh:

ρ̄ =
3 log 2

2π

σ2

GNr2h
, (2.16)

Assuming isotropic velocity distributions,3 the escape velocity v∞ of the dark

matter particles is related to the velocity dispersion σ via v∞ ≃
√
6σ. In such

3This assumption seems to be correct for the dark matter particles, since numerical simu-
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a way we obtain the averaged phase-space density F̄ :

F̄ =
M

Π∞
=

ρ̄

8π
√
6σ3

≈ 3 log 2

16
√
6π2GNσr2h

≈ (2.17)

≈ 1.25
M⊙

pc3

(

km

sec

)−3 (
km/sec

σ

)(

1 pc

rh

)2

,

which coincides with its maximal value (being flat).

As a consequence of Eq. (2.3), this “coarse-grained” phase-space density

F̄ is smaller than the fmax – the maximum value of fine-grained phase-space

density, equal to its primordial value:

F̄ ≤ fmax . (2.18)

Eq. (2.18) relates the observed properties of the dark matter-dominated sys-

tems (l.h.s.) with the microscopic quantity on the r.h.s. of inequality, which

depends on the production mechanism of the dark matter.

We are mostly interested in two types of primordial momentum distri-

bution. One is the relativistic Fermi-Dirac (2.4) with its fmax being equal

to

fmax,FD =
g m4

FD

2(2π~)3
(2.19)

(we fix the overall normalization of the phase-space distribution function by

the relation M =
∫

d3x d3v f(t, x, v), where M is the total mass of the sys-

tem). Another one is an (approximate) form of the momentum distribution

for sterile neutrinos, produced via non-resonant oscillations with the active

ones [56, 73]. For the latter case we consider the velocity dispersion to be4

fNRP(p) =
gχ

ep/Tν + 1
. (2.20)

lations of dark matter structures of different scales show that the velocity anisotropy β(r) ≡

1 −
σ2
θ+σ2

φ

2σ2
r

tends to be zero towards the central region [184–188]. It is not clear whether β

equals to zero for stars in dSphs. The assumption of isotropy of stellar velocities leads to the

cored density profiles [189, 190], therefore our estimate for ρ̄ tends to be robust. This is con-

firmed by comparison of the estimate (2.16) with those, based on [191–193], where dark matter

density profiles were obtained under the assumptions of different anisotropic distributions of

stars in dSphs.
4In reality the momentum distribution in the case of non-resonant production does not have

thermal shape. The exact shape, taking into account contributions from primeval plasma at

temperatures around QCD transition, can be computed only numerically [81, 86]. The differ-

ence between the exact distribution and (2.20) does not exceed 20%, which does not affect the

mass bounds.
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The normalization constant χ is proportional to the mixing strength between

active and sterile neutrinos and Tν is the temperature of neutrino back-

ground Tν(z) = (1+z)Tν0, related to the temperature of the cosmic microwave

background today via Tν0 = (4/11)1/3TCMB,0 . For the maximal value of distri-

bution (2.20) we find

fmax,NRP =
gχm4

NRP

2(2π~)3
. (2.21)

From the definition (2.20) one can relate the normalization factor g χ to the

dark matter abundance (see e.g. [122])

ωDM ≡ ΩDMh
2 = gχ

mNRP [ eV]

94 eV
. (2.22)

Therefore we can rewrite maximal value of the primordial phase-space dens-

ity (2.22) as

fmax,NRP =
94ωDM

2(2π~)3
m3

NRP

eV3 . (2.23)

Notice, that unlike the Fermi-Dirac case, for the non-resonant production

scenario fmax behaves as the third power of particle’s mass.

In the presence of lepton asymmetry in primeval plasma the resonant

production of sterile neutrinos becomes possible [78]. A possible lepton asym-

metry, generated in the framework of the νMSMand spectra of sterile neut-

rino dark matter were recently computed in [87, 88]. Qualitatively, these

spectra contain a “cold” (resonant) component and a “warm” one, produced

through non-resonant oscillations, analogously to the non-resonant produc-

tion scenario of [56]. The spectra as a whole become colder than in the non-

resonant production case (see e.g. Fig. 6 in [88]). The maxima of primordial

phase-space distributions for these spectra are higher (sometimes signific-

antly) than for spectra, produced in the non-resonant production scenario

(c.f. Fig. 5 in [88]). Therefore, in general mass bound for such a dark matter

is expected to be weaker than that of the non-resonant production scenario.

The exact form of these spectra can be computed only numerically. We used a

number of spectra to check those which satisfy the bound (2.18) or TG bound

(see Section 2.6).

Let us compare expression (2.17) with the original Tremaine-Gunn bound

(maximum of the right hand side of Eq. (2.6)):

FTG =
9

8π2
√
2πGNσr2c

. (2.24)
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Figure 2.1: Comparison of velocity profiles assumed in [45] (grey solid line) and in

this work (black dashed line).

The values of F̄ is smaller than FTG by

F̄

FTG

=
log 2

√
π

6
√
3

(

rc
rh

)2

≈ 0.118

(

rc
rh

)2

, (2.25)

where rc and rh are the core radius of isothermal profile and the half-light

radius, correspondingly. When comparing F̄ and FTG below, we take rh ≃ rc.

Essentially, the difference between F̄ and FTG is due to the different assumed

velocity distributions. While the Maxwell distribution was assumed in [45]

(c.f. Eq. (2.5)), we assume constant velocity profile from escape velocity v∞

down to v = 0 (as shown on the Fig. 2.1). The numerical factor in (2.25)

is the ratio of areas under two velocity curves of Fig. 2.1. Translated into

the mass bound, relation (2.25) means that for dark matter particles with

distribution (2.4) one would obtain roughly 40% stronger mass bound by us-

ing the original Tremaine-Gunn bound, rather than F̄ (and ≈ 60% stronger

mass bound for the case of the distribution (2.20)).

Let us compare our new bound with the one, based of [175, 176]. Fol-

lowing the definition (2.7), we express the measured value Qf for a dSph

through the observed quantities

Q =
ρ̄

η3(3σ2)3/2
≈ 14.83

M⊙

pc3

(

km

sec

)−3 (
km sec−1

σ

)(

1 pc

rh

)2
1

η3
, (2.26)

where η is the scaling factor which accounts for the fact that the dark matter

particles do not necessarily have the same velocity dispersion as the stars,

rh is the half-light radius, σ is the measured one-dimensional velocity dis-

persion of the stars and ρ̄ is defined in (2.16). It was estimated in [176]
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that η ≈ 1. In Eq. (2.26) we used the same value of ρ̄ as in Eq. (2.17). For

the same dSph, Qf is bigger than F̄ (given by expression (2.17)) by a factor

8π
√
2/3 ≈ 11.85 . . . .

On the other hand, for any initial momentum distribution f(p) we should

compare Qi, given by Eq. (2.8), with the f
(i)
max. For both types of distribu-

tion (2.4) and (2.20) the ratio of initial Qi/f
i
max is given by

Qi

f
(i)
max

=
4πζ5/2(3)

5
√
15ζ3/2(5)

≈ 0.973 . . . (2.27)

As a result, a bound, based on the decrease of the average phase-space dens-

ity Q is stronger than F̄ bound from the same object by a factor:

f
(i)
max

Qi

Qf

F̄
≈ 12.176 . . . (2.28)

(where again we put η = 1). This leads to ≈ 1.87 times stronger bound on the

mFD and ≈ 2.3 times stronger bound for mNRP .

2.4 Analysis of measured values

In this Section we estimate phase-space density in different dark matter-

dominated objects. We demonstrate that the dwarf spheroidal satellites of

the Milky Way possess the highest phase-space density and thus provide the

strongest limits on the mass of dark matter particles.

2.4.1 Galaxies

In this Section we study the restrictions on themass of darkmatter particles,

coming from the analysis of the phase-space density of spiral galaxies. The

distribution of dark matter is modeled based the analysis of the rotational

curves— dependence of the circular rotational velocity of stars (optical data)

and neutral hydrogen (radio data) around the galaxy centre as a function

of distance (for mass modeling of the Milky Way, see e.g. [194, 195], for An-

dromeda galaxy – [11, 12]). Well outside the galactic bulge where the circular

velocity curve flattens, the dark matter density can be found with the help

of the following relation

ρ̄gal =
3

4πGN

v2h(r)

r2
, (2.29)

2.4 Analysis of measured values 29



where vh(r) – part of the rotational velocity, contributed to dark matter 5 at

distance r from the galaxy centre and is (approximately) constant. The velo-

city of dark matter particles in a compact halo does not exceed v∞ =
√
2vmax

h .

Here vmax
h is the maximum of the rotation curve, reached at some radius

rmax before starting to decline. However, there are only few objects (clas-

sical dSphs) for which the value of vmax
h and rmax had been measured, see

e.g. [196]). Therefore determination of these values provides the strongest

uncertainty in the evaluation of the phase-space density of dark matter in

spiral galaxies.

We write the phase-space density estimate as (see also (2.15))

F̄gal =
3ρ̄gal
4v3∞

=
9

32π2
√
2GNvh(rgal)r2gal

, (2.30)

where rgal is the inner radius of the halo, some proxy for rmax. To be conser-

vative we use rgal, where the dark matter contribution is equal to contribu-

tion from barionic matter (the sum of bulge and disk components).

For the subsequent analysis we used two spiral galaxies with the best

studied haloes – Milky Way and Andromeda galaxy. The velocity profiles for

these galaxies are shown, e.g., in [194, 197]. The results for rgal and vh(rgal),

as well as the obtained bounds for F̄ are shown in Table 2.1.

The average value of the lowermass bound from Table 2.1 impliesmDEG >

34eV, mFD > 40eV. As we will see in Sec. 2.4.3 below, it is much weaker

compared to bound obtained from dwarf spheroidal galaxies. Therefore, if

the dSph dynamics (in contrast to dynamics of spiral galaxies) is not due to

dark matter, the lower mass bound in the dark matter particles is ∼ 40 eV,

depending on the dark matter species.

2.4.2 Galaxy groups

The dark matter profiles in galaxy groups are obtained from the analysis of

X-ray thermal emission distribution from tha hot gas halo. In this paper, we

used the data from [198], where the distributions of dark matter, baryonic

matter in galaxies and hot integralactic gas are derived. Similar to previous

subsection, to take into account the uncertainties of dark matter and hot gas

5Note that this velocity is somewhat lower than the total rotational velocity of stars around

the galaxy centre. This is due to the presence of two additional components – disk and buldge –

formed by the luminous matter.
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rgal v(rgal) F̄gal, M⊙× mDEG mFD

Profile Ref. kpc km/sec pc−3 (km/sec)−3 keV keV

(1) (2) (3) (4) (5) (6) (7)

MW, A1 [194] 3.0±0.6 150±10 3.45 ×10−9 0.043 0.051

M31, C1 [194] 3.8±0.8 180±10 1.79 ×10−9 0.036 0.043

M31a [197] 6.0±1.2 140±10 0.93 ×10−9 0.031 0.037

M31b [197] 6.5±1.3 140±10 0.79 ×10−9 0.030 0.035

M31c [197] 6.0±1.2 150±10 0.86 ×10−9 0.030 0.036

Table 2.1: Parameters of selected spiral galaxies from [194, 197] (columns 1-5) and

obtained lower mass bounds for different dark matter types (columns 6-7). mDEG de-

notes the model-independent bound coming from Pauli principle (2.1), mFD – model-

dependent bound for dark matter particles with momentum distribution (2.4).

distribution we use the phase-space density values calculated in rgr, where

dark matter mass Mgr = M(rgr) starts to dominate over the barionic mass.

The maximal velocity of dark matter particles is estimated as

v∞ =

√

2GNMgr

rgr
, (2.31)

from what (using (2.15)) we obtain the conservative estimate of the maximal

phase-space density value,

F̄gr =
9

32
√
2π2G3

N/2M1
gr/2r

3/2
gr .

(2.32)

The results are presented in Table 2.2. The averaged values of the mass

bound, derived from Table 2.2 are mDEG > 24 eV, mFD > 29 eV. Therefore, if

the dSph dynamics, in contrast to dymamics of spiral galaxies and galaxy

groups, is not due to dark matter, the lower bounds on the dark matter

particle mass is ∼ 25-30 eV, depending on the dark matter model.

2.4.3 Dwarf spheroidal galaxies

Dwarf spheroidal galaxies (dSphs) are the compact (around ∼ 1 kpc) and

gravitationally bound systems with low surface brightness and high velo-

city dispersion. To explain the latter, one needs to introduce the mass-to-

luminosity value with is hundreds times more than the value observed in
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Mgr rgr F̄gr , M⊙× mDEG mFD

Object Ref. 1010M⊙ kpc pc−3 (km/sec)−3 keV keV

(1) (2) (3) (4) (5) (6) (7)

Abell 262 [198] 6.5±0.7 6.5±1.7 5.34 ×10−10 0.027 0.032

NGC 533 [198] 5.0±0.5 5.0±1.5 9.02 ×10−10 0.031 0.037

MKW 4 [198] 25±3 12.0±3.6 1.08 ×10−10 0.018 0.022

IC 1860 [198] 13±1 9.5±2.9 2.14 ×10−10 0.021 0.026

Table 2.2: Parameters of chosen galaxy groups from [198] (columns 1-5) and obtained

lower mass bounds for different dark matter types (columns 6-7). mDEG denotes the

model-independent bound coming from Pauli principle (2.1),mFD – model-dependent

bound for dark matter particles with momentum distribution (2.4).

usual galaxies (see, for example, [199]). The possible reason for such a huge

velocity dispersion is the disturbance of the cental part of dSphs with the

tidal forces of our Galaxy. However, the observable features of tidal dis-

turbance – the so-called “tidal tails”, formed from stars which is going out

of dSph – were found in single dSphs (Sagitarius, Ursa Major II). There-

fore, the most realistic model by the moment for a majority of dSphs is their

domination with dark matter. As a result, it is assumed that the dSphs are

the most compact objects dominated with dark matter.

Over the last several years, a number of very faint, very dense dSphs

were detected [200–206]. To calculate the mass limits, we used the data from

two papers [205, 206] in which the dark matter phase-space density was

estimated. First of all, we should notice that although both of these papers

provide the estimate of Q for each object, they use different prescriptions for

computing this value.

In [205] the quantity Q is estimated inside the half-light radius rh, using

one-dimensional velocity dispersion σ of stars:

QGil =
ρ̄

σ3
=

3

8πGNr2hσ
. (2.33)

Compared to our definition (2.17) F̄ = log 2

2
√
6π

QGil ≈ 0.045QGil. Following [207]

the authors of [206] define central density

ρ0 = 166σ2η2/r2c (2.34)

where η ∼ 1 is a numerical parameter, characterizing plausible density pro-
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Galaxy rh, Plummer rh, exponential

Coma Berenices 5.0’ 5.9’

Canes Venatici II 3.0’ 3.3’

Leo IV 3.3’ 3.4’

Hercules 8.0’ 8.4’

Table 2.3: Uncertainties of determination of half-light radius rh for several dSphs.

files (for details see [206, 207]). They used ρ0 to define the quantity:

QSG ≡ ρ0
σ3

, (2.35)

As a result for the same object QSG is by a factor of 14.60 greater than QGil.

Using the available information about dSph galaxies (refs. [205, 206] and

refs. therein), we calculate F̄ , trying also to estimate the errors. Several

factors contribute to the errors of σ and rh.

First of all, as σ is the dispersion of measured velocities, it has the stat-

istical error (which can be quite large for the ultra-faint dSphs where the

number of stars can be rather small (∼ 10−100, c.f. [206, Table 3]). However,

the systematic error is much larger. The authors of [206] found the system-

atic error on their determination of velocity dispersion to be 2.2 km/ sec. We

add this error in quadratures to the statistical errors, found in [206, Table 3].

The results are shown in the column number 4 in the Table 2.4.

The half-light radius rh is a derived quantity and there are several contri-

butions to its errors. First of all, the surface brightness profile is measured

in angular units and their conversion to parsecs requires the knowledge of

the distance towards the object. These distances are generally known with

uncertainties of about 10% (see [199, 199, 200, 203, 208–217]). Another un-

certainty comes from the method of determination of rh. The surface bright-

ness profile gets fit to various models to determine this quantity. For several

dSphs: Coma Berenices, Canes Venatici II, Hercules and Leo IV authors

used two different profiles (Plummer and exponential) for evaluating the

annular half-light radius [200]. Their results are present in the Table 2.3.

We use these results to estimate the systematic error on rh to be 20% and

use it for all the dSph, where rh is quoted without errors. The results of de-

termination rh are shown in the 3rd column of the Table 2.4. The obtained

values of F̄ with corresponding errors are presented in the Table 2.4, column
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5. We determined the errors on F̄ by pushing the uncertainties in both σ and

rh so that the values of F̄ is minimized (maximized).

2.5 Influence of aspherical shapes of dark matter

halos

In this Section we analyze how the bound changes due to the deviation of

a dark matter halo from a spherical shape. Such asphericity affects both

the spatial volume V and the escape velocity v∞. We consider the dSph as

homogeneous ellipsoid with semi-axes a, b and c and assume the ellipticity

of its 2D projection6 ǫ . 0.5. Because we observe only 2D projection of such

an ellipsoid, there are two possibilities:

Prolate dSph: c > b ≃ a. We see the axes b and c, related to the “averaged”

radius R via b = R(1 − ǫ)1/2, c = R(1 − ǫ)−1/2. The spatial volume V is

therefore

V =
4

3
πabc ≈ 4

3
πR3(1− ǫ)1/2 ≈ 4

3
πR3(1− 0.5ǫ). (2.36)

The gravitational potential for ǫ . 0.5 is dominated by monopole and

quadrupole components,

φ ≈ φ(0) + φ(2). (2.37)

The maximal value of the potential occurs near the end of the minor

semi-axis:

|φmax| ≡
v2∞
2

=
GNM

a
− GNDzz

4a3
, (2.38)

where Dzz = 2M(c2−a2)
5 – the quadrupole moment of the system [218].

For ǫ ≪ 1 we then obtain

V v3∞|prolate
V v3∞|spherical

≈ 1 + 0.05ǫ, (2.39)

which gives us the correction for mDEG of smaller than 1% (for ǫ = 0.5).

6Throughout this paper, we define the ellipticity ǫ in a way similar to that in [174] (see

also [166]), i.e. ǫ ≡ 1− b/a, where a and b are the semi-major and semi-minor axis, respectively.

Thus, the case of ǫ = 0.5 corresponds to axis ratio 1:2.
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Oblate dSph: c ≃ b > a. We observe the axes a and c, therefore the spatial

volume V changes by (1 − ǫ)−1/2 ≈ 1 + 0.5ǫ. The maximum of the

gravitational potential is then given by

|φmax| ≈
GNM

a
+

GNDxx

2a3
≈ GNM

R
(1 + 0.1ǫ). (2.40)

whereDxx is given by the same expression, asDzz above. The maximal

phase-space volume changes in the oblate case by ≈ 1 + 0.65ǫ, so the

correction for mDEG will constitute about 8% for ǫ ≃ 0.5.

Thus, the departure from spherical symmetry for dark matter halos of dSphs

changes the limit on mDEG by less than . 10% for the case of axis ratio 1:2.

This uncertainty is below several others, therefore, we will consider dSphs

to be spherical in what follows.
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rh σ F̄ mDEG mFD mNRP mNRP,TG

dSph References pc km/s M⊙/(pc3(km/s)3) keV/c2 keV/c2 keV/c2 keV/c2

(1) (2) (3) (4) (5) (6) (7) (8) (9)

dSphs from [205]

Sextans [199, 205] 630±170 6.6±2.3 4.78+8.97
−2.58 ·10−7 0.147+0.044

−0.026 0.174+0.053
−0.031 0.454+0.192

−0.104 0.715+0.302
−0.163

Fornax [199, 205] 400±103 10.5±2.7 7.45+10.74
−3.70 ·10−7 0.164+0.041

−0.026 0.195+0.049
−0.031 0.527+0.183

−0.108 0.830+0.288
−0.170

Leo I [199, 205] 330±106 8.8±2.4 1.31+2.59
−0.72 ·10−6 0.189+0.059

−0.034 0.224+0.070
−0.041 0.635+0.279

−0.148 1.00+0.44
−0.23

UrsaMinor [199, 205] 300±74 9.3±2.8 1.49+2.27
−0.76 ·10−6 0.195+0.051

−0.031 0.232+0.060
−0.037 0.665+0.240

−0.139 1.05+0.38
−0.22

Carina [199, 205] 290±72 6.8±1.6 2.19+2.87
−1.05 ·10−6 0.215+0.050

−0.032 0.255+0.060
−0.039 0.755+0.243

−0.148 1.19+0.38
−0.23

Draco [166, 205] 221±16 9.5±1.6 2.70+1.07
−0.69 ·10−6 0.226+0.020

−0.016 0.269+0.023
−0.019 0.809+0.095

−0.076 1.27+0.15
−0.12

Bootes [199, 204, 219] 246±28 6.5+2.1
−1.3 3.18+1.88

−1.24 ·10−6 0.236+0.029
−0.027 0.280+0.035

−0.033 0.855+0.143
−0.130 1.35+0.23

−0.20

Sculptor [199, 205] 160±40 10.1±0.3 4.99+3.62
−1.98 ·10−6 0.264+0.038

−0.031 0.314+0.046
−0.037 0.993+0.198

−0.154 1.56+0.312
−0.243

Leo II [199, 205] 185±48 6.8±0.7 5.38+5.55
−2.30 ·10−6 0.269+0.052

−0.035 0.319+0.062
−0.042 1.02+0.27

−0.17 1.60+0.43
−0.27

dSphs from [206]

Canes Venatici I [166, 206] 564±36 7.6±2.2 5.17+3.46
−1.63 ·10−7 0.150+0.020

−0.013 0.178+0.024
−0.016 0.467+0.087

−0.055 0.735+0.137
−0.087

Ursa Major I [166, 206] 318+50
−39

7.6±2.4 1.63+1.46
−0.70 ·10−6 0.199+0.035

−0.026 0.237+0.041
−0.031 0.684+0.163

−0.118 1.08+0.26
−0.19

Hercules [166, 206] 330+75
−52

5.1±2.4 2.25+3.74
−1.28 ·10−6 0.216+0.060

−0.041 0.257+0.071
−0.049 0.762+0.294

−0.187 1.20+0.46
−0.29

Leo T [166, 206] 178±39 7.5±2.7 5.26+8.22
−2.66 ·10−6 0.267+0.071

−0.043 0.318+0.084
−0.051 1.01+0.37

−0.21 1.59+0.59
−0.33

Ursa Major II7 [166, 206] 140±25 6.7±2.6 9.53+13.55
−4.59 ·10−6 0.310+0.077

−0.047 0.369+0.091
−0.056 1.23+0.42

−0.24 1.94+0.67
−0.38

Leo IV [166, 206] 116 +26
−34

3.3±2.8 2.82+34.39
−1.91 ·10−5 0.406+0.368

−0.100 0.483+0.438
−0.119 1.77+2.41

−0.55 2.79+3.80
−0.87

Coma Berenices [166, 206] 77 ± 10 4.6±2.3 4.59+7.53
−2.19 ·10−5 0.459+0.126

−0.069 0.546+0.150
−0.082 2.08+0.80

−0.41 3.28+1.25
−0.64

Canes Venatici II [166, 206] 74+14
−10

4.6±2.4 4.97+8.92
−2.66 ·10−5 0.468+0.137

−0.082 0.557+0.163
−0.097 2.14+0.87

−0.48 3.36+1.38
−0.76

Table 2.4: Parameters for dSphs from [205, 206] (columns 1–5) and derived lower mass limits for various types of dark matter

(columns 6–9). mDEG refers to the limit from Pauli exclusion principle (2.1), mFD is the limit for particles with the momentum

distribution (2.4),mNRP andmNRP,TG – for distribution (2.20). All results are quoted for g = 2 internal degrees of freedom. Results

for non-resonant production scenario are for ωDM = 0.105 [220].
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2.6 Results

Ourmain results are compiled into the Table 2.4 (columns 6–9). The column

6 of Table 2.4 contains the bound on mDEG (given by Eq. (2.1)) based on the

Pauli exclusion principle. It is independent of the details of the evolution of

the system, is not affected by the presence of baryons (see below) and holds

for any fermionic dark matter. The column 7 contains the mass bounds

for the relativistically decoupled dark matter particles (primordial distribu-

tion (2.4)), obtained by combining Eqs.(2.17)–(2.19). Columns 8 and 9 are

discussed below, Section 2.6.1.

We quote all the mass bounds with the corresponding uncertainties, com-

ing from those of in determination of σ and rh (see Section 2.4). However,

for any given object there can be unique reasons, violating the standard as-

sumptions and therefore increasing the uncertainties. Therefore, although

the strongest bounds in Table 2.4 come from the Canes Venatici II dSph, we

decided to take a value which independently follows from several objects as

a single number, characterizing our results (for a given type of dark mat-

ter). To this end we choose the value, obtained for Leo IV.8 Thus, the mass

bounds, quoted below are excluded from three dSphs: Leo IV, Canes Venat-

ici II and Coma Berenices 9. To summarize, we obtain the following model

independent lower bound, applicable to any type of fermionic dark matter:

mDEG > 0.41 keV/c2 , (2.41)

If instead we assume that dark matter in the form of “relativistic thermal

relics” with the Fermi-Dirac distribution, the bound becomes

mFD > 0.48 keV/c2 , (2.42)

Notice, that we chose not to use the bounds, based on the “average phase-

space density” Q [175, 176] (see discussion in the Section 2.2). However,

as this bound is widely used in the literature, we quote analogs of lower

8Notice, that the numbers for Leo IV essentially coincide with the mass limits from Canes

Venatici II and Coma Berenices if all uncertainties in these dSphs are pushed to minimize the

mass bound.
9It is possible that Coma Berenices is undergoing tidal disruption (like another ultra-faint

dSph, Ursa Major II , closely resembling Coma Berenices) [206]. However, unlike Ursa Major II

(or the best known example of tidally disrupted dSph, Sagittarius), there are no known tidal

streams near the position of Coma Berenices and the evidence in favor of tidal disruption are

quite moderate (c.f. discussion in Sec. 3.6 of [206]).
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limits (2.42) and (2.44) based on inequality (2.9) (which we denote mFD,HD

and mNRP,HD correspondingly):

mFD,HD = 0.9 keV/c2 ,

mNRP,HD = 4.0 keV/c2 .
(2.43)

For details see Appendix 8.2.2.

2.6.1 Implication for sterile neutrino dark matter

In this Section we consider implications of our results for sterile neutrino

dark matter. For sterile neutrinos, produced through non-resonant mix-

ing with the active neutrinos (“NRP production” [56, 79, 81]). Combining

Eqs. (2.17), (2.18) and (2.23) one obtains the result for the case of darkmatter

with primordial velocity distribution (2.20), quoted in the column 8. Both

bounds in columns 7 and 8 conservatively assume maximally coarse-grained

distribution function (see Section 2.3). In instead of the maximal coarse-

graining, one assumes the isothermal distribution in the final state (c.f.

Fig. 2.1), one arrives to the original Tremaine-Gunn bound, shown in the 9th

column. It is obtained by comparing the expressions (2.21) with (2.24).10 We

denote the corresponding mass bound by mNRP,TG.

mNRP > 1.77 keV/c2 , (2.44)

and

mNRP,TG > 2.79 keV/c2 . (2.45)

We can compare lower bounds (2.44)–(2.45) with the upper ones, com-

ing from astrophysical (X-ray) constraints on the possible flux from sterile

neutrino dark matter decay [221–231]. Taking central value (2.44) and com-

paring it with the X-ray constraints, one sees that there exists a narrow

window of parameters for which 100% of dark matter can be made from

the non-resonant produced sterile neutrino (c.f. Fig. 2.2). Less conservative

bound (2.45), based on [45] (marked by the dark orange double-dotted ver-

tical line on the Fig. 2.2) almost completely closes this window. Notice, that

these bounds are comparable with the lower mass limit mNRP > 5.6 keV/c2,

coming from the Ly-α forest analysis of [126].

10The value of rc is not currently known for several new, faint dSphs, from which we ob-

tain the best limits on dark matter mass. Therefore, to calculate the Tremaine-Gunn limit in

Table 2.4, we use the conservative estimate rc ≈ rh (see comment after Eq.(2.25)).
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Figure 2.2: Restrictions on parameters of sterile neutrino (mass and mixing sin2(2θ)

between sterile and active neutrinos) from X-rays ([223, 228–231]) and phase-space

density considerations (this Chapter; see also [46]). Our analysis excludes the shaded

region to the left of the vertical line (2.44). Two dashed-dotted vertical lines mark

the systematic uncertainties of this bound. The dotted line on the left marks the

bound (2.41) based on the Pauli exclusion principle. The double-dotted dark orange

line marks the bound (2.45). The black dashed-dotted line is the non-resonant pro-

duction production curve (i.e. pairs of mNRP and θ that lead to the correct dark matter

abundance) [81]. The gray region marked “NRP production” accounts for possible un-

certainties in the abundance computations within non-resonant production scenario

(see [81, 86] for details).

We also performed the analysis for sterile neutrinos, produced in the

presence of lepton asymmetry (resonant production mechanism) [78, 87, 88].

This mechanism is more efficient than the non-resonant production scenario

and allows us to achieve the required dark matter abundance for weaker

mixings (c.f. Fig. 4 in [88]). This lifts the upper bound on the dark matter

particle mass in resonant production scenario to ∼ 50 keV/c2. To estim-

ate the lower mass bound at this scenario, we have analyzed a number of

available spectra (mass range 1 − 20 keV/c2, asymmetries (2 − 700) × 10−6

(see [87, 88] for the definition of asymmetry). The result are collected on the

Fig. 2.3. One can see that based on F̄ , the MRP = 1 keV/c2 is allowed for
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Figure 2.3: Restrictions on resonantly produced sterile neutrinos. Primordial fmax

is computed numerically based on the spectra from [87, 88]. Different symbols para-

metrize different lepton asymmetries for a given mass (see definition of lepton asym-

metry in [87, 88]). Grey shaded region is bounded by the maximal and minimal

values of F̄ for Leo IV (from Table 2.4, column 5). Horizontal dotted lines represent

central value for F̄ (lower) and FTG (upper) for Leo IV. The dark matter spectrum is

ruled out if the point falls into the shaded region (below the dotted line).

lepton asymmetries L & 10−4 and higher masses MRP ≥ 2keV/c2 are allowed

for all available asymmetries. Based on the original Tremaine-Gunn bound,

MRP = 2 keV/c2 is also allowed for sufficiently high (L & 10−4) lepton asym-

metries. Thus, resonantly produced sterile neutrinos remain a viable dark

matter candidate (see Fig. 2.4).

Finally, we would like to comment on the mechanism of production of

sterile neutrinos from decay of massive scalar field, for example the in-

flaton [232] (for other models see [233–236]). The primordial phase-space

distribution function for this case was computed e.g. in [232, 234, 236, 237].

Maximal value of phase-space density for this distribution is that of degen-

erate Fermi gas. Notice that the distribution functions in [232, 234, 236]

f(p) is formally unbounded for small momenta: f(p) ∼ p−1/2. From this one

can easily find that the fraction of particles, having maximal phase-space

density, is ∼ 10−8. As only this small fraction of all particles has maximal

phase-space density, we expect the mass bound in this case to be stronger

than (2.41).
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Figure 2.4: Allowed window of parameters for sterile neutrinos produced via res-

onant oscillations (white unshaded strip between two black lines). Two bound-

ing black lines are obtained for non-resonant (upper line, lepton asymmetry = 0)

and resonant production with the maximal lepton asymmetry, attainable in the

νMSM [87, 88] (lower line). The grey regions in the upper right corner represent

X-ray bounds [223, 228, 230, 231]. Region below 1 keV is ruled out from the phase-

space density arguments (this work).

2.6.2 Influence of baryons

It should be noticed that our bounds (2.42)–(2.45) are valid under the as-

sumption that the influence of the baryons does not result in the increase

of the phase-space density in the course of structure formation. If this as-

sumption does not hold, only the bound (2.41) remains intact. We discuss

the robustness of this assumption below.

Although dark matter consists of the non-interacting particles, the re-

maining part of the galaxy – the baryons – interact with one another and

dissipate their energy, finally concentrating towards the center. The bary-

ons, which are condensed in the center, influence the shape of dark matter

halo gravitationally, increasing the central dark matter density [238, 239].

The opposite effect is the energy feedback from SNae, galactic winds and

reionization, which creates the strong outflow, significantly decreasing the

mass of the gas and thereby affecting the dark matter halo shape. Such a
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feedback is thought to be responsible to the formation of dwarf spheroidals

from gas-rich dwarf spiral/irregular galaxies [240–244]. Clearly both gas

condensation and feedback strongly influence the central phase-space dens-

ity of dark matter [245], and in principle can lead to the violation of the

inequality (2.3). Numerical studies of galaxy mergers show that baryons

can lead to the increase of the phase-space density during the merger (see

e.g. [246]). However, the method used in this work – coarse-graining of the

phase-space density over a large phase-space region – reduces the influence

of baryons. Indeed, we take the spatial averaging over the radius R ∼ rh,

which includes external part of the system, where the amount of baryons is

small. Additional studies are necessary to estimate effects of baryons and

make our bounds more robust. We plan to address these issues elsewhere.

In the presence of lepton asymmetry, the resonant production of sterile

neutrino dark matter takes place [78]. This mechanism is more efficient [78,

87, 88] than the non-resonant production scenario and allows to achieve re-

quired dark matter abundance for weaker mixings (c.f. Fig. 4 in [88]). This

lifts the upper bound on the dark matter particle mass in this scenario up

to ∼ 50keV/c2. At the same time, for the same mass the primordial velo-

city distribution of resonant produced sterile neutrino dark matter is colder

than in non-resonant production case. This fmax is as much as the order

of magnitude bigger than (2.21) (c.f. [88]). This brings down by a factor

∼ 2 the analog of the mass bound (2.44). Analyzing available spectra for

a range of lepton asymmetries, we see that models with mRP & 1 keV/c2 are

allowed. Thus, there is a large open “window” of allowed dark matter masses

(c.f. Fig. 2.4). However, as the dependence of the velocity spectrum on the

lepton assymetry is not monotonic, to obtain the exact shape of the lower

bound on the mass at given mixing angle more work is needed. Neverthe-

less, our results show that the sterile neutrinos, produced in the presence of

lepton asymmetry, are viable dark matter candidates, allowed by all current

bounds.
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