Available online at www.sciencedirect.com

ScienceDirect NUGLEAR[Z]
PHYSICS

CrossMark

ELSEVIER Nuclear Physics B 915 (2017) 335-362
www.elsevier.com/locate/nuclphysb

Large-ny contributions to the four-loop splitting
functions in QCD

J. Davies™', A. Vogt*, B. Ruijl >, T. Ueda", J.A.M. Vermaseren "

a Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
b Nikhef Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands
¢ Leiden Centre of Data Science, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

Received 27 October 2016; received in revised form 7 December 2016; accepted 13 December 2016
Available online 15 December 2016
Editor: Tommy Ohlsson

Abstract

We have computed the fourth-order nf2 contributions to all three non-singlet quark—quark splitting func-

tions and their four n} flavour-singlet counterparts for the evolution of the parton distributions of hadrons
in perturbative QCD with n f effectively massless quark flavours. The analytic form of these functions is
presented in both Mellin N-space and momentum-fraction x-space; the large-x and small-x limits are dis-
cussed. Our results agree with all available predictions derived from lower-order information. The large-x
limit of the quark—quark cases provides the complete n fz part of the four-loop cusp anomalous dimension
which agrees with two recent partial computations.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In the past years the next-to-next-to-leading order (NNLO) corrections in perturbative QCD
have been determined for many high-energy processes, see Refs. [1-8] for some recent cal-
culations. For processes with initial-state protons, NNLO analyses require parton distributions
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evolved with the three-loop splitting functions [9,10]. In some cases also the next-to-next-to-next-
to-leading order (N>LO) corrections are important, e.g., for quantities with a slow convergence
of the perturbation series or for cases where a very high accuracy is required. An example of
the former is Higgs production at proton—proton colliders [11,12]. An example of the latter is
the determination of the strong coupling constant «g from the structure functions F; and F3 in
lepton-nucleon deep-inelastic scattering (DIS), see Ref. [13], for which the N>LO coefficient
functions have been obtained in Refs. [14,15]. In principle N3LO analyses of these processes
require the four-loop splitting functions, although estimates of these functions via, for example,
Padé approximants can be sufficient in some cases such as for DIS at large Bjorken-x.

At present a direct computation of the four-loop splitting functions Pﬂ(f) (x) appears to be
too difficult. Work on low-integer Mellin moments of these functions started ten years ago [16];
until recently only the N =2 and N = 4 moments had been obtained of the quark+antiquark
non-singlet splitting function PH(S)JF together with the N = 3 result for its quark—antiquark coun-
terpart Pn(s3)_ [17-19]. Using FORCER [20,21], a four-loop generalization of the well-known
MINCER program [22,23] for the parametric reduction of self-energy integrals, it is now possible
to derive more moments in the same manner as in Refs. [24-26] at the third order in «g. So far
the moments up to N = 6 and N = 4 have been computed, respectively, for the non-singlet and
singlet cases [27,28], and computations up to N = 8 are feasible. Further conceptual and/or com-
putational developments are required, however, in order to obtain sufficient information for the
construction of approximate x-space expressions analogous to those at three loops in Ref. [29].

The situation is far more favourable for the contributions to the functions Pﬂ(f) (x) which are
leading (in the singlet case) or leading and sub-leading (in the non-singlet case) in the number n 5
of effectively massless quark flavours. Here the harder four-loop diagram topologies do not con-
tribute, and FORCER calculations above N = 20, and in some cases above N = 40, are possible.
If suitably combined with information and expectations on the structure of these contributions
in terms of harmonic sums [30,31], these fixed-N results turn out to be sufficient to find and
validate the analytic dependence of these parts of the four-loop splitting functions on N, and
hence on x in terms of harmonic polylogarithms [32], by LLL-based techniques [33—35]. This
approach has been used before, e.g. in Refs. [36,37] for the three-loop transversity and helicity-
difference splitting functions, and may be applicable to other four-loop quantities in the future.
The present results include the n f2 part of the four-loop cusp anomalous dimension also obtained
in Refs. [38-40].

The remainder of this article is organized as follows: in Section 2 we set up our notations
and briefly discuss the diagram calculations and the LLL analyses of the resulting integer-N
moments. The analytic results for the n; parts of Pﬂ(f) and the nf2 parts of Pn(s3) in N- and
x-space are presented and discussed in Sections 3 and 4. We summarize our results in Section 5.

2. Notations and calculations

The renormalization-group evolution equations for the dependence of the parton momentum

distributions f, =u, u, d, d, ..., g of hadrons on the mass factorization scale s

1
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form a system of 2n s +1 coupled integro-differential equations. These equations can be turned
into ordinary differential equations by a Mellin transformation,

1

fa(N,MfZ) = /dxxN_l fa(xy,U«fz> ) (2.2)
0

and decomposed into 2n = 1 scalar (non-singlet) equations for the combinations
"y
Gl =a G — (@ £q) . 4,=Y (g —§) (2.3)
i=1
of quark distributions and the 2 x 2 flavour-singlet quark—gluon system

n
d PP q ) ' i
s\ — ( Faq Fag s _
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dinp} (g> <qu ng> <g s i;(qr1 a) 2.4)

by using the general properties of QCD such as Pyg; = Pgg; = Pgq. Note that Pgg = 2nf Pyg.
The splitting functions in Egs. (2.1) admit an expansion in powers of «g which we write as

Pij(x,a) =Y a!' P (x) with ag=as(uf)/ (@) (2.5)
n=0

i.e., we identify (without loss of information) the mass-factorization and the coupling-constant
renormalization scales. The difference between the splitting functions P, and P, for the first
two non-singlet combinations in Eq. (2.4) and the pure-singlet quark—quark splitting function

PPSZqu_Pn? (2.6)
starts at the second order in «g, the remaining difference
PS=P— Py 2.7

at the third order in o. To order ozs4 the latter quantity is proportional to the cubic group invariant
d®*¢ d . /n., while the other splitting functions can be expressed in terms of C r=4/3 and
C, =n,=31in QCD and quartic group invariants; the latter do not occur with the powers of n 5
that are considered in this article. The even-N or odd-N moments of the splitting functions are
related to the anomalous dimensions y (V) of twist-2 spin-N operators in the light-cone operator
product expansion (OPE), see, e.g., Refs. [41,42]; we use the standard convention y (")(N ) =
—_pw (N).

Our calculation of the four-loop splitting functions proceeds along the lines of Refs. [24-26].
The partonic DIS structure functions are mapped by the optical theorem to forward amplitudes

probe (¢) + parton (p) —> probe (¢) + parton (p) (2.8)

with p? = 0 and g> = — Q? < 0. Via a dispersion relation their coefficients of (2p-¢q/Q?)" then
provide, depending on the structure function under consideration, the even-N or odd-N moments
of the unfactorized partonic structure functions. These quantities are calculated in dimensional
regularization with D =4 — 2¢, and the n-loop splitting functions can be extracted from the
coefficients of e~!a". For the even-N determination of the splitting functions P,¥ and P in
Eq. (2.4) we use the photon and the Higgs boson in the heavy-top limit as the probes. The splitting
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Fig. 1. The three-loop gauge-boson—quark forward scattering diagrams with MINCER topology BE that contribute to
C 4 Cpn, part of the three-loop splitting functions for the quark & antiquark flavour differences in Eq. (2.3). The same
diagrams, but with a one-loop insertion in one of the gluon lines, form the hardest part of the corresponding calculation
of the four-loop C , C.n j? contribution.

functions P; and P, are determined from the odd-N vector — axial-vector interference structure
function F3.

The projection on the Nth power in the parton momentum p leads to self-energy integrals
that can be solved by the FORCER program. The complexity of these integrals increases by four
if N is increased by two. Together with the steep increase of the number of integrals with N, see
the discussion of the harmonic projection in Ref. [23], this limits the number of moments that
can be calculated. So far high values of N cannot be reached for the top-level 4-loop diagram
topologies.

The raw diagram databases provided by QGRAF [43] are heavily manipulated by (T)FORM
[44-46] programs to provide the best possible starting point for the main integral computations.
As discussed in Ref. [47], one important step is the identification of £-loop self-energy insertions,
which reduces many n-loop diagrams to fewer (n — £)-loop diagrams in which one or more
propagators have a non-integer power. For the large-n 5 contributions under consideration in the

article, genuine four-loop diagrams remain after this step only in the calculation of the C An;

part of P, qg , and these diagrams have a rather simple topology: in the notation of MINCER
they are generalizations of the Y3 and O1 three-loop topologies. The hardest diagrams occur in
the C,C anz and nf2 d**“d ./ n. non-singlet cases: these are three-loop BE topologies with a
one-loop gluon propagator, see Fig. 1; the highest N calculated here for any of these is N = 27.

As far as they are known from fixed-order calculations [9,10] and all-order resummations of
leading large- -ng terms [48— 50], the even-N or odd-N moments of the splitting functions (i.e. the

anomalous dlmensmns) can be expressed in terms of simple denominators, D, k— =(N+a)~ K a
harmonic sums [30,31] with argument N which are recursively defined by

ARYER N
Sem(N) =) (l. ) 2.9)

m
i=l1

and

(1) :
St iy mg(N) = 21 = g () (2.10)
1=
The weight w of the harmonic sums is defined by the sum of the absolute values of the in-
dices my. Sums up to w = 2n — 1 occur in the n-loop anomalous dimensions, but no sums
with an index —1. For terms with D‘f and/or coefficients that include values ¢,, of the Riemann
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¢ -function (with m > 3, ¢, does not occur in these functions), the maximal weight of the sums is
reduced by k + m.

It is, of course, possible that other structures occur in the n-loop anomalous dimensions at n >
4 — already the three-loop DIS coefficient functions include terms where special combinations
of sums are multiplied by low positive powers of N [14,15]. However, one may expect this
to happen at n = 4 only in the terms with low powers of ng which receive contributions from
generically new diagram topologies. Disregarding new structures and terms with ¢,,>3 which are
much easier to fix from low-N results, a general ansatz for the n-loop anomalous dimensions
then is

2n+1 2n+1 2n+1—k
y PN = D oo SwN) + D0 Y D Cupn D Sw(N) (2.11)
w=0 a k=1 w=0

where S,,(N) is a shorthand for all harmonic sums with weight w and So(N) = 1. The terms
with ¢y, only occur in the quark—quark and gluon—gluon splitting functions and are restricted
by the known large- N structure of these functions [51-53]. In all cases the range of the sums is
reduced for large-n - contributions in a manner that can be inferred from the results at n < 3 and
from the prime-factor decompositions of the denominators of the calculated moments.

Even so, Eq. (2.11) usually includes far too many coefficients for a direct determination from
as many calculated moments. These coefficients, however, are integer modulo some predictable
powers of 1/3 atn <2 [9,10] and in Refs. [48—50]. Hence the systems of equations can by turned
into Diophantine systems which require far fewer equations than unknowns. Given the present
limitations of the calculation of diagrams with BE topology, this is still not sufficient for the n ?
contributions to the four-loop non-singlet splitting functions. However, these functions include
additional structures that facilitate solving these equations with the calculable moments.

The crucial point for the determination of the n f2 parts of yn(s )+ (N), already presented in [27],
is to write its colour-factor decomposition in two ways,

yrff)i(N)‘ L =Cpn} { Cpr 249 N) +(C, — 2CF)Bf>(N)}
f

= Cpn} { Cr (2A<3> (N)—2B (N)) +c,BY (N)} . (2.12)

ABG(N) is the large-n, result; it is the same for the even-N (+4) and odd-N (—) cases and should
include only non-alternating harmonic sums, i.e., only positive indices in Egs. (2.9) and (2.10).
Once A®(N) is known, it is possible to determine BE)(N ) and B_G)(N ) from the C, parts in
the second line of Eq. (2.12) which require only two-loop diagrams with one two-loop or two
one-loop insertions. The corresponding three-loop coefficient, defined as in Eq. (2.12) but with
n]}, reads
AP(N)=8/3 (<2515 =482 = 6531+ 654 +20/3(S1,2+ S$2.1) — (11 =) S3)
+ (—1331/27 —256/9n+64/9n0° + 81> +256/9 D2 — 16 {3) S
+(1246/27 - 32/90 + 16/30% = 32/3 D} $5 = 17/2+323/541
—248/27 02 4+8/97° — 4n* +2686/27 D2 +152/9 D} + (12 + 8 1) z3.
(2.13)

As below, the argument N of the sums is suppressed for brevity. 1 is defined in Eq. (2.15) below.
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We have computed the even and odd moments up to N = 22 for the determination and vali-

dation of A® (N), and the even-N or odd-N moments up to N =42 for Bf) (N) and B,(3)(N).
The Diophantine systems have been solved using the LLL-based program in Refs. [34,35] at
N < 18 for A®(N) with 55 unknowns and at N < 40 for Bf) (N) with 115 unknowns.

For the determination of the n? part of yn(s )S(N ) only the odd moments at N < 25 were

available; the result at N = 27 was obtained afterwards and used as a check. As mentioned
below Eq. (2.7), the function y ;(N) only starts at order (xs3. This ‘leading order’ d abeq .. /ne
contribution reads

Vol (N) = 161, dPdape/ne {(S—2,1 = $1,-2)(~4n = 8 1)
— 8185_2(32v—20n—8n*) +S_»(32v—36n—28n> —8n°)
+ 81 (=320 +267n + 561 +467° + 1214
£S5 (=2n =475 +320 =327 —607% — 921 — 44n* — 8;75} (2.14)

where the result has been rendered more compact by using the abbreviations

n=(NN+D}"'=DyD;, v={(N-DN+2}'=D_ D> . (2.15)
As the overall leading-order quantity qu)), the splitting function corresponding to Eq. (2.14) is

the same for the present initial-state and the final-state (fragmentation distributions) evolution,
cf. Refs. [54-56], and invariant under the x-space transformation f(x) — xf(1/x). The (com-
binations of) harmonic sums in Eq. (2.14) are ‘reciprocity respecting’ (RR), i.e., their Mellin
inverses are invariant under the above transformation. The same holds for the combinations of
denominators in Eq. (2.15). Except for Sl2 and 513 — products of RR sums lead to higher weight
RR sums — all reciprocity-respecting sums to weight three occur in Eq. (2.14). The list of RR
function to this weight has been given in Ref. [36] with a slightly different basis choice at w = 3.

Like the overall NLO anomalous dimensions y n(sl)i (N), the next-to-leading order d abeg .. /ne
contribution )/11(53 )S(N ) is not reciprocity-respecting. However, and this is the crucial point, its
RR-breaking part can be calculated from Eq. (2.14) according to the conjecture of Ref. [53]. For
the n f2 contribution addressed here it is given by —% ng % yngz)S(N ), where the differentiation
can be carried out, for example, via the asymptotic expansion of the sums, see also Ref. [57].
That leaves an unknown reciprocity-respecting generalization of the form (2.14) with additional
w = 4 sums which can be chosen as

St 8183, S3.0—S13, S2, (2.16)

and
S_a, SES_2, Si(S—21—S1,-2), S_31+S1,-3—281-21 . (2.17)

Including also v? terms, one arrives at a trial function with 79 coefficients, of which as many
as 15 can be eliminated by imposing the existence of the first moment and the correct values
(zero) for its ¢ -function contributions, and 9 can be assumed to vanish (all contributions with S 13
and Sl4). The remaining 56 coefficients have then been found using the 12 odd moments with
3<N<25.

The correctness of the solution has been verified by the (non-¢) value of the first moment
and the result at N = 27. It is possible, though, to judge ‘by inspection’ whether a solution
returned by the Diophantine equation solver [34,35] is correct. For example, the above solution
is returned as



J. Davies et al. / Nuclear Physics B 915 (2017) 335-362 341

A short solution is b[45]

= 160 372 816 -185 -494 238 52 -64 620 -616 308 112 0 -196 256 12 0 -30
208 -282 160 92 -136 96 64 4 0 16 -32 40 -64 0 0 -8 0 22 -32 2 0 24 -40
24 -4 24 -24 8 0 0 16 0 -16 12 4 0 0 O

where the numbers, ordered by overall weight and the weight of the sums (the details are not
relevant here), are the remaining coefficients cyxy, in Eq. (2.11) times 3/32. The factor 3 ensures
that the effective coefficients are integer, the factor 1/32 removes some overall powers of 2
introduced by our choice for the expansion parameter as in Eq. (2.5).

A pattern such as the one above for the about 30 coefficients of the highest-weight functions,
with larger and more random coefficients at the left (low-weight) end, is a hallmark of a correct
solution. In fact, correct and incorrect solutions were correctly identified by inspection in all
present calculations as well as in the preparation of Ref. [37].

Of the 1} contributions to the singlet splitting functions in Eq. (2.4), only the case of Pq(g) is
critical. Unlike the other three cases this function is suppressed by only two powers of n ¢ relative
to the lowest-n . term, recall the remark below Eq. (2.4), and includes contributions from sums
up to weight four instead of weight three. Hence a considerably larger basis set is required in
Eq. (2.11). At the same time the fixed-N calculations are harder for Pq(g) than for the other three
cases, in particular for the C 4n 3 contribution, as already indicated on p. 4.

Yet, using reasonable assumptions based on the three-loop splitting function, we managed
to find suitable functional forms with 101 unknown coefficients for the C Fnﬁ part (with only

positive-index sums but overall weight up to six) and 115 unknown coefficients for the C An}?
part (including alternating sums but an overall weight of five), which we were able to determine
from the even moments 2 < N < 40 in the former and 2 < N < 44 in the latter case. Several
higher moments were employed for the validation of the C Fn]? result and the C ,n f3 coefficients

were checked using N = 46. Some of the four-loop and three-loop C Anf3 diagrams at N > 40
were calculated using an alternative approach for generalized Y and O MINCER topologies that
avoids the harmonic projection [23]. This approach may be reported on later in a more general
context.

3. Results in NV-space

In this section we present the analytic expressions for the n f2 and n]? contributions to the three
non-singlet anomalous dimensions and the n ; parts of their four flavour-singlet counterparts in

the MS scheme. As in Egs. (2.13) and (2.14) above, all harmonic sums (2.9) and (2.10) have the
argument N which is suppressed in the formulae for brevity.

The results for yn(s )% are presented in terms of the decomposition (2.12). The large-n, part

16
AP (N) = E{ — 128131 + 6814 — 12873 — 24835 — 30841 + 3655 + 208 3

+40855 + 6531 (10 + n) —3)2 54(53 + 2n) —38/3 8, —38/3 S2.1
11/3 8 (287 — 125+ 189% — 361)%) —1/125, (41677 — 129 — 1449
—768D% + (1259 + 216§3)> £1/48 8, (3392n — 365602 + 432

+ 720" — 3392D% — 576D; — 1728D} + (2119 + 28803 — 1296§4))
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+1/96 (944;73 — 8647 — 7088D; — 2736 D} — 1728D3 + 9(127 — 264¢3
+216¢4) — 24(1705 4 72¢3) D? — 2(2275 — 432¢3)n° + (20681 — 2880¢3

+ 1296;4)77)} G.1)

is the same for these two cases, while the contributions with the 1/n.-suppressed ‘non-planar’
colour factor (C , —2 Cp,) are valid at even N for Bf) and odd N for B_(3). These functions read

and

B (N) =

32
27
+ 128122 +24 81,211 — 68131 +248514+682, 3 +125 21 +9523

16852 —3S32 —6841 +985 +5_4 (20—3n) +25.3, (10—3n)
68220 — 1282110 —20S 3 — 4081 _2; —30S13 —20S> _»
+ 85, (10+3n) 128, (73+24n) —1/3 5.3 (19—30n 19,2 18D12)

{ —98.5 =128 471 —68 3 2 —128 311 +681, 4 +128 3

125, (1on _3p? +6D§) +38/3812 +1/1255 <6l9+ 1807

— 542 +108Df) F1/35, <8r;+39772 —96D}) +651,1 (2;72+n3)
+1/48 8, (144 2 +720° — (1585 + 864;3)) +1/96 5, (1584n — 36727
+7200 +-864n* — 1728 D] — 1728 D} — 2592 D} + (923 + 5760 ¢3

— 2592 ;4)) ~1/192 (1392n3 — 1584 75% +3168 D} —3(193 — 1584 ¢3

+ 1296 24) +2 (2447 — 864 53) > +4 (7561 + 864 ¢3) DI — (15077 — 5760¢3

+2592¢4) r/) } (3.2)
B (N) = 7 =98 5 — 12841 —68S_3_2 —128 311 +681,_4 +12851 31

F128) 0 2 +2481 211 — 68131 +24514 68 3 +125 21 +9523
+6832 —3832 —6841 +955 +S_4 (20—3n) +28.3, (10—3;7)
6802 — 1282117 =208 3 — 4081 21 —30S13 —20S> _»
+ 55, (10+3n) 1728 (73+24n) —1/3 5.3 (19—30;7 192 - 180%)

+28 04 (10;7 — 32 +6Df) +38/381 5 +1/128; (619+ 1807 — 541>
+108D12) +1/35., (8n+3n2 — 1847 —961)12) 681 (2n2+n3)
117485, (144;72 +721% — (1585 +864;3)) ~1/96 (432;7 — 103272
424073 4 2889* —576 D} —576 D3 — 864 D} — (923 +5760¢3 — 2592;4))

+1/192 (7280n3—336n4 — 17287 — 11136 D] — 18144 D} + 4608 D}
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+3(193 — 158423 + 1296 £4) — 18(583 — 963)n> — 4 (10489 + 864 £3) D?

4 (25541 — 5760 ¢3 +259224) n) } . (3.3)
As for the complete corresponding three-loop quantities in Ref. [ 10], the difference between the

odd-N result (3.3) and the even-N result (3.2) is much simpler than those expressions and given
by

32
5BOW) = { —65-2 (207 +0°) = 12801 (207 +0°) = 51 (210 —497?
+109* +129* —24D? —24 D3} —361)‘1‘) +1/6 (3z7n— 1759 +2717°

—60n* — 5477 —366 D} —348 D3 — 468 D} + 144 Df)} . (3.4)

4

Finally the additional nﬁaS

Eq. (2.7), is

contribution to the evolution of the valence distribution, see

Vrfg)s}njzdabcdabc/nc(f\’) = 63—4 {2 [5—4 +2831 +281,-3 —481,21 — 51,3] (811 -5

- 2772) -8 [2 S2.2+4S 211 — 5—2,2] (2V - 77) —4 [451,1,—2 -8, 2

+S3,1] <4v—3n —2n2) +2S4<16v— 117 —6n2> —2/35_3 (128v—87n

—21n* +61° —6D7 +24D} +16D§) +4/38 5 (88v—57n —219* —61°

—12D? +8D§) +8/381 (44v—42n —21y% +3D? +12D3 +4D§)

+ S (16u—9n —7n% —6n° —6D? —SDf) —1/35. <304v—27377

— 31277 — 845> — 84D} +24D] —72D} +32D3) — [451,1 - (160

13y —287% — 2377 —6;74) 11/68 (608\1—85577 — 98472 — 9723

— 1445* +247° +300D? +456 D} +36 D} +288 D} +64D§)

—2/3 (104v+96n —261n* =252 —54n* +360° +129° —216 D}

— 168D — 162D} +24 D7 —60 DS + 16D§)} . (3.5)
The leading large-n . contribution is the same for the three types of non-singlet quark distributions

in Eq. (2.3). It has been obtained to all orders in «g in Ref. [48]. Our results agree with the
corresponding fourth-order coefficient which in our notation reads, for even and odd N,

16
yn<3>|nf3(zv) = o1 Cr {6S4 1085 =28 — S1(2—12¢3) +131/16

—9;3—n(20+6§3)+15n2—n3—3n4+241312+6D;‘] . (3.6)
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Fig. 2. The n2 parts of the anomalous dimensions 7,7 (N) (left) and ¥, 5(V) = », VW) — P~ (V) (right).
Their even-N (left) and odd-N (odd) moments computed using FORCER [20,21] are shown together with the numerical
all-N curves. Also shown on the right, where we focus on yn(s)s at N > 4, is the difference §B 3 (N) = yn(s)f (N) —

3
Vn(s o+

(N). Note the normalization of our expansion parameter as in Eq. (2.5).

The new functions (3.1)—(3.5) are illustrated in Fig. 2. The results at non-integer values of N
have been calculated by a numerical Mellin transformation of the x-space expressions in the next
section; for the analytic continuation in N of the harmonic sums to weight five see also Ref. [57].

Up to terms suppressed by two powers of 1/N, also the large-N behaviour of the three non-
singlet anomalous dimension is the same with

InN + vy,

YD(N)= A, (InN +y,) — B, + Cy —D, +O<N *21nKN) (.7)

where y, is the Euler-Mascheroni constant. The coefficients A,, are relevant beyond the evolution
of the parton distributions, since they are identical to the n-loop cusp anomalous dimensions [51].
The result at three loops can be found in Eq. (3.11) of Ref. [9], its ng part was derived before in

Refs. [58,59]. Our new results (3.1) and (3.2) specify the n; coefficient of A4. Together with the
long-known nﬁ result [48,60] given by the large-N limit of Eq. (3.6) we obtain

4 cocn2 (9 608 +224o 112
= n —_—— — _— _——
Haamt = TFEAT 8T 81 Lt 5B
2392 640 32 64
Chn?|=—= - — Rul-CcmP=-=—0). 3.8
+ F”f< 21 g Bt §4> Fif (81 27(3) (3.8)

The large-n. limit of this result has also been derived in Ref. [38], and the C gn]? part in Refs.

[39,40]. Hence all n? contributions in Eq. (3.8) are covered by two independent determinations.
Since this result involves several coefficients in (3.1) and (3.2), this agreement can also be viewed

as another verification of our determination of the all-N nf2 expressions for yn(s )% The nf2 part
of the coefficient C4 in Eq. (3.7) is found to be

1216
4] , =

. 81 CI%”fZ = [(Az)2 + A1A3]
f

(3.9)

2
ny
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as conjectured in Ref. [53] — the first verification of this conjecture by a fourth-order calculation.
We now turn to the leading large-n . anomalous dimensions for the even-N flavour-singlet
evolution (2.4), starting with the pure singlet contribution (2.6):

y;3>|nf3(N)=cF{ —64/27 8111 (300 —6D3 —3Dy —6D} —4D, +4D_1)
+64/27 511 (1100 —13D3 +6D3 —17D; —4D} +12D3 +2D, +8D3
+4D_) —32/815) (94 Do — 98 D +87 D3 — 18 D§ —226 Dy +100 D}
+ 111D} —90D* + 128D, +88 D2 — 48 D3 +4D_1) +16/81 (14603
— 87D + 18D —54 D] —309 D} + 198 D} +72D3 — 176 D3 +96 D3
—4(1—1823) D1 +2(26 +27¢3) Dy —2(59 + 54 ¢3) D}
+4(91 —18¢3) Dy —2(206 +27¢3) Dy +2(215—54g3)0f)} : (3.10)

As expected from the lower orders, the highest-weight sums in the four-loop off-diagonal contri-
butions are proportional to the leading-order structures

Pae=Do—2D1+2Dy and pg=2D_; —2Do+D; . @3.11)

Using these abbreviations, the fourth-order leading-n | parts of the gluon—quark and quark—gluon
anomalous dimensions are given by

Ve, (V) = Cr{32/27 384 = 1,111 | pag — 32/81 81,11 (71D = 3003 + 1813
— 115Dy — 36D} + 42D, + 24D3 — SD,I) +32/81 [51,2 + Sz,]] (81D0
—27D3 4 18D} — 135D — 36D} + 62D, +24D3 — 8D_1)
+32/81 83 (71D0 —27D3 + 18D} — 109D — 36D; + 36D, + 24D3 — 8D_1)
—16/243 514 (416D0 — 102D} — 72D3 — 1633D; +90D7 — 288D; — 216D
+ 1174D; + 648D3 + 288D3 + 72D ) — 32/243 55(976Dg — 89103
+360D3 —216D5 + 88D — 459D7 — 72D3 + 540D} — 1101 D, — 852D3
—432D3 + 68D ) — 16/729 51 (86345 — 6822105 + 24301 — 16203
+ 125D} — 2070D; — 3456 D} + 3240D3 — 1812D3 — 2448 D5 — 1728D5
+352D_1 + 24(427 +2723) Dy — (763 + 648¢3) Dy — 12(802 + 27§3)D0)
+4/729 (173701)3 — 15012D] — 25992D7 + 49464D; — 28512D% — 5280D3
— 3456 D3 4 13824 D5 + 128(31 4 2723) D — 6(281 — 9936¢3) Dy

+72(635 — 1823) D7 — 54(835 + 144¢3) DY + 24(959 — 432¢3) D3
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and

Finally the corresponding contribution to the gluon—gluon anomalous dimension reads

J. Davies et al. / Nuclear Physics B 915 (2017) 335-362

— 6(1621 — 2592¢3) D} + 24(1988 + 4593) D3 — 9(7037 + 3852¢3) Dy

+2(31649 — 14688§3)D2)}

+CA{32/27 [4574-!—51,1,1,1 —S1,12+ 812,10 = S1,3+ 821,11 — S22+ 53,1

+ 354]pqg — 12881 5,3(51)0 — 7D + 702) +64/81 [ —S111+ 512
- Sz,l] (SDO — 10Dy +3D? + 10D, — 3D§) —64/81 83 (SDO — 4D,
—3D? 44D, + 3D§) +16/243 S,2<38D0 — 10D +9D? + 28D2>
—4/243 5 (316D0 — 45D} + 144D3 — 641Dy — 354D7 4 349D,
+792D3 —288D3 — 1041)_1) —4/243 8> (468Do — 45D} + 144D}
—1659D + 912D} — 576D} + 1277D; — 168D5 + 288D; — 104D_1>
—2/729 8 (63541)3 —3258D] + 3456D§ + 5298 D7 + 648D} — 5184 D}
+ 15408 D3 + 16992D3 — 3456 D3 — 128D_; — 6(1895 + 864¢3) D)

— 3(2863 — 8643) Do + (17447 + 5184;3)02) +2/243 (554D3 + 696D
+ 432D} + 8508D; — 6816D} + 3168 D3 + 2720D3 — 4608 D3 + 2304 D3
— 1922 — 3¢3) D1 + 6(125 +288¢3) D1 — 3(269 +912¢3) Dy

+2(643 — 432¢3) D3 4 8(653 — 216¢3) D3 — (655 — 432¢3) Do

—2(2399 + 864;3)1)%)}

783 ] (M) =Cr | — 64/27 8111 peq + 64/81 811 (8 Peq—3 D%)

(3.12)

—64/81 5, (41%1—8D12 +3D§) —64/81 (6pgq§3+4D12 — 8§D} +3D;‘)].

— 85,1+ 83/2] +64/81 51,1 (57Do +21 D] + 18D} — 39D + 12D} + 20D,

— 380,1) —32/81 52(4200 +69D; 4 18D3 — 42D + 69D} — 18D

+70D, —70D_ 1) —32/243 5 (4291)0 +276D + 207D + 54D% — 33D,

— 30D} + 135D} = 54D} — 26D, — 370D, ) — 2/243 (77 = 3360D;

(3.13)

Vg(g)‘nj} (N) = CF{64/27 <3D0 —6Dj — 3Dy — 6D] —4D, +4D—1>[51,1,1 —Si2
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Fig. 3. The n 3 parts of the ‘diagonal’ quark—quark and gluon—gluon four-loop anomalous dimensions. The analytically
calculated even-N moments are shown together with their continuation calculated via a numerical Mellin transformation
of the corresponding x-space expressions using the program of Ref. [61]. For the quark—quark case the non-singlet and
pure-singlet contributions are displayed separately.

— 1656D] — 432D — 3840D3 + 3816 D} — 1296 D] — 1296(3 + ¢3) Dy
—432(11 —383)Do 4+ 96(43 — 18¢3) D2 +96(47 + 18¢3) D1

— 24(179 + 108¢3) D2 + 24(193 — 108;“3)D12)}

+C,[4/81 [ = 2511+ 52| (330 + 48D — 33D, +48D7 + 52D, — 52D )
+4/243 S (480D0 + 456D} + 144D] — 480Dy + 456D7 — 144D3 + 527D,
—527D_; —24(1 — 64“3)) —1/243 (5 +1380DF +912D] + 288D
+1380D7 — 912D3 + 288D} + 6(229 — 96¢3) Dg — 6(229 — 96¢3) Dy

+4(331 — 144¢3) Dy — 4(331 — 144§3)D,1)} . (3.14)
The C4 part of Eq. (3.14), which is a non-singlet -type quantity and hence could be written in
a more compact manner in terms of the quantities in Eq. (2.15), has been obtained already in
Ref. [50]. Its leading large-N coefficient is related to that in Eq. (3.8) by the ‘Casimir scaling’
Ca/CF. Moreover two linear combinations of Eq. (3.13) with Eq. (3.10) and the Cf part of
Eq. (3.14) were derived in Ref. [49,50]; our results agree also with those findings. Eq. (3.12) is
entirely new.

The results (3.6), (3.10) and (3.12)—(3.14) and their continuations to non-integer N are illus-
trated in Figs. 3 and 4 for the normalization specified for their x-space counterparts in Eq. (2.5).
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Fig. 4. As Fig. 3, but for the ‘off-diagonal’ gluon—quark and quark—gluon anomalous dimensions.

4. Results in x-space

The four-loop splitting functions Pﬂ?) (x) are obtained from the above N-space results by
an inverse Mellin transformation which expresses these functions in terms of harmonic poly-
logarithms. This transformation can be performed by a completely algebraic procedure [32,62]
based on the fact that harmonic sums occur as coefficients of the Taylor expansion of harmonic
polylogarithms.

Before we present our results, we recall the basic definitions [32]: The lowest-weight (w = 1)
functions H,,(x) are given by

Ho(x)=1Inx , Hiyi(x)=FIn(1Fx) . 4.1
The higher-weight (w > 2) functions are recursively defined as
1
mlnwx, if my,...,m,=0,...,0
Hml,.‘.,mw x)= p 4.2)
/dz Sy @) Hingy, oo omyy (2) otherwise
0
with
Jo(x) : Je1(x) : (4.3)
xX)=-—, X)=——. .
0 . +1 T+x
For chains of indices ‘zero’ we employ the abbreviated notation
Hy . .,0,41,0,...,0,+1,..00) = Hi@mt1), £@+1),..(0) (4.4)
—— N——

and suppress the argument x in all results below.
The splitting functions for the quark &+ antiquark flavour differences in Eq. (2.3) are expressed
in a decomposition analogous to the first line of Eq. (2.12),
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and
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PIEW),2 = Cpnf {2CF A% 4+ (c, —ZCF)B(3)} 4.5)

~ 16
RO = = {pag(0) (6Ho00.0 = Hi,000 = 2His +2Ha 00 +4Hs0 +5Hy

53 10 20 287 19
+ — Ho,0,0 + — Hi,00 + 5 H20 +10H3 + — Ho 0 —5H0,0§2 +—Hip
4 3 3 18 9
19 1259 40
+2H108 +— 9 H2+7—2Ho +6Hp¢3 —10Hp ¢ +2H 1 83 — Ez +—§3
7 2119 29 23
- —C4 +E) +(-x) (2H1,0,o +?H1,o + ?H1> +x(—3H0000
37H iH 3H 188H 35H 2539H 43H +3
7 Ho00 2,0 3 o Hoo == Ho = —=Ho 082 &
9 5729) 3H +7H FSHyo +7Hs 4+ 22 +27H
&3 = 0,000 + 7 Ho0.0 2.0 3 o Hoo +— Hy
+89 0 THot { +9¢ +5729 L8l )( 127+1259§
144 ° 052 2TES T 32 36 2
233 323
S 2 410 6 } 46
B e} B ¢4 +10838 + é“s) (4.6)

~ 3 32 3
B (x)=—— {qu(x) ( —H_30 + 3 Ho,0,0,0 —2H1,-2,0 —4Hi,0,0,0 —Hi3

3H + = H +H +73H SH +5H +69H 2 H,

5 H2.00 + 5 Hso 4+ 15 Hooo 100 + 3 Hs +—==-Hoo 0,052
+ 1585 H ! H 1OH 2H +15 6¢4 + 923)

288 o+ 2 083 3 052 143 13 4“2 {3 —64 576

1
+ 3 DPqq(—x) (2 H 30 +2H 200 —4H_22 +2H_1000 +8H_121 —4H_13

20 20 40 20
—3Ho,0,00 —4H31 +4Hs + 5 Hoyo + ?H—I,O,O -3 H_1 — 3 Ho,0,0
20 38 19
+ ?H3 +4H 20 + EH—l,o +2H 108 — ?Ho,o —2Ho,0%2
40 10 19 1
—4H 143 +—=—H 14 —Hogs ——Holo +— 4 — 1083 +—§4)
3 3 9 2
+(1 —x)(—3H1,0,0 +Hio —4H +14H ) + (1 +x) (2H_1,0,0 —4H_i»
i o —2my + T H o 4 4H )+ (3H g oAy
- _ H ~ X _c
5 Hao 2.1 3 1,0 182 20 +5Hs a4 Hoo
+3]H 139H lH 25 10 1187) CH +9H
g 7 Ho—3 082 §2 {3 13 —2,0 + 513
+47H +39H +83H 9 39 46 +1187
g Hoo+ - Ha+7-Ho Ho & Ez ] 13
193 1585 15 11
8(1— (—— = — 108 — = - — )] 47
+46(1 —x) 192+ a4 '9) &3 §4+ 36 §5 4.7)

where we have used the abbreviation
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Pgg(¥) =2(1—x)"' —1—x . (4.8)

All divergences for x — 1 are to be read as plus-distributions. The second contribution to
Png)_ (x) in Eq. (4.5) can be expressed via

BPw)=BPx)+8B ) (4.9)

and

~ 32
88 P(x) = =3 { paa(—x) (2Ho30+ 2Ho0.00 = 4H20 +2Ho 1000

20 20

+8H_121—4H_13—3Hp0,0,0—4H31+4Hs+ 5 H_7o+ £ H_1,0,0
40 20 20 38

—3 H_i»— 3 Ho,0,0 + £ Hi+4H 20 + 5 H_10+2H_ 100

19 40 10
—EHO,O—2H0,0Zz+?H—1§2—4H—1§3—?Hoé“z—H(O)Q
T Yo ) a )(+8H ol y +277)

94“2 €] 2(4 X T

29

+ (1 +x) (4H—2,0 +4H_1,00—8H_12—5Hp00—4H> 1 +6H3; — > Ho,o
46 41 151
+?H_1,o+?H2+8H_1Q—TH0—3H0§2—4§3>—(4+8x)§2}. (4.10)

The inverse Mellin transform of Eq. (3.5), up to the conventional minus sign between the
anomalous dimensions and splitting functions, is given by the rather lengthy expression

s 128( 1 ,/ 16 16 8 8
Pis },1fzd,zmdabc/,,r = {(; —X )( -3 Hi —20+ — Hi000+ 5 Hi1,00+ 7 Hi3

3 3 3 3
20H 16H 44H +40H >+(l+ 2)( 8H
- — - — - — — —+x7) —-H_1 -
3 1,082 3 1,152 3 183 9 152 T 3 H-1,-20
n 32 0 16 q 32 0 8 0 n 8 0
3 Het-t-r0 = = Hor—o0 = 5 Horr2 = 3 Ho000 + 3 Hot20
+32H +16H +8OH 80H 80H + 16H
3 Hor21+ = Hos+ - Ho o0 = 5 Hooo — 5 Hor -1,-182
28

56 40
-3 H_1,00 — 5 Ho 1453+ 5 Hq;“z) + - x)(2H73,0,0 —4H_ 3,

+4H 2 20— 16H 5 1 —10+4H_2 1,00+ 8H_2-12+2H_2000—4H_23
+ 13H_2,0,0 +8H1,—2,0 +Hi,0,0,0 — Hi1,1,00 + 2H13 +4H 38, — 16H_» 15

77 91 182
+6H 200 + 3 Hi 0,0+ 14H 223 + 3 Hio+Hio + KR Hi 1 —4H1 18

131 16
— o Hi+ 10H 55 + 2 Hito) + (143) (6H2,00,0 +2Ha, 1,00 + 4H2.

+3H3,0,0+3Hs0+ 12Hs 1 +2H_ 1 20— 8H_1 —1,—1,0—2H_1,-1,0,0

32
—4H_1, 12 —H_1,000+4H_120+16H_1 21 +2H_13 — £Y H_1 10
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7 70 41 82 155
+ 3 H_10,0— EY H_j2+ 3 Hz0 — 6H2 082 + 5 Hy 1 —8Hz 182 + 15 H_1p0

— SH_y 022 — 8Hal3 — TH_103 + 18H_1§2> + x( — 6Hs — 16H_3.0
7 9 64
+32H 5 10— 6H_22+ 3 Hz 0.0 — 3 H3,0 — 18H3,1 — 15H4 + 5 H_2p0

85 250 382
— 12Ho,0,0 + 6Ho,0,042 + 5 Hsz +22H_»¢r — o5 Ho.0 + 15H0,082 — o5 H»

41 25 85 382 275
+ 16H2 — T Hop + > Hols4 — 5 Hoto + 145300 + o5 & — 1083 — e 84

+850)+2<8H oy + 0y, 4%, Su
850\, o8, 16, 16, 8 _8
9 3 3,0 3 2,—1,0 3 2,2 3 0,0,0,0 3 2,0,0

8H 32H SH SOH +80H +80H SH_o¢
3 3.0 3 s g e = S H2.0 4 g Hoo.0 + - H3 -262

160 200 19

16 8
+ Y Ho,02 + 3 Hz¢2 4+ 20Hpg3 — 'y Hog — o5 &3+ 3 4“4) —4Ho,0,0,0,0

11 1
—2Hs5 + 14H_30 —28H_2 10 +2H_2,2 — 12Hy 0,0,0 + 5 Hs 0,0 + 3 Hs o0

26
+2H31 —22H4 —2H 5 — 5 Ho,0,0 +2Ho,0,082 — 5H3 — 16H_7%>

400 109 725 5
5 Ho,0 — 12Ho,0¢3 + 36Ho,082 — o5 Hy + 14Ha8p — 5 Hp — 2 Hog4

373 125 850
+ 32Ho¢3 + 3Hosz + 308342 + 5 & — = {3 — 1384 — 3885 — 5 4.11)

where our normalization of the colour factor is d9*d,p, /ne =15/18 in QCD; for use with third-
order results note the discussion below Eq. (30) in Ref. [63]. Finally the common leading large-n f

contribution to the N*LO evolution of all three types of quark distributions in Eq. (2.3) reads
Py ()

32C{ ()( lH SH +1H +1 l)
= — X _—— —_—— . s _——
g “FPwu 6 1000~ yg o0 g tlo 38 =g

3
y

1 13 1 1 13 1
+x(—Ho,o+—Ho+—) —=-Hpo ——Hp — =

3 13 6) 3 18 6
4501 )( b 1 D] )} (4.12)
) —===+= — 53— = . .
g ToR gt 34

Also the large-x limit is the same for the three non-singlet splitting functions. It is given by

A
PO DEY (= 2 4 B s(1—x) + Cp In(1 —x) + D,
(I =x)+

+0 ((1—x)1n‘(1—x)) (4.13)

in terms of the same constants as in Eq. (3.7), i.e., the njf’ >1 contributions to A4 and C4 have
been given in Egs. (3.8) and (3.9). The coefficients B4 can be read of from Egs. (4.6), (4.7) and
(4.12). The difference between P, and P,! and the splitting function (2.7) are suppressed by
two powers of (1 —x) with respect to the leading term in Eq. (4.13).

The non-singlet splitting functions include double-logarithmic small-x contributions up to

In2‘x at NLO. The coefficients of these leading-logarithmic (LL) parts of PnfsE have long been
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known to all orders [64,65]; the presence of a In 4x term in P3 at NNLO had not been predicted
before the three-loop calculation in Ref. [9]. Contributions where k powers of (C4, CF) in the

colour factor are replaced by n fk are suppressed by k powers of Inx relative to the overall leading
‘ ©F G)s i 2
Prg Py atn

logarithms. Hence we expect terms up to In* x and In° x, respectively, in and

Indeed we find
4 152 44
3)+ _ 4 - 2 3
POY|,p=n x(9 cF) +Indx (27 Ci+— 27 chA)
16
+1n x(g [134+90]C7 + 5 [161 - 36§2]CFCA>

+ lnx<8—1 (967 +7201CF + o [7561 — 27360, + 864(3]CFCA) . (4.14)

_ 4 692 664
pn(s3) nf2:1n4x<§CFCA 9CF)+ln x( 21 CFCA——S1 C%)
—i—ln2x(i [1081 — 364,]C-C 4 — E [55+ 9{2]C2> 4.15)
81 F=4" 27 F '

1 8
+ lnx(f [4131 = 30452 + 384531C C — o7 (24143840 + 72;3]c§)

and
64 64 128
3) _ 4
P S|nf2dabfdabc/nu =13 In’ -3 In"x —— 3 - Q)ln x (4.16)
256

— 22 (14 -9 +3¢3) In?x — — (138 +260, — 6483 + 584) Inx

up to constants and terms Vamshmg for x — 0. The correspondmg limit of Eq. (4.12) reads

8 88 64
IS Conf =31 Indx— m In®x — — lnx +0q1) . 4.17)

The analytic structure of the LL resummations is very different for P, and P,; with [64,65]

8asCr )_1/2 } (4.18)

N N
Pns,LL(N’as)zj Hl _(1 T N2

and

P 8) =5 {1 -(1- SC:SF [1- 85:]’% dLj\/ tn (e 4 D—1/[zn3](z))])_l/2}
(4.19)

where z = N(2agN,) /2, and D »(2) denotes a parabolic cylinder function [66]. The expansion
of Eq. (4.19) in powers of ay is an asymptotic expansion, in contrast to Eq. (4.18). The difference
between the two expansions vanishes in the large-n. limit.

An extension of these resummations to next-to-leading logarithmic (NLL) accuracy and be-
yond is known so far only for the former case — for the x 2" In‘x terms at n > 0; for the
x 2"+ n’x terms the roles of P,{ and P are interchanged in this respect. A determination
of the N’LL terms on the basis of N“LO information is possible from the D-dimensional struc-
ture of the unfactorized expressions, analogous to the case of the final-state splitting functions
and coefficient functions in semi-inclusive annihilation [67,68]. The first term in Eq. (4.16), an
overall NNLL contribution, agrees with the result in Eq. (4.6) of Ref. [69] after as-expansion
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Fig. 5. Left: the n]g parts of the four-loop splitting functions for the evolution of the combinations (2.3) of quark and

anti-quark distributions given by Egs. (4.5) — Egs. (4.11). Right: the small-x behaviour of this contribution to Pn:r,
compared to its successive approximations by the small-x logarithms in Eq. (4.14).

and Mellin inversion. For details and results on the singlet cases and coefficient functions see
Ref. [70].

A generalization of the equation underlying Eq. (4.18) to all powers of Inx, i.e., the terms
with 1/N > in the expansion about N = 0, has been suggested in Ref. [71] as

P(N,ag) (P (N,a)) — N + B(as)/as) = O(1)
up to terms with £,(C, —2Cp), 4.20)

where f(as) = —foa;” — Brag’ — ... with fo=11/3 C4 —2/3 n, is the beta function of QCD;
the terms including B, [72,73] enter the four-loop evaluation of Eq. (4.20). This evaluation indeed
reproduces Eq. (4.14) except for the {2(C, — 2 C) contributions — note that there are typos in
Eq. (25) and (26) of Ref. [71] — as well as the corresponding terms up to overall NNLL accuracy
resulting from Eq. (4.6) of Ref. [69].

The n)? contributions to the three non-singlet splitting functions are illustrated In Figs. 5

and 6 on linear and logarithmic scales in x. The latter have been extended to x = 10 % in or-
der to include the onset of the steep small-x rise of all these functions. The difference (4.10)
between the nf2 parts of Pn(ss)f and Pn(s3)Jr is numerically irrelevant except at very small x. The

nfz d®’¢ dp. /n. difference between Pn(s3)V and Png)_, on the other hand, is non-negligible up to
x ~0.5.

At asymptotically small values of x, the behaviour of these functions is given by their respec-
tive leading In* x and In° x logarithms in Egs. (4.14)—(4.16). As shown in the figures, though,
the onset of the resulting steep rise towards x = 0 is delayed to x & 10 = by the effect of the
non-leading logarithms. In fact, even at the lowest x-values shown here a relevant approximation
for P,7 and P,; is obtained only if all Inx terms are taken into account. The situation is more
favourable for P, but, unlike for the three-loop contribution [9] to this function, also here the
leading logarithmic result is totally different from the actual function at all physically sensible
values of x.
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The x-space splitting functions corresponding to the flavour-singlet anomalous dimensions in
Egs. (3.10)—(3.14) are given by
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Pee) =1 —x) T x 1 —24x—x2. (4.25)

The pure-singlet splitting function Pp(x) is suppressed by two powers of (1—x) in the limit
x — 1, hence the large-x limit of Pyq(x) is given by Eq. (4.13). The same functional form
holds for the large-x expansion of Pg(x). The nf3 contribution to A4 g is related to Eq. (3.8)

for Ay = A4 q by the Casimir scaling C4/CF. The n f3 part of By ¢ can be readily read off from
Eq. (4.24). As for the quark case in Eq. (3.9), non-vanishing contributions to C4 z occur only for
na <3_

Unlike these diagonal quantities, the off-diagonal entries Pgy and Pgq in Eq. (2.4) show a
double-logarithmic large-x enhancement, i.e., terms up to In 2n(1—x) contribute to Pq(;)(x) and

qug") (x). The highest three of these have been deduced at order 0‘54 from the large-x behaviour
of physical evolution kernels of DIS structure functions in Ref. [74] and verified and resummed
to all orders in Ref. [75]; a closed form of the next-to-next-next-to-leading logarithmic (N3LL)
terms has been obtained in Ref. [76]. The large-x enhanced contributions to Egs. (4.22) and
(4.23) read

160
P, 3_1n4(1 x)—(CF C,)+1n(1—x) 243( F—C)

) 232
—In (1—x)(243 (10-95)Cy — 243CF) (4.26)

30 16
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4.27)

The coefficient of 1n4(1 —x) in Eq. (4.27), and the lack of a 1n4(1 —x) contributions in Eq. (4.27),
agree with the results of Refs. [74]. The same holds for the power-suppressed (1—x) ¢ In*(1—x),
terms at all ¢ > 1 resulting from Egs. (4.22) and the corresponding (1—x)“1n3(1—x) coeffi-
cients of the large-x expansions of Eqgs. (4.21) and (4.24), as given by the last lines of Egs. (5.15)
and (5.19) of Ref. [74] together with the relation (5.20) between the pure-singlet and gluon—gluon
results.

Like their non-singlet counterparts, the singlet splitting functions receive a double-logarithmic
small-x enhancement of the form o In‘x with 0 < ¢ < 2n. However, the small-x behaviour in
the singlet case is dominated by additional single-logarithmic x ~! In‘x terms, see Refs. [77-80].
In the present o 4 f3 cases, only non-logarithmic x ~! terms occur and the small-x expansions
read
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The coefficients of In“x in these results agree with the results of the double-logarithmic small-x
resummation [70]. The pattern in Eq. (4.30), no small-x logarithms, is the same as for the C ;n f2

contribution to Pgq at order o’
The x ~! terms in Egs. (4.29) and (4.31) show an interesting feature in the large-n, limit
Cr — % n.: the resulting coefficients of x ~In. for qu) and Pg(gs) are identical to those of

x 1 CF for Pp@ and ng) in Egs. (4.28) and (4.30), respectively. For the QCD values of the
colour factors, the ratio between the x ~! coefficients is 2.11 for the upper-row splitting functions
and 2.09 for their lower-row counterparts; hence these ratios are between their overall large-n,
limit of 2 and the Casimir-scaling value of 9/4.

The leading large-n, 4-loop contributions for the splitting function Pgyq(x) = Pys(x) +
Pps(x) given by Eq. (4.12) and (4.21), and those for Pyg(x), Pgq(x) and Pge(x) given by
Egs. (4.22)—(4.24) are illustrated at x < 1 in Figs. 7 and 8. All functions have been multiplied
by x(1—x), hence their small-x and large-x limits are constants in the figures. For these as4n 3
coefficients, the pure-singlet contribution to Pyq remains relevant up to rather large values of x.
The importance of the In‘x small-x terms is largest for Py and Pyg.

5. Summary

As a first step towards the determination of the N3LO splitting functions Pag)(x) in pertur-
bative QCD beyond the leading large-n 5 results of Refs. [48-50], we have derived the complete

n f2 parts of the four-loop non-singlet quark—quark splitting functions and all n;’ contributions to

their flavour-singlet counterparts in the MS scheme. These results have been obtained by analyt-
ically computing a fairly large number of Mellin moments N in the approach of Refs. [24-26]
— made possible by the development of the FORCER program [20,21] for the computation of
massless four-loop self-energy integrals — and a subsequent determination of the all-N and all-x
expressions using the number-theoretical results and tools of Refs. [33-35], a method that has
been applied already to three-loop splitting functions in Refs. [36,37].

Of course this is not a mathematically rigorous procedure, but given the computation of ex-
tra ‘guard moments’ and the additional and non-trivial agreement with previous partial results
and structural conjectures summarized below, the chance that our results are not correct is vir-



J. Davies et al. / Nuclear Physics B 915 (2017) 335-362 359

T T T T T T T T T T T T T T T T T T T

4 10

PRI

E o x(I-0 RO(N) E xRN

L

1

L

-10

M|

1

P R

a0 coeff. of n?

00 BT coeff. of n?

M| MR | Lo vl M | Lo

10~ 107 10" 110 107 10" 1
X X

Fig. 7. The ”f3 parts of the ‘upper row’ quark—quark and gluon—quark four-loop splitting functions in the MS scheme,
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quark case also the non-singlet and pure-singlet contributions are shown.
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Fig. 8. As Fig. 7, but for the ‘lower row’ quark—gluon and gluon—gluon splitting functions at N3LO.

tually zero. More rigorous approaches would include methods like those used in Refs. [9,10] or
Ref. [81], but they require far more resources than are available to us.

Our results agree with Refs. [48-50], with the pioneering low-N non-singlet computations
of Refs. [17-19], and with the recent determinations of ng contributions to the four-loop cusp
anomalous dimension [38—40] which appear in our results as the coefficient of In N at large N
or 1/(1 — x)4+ in the large-x expansion. We also agree with the prediction of Ref. [53] for the
coefficient of In(1—x) in the non-singlet cases and, in the small region of overlap, with the
resummations of highest three small-x and large-x double logarithms in Refs. [69,70,74,75].
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Most interestingly our results are in agreement with the remarkably simple (if incomplete — the
£2(C4 —2CF) contributions are excluded) generalization of the leading-log small-x resummation
[64,65] for the quark+antiquark non-singlet splitting function P, to all powers of Inx proposed
in Ref. [71].

By themselves the present results are not phenomenologically useful. We hope, though, that
it will be possible to complement them in the near future by approximate expressions of the

remaining (and numerically more important) contributions to the functions Pas) (x), analogous
to those employed at NNLO [29] before the results [9,10] became available, and hence facilitate
improved N3LO analyses of DIS and hard processes at colliders. One may also hope that the
present results will provide useful additional ‘data’ for future studies of the structure of the
perturbation series for the splitting functions which, in turn, may lead to more explicit four-loop
calculations and results.

FORM [44-46] files of our N-space expressions in terms of harmonic sums [30,31] and their
x-space counterparts in terms of harmonic polylogarithms [32] can be obtained from the preprint
server http://arXiv.org by downloading the source of this article. Furthermore they are
available from the authors upon request.
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