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Abstract

Next-generation wireless and power distribution networks will lead to higher energy

consumption and waste. However, the advent of new smart devices opens the possi-

bility of devising cooperative policies for improving their energy efficiency.

The main goal of this dissertation is to manage resource allocation in network

engineering problems and to introduce efficient cooperative algorithms to obtain high

performance, ensuring fairness and stability. Specifically, this dissertation introduces

new approaches for resource allocation in Orthogonal Frequency Division Multiple

Access (OFDMA) wireless networks and in smart power grids by casting the problems

to the coalitional game framework and by providing a constructive iterative algorithm

based on dynamic learning theory.

In OFDMA wireless networks each terminal is assigned to a set of subcarriers. The

problem is to find the optimal amount of power transmission over each subcarrier as to

achieve the device’s demanded data rate exactly. The power distribution is obtained

by a dynamic learning algorithm based upon Markov modeling. Simulation results

show that the average number of operations of the proposed iterative algorithm are

much lower than K · N , where K is the number of mobile terminals and N is the

number of subcarriers.

In smart power grids, we consider the problem of power trading coordination among

micro-grids, e.g., wind turbines and solar panels. To minimize the amount of dissi-

pated power during generation and transfer, we introduce an algorithm which allows

the micro-grids to autonomously cooperate and self-organize into a set of coalitions.

Our evaluation shows that the new approach enables micro-grids to coordinate for

power trading and dissipate only 10% of the power which would be otherwise dissi-

pated by traditional power distribution networks.





Samenvatting

De volgende generatie draadloze netwerken en elektriciteitsnetten zal leiden tot meer

consumptie van energie. De opkomst van nieuwe smart apparaten maakt het echter

mogelijk om coperatief beleid te ontwikkelen dat hun energie-efficintie verbetert.

Het hoofddoel van dit proefschrift is het beheren van de toewijzing van resources in

de context van netwerkengineering en het introduceren van efficinte coperatieve algo-

ritmes die hoge prestaties behalen en daardoor eerlijkheid en stabiliteit garanderen.

In het bijzonder introduceert dit proefschrift nieuwe methodes voor het toewijzen

van resources in draadloze netwerken met Orthogonal Frequency Division Multiple

Access (OFDMA) en in smart elektriciteitsnetten door het probleem te beschouwen

binnen het raamwerk van coalitiespellen en door een constructief, iteratief algoritme

te leveren dat is gebaseerd op de theorie van dynamisch leren.

In draadloze netwerken met OFDMA is elke terminal toegewezen aan een verza-

meling subcarriers. Het probleem is het vinden van de optimale hoeveelheid elek-

triciteitstransmissie over elke subcarrier teneinde de benodigde datafrequentie exact

te behalen. We vinden de elektriciteitsdistributie door middel van een dynamisch

leeralgoritme gebaseerd op Markov-modellen. Simulatieresultaten laten zien dat het

gemiddelde aantal bewerkingen dat het voorgestelde iteratieve algoritme uitvoert veel

lager is danK ·N , waarK het aantal mobiele terminals is en N het aantal subcarriers.

In de context van smart elektriciteitsnetten beschouwen we de cordinatie van elek-

triciteitsuitwisseling tussen micronetten, zoals bijvoorbeeld windturbines en zonnepan-

elen. Om de hoeveelheid dissipatie van energie tijdens generatie en transport te min-

imaliseren introduceren we een algoritme dat de micronetten toestaat om autonoom

samen te werken en zichzelf te organiseren in een verzameling coalities. Onze evaluatie

laat zien dat de nieuwe methode micronetten toestaat om hun elektriciteitsuitwisseling

te cordineren en een dissipatie te bewerkstelligen die slechts 10% is van die van

traditionele elektriciteitsnetten
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Introduction

Motivation

According to the Information and Telecommunication Union, in 2009, the information

and communication technology (ICT) sector was responsible for 4% of the global

greenhouse gas emissions [1], but its impact is predicted to double by 2020 [2].

Current estimates indicate that ICT is responsible for a fraction of the world energy

consumption ranging between 2% to 10% and it is increasing by 16%−20% per year [3].

Within the ICT sector, telecommunication networks take a significant share of the

total energy consumption. The number of wireless accesses to the Internet is doubling

each year [4]. This ever-increasing traffic demand pushed telecom operators and the

industry itself to focus their research on enlarging network capacity, which is usually

accompanied by higher energy consumption. The energy costs for mobile network

operators can already be as high as 60% of their annual operating budgets. Thus,

investments on projects with high energy efficiency goals will have a good investment

return not only economically but also environmentally.

Looking back, wireless access technologies have followed different evolutionary paths

towards a unified target: performance and efficiency in high mobility environments.

In second generation (2G) wireless networks, data services are defined over well-

established GSM (global service for mobile). Third generation (3G) wireless networks

support very high data rates with larger channel bandwidth and more efficient cod-

ing techniques. For even higher data rates and native IP support, the standards

4G and 5G have been released. They use orthogonal frequency division multiple

access (OFDMA) [5] as digital modulation and channel access scheme. OFDMA is

a multicarrier scheme which can be exploited to increase data rates in a multi-user

environment, by dividing a frequency-selective broadband channel into a multitude

of orthogonal narrowband subcarriers.



2 Introduction

Expanding wireless networks and the advent of new high-definition entertainment

services imply that future enhancements will be needed to augment data rates, which

will increase energy consumption both at the end-user and at the base station side. Re-

ducing this consumption has been addressed in several studies [4,6] and is considered

one of the most important factors to make communication networks energy efficient,

reducing the cost of telecommunication services and helping network operators to

be environmental friendly. Energy efficiency has become a very important issue in

optimizing the current, as well as in designing the future, telecommunication networks.

To cope with this, efficient radio resource management systems, in particular power

control systems, are on demand. Transmission power in wireless cellular networks

is a key degree of freedom in the management of interference, energy, and connec-

tivity. The main purpose of power control is to provide each signal in the network

with adequate quality without causing unnecessary interference to other users in the

system.

“The 3G chipsets that are available to semiconductors work reasonably well except

for power. They are real power hogs, so as you know, the handset battery life used

to be 5-6 hours for GSM, but when we got to 3G they got cut in half. Most 3G

phones have battery lives of 2-3 hours”, said Steve Jobs in the early days of universal

mobile telecommunications system (UMTS). According to Moore’s law, “integrated

circuits will double in performance every 18 months”, but batteries have not improved

much at all; there are deep physical limits. Battery industry foresees that the energy

capacity is only doubling every 10 years. This justifies the necessity of an energy

efficient resource allocation technique in modern wireless networks. Regardless of

involving uplink or downlink communication, resource allocation in OFDMA consists

of two sub-problems: subcarrier assignment to each individual wireless terminal, and

adjustment of power transmission level over every subcarrier, in order to satisfy

the users’ QoS requirements and maximize the network sum rate. This generally

corresponds to an optimization problem. An intelligent and scalable joint power

and bandwidth allocation mechanism is crucial to ensure QoS to the consumer at a

reasonable cost [5].

Improving energy efficiency, in a different way, is also a research objective in modern

electricity distribution networks such as smart grids [7,8]. The term smart grid defines

a self-healing network equipped with dynamic optimization techniques that use real-

time measurements to maintain voltage levels, increase reliability, and improve asset
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management. Smart grid is a capillary infrastructure at the medium and low voltage

levels that will support local energy trading among producers and consumers. Smart

grids are well-known as the modern system of electricity production, distribution, and

consumption. Furthermore, smart grids are deemed to improve efficiency, reliability,

and sustainability of the production and distribution of electricity. They are able to

collect, transmit and use information about the behaviours of electricity producers

and consumers in an automated fashion by means of automation and ICT. Smart

grids offer the opportunity to purchase energy from renewable and clean resources,

e.g., solar and wind.

In traditional power distribution models, consumers acquire power from the cen-

tral distribution unit. A smart grid is instead a network of smart renewable en-

ergy producers-consumers, so-called micro-grids, which can also trade power between

themselves [8]. A micro-grid is a local renewable electricity generation, e.g., wind

turbines and solar panels, which is connected to a collection of individual consumers

within an area. A micro-grid can also trade power with the (traditional) central

distribution unit if it is necessary. The intelligence of smart grids relies on the

real-time exchange of information and control data among micro-grids themselves.

Each distributed resource can exchange information with a number of other close-

by resources, and subsequently make a local control decision based on this available

information. This allows for an energy balance at local levels. Accordingly, a current

trend in research goes towards developing technologies, concepts, and strategies to

minimize feeding from (traditional) central distribution unit and maximize the local

consumption of local energy producer [7]. One key concept in this context is local

energy storage. Another idea is the local exchange of energy within a neighborhood

of micro-grids [9]. In fact, end-users generate their own energy and the deficit power

can be provided by other end-users which have surplus energy generated. In such a

context, a local power exchange between end-users is foreseeable without an energy

storage equipment. Such a local energy trading among micro-grids can also reduce

the amount of power loss over transmission lines. The possibility of local exchange of

renewable energy in smart grids allows further efficient utilization, but leads to many

challenges as well. The main challenge is coordination, i.e., determining the optimal

quantity of power to trade between each pair of micro-grids in order to achieve the

best individual and overall performance in terms of minimum price and minimum

amount of power loss over transmission lines.
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In both problems of radio resource management in OFDMA wireless networks and

power trading coordination in smart grids, the main question is how agents, i.e.,

wireless terminals in OFDMA networks and micro-grids in smart grids, should interact

in order to achieve the highest performance, i.e., maximum overall data rate and

minimum amount of dissipated power, respectively. A well-devised interaction policy

determines the best strategy each player should choose, i.e., the optimal amount

of transmission power over each subcarrier for each wireless terminal in OFDMA

networks, and the optimal amount of traded power among each couple of micro-

grids in smart grids, respectively. Several agents have to coordinate the sharing of a

common resource and manage the impacts resulted by decisions of the other agents.

The limited resources and the increasing number of users are inevitably accentuating

the relevance of good management of the resources, e.g., radio resources in wireless

networks and storages in smart grids.

Game theory [10] is a formal, mathematical discipline which studies situations of

competition and cooperation between several involved parties. It is a collection of

a variety of subfields and techniques, each representing a possibly fundamentally

different approach to the description of social interactive decisions. This is a broad

definition but consistent with the large number of applications ranging from strategic

questions in warfare [11] to issues related to economic competition [12], from social

problems of fair distribution [13] to signal processing in wireless engineering [14]; and

this list is certainly not exhaustive.

Essentially, game theory can be split into two branches: non-cooperative and coop-

erative game theory. The distinction between the two is whether or not the players

in the game can take joint decisions regarding the strategy to choose.

Non-cooperative games deal with situations in which multiple self-interested enti-

ties, or players, simultaneously and independently optimize different objectives and

outcomes. Non-cooperative game theory typically results in the study of various

equilibria, most notably the Nash equilibrium.

Cooperative game theory examines how strictly rational agents can benefit from

voluntary cooperation by reaching bargaining agreements. Coalitional game theory

is a branch of cooperative game theory in which the central questions are: which

coalitions (groups of agents) will actually be formed, and how should payoffs of such a

coalition structure be distributed among its members? It is obvious that a cooperative

game approach would be efficient if social strategies satisfy both individual interests
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of the end-users and those of the network service provider.

Besides competition among selfish users, it might be possible that the involved

agents, e.g., wireless terminals in cellular network and micro-grids in smart grids,

cooperate to access the resources, and through this cooperation effectively achieve a

robust allocation strategy which promises significant benefits such as higher through-

put and fairness. In this dissertation, we will show that coalitional game theory

is an appealing option to formulate the cooperative behaviour of involved agents in

network engineering problems. We use coalitional game theory to tackle the problems

of resource management in OFDMA-based wireless networks and smart grids with the

aim of achieving an energy-efficient network. We will propose resource management

policies whose computational burden is as cheap as possible and energy saving is as

high as possible.

Main contributions

Due to large number of resources, e.g. subcarriers in OFDMA-based networks and

micro-grids in smart grids, there is a great freedom to resource assignment. The main

focus of this thesis is to introduce novel cooperative policies among involved agents

in wireless networks and smart grids in order to achieve a power efficient resource

management with the best performance in terms of energy saving.

Firstly, we will introduce a novel algorithm for resource management in the uplink

of OFDMA infrastructure wireless networks. The key requirements of the devised

coalitional game-theoretic model are fairness from both end-user and wireless service

provider viewpoint, low complexity, and energy efficiency. Our main contributions for

OFDMA are the following:

1) A novel approach to resource allocation fairness that improves the common ap-

proach of considering only end-users’s satisfaction and ignores completely the need

of service providers. We propose a more fair approach in which each wireless

terminal gets a data rate corresponding exactly to its requirement;

2) Two different approaches to assign subcarriers to different wireless terminals by

allowing each subcarrier to be shared by more than one wireless terminal;

3) The definition of power constraints is defined as individual power limitations on
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each subcarrier for each user rather than as common constraint on overall energy

consumption of each user over all subcarriers [15];

4) The computational burden of the proposed iterative algorithm is the cheapest one

in the literature. That is much lower than K ·N , where K is the number of mobile

terminals and N is the number of subcarriers.

We prove the existence of the solution of the cooperative resource allocation game,

“the core set solution”, by means of the analytical tools of coalitional game theory.

A dynamic learning algorithm for reaching one of the core set solutions of the power

expenditure scheme is derived, and its convergence is demonstrated based on Markov

modeling. The quality of our contributions is tested by simulations which show how

the derived framework outperforms the known results [16–19] in terms of complexity,

power consumption, and utilization of the spectrum.

The second problem deals with power trading coordination in smart grids. A micro-

grid with a surplus amount of power can transfer it to the central distribution unit,

and meanwhile can serve micro-grids with deficit power. We investigate the problem

with the purpose of minimizing the amount of dissipated power over transmission

lines during generation and transfer. The main contribution for smart grids is the

following:

• A coalitional game theory based approach which allows micro-grids to au-

tonomously cooperate and self organize into a set of coalitions. In each coalition

the micro-grid in excess of power will provide the whole or a fraction of deficit

powers of assigned ones in need of power. Micro-grids can also trade with the

central distribution unit if it is necessary. Each micro-grid can decide to form

a singleton coalition and to trade the whole quantity of power only with the

central distribution unit.

We introduce a dynamic learning process which leads micro-grids to a coalition struc-

ture guaranteeing that all micro-grids in need of power will be served and all micro-

grids in excess of power will be loaded. Another complementary dynamic process leads

micro-grid to the best coalition structure wherein the amount of dissipated power is

minimized. We model the dynamic processes as Markov chains and show the stability

(the convergence to a fixed-point) of both dynamic processes using the Kakutani fixed

point theorem. The efficiency of the algorithm is validated with simulation results
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that show that the overall amount of dissipated power in the proposed cooperative

smart grid is only 10% of that in the traditional (non-cooperative) power distribution

networks.

Outline of the dissertation

This dissertation consists of three parts. The first part contains two survey-based

chapters on basic definitions and notions of coalitional game theory and resource

allocation techniques in OFDMA networks, respectively. In the second and third

parts, novel cooperative schemes among involved agents in wireless networks and

smart grids are introduced to achieve an energy efficient resource management. The

remainder of this thesis is organized as follows:

In Chapter 1, we introduce the basic concepts of coalitional game theory and some

concepts which turn out to be crucial for applications to communication networks.

To this end, we provide motivating examples for the application of coalitional game

theory to network engineering problems, and we outline the trends in research into

coalitional game theory applications to wireless networks. We will show that this

branch of game theory is an appealing tool to tackle different problems in networking

and wireless engineering and that the solutions based on coalitional game theory

outperform solutions based on non-cooperative game theory. This chapter is a revised

and extended version of the following paper:

• F. Shams and M. Luise, “Basics of coalitional games with applications to com-

munications and networking,” EURASIP J. Wireless Communications and Net-

working, vol. 2013, no. 1, 2013.

In Chapter 2, after a brief introduction of OFDMA-based technologies, we review the

existing techniques concerned with radio resource allocation in OFDM and OFDMA,

its multi-user version, where the radio resources can be bandwidth and transmission

power. We then discuss the relevant features of each technique and show that existing

schemes based on cooperative game theory exhibit good performance in terms of

fairness and overall achieved data rate. We provide motivations for the definition of

a new fair resource allocation technique in OFDMA. This chapter is a revised and

extended version of the following paper:
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• F. Shams, G. Bacci, M. Luise, “A survey on resource allocation techniques in

OFDM(A) networks,” Computer Networks, vol. 65, p. 129, 2014.

In Chapter 3, we introduce the resource allocation problem for OFDMA-based

wireless networks as a coalitional game. Firstly, we propose two different subcarrier

allocation techniques. We then formulate the power control scheme using a novel

fairness criterion in which each wireless terminal achieves its data rate demanded

exactly. Next, we prove the existence of the core solution(s) of the proposed game,

and we describe an iterative algorithm to reach one of such solutions in a centralized

fashion. We conclude this chapter by comparing the simulation results with existing

ones in the literature. This chapter is a revised and extended form of the following

published paper:

• F. Shams, G. Bacci, M. Luise, “An OFDMA resource allocation algorithm based

on coalitional games,” EURASIP J. Wireless Communications and Networking,

vol. 2011, no. 1, 2011:46, July 2011.

In Chapter 4, we investigate the problem of power trading coordination among

micro-grids (e.g., solar panels, wind turbines, etc.) in smart power grids. With the

purpose of minimizing the amount of dissipated power during generation and transfer,

we introduce an algorithm based on dynamic learning and coalitional game theory

which allows the micro-grids to autonomously cooperate and self-organize into a set

of coalitions. The iterative algorithm can be used to reach the best coalition structure

with minimum amount of dissipated power in the entire network. This chapter is a

revised and extended version of the following paper:

• F. Shams, M. Tribastone, “Power trading coordination in smart grids using

dynamic learning and coalitional game theory,” in Int. Conf. on Quantitative

Evaluation of SysTems (QEST), Madrid, Spain, Sep. 2015.

Finally, in Chapter 5 we draw some concluding remarks and touch on a few open

issues in the research fields considered in the thesis.



Chapter 1

Coalitional game theory

Game theory is the study of decision making in an interactive environment. Coali-

tional games fulfill the promise of group efficient solutions to problems involving

strategic actions. Formulation of optimal player behavior is a fundamental element in

this theory. This chapter comprises a self-instructive didactic means indicating how

cooperative game theory tools can provide a framework to tackle different network

engineering problems. We show that coalitional game approaches achieve an improved

performance compare to non-cooperative game theoretical solutions.

This chapter is divided into ten sections. After a brief motivation in the following

section, Sect. 1.2 provides an introductory discussion of cooperative game theory. We

systematically study fundamental definitions and conditions of cooperative games:

superadditivity and convexity. Then, Sect. 1.3 and the sub-section inside discuss

the core set solution as the most known solution for payoff distribution. Sect. 1.4

is devoted to a study of a strong payoff distribution, the so-called Shapley value.

In Sect. 1.5 we present a systematic study of two others reward division called the

kernel and nucleolus. Then, in Sect. 1.6, we extend the concept of Nash equilibria

in cooperative games. Sect. 1.7 is an investigation of the concept of coordinated

equilibria where players of game are admitted to pre-communicate among themselves

at once. Finally, Sect. 1.8 helps a reader to understand the basic concepts and

importance of dynamic learning in cooperative games. Every sections contain some

motivation examples that are expedient to understand how different communication

networks problems can be modeled as cooperative game. We discuss the features of

mentioned approaches in Sect. 1.9 and finally we conclude this chapter in Sect. 1.10.
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1.1 Motivation

The increase of the number of wireless services, combined with demand for high def-

inition multimedia communications, have made the radio resources, and particularly

the spectrum and power, a very precious and scarce resource, not because of their

unavailability but because they are used inefficiently. For licensed spectrum, the

measurements by Shared Spectrum Company [20] shows that the maximal usage of

the spectrum is a low percentage of the whole licensed. While the number of users

and the spectrum usage steadily increase, the amount of spectrum is still considered

a limited resource. Beside, to differentiate between the true signal and background

noise is complex for a radio equipment. Generally, this complex process enforces

terminals to transmit strong version of signals, that wastes energy of a transmitter.

The modern wireless entities, i.e. wireless terminals and base stations, have consid-

erable capacities to execute dynamic processes. This capability encourages wireless

service providers to consider wireless entities as autonomous agents which could

cooperate and negotiate with each other to achieve an efficient resource allocation

in different situations. Cooperation among wireless terminals is usually intended to

achieve a fair radio resource allocation. Cooperation between base stations can be

devised to mitigate interference, and promote soft handover where channel gain is

varying rapidly which is a challenge in LTE [21].

Game theory is the most prominent tool to analyze interaction issue in social sciences

wherein often cooperation amongst autonomous agents is essential for successful

task completion. In many settings, groups of competing agents are simultaneously

concerned of both individual and overall benefits. In the game theory literature, this

branch is known as cooperative game [10, 22]. The players, as the main decision

making entities in the game, are considered to negotiate with each other to determine

a binding agreement among them. If we assume that all users act rationally and we

know what the behavior of the users are, it is possible to determine the overall perfor-

mance of a system since the actions of one user becomes part of the circumstances for

another user. Thus, we are interested in individual performance and overall system

performance under a specific set of rules. To fully develop the different possibilities

within a game for cooperation among players we have to address which groups the

players can achieve collectively. Indeed, if a player assesses that within a certain group

it does not receive what it is able to get by itself, then it might decide to abandon
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the cooperation and pursue an alternative allocation by itself. Cooperative game

theory offers the opportunity to extend and expand the treatment of the players in

traditional non-cooperative games, especially where selfish players compete over a set

of resources. The cooperative game theory is divided into two parts: coalitional game

theory and bargaining games [10, 22]. In this contribution we focus on coalitional

game theory.

Saad et al. in tutorial paper [23] classify coalitional games into three categories:

canonical (coalitional) games, coalition formation games and coalitional graph games.

In canonical games, no group of players can do worse by joining a coalition than by

acting non-cooperatively. In coalition formation games, forming a coalition brings ad-

vantage to its members but the gains are limited by a cost for forming the coalition. In

coalitional graph games, the coalitional game is in graph form and the interconnection

between the players strongly affects the characteristics as well as the outcome of the

game.

In the last few years, cooperative game theory has been successfully applied to

communications and networking. Hossain et al. in [24] provides a guide to state-of-art

which unifies the essential information, addressing both theoretical and practical as-

pects of cooperative communications and networking in the context of cellular design.

The current literature is mainly focused on applying cooperative games in various

applications such as distributed/centralized radio resource allocation [18,25,26], power

control [27, 28], spectrum sharing in cognitive radio [29, 30], cooperative automatic

repeat request (ARQ) mechanism [31], cooperative routing [32], and cooperative

communications [33, 34]. These problems in wireless networks can be modeled as

a cooperative game since it is highly likely that each wireless user can obtain a better

utility value by forming groups and controlling resources cooperatively rather than

individually. It has been shown that cooperation can result in an enhanced QoS in

terms of throughput expansion, bit error rate reduction, or energy saving [24].

Cooperation can be realized at various layers of the network. At the physical layer,

different separate antennas can constitute a cluster and then cooperate with each other

to exploit multiple-input multiple-output (MIMO) gains. At the MAC sublayer, some

wireless terminals can cooperate with each other to share a common wireless medium

in an efficient manner and consequently mitigate the interference hazard. There is

also the possibility of cooperation of physical and application layers among individ-

ual terminals to adapt channel and source codings in multimedia communications.
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The altruistic decision of cooperation with others network entities may result in an

improvement on overall network performance, and concurrently achieve an egoistic

interest of self improvement.

1.2 Preliminaries

Game theory deals with the study, through mathematical models, of conflict situations

in which two or more rational players make decisions that will influence each other’s

welfare. The theory of coalitional games [10,22] also assumes that binding agreements

may be established among the players in the course of the conflict situation. In trans-

ferable utility (TU) games, agreement may be reached by any subset of the players,

and the gain obtained from this agreement is a real number and it is transferable

among these players. In non-transferable utility (NTU) games, agreement may be

reached by any subset of the players, but the gain may be non-transferable. The

main focus of this dissertation will be on the study of TU games.

A TU game is a pair G = (K, ν), where K = [1, . . . ,K] denotes the set of players

and ν the coalition (characteristic) function which is interpreted as the maximum

outcome (a real number) to each coalition (subset of K) whose players can jointly

produce. An NTU game is a pair G = (K, V ) where V is a mapping which for each

coalition A, defines a characteristic set, V (A), satisfying:

1. V (A) is non-empty and closed subset of R|A|,

2. For each k ∈ A there is a Vk ∈ R such that V ({k}) = (−∞ , Vk],

3. V (A) is comprehensive, i.e. for all u ∈ V (A) and for all u′ ∈ R|A| , if

u′[k] ≤ u[k] ∀ k ∈ A then u′ ∈ V (A),

4. The set V (A)
⋂
{

u′ ∈ R|A| | u′[k] ≥ Vk ∀ k ∈ A
}

is bounded.

The characteristic set, V (A), is interpreted as the set of achievable outcomes the

players in A can guarantee themselves without cooperating with the players in K\A.

In particular, an NTU-game G = (K, V ) is called a TU game when the characteristic

set for each coalition A, takes the form:

V (A) =

{

u ∈ R|A| :
∑

k∈A

uk ≤ ν (A)

}

(1.1)
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where u =
[

u1, . . . , u|A|

]

∈ R|A| and uk is the payoff of player k in A and ν : 2K −→ R.

If A is a coalition (subset) of K formed in G, then its members get an overall payoff

ν (A), zero for the empty set. Each coalition can be represented as a pure strategy in

non-cooperative game theory. There exist only few works on NTU games applications

to problems in communications [35]. This is because defining an utility function which

meets all conditions of a character set in NTU game is not always feasible.

An important property of interest in characteristic form TU games is superadditivity,

which, if present, implies that the value of the unite of any two disjoint coalitions is

at least as big as the sum of their values.

Definition 1 A TU game G is superadditive if

ν (Ai ∪Aj) ≥ ν (Ai) + ν (Aj) ∀ Ai,Aj ⊂ K s.t. Ai ∩Aj = ∅ (1.2)

In a superadditive TU game there are positive synergies and the players prefer to

join each other rather than act alone. Under superadditivity condition, the players

are willing to form the grand coalition (the set K).

Convex, or alternatively supermodular coalitional games were introduced by L.

Shapley [36]. They model coalitional situations where the marginal contribution of a

player to a coalition increases as the coalition becomes larger.

Definition 2 A TU game G is convex or supermodular if for all k ∈ K:

ν (Ai ∪ {k})− ν (Ai) ≤ ν (Aj ∪ {k})− ν (Aj) ∀ Ai ⊆ Aj ⊂ K\{k} (1.3)

Equivalently:

Definition 3 A TU game G is convex or supermodular if:

ν (Ai) + ν (Aj) ≤ ν (Ai ∩Aj) + ν (Ai ∪ Aj) ∀ Ai,Aj ⊆ K (1.4)

Convexity means that there are increasing returns to scale. Note that a convex

game is superadditive. To better understand the importance of convexity approach

in network probems, we verify the convexity condition in a K-user channel access

game. The payoff of each coalition of players (transmitters) is defined as the outer

MAC capacity region. [37, Lemma 1] shows that in a multiple access channel scenario,

the inequality (1.4) is not met. This means the game is not convex, and thus adding

a new player does not give benefit to others transmitters.
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1.3 The core solution

A central question in a coalitional game is how to divide the extra earnings (or cost

savings) among the members of the formed coalition. In a TU game, an allocation

is a function u from K to R that specifies for each player k ∈ K the payoff uk ∈ R

that this player can expect when it cooperates with the other players. The payoff of

each player can show the cost borne by the player, the power of influence, and so on

depending on the problem setting.

Definition 4 Let K be the set of K players of the superadditive TU game G, and let

ν be the payoff of the game. The set of all “imputations” of G is the set:

I (K , ν) =







u ∈ RK :

∣

∣

∣

∣

∣

∣

i)
∑

k∈K

uk = ν (K)

ii) uk ≥ ν ({k}) ∀ k ∈ K







(1.5)

where u = [u1, . . . , uk, . . . , uK ] ∈ RK is the imputation vector of the players. The

former condition is called the feasibility, and the latter individually rational condition.

The core concept was introduced in [38] and is the most attractive and natural way

to define a payoff distribution: if a payoff distribution is in the core, no agent has

any incentive to be in a different coalition. The core of a TU game is the subset of

all imputations u ∈ I (K , ν) that no other imputation directly dominates, that is

∄u′ ∈ I (K , ν) s.t. u′k > uk ∀ k ∈ K. As can be seen, for coalitional games as well as

non-cooperative games, the notion of dominance is essentially equivalent; the payoffs

under the various situations are compared and one situation dominates the others if

these payoffs are higher. The core actually presents a condition stronger than Nash

equilibrium in non-cooperative game: no group of agents should be able to profitably

deviate from a configuration in the core. Equivalently, no set of players can benefit

from forming a new coalition, which corresponds to the group rationality assumption.

In an NTU game G = (K, V ), the core apportionment is defined as [22, Ch. 12]:

Definition 5 Let K be the set of K players of the superadditive NTU-game G, and

let V be the payoff of the game. The core of G is the set

S (K , V) = { u ∈ V (K) : ∀ u′ ∈ V (A) ∃ k ∈ A s.t. uk ≥ u
′
k } (1.6)

where u is the payoff distribution across players, and uk ∈ u if and only if no coalition

can improve upon uk.
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In a TU game G = (K, ν), the core apportionment is defined as follows:

Definition 6 Let K be the set of K players of the superadditive TU game G, and let

ν be the payoff of the game. The core of G is the set

S (K , ν) =















u ∈ RK :

∣

∣

∣

∣

∣

∣

∣

∣

i)
∑

k∈K

uk = ν (K)

ii)
∑

k∈A

uk ≥ ν (A) ∀ A ⊂ K















(1.7)

where u = [u1, . . . , uk, . . . , uK ] ∈ RK is the payoff distribution across players, and

uk ∈ u if and only if no coalition can improve upon uk. The second condition is

called non-blocking condition.

The core consists of the set of allocations that can be blocked by any coalition of

agents. If for some set of agents A, the non-blocking condition does not hold, then

the agents in A have an incentive to collectively deviate from the coalition structure

and to divide ν (A) among themselves. In general, the core of a given TU game (K, ν)

is found by linear programming (LP) as:

min
u∈RK

∑

k∈K

uk ; s.t.
∑

k∈A

uk ≥ ν (A) ∀ A ⊆ K (1.8)

Madiman in [39] introduces some intuitive applications of core solution to informa-

tion theory contexts e.g. source coding and multiple-access channel, and summarize

some of its limitations in multi user scenarios. Li et al. in [40] show that the

cooperation among wireless nodes and core apportionment can increase spectrum

efficiency in a TDMA cooperative communication. In [41], Niyato et al. applies the

core solution in a coalition among different wireless access networks to offer a stable

and efficient bandwidth allocation.

Indeed, there is a number of realistic application scenarios, in which the emergence

of the grand coalition is either not guaranteed, or might be perceivably harmful, or

is plainly impossible [42]. For a non-superadditive coalitional game, the coalition

formation process does not lead the players to form the grand coalition. In this case,

Def. 6 does not apply. Let us redefine the core set in a general (not necessarily

superadditive) coalitional formation TU game [26]. Let ψ = [A1,A2, . . . ,Am] denote

a partition of the set K wherein Ai ∩ Aj = ∅ for i 6= j,
⋃m
i=1Ai = K and Ai 6= ∅

for i = 1, . . . ,m, and let Ψ denote the set of all possible partitions ψ. Let us also
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define F = [A1,A2, . . . ,An], such that
⋃n
i=1Ai = K and Ai 6= ∅ for i = 1, . . . , n, as

a family of (not necessarily disjoint) coalitions.

Definition 7 A “core apportionment” u ∈ RK is a payoff distribution with the

following property:

S (K , ν) =















u ∈ RK :

∣

∣

∣

∣

∣

∣

∣

∣

i)
∑

k∈K

uk = max
ψ∈Ψ

∑

A∈ψ

ν (A)

ii)
∑

k∈A

uk≥ ν (A) ∀A ⊂ K















(1.9)

Note that, if G is superadditive, then max
ψ∈Ψ

∑

A∈ψ

ν (A) = ν (K).

The core allocation set can be found through linear programming and its existence,

in general, depends upon the feasibility of (1.8). Unfortunately, the core is a strong

notion, and there exist many games where it is empty. We can study the non-

emptiness of the core without explicitly solving the core equation. The following

notation helps to simplify the dual of (1.8).

Definition 8 A superadditive TU game G for a family F of coalitions is totally

balanced if, for any A ∈ F , the inequality

∑

A∈F

µA · ν (A) ≤ ν (K) (1.10)

holds, where µA is a collection of numbers in [0, 1] (balanced collection of weights)

such that
∑

A∈F

µA · 1A = 1K (1.11)

with 1A ∈ RK denoting the characteristic vector whose elements are

(1A)[i] =







1, i ∈ A

0, otherwise
(1.12)

The following pathbreaking result in the theory of TU games was independently

gave by Bondareva [43] and L. Shapley [44].

Lemma 1 ([10]) A totally balanced TU game has a non-empty core set.
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Where forming the grand coalition is not guaranteed, the following notation is

applied.

Definition 9 A (not necessarily superadditive) TU game G for a family F of coali-

tions is totally balanced if, for every balanced collection of weights µA , and for any

A ∈ F ,
∑

A∈F

µA · ν (A) ≤ max
ψ∈Ψ

∑

A∈ψ

ν (A) (1.13)

So, if a TU game is totally balanced, then the core is non empty and therefore it is

a convenient solution concept on the class of totally balanced TU games. There is an

interesting relation between convex and balanced games.

Lemma 2 ([22]) A convex game is totally balanced, but the converse is not neces-

sarily true.

The other key feature of coalitional convex games is

Lemma 3 (L. Shapley [36]) The core set of a convex game is unique.

Now, we illustrate an intuitive example of power distribution based on core set

solution. This example is an extended form of the example established by [45, Ch.

12]. The network sketched in Fig. 1.1 wishes to allocate power among three players

K = {k1, k2, k3}, according to their will to cooperate with each other. A power of

1mW is provided to the network if three players decide to cooperate, or equivalently

if the grand coalition will form. If only one player refuses to cooperate, a power of

0.8mW will be assigned to the pair of cooperating nodes. The coalition game of

Fig. 1.1 is defined by:

ν (A) =



















0 if |A| = 1;

0.8 if |A| = 2;

1 if |A| = 3.

(1.14)

The players of each coalition will cooperate with each other. The player of a singleton

coalition will be isolated.

Each player receives a positive payoff if it decides to cooperate, whereas all players

receive zero if no agreement is bound. To divide the total payoff (power) in some

appropriate way, we rest on the core set definition. It is straightforward to show
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k1

k2k3

Fig. 1.1: The network allocates power among three players according to their will to co-

operate with each other. A selfish player receives zero, a pair of cooperative players receive

0.8mW, and the network supply 1mW to the grand coalition.

that the coalitional TU game defined by (1.14) is superadditive. From Eqs. 1.3 and

1.4, it is easy to show that TU game (1.14) is not convex (supermodular). To check

whether the core set of TU game (1.14) is empty or not, we resort to the balanced

solution. TU game (1.14) is not balanced even though assigning the balanced weights

as µA = 1 for singleton coalitions, and µA = 0 otherwise, inequality (1.10) holds. By

using the fact that there exists other balanced collection of weights in which µA = 1
2

for |A| = 2, and µA = 0 otherwise, the game is not balanced, and its core set may be

empty. Note that, this result does not mean that the core set of the game is surely

empty.

Now, we heuristically find a core apportionment studying various possible networks.

When there is no cooperation among players, the players are not provided with any

power. That is, F = [ { k1 } , { k2 } , { k3 } ] with payoff distribution:

uk1 = uk2 = uk3 = 0

If only one player decides to stay alone, the payoff 0.8 is equally divided between

the two cooperative players and the isolated player gets zero. That is, for instance,

F = [ { k1 , k2 } , { k3 } ] with payoff distribution:

{

uk3 = 0

uk1 = uk2 = 0.4

Now, we suppose a player, for example, k2 decides to cooperate with both k1 and

k3, but the two players k1 and k3 do not bind an agreement to mutually cooperate.

It is reasonable to suppose that the player k2 can act as a relay between k1 and k3
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and it must be provided more power. That is F = [ { k1 , k2 } , { k2 , k3 } ] with payoff

distribution:
{

uk1 = uk3 = 0.2

uk2 = 0.6

Finally, in the complete network each player receives the same payoff. That is F =

[ { k1, k2, k3 } ] with payoff distribution:

uk1 = uk2 = uk3 = 1/3

As can be easily seen, the above argument satisfies feasibility and non-blocking

conditions of the core set apportionment in Def. 6. It is worthwhile to note that the

core set definition does not imply an even division of the whole payoff across players.

Thus, it is clear that this game consists of multiple core sets. The power distribution

problem can also be solved by cooperative game-theoretic bargaining solutions; e.g.

Nash bargaining game and Auction [10].

1.3.1 On core stability

The goal of the network Fig. 1.1 is to allocate power among players in order to

stimulate all of them to cooperate. Obviously, each player tries to get the highest

possible payoff. Let us predict the behavior of the players after having known the

definition of the game. Suppose that the players k1 and k2 find an opportunity to

meet each other. Obviously, they quickly take advantage to cooperate and achieve

payoff distribution u = [ 0.4 , 0.4 , 0 ]. Then, it is profitable for player k1 to invite

player k3 to join and therefore, improving its own payoff from 0.4 to 0.6 and that

of player k3 from zero to 0.2 . On the other hand, this new agreement causes a

decreasing payoff of player k2 from 0.4 to 0.2 , and now the players k2 and k3 have

an incentive to cooperate and increase their proper payoff from 0.2 to 1/3. Note that

this agreement makes the player k1’s payoff dcrease from 0.6 to 1/3. The unfavorable

decision of player k2 would tempt player k1 to retaliate. A negotiation between k1 and

k3 to release cooperation with k2 results increasing their payoffs and boiling down k2’s

payoff to zero. The result of above argument concerns that the network is sustained

by only one pair cooperation under the threat of: “If you cooperate with the third

player, then I will do the same”.1 It is fairly clear that the players would seek to

1Two is cooperation, three is a crowd.
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cooperate only as pairs for the purpose of negotiation, and not cooperate in the grand

coalition framework, even though the game is superadditive. This is due to fact of

being superadditive but not balanced. The pairs can be changed as time goes on. In

fact, the core apportionment suffers the lack of “farsighted” (i.e., long-term) stability.

A coalition structure based on core set, is not adequately farsighted to avoid the

elusiveness of negotiation structure. At first sight, the core appears to be an extremely

myopic notion, requiring the stability of a proposed allocation to deviations or blocks

by coalitions, but not examining the stability of the deviations themselves. In general,

the stability requirement is that the outcome be immune to deviations of a certain

sort by coalitions. To provide the formal definition of farsighted stability, we need

some additional notation.

Definition 10 ( [46]) For u, u′ ∈ I (K , ν), u indirectly dominates u′, which is

denoted by u′ ≪ u, if there exist a finite sequence of imputations u′ = u1,u2, . . . ,

um = u and a finite sequence of nonempty coalitions A1,A2, . . . ,Am such that for

each j = 1, 2, . . . ,m − 1: i) by the deviation of Aj, the imputation of uj is replaced

to uj+1, and ii) uj [k] < u[k] for all k ∈ Aj.

Condition (i) says that each coalition Aj has the power to replace imputation uj by

imputation uj+1, and the condition (ii) says that each player in Aj strictly prefers

imputation u to imputation uj . It is clear that the indirect dominance relation

contains the direct dominance relation.

Definition 11 ( [46, 47]) Let G = (K , ν) be a TU game. A subset J of I (K , ν) is

a farsighted stable set if: i) for all u,u′ ∈ J , neither u≪ u′ nor u′ ≪ u, and ii) for

all u′ ∈ I (K , ν) \J there exists u ∈ J such that u′ ≪ u. Conditions i) and ii) are

called internal stability and external stability, respectively.

By internal stability, there is no imputation in J that is dominated by another

imputation in J . By external stability, an imputation outside a stable set J is

unlikely to be attained. Let us introduce three other different payoff distribution

concepts which capture foresight of the players.
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1.4 Shapley value

The Shapley value is an alternative solution for the payoff distribution in TU games.

The Shapley value has long been a central solution concept in coalitional game theory.

It was introduced by L. S. Shapley in the seminal paper [48] and it was seen as a

reasonable way of distributing the gains of cooperation, in a fair and unique way,

among the players in the game. In the Shapley solution, those who contribute more

to the groups that include them are paid more. Let us denote φk (ν) as the Shapley

value of player k in the TU game defined by ν. The surprising result due to Shapley

is the following theorem.

Theorem 1 There is a unique single-valued solution to TU games satisfying effi-

ciency, symmetry, additivity and dummy. It is the well-known Shapley value, the

function that assigns to each player k the payoff:

φk (ν) =
∑

∀A⊆K
s.t. k∈A

(|A| − 1)! · (K − |A|)!

K!

(

ν (A)− ν (A\{k})
)

(1.15)

The expression ν (A)− ν (A\{k}) is the marginal payoff of player k to the coalition

A. The Shapley value can be interpreted as the expected marginal contribution made

by a player to the value of a coalition, where the distribution of coalitions is such that

any ordering of the players is equally likely. The Shapley value can be interpreted as

follows [48]. Suppose the grand coalition of all players is being formed in a sequence

by including one player at a time. In general, the marginal contribution of a particular

player depends on its position in the sequence, which is determined randomly. There

areK! possible orderings of the players in total. Consider any coalitionA containing k

and observe that the probability that player k enters the coalition to find precisely the

players in A\{k} already there is (|A|−1)! · (K−|A|)!
K! . That is, out ofK! permutations of

K, there are (|A| − 1)! different orders of in which the players in A\{k} can preceed

k and (K − |A|)! orders in which the remaining K\A can follow. When leaving a

coalition A, a player k receives the amount by which his exclusion changes (increase

or decreases) the profits of the group, ν (A) − ν (A\{k}). That makes the Shapley

value exponentially hard to compute. Shapley characterized such value as the unique

solution that satisfies the following four axioms:

1. Efficiency: The payoffs must add up to ν (K) , which means that all the grand
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coalition surplus is allocated. That is:
∑

k∈K

φk (ν) = ν (K)

In the absence of superadditivity, instead we use: max
ψ∈Ψ

∑

A∈ψ

ν (A).

2. Symmetry: This axiom requires that the names of the players play no role in

determining the value. If two players are substitutes because they contribute the

same to each coalition, the solution should treat them equally. That is:

ν (A ∪ {k}) = ν (A ∪ {i}) =⇒ φk (ν) = φi (ν) .

3. Additivity: The solution to the sum of two TU games must be the sum of what it

awards to each of the two games. That is:

φk (ν + ω) = φk (ν) + φk (ω) ∀ k ∈ K.

4. Dummy player : The player k is dummy (null) if ν (A ∪ {k}) = ν (A) for all A

not containing k. If a player k is dummy, the solution should pay it nothing; i.e.

φk (ν) = 0.

The Shapley value is a feasible allocation, but need not be individually rational.

Whenever the TU game is superadditive, the Shapley value is feasible and individually

rational, but need not be in the core and hence can be directly dominated by another

imputation. Reference [36] shows that the Shapley value of a supermodular TU-game

is a core imputation, that is, the Shapley value is not dominated. For a superadditive

TU game The Shapley value is an internal and external stable imputation, and for

NTU games, it is formulated in [49, 50]. To make an example, let us calculate the

Shapley value of the players in the power distribution game of Fig. 1.1:

ν =



















0 { k1 } , { k2 } , { k3 };

0.8 { k1 , k2 } , { k1 , k3 } , { k2 , k3 };

1 { k1 , k2 , k3 }.

=⇒

φk1 (ν) = φk2 (ν) = φk3 (ν) =

0 +
1! . 1!

3!
( 0.8− 0 ) +

1! . 1!

3!
( 0.8− 0 ) +

2! . 0!

3!
( 1− 0.8 ) = 1/3.
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Young in [51] defines an equivalent definition for Shapley value. He withdraws the

additivity axiom, and instead, adds an axiom of marginality.

1. Marginality: If the marginal contribution to coalitions of a player in two games

is the same, then the the award of the player must be the same. That is, if:

ν (Ai)− ν (Ai\{k}) = ω (Aj)− ω (Aj\{k}) ∀ Ai ∈ ν and ∀ Aj ∈ ω ,

then φk (ν) = φk (ω).

Marginality is an idea with a strong tradition in economic theory. In Young’s

definition, marginality is assumed and additivity is dropped. Young in [51] shows

that the Shapley value is unique.

Theorem 2 (Young [51]) There exists a unique single-valued solution to TU games

satisfying efficiency, symmetry and marginality, and this solution is the Shapley value.

In the network engineering literature, S. Kim in [52] proposes an energy efficient

routing protocol based on the Shapley value. The concept of Shapley value is used by

Khouzani et al. [53] to achieve a fair aggregate cost of link sharing, among primary and

secondray users in a cognitive network. Using the Shapley value, a suitable network

resource sharing among multimedia users is fairly achievable, as Park et al. propose

in [54].

1.5 The kernel and nucleolus

Let G = (K, ν) be a coalitional game with transferable payoff. The excess of the

coalition A with respect to the payoff vector u ∈ RK is defined as

e (A , u) = ν (A) −
∑

k∈A

uk (1.16)

A positive excess can be interpreted as an incentive for a coalition to generate more

utility. Using the excess notion, the core apportionment in a TU game can be redefined

as:
{

u ∈ RK : e (K , u) = 0 , and e (A , u) ≤ 0 ∀ A ⊂ K
}

(1.17)

The maximum excess of player k against i is defined as

ski (u) = max { e (A , u) | A ⊂ K, k ∈ A, i ∈ K\A } (1.18)
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If player k departs from u, the most it can hope to gain (the least to lose) without

the consent of player i is the amount of maximum excess. Extensions of the excess

for NTU games is formalized in [55].

As defined by Osborne and Rubinstein [10, Ch. 14], a coalition Ai is an objection

of k against i to u, if Ai includes k but not i and ui > ν ({i}). Equivalently, Ai is

a coalition that contains k, excludes i and which gains too little. A coalition Aj is a

counter-objection to the objection Ai of k against i, if Aj includes i but not k and

e (Aj , u)≥ e (Ai , u). Equivalently, Aj is a coalition that contains i and excludes k

and that gains even less. Objections and counter-objections are exchanged between

members of the same coalition in Ai.

The idea captured by the kernel is that if at a non empty imputation u the maximum

excess of player k against any other player i is less than the maximum excess of player

i against the player k, then player k should get less. Of course, the players cannot get

less than their individual worths if u is an imputation. The definition of the kernel

follows:

Definition 12 The kernel is the set of all imputations u with the property that for

every objection Ai of any player k against any other player i to u there is a counter-

objection of i to Ai such that:

a) ski (u) = sik (u) ; or

b) ski (u) < sik (u) and uk = ν ({k}) ; or

c) ski (u) > sik (u) and ui = ν ({i}).

The kernel is the set of imputations u such that for any coalition Ai, for each

objection Aj of a user k ∈ Ai over any other member i ∈ Ai, there is a counter-

objection of i to Aj . The kernel is contained in the (nonempty) core in any assignment

game ν [56, Th. 1]. In Fig. 1.1, the unique kernel element is the equal split u =

[ 1/3 , 1/3 , 1/3 ], otherwise for the single player coalition objection of the player with

the minimum payoff, there is no any counter-objection.

The last type of a stable imputation we will study is the nucleolus. With the

nucleolus no confusion regarding the player set can arise. The basic motivation behind

the nucleolus is that one can provide an allocation that minimizes the excess of the

coalitions in a given coalitional game G = (K, ν). For a TU game G = (K, ν) and the
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payoff vector u ∈ RK , let us denote E (u) = [· · · ≥ e (A , u) ≥ · · · : ∅ 6= A 6= K] as

a 2K−2 dimensional vector whose components are the values of the excess function

for all A ⊂ K, arranged in a non-increasing order. The nucleolus of a game is the

imputation which minimizes the excess with respect to the lexicographic order 2 over

the set of imputations. The nucleolus of G with respect to I (K , ν) is given by:

{u ∈ I (K , ν) | E (u) �lex E (u′) ∀ u′ ∈ I (K , ν)} (1.19)

The definition of the nucleolus of a coalitional game in characteristic function form

entails comparisons between vectors of exponential length. Thus, if one attempts to

compute the nucleolus by simply following its definition, it would take an exponential

time. In the network engineering literature, Han and Poor in [57] apply the Shapley

value, excess and nucleolus solutions to study a possible cooperative transmission

among intermediate nodes to help relay the information of wireless users.

This defining property makes the nucleolus appealing as a fair single-valued solution.

It is easy to see that, whenever the core of a game is nonempty, the nucleolus lies in it

[22]. Moreover, the nucleolus always belongs to the kernel and satisfies the symmetry

and dummy axioms of Shapley: dummy players receive zero payoffs. If a null player is

removed from the game, the payoff allocation of the remaining players is uninfluenced

by its departure. Because of these desirable properties, the nucleolus solution has

found a lot of applications in cost sharing and resource allocation as Maschler in [12]

reports. However, the nucleolus possesses certain features that makes it less agreeable.

The original definition treats the excesses of any two coalitions as equally important,

regardless of coalition sizes and coalition composition. Some unappealing features

of utility distribution, derived with the nucleolus are listed in [51]. For instance, the

nucleolus lacks many monotonicity properties. That is, if a game changes so that some

player’s contribution to all coalitions increases then the player’s allocation should not

decrease. Monotonicity states that as the underlying data of game change, the utility

must change in a parallel fashion.

2The lexicographic order between two vectors u and u′ is defined by u �lex u′, if there exists an

index k such that u[l] = u
′[l] for all l < k, and u[k] < u

′[k].
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1.6 Cooperative Nash equilibria

Coalitional games aim at identifying the best coalitions of the agents and a fair

distribution of the payoff among the agents. The classic core solution is an extension

of the Nash equilibrium, since the coalitions bind agreements of agents with each other

and earns a vector value rather than a real number. In [58, Sec. 7.6] it is shown that

the core set of an underlying coalitional game, if it exists, asymptotically coincides

with the set of Nash equilibria of the repeated game, in the long run. The result of the

Nash equilibrium is not always a satisfactory outcome for an external observer (e.g.,

prisoner’s dilemma game). R. Aumann3 in [59] and Bernheim et al. in [60] introduce

a stronger notion of Nash equilibria based on coalitional game theory. First, let us

review the definition of the Nash equilibrium where each pure strategy in a static

game is presented as a coalition in a coalitional game. Thus, each player belongs to

only one coalition.

Definition 13 A pure strategy (coalition) combination ψ = [A1,A2, . . . ,Am] wherein

Ai
⋂

Aj 6=i=∅,
⋃m
i=1Ai = K and a payoff distribution u = [u1, . . . , uK ] is a pure Nash

equilibrium if there does not exist a player k ∈ K whose unilateral deviation to a

different coalition (pure strategy) yields a new distribution u′ = [u′1, . . . , u
′
K ] such that

u′k > uk.

In other words, in a Nash equilibrium no agent is motivated to deviate from its

coalition (strategy) given that the others do not deviate. As an example, we study

the forwarder’s dilemma game [14] presented in Fig. 1.2. This game is intended to

represent a basic wireless relay operation between two different wireless terminals.

These two agents, represented by players k1 and k2, are supposed to operate a direct

link that enables them to communicate without intermediaries. Each players wants

to send a packet to its destination, d1 and d2 respectively, in each time step using

the other player as a forwarder. We assume that each forwarding has a energy cost

0 < c≪ 1. If player k1 forwards (F ) the player’s k2 packet, player k2 gets a reward 1

and vice versa. Each player’s utility is its reward minus the cost. Each player is allured

to drop (D) the received packet for saving energy. The strategic form of this game

is depicted in Tab. 1.1. In the cooperative representation of the forwarder’s dilemma

3Robert Aumann has received in 2005 the Nobel prize in economy for his contributions to game

theory, together with Thomas Schelling.
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d1k1d2 k2

Fig. 1.2: The network scenario of the forwarder’s dilemma game.

k1

k2

1− c , 1− c −c , 1

1 , −c 0 , 0

F

F

D

D

u = [uk1 , uk2 ]

Tab. 1.1: The strategic form in the forwarder’s dilemma game. In each cell, the first value

is the payoff of player k1, whereas the second is that of k2.

game there are two coalitions ψ = [AF , AD] and each player in K = {k1 , k2} must

choose one coalition. For instance, ψ = [AF = {k1 , k2} , AD = ∅] is equivalent to the

strategy profile (F, F ) and ψ = [AF ={k2},AD={k1}] corresponds to the strategy

profile (D, F ), and so on.

Unilateral deviation of player k1 from ψ = [AF = {k1, k2} , AD = ∅] to the pro-

file ψ = [AF = {k2}, AD = {k1}] increases its own payoff, and therefore the pure

strategy profile (F, F ) is not a Nash equilibrium point. The same applies to the

departure of player k2 from ψ = [AF = {k1, k2} , AD = ∅] to the pure strategy

ψ = [AF = {k1} , AD = {k2}]. We can easily check the different combinations of ψ =

[AF = {k1}, AD = {k2}], ψ = [AF = {k2}, AD = {k1}], and finally ψ = [AF = ∅,

AD = {k1, k2}]. The unilateral move of user k1 (resp. k2) from the strategy pro-

file ψ = [AF = ∅, AD = {k1, k2}] to ψ = [AF = {k1}, AD = {k2}] (resp. to ψ =

[AF = {k2}, AD = {k1}]), does not yield any benefit. This game has a unique Nash

equilibrium at the pure joint strategy ψ = [AF = ∅,AD = {k1, k2}] with unsatisfac-

tory payoff distribution u = [ 0 , 0 ]. At the Nash equilibrium point either players
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choose the “competetive” and “egoistic” strategy D.

In many games, there are opportunities for joint deviations that are mutually ben-

eficial for a subset of players. This led Aumann [59] to propose the idea of strong

Nash equilibrium which ensures a more restrictive stability than the conventional

Nash equilibrium. Strong Nash equilibrium reflects the unprofitability of coalition

deviations. It is a strategy profile that is stable against deviations not only by single

players but by all coalitions of players. A strong equilibrium is defined as a strategic

profile for which no subset of players has a joint deviation that strictly benefits all of

them, while all other players (in the subset) are expected to maintain their equilibrium

strategies.

Definition 14 A strategy (coalition) combination ψ = [A1, . . . ,Am] where Ai
⋂

Aj 6=i =

∅ and
⋃m
i=1Ai = K with payoff distribution u = [u1, . . . , uK ] is a strong Nash

equilibrium if there do not exist a coalition Ai ∈ ψ whose deviation yields a new

distribution u′ = [u′1, . . . , u
′
K ] such that u′k ≥ uk ∀ k ∈ Ai and ∃ k ∈ Ai such that

u′k > uk.

This definition of strong equilibrium is actually slightly different from those of [59]

and [60]. Def. 14 allows a coalition to deviate from a strategy profile that strictly

increases the payoffs of some of its members without decreasing those of the other

members, whereas the original definition allows only deviations that strictly increase

the payoffs of all members of a deviating coalition. We note that if a game implements

a strategy for strong equilibrium, it does not necessarily implement it for Nash

equilibrium. Both interpretations of strong Nash equilibrium are prominent in the

literature, and in most games the two definitions lead to the same sets of strong Nash

equilibria; however, the one that we use here is slightly more appealing in the context

of network-formation games (see, e.g., [61]). Network formation games involve a

number of independent players that interact with each other in order to form a suited

graph that connects them.

Now, we restudy the forwarder’s dilemma game and try to find strong Nash equilibria

profile. We will show that the game possesses strong Nash equilibria which are not

equivalent to the Nash equilibrium. We pick different coalition combination and test

whether there exist any coalition whose deviation satisfies its own members or not.
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1. ψ = [AF = {k1} , AD = {k2}] is not strong Nash equilibrium because the devia-

tion of AF increases its member’s payoff.

2. ψ = [AF = {k2} , AD = {k1}] is not strong Nash equilibrium because the devia-

tion of AF renders its member’s payoff higher.

3. ψ = [AF = ∅ , AD = {k1 , k2}] is not strong Nash equilibrium because the devia-

tion of both players from AD to AF increases payoff distribution.

4. ψ = [AF = {k1 , k2} , AD = ∅] is strong Nash equilibrium because the departure

of one or both players from AF to AD decreses at least one player’s payoff.

The unique strong Nash equilibrium is the strategy profile (F , F ) which corresponds

to coalition set of ψ = [AF = {k1 , k2} , AD = ∅], since no deviation can better off the

payoff distribution vector u = [ 1− c , 1− c ]. In fact, at the strong Nash equilibrium,

both players choose the “cooperative” and “altruistic” strategy of F in spite of the

energy transmission cost.

In network problems, Zhong et al. show that using strong Nash equilibria con-

text makes possible a collusion-resistant routing in non-cooperative wireless ad hoc

networks [62]. Altman et al. in [63] examine a dynamic random access game with

orthogonal power constraints in which the probability of transmission of a terminal

in each slot depends on the amount of energy left prior to that slot. They show the

existence of a strong Nash equilibrium point.

Conventional Nash equilibrium is concerned with the possibilities of only one step

deviation by any player. The notion of strong Nash equilibrium requires an agreement

not be subject to an improving (one step) deviation by any coalition of players given

that all others coalitions be inert. This notion is stronger than Nash equilibrium, but

it is not resistant to further deviation by sub-coalitions (the subsets of a coalition).

Recognizing this problem, Bernheim et al. [60] introduced the notion of coalition-proof

Nash equilibrium, which requires only that an agreement be immune to improving

deviations which are self-enforcing. The definition of a self-enforcing deviation is

recursive.

Definition 15 For a singleton coalition, a deviation is self-enforcing if it maximizes

the player’s payoff. For a coalition of more than one player, a deviation is self-

enforcing if: i) it is profitable for all its members, and ii) if there is no further self-

enforcing and improving deviation available to a proper sub-coalition of players.
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Generally, a deviation by a coalition is self-enforcing if no sub-coalition has an

incentive to initiate a new deviation. In the forwarder’s dilemma game, the Nash

equilibria is upset by a deviation of the coalition of both players k1 and k2. At the

pure strategy Nash equilibrium where each player choose strategyD, they each obtain

a payoff of 0. By jointly deviating (both choosing F instead) k1 and k2 each earn a

payoff 1 − c. This deviation is not self-enforcing even thought the movement to the

pure strategy ψ = [AF = {k1 , k2} , AD = ∅] is profitable for both players. At strong

Nash pure strategy (F , F ), the player k1 tempts to move to strategy (D , F ) to get

more payoff, and player k2 to that (F , D). Thus, the strong Nash equilibrium is not

immune against self-enforceability.

This notion of self-enforceability provides a useful means of distinguishing coalitional

deviations that are viable from those that are not resistant to further deviations. With

the concept of self-enforceability, our notion of coalition-proofness is easily formulated.

Definition 16 In a one player game, a strategy is a coalition-proof Nash equilibrium

if it maximizes the player utility. In a game with more than one player, a combination

strategy is coalition-proof Nash equilibrium, if no sub-coalition has a self-enforcing

deviation that makes all its members better off.

This solution concept requires that there is no sub-coalition that can make a mu-

tually beneficial deviation (keeping the strategies of non-members fixed) in a way

that the deviation itself is stable according to the same criterion. In the forwarder’s

dilemma game, the strong Nash equilibrium profile (F , F ) is not equivalent to coalition-

proof Nash equilibrium. This is due to the fact that, the deviation of {k1} ⊂ AF =

{k1 , k2} to the strategy (D , F ) increases payoff of k1. In this game there does not

exist any coalition-proof Nash equilibrium, due to the fact that all pure strategies

have at least one self-enforcing deviation.

Bernheim et al. [60] note that for 2-person games the set of coalition-proof equilibria

coincides with the set of Nash equilibria that are not Pareto dominated by any other

Nash equilibrium. However in n-person games (K ≥ 3) the equilibrium concepts are

independent. At coalition-proof Nash equilibrium, the deviations are restricted to

be stable themselves against further deviations by sub-coalitions. Moldovanu in [64]

discusses the situations of a 3-player game, wherein coalition-proof Nash equilibrium

is equivalent to the core set. The conditions under which the set of coalition-proof
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Nash equilibria coincides with the set of strong Nash equilibria, are formulated by H.

Konishi et al. in [65].

In the network engineering literature, Félegyházi et al. in [66] apply the concept of

coalition-proof Nash equilibria to achieve a stable and fair channel allocation solution

in a competitive multi-radio multi-channel wireless cognitive network. Gao et al.

investigate multi-radio multi-channel allocation in multi-hop ad-hoc networks [67].

To better understand the concepts of self-enforceability and coalition-proof Nash

equilibrium, let us introduce an intuitive subcarrier allocation game in an OFDMA

network. Let us focus on three wireless transmitters K = {k1, k2, k3} and an OFDMA

base-station with two subcarriers N = {1 , 2}. Every subcarrier n ∈ N has a

frequency spacing ∆f . Each user k ∈ K experiences a Gaussian complex-valued

channel gain |Hkn|
2
on the nth subcarrier to the base station. We assume that each

subcarrier can be shared among more than one transmitter. The payoff of each player

(transmitter) is defined as the achieved Shannon channel capacity. Each user k ∈ K is

allowed to either spend a certain power pk on only one choosen subcarrier, or equally

divide it among both subcarriers. In the pure strategy a1, player k transmits with the

maximum power pk on subcarrier n = 1 and does not transmit any information on

subcarrier n = 2. The strategy a2 is contrary to a1, i.e. exclusively transmitting on

subcarrier n = 2 with maximum power. Finally strategy a3 equally divides its power

on two subcarriers and exploits transmitting on both tones. The terminal k achieves

a channel capacity:

Ck =
∑

n∈N

Ckn (1.20)

where Ckn is the Shannon capacity achieved by user k on the nth subcarrier:

Ckn = ∆f · log2

(

1 +
|Hkn|

2
pkn

∑

k 6=i∈K |Hin|
2
pin + σ2

w

)

(1.21)

wherin pkn represents the power allocated by terminal k over the nth subcarrier

and where the interference term
∑

k 6=i∈K |Hin|
2
pin is appriximated with a Gaussian

random variable of equal mean and variance. Chooisng the strategy a1 means selecting

pk1 = pk and pk2 = 0. For the strategy a2, pk1 = 0 and pk2 = pk, and for strategy a3,

pk1=pk2=
pk
2
. The parameter σ2

w is the power of the additive white Gaussian noise

(AWGN). Note that, in an OFDMA system, there is no interference between adjacent

subcarriers. Hence, Ckn considers only intra-subcarrier noise, that occurs when the

same subcarrier is shared by more terminals.
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a1a1
a1

a1 a2a2

a2

a2 a3a3

a3

a3

k1

k2k2k2

k3 (a1) k3 (a2) k3 (a3)

8, 5, 6 11, 11, 7 9, 11, 6

12, 8, 6 8, 7, 10 9, 11, 8

15, 6, 6 14, 8, 8 13, 10, 7

12, 7, 10 15, 10, 10 11, 10, 9

11, 11, 8 7, 6, 6 8, 11, 7

14, 8, 9 15, 6, 7 13, 9, 7

9, 5, 10 12, 9, 10 9, 10, 9

13, 9, 11 8, 6, 11 8, 10, 10

14, 6, 10 14, 7, 10 12, 9, 10

u = [uk1 , uk2 , uk3 ]

Tab. 1.2: Subcarrier allocation in OFDMA network game in strategic form. The three

strategies for three players k1, k2 and k3 are: Transmitting with the maximum power only on

subcarrier number 1 (a1), transmitting with the maximum power only on subcarrier number

2 (a2) and equal division of the maximum power among both subcarriers (a3). The player’s

payoff is the achieved channel capacity in kb/s.

Tab. 1.2 reports the simulation results obtained after 100 random realizations of

a network with terminals distributed at a distance between 3m and 50m from the

base-station. In the pure strategy matrix form of Tab. 1.2, player k1 chooses the

row, player k2 chooses the column, and player k3 chooses the matrix. Each payoff

reports the (rounded) value of the achieved Shannon channel capacity in kb/s. We

consider the following parameters for our simulations: the maximum power of each

terminal k is pk = 10mW; the power of the ambient AWGN noise on each subcarrier

is σ2
w = 100 pW, and finally the carrier spacing is ∆f = 10

1024 MHz.4 The path

coefficients |Hkn|
2, corresponding to the frequency response of the multipath wireless

channel, are computed using the 24-tap ITU modified vehicular-B channel model

adopted by the IEEE 802.16m standard [68].

It is easy to show that the (pure) Nash equilibrium strategies of Tab. 1.2 are

(a3 , a3 , a3) equivalent to ψ = [Aa1 = ∅ , Aa2 = ∅ , Aa3 = K ] and (a1 , a2 , a2) to ψ =

[Aa1 = { k1 } , Aa2 = { k2 , k3 } , Aa3 = ∅]. The Nash equilibrium strategy (a3 , a3 , a3)

is neither coalition-proof nor strong. With deviation of the coalition Aa3 to the

strategy profile (a2 , a1 , a3) all players profit more with payoff distribution [ 13, 9, 11 ].

This change is no longer valid since, there exists a self-enforceability for player k1 to

transit to the strategy profile (a3 , a1 , a3). This transition is not favorable for players

4This is the carrier spacing of each subcarrier at a base station with 10MHz bandwidth and 1024

subcarriers.
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k2 and k3. The player k2 is tempted to transit to the Nash equilibrium point to earn a

higher payoff. Whereas, the Nash equilibrium strategy profile (a1 , a2 , a2) with payoff

vector [ 15, 10, 10 ] is a strong and coalition-proof Nash equilibrium. This is due to

the fact that, in ψ = [Aa1 = { k1 }, Aa2 = { k2 , k3 }, Aa3 = ∅] there is no deviation

and self-enforceability that can improve the payoff distribution. As can be seen, all

players prefer to stay at the coalition-proof Nash equilibrium rather than the pure

Nash equilibrium strategy (a3 , a3 , a3). Note that, a strong or coalition-proof Nash

equilibrium does not necessarily coincide with a Nash equilibrium strategy profile,

and the result of Tab. 1.2 is an exception.

In general, the existence of a pure cooperative or non-cooperative Nash equilibrium

for subcarrier allocation game in OFDMA network is not guaranteed. Given different

parameters approaches to quite different channel capacities and this may results a

matrix form without any type of Nash equilibrium. There even might exist a Nash

equilibrium which is Pareto-dominated by another strategy profile. This shows that

in OFDMA networks, an appropriate resource allocation technique is needed [26].

1.7 Coordinated equilibrium

The most common solution concept in (non-cooperative) game theory, Nash equilib-

rium, assumes that players take mixed actions independently of each other. Coop-

erative games allow players to coordinate each other to find out possible equilibria

and (joint) optimizations that the players can perform on their own. Unlike evolu-

tionary games [10, Ch. 3], in coordinated games the interaction between players

is implemented once, among all players by a central authority, to increase their

throughput. The notion of correlated equilibrium was introduced by R. Aumann [69].

Correlated equilibria are defined in a context where there is an intermediator who

sends random (private or public) signals to the players. An intermediator needs

not have any intelligence or knowledge of the game. These signals allow players

to coordinate their actions, and, in particular, to perform joint randomization over

strategies. “Correlated strategies are familiar from cooperative game theory, but their

applications in non-cooperative games are less understood”, says R. Auman [69].

This is because, the players of a coordination game, are not totally isolated and

without a communication between them, achieving to coordinated strategy profile is

not possible.
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replacemen

k1

k2

0 , 0 0 , 1− c

1− c , 0 −c , −c

W

W

A

A

u = [uk1 , uk2 ]

Tab. 1.3: The multiple access game in strategic form. The two moves for each player are:

access (A) or wait (W ).

Let us start with an intuitive example. Consider the multiple access game [14, Table

III] described in Tab. 1.3. The players k1 and k2 wish to send some packets to their

receivers sharing a common resource, i.e., the wireless medium. They are in the

sight of each other and accordingly, they interferer if transmitting at the same time.

The users have two possible pure strategies: access (A) and wait (W ). In this game

two identical transmitters must simultaneously decide whether to access to channel

or wait. The transmission of each packet has an energy cost of 0 < c ≪ 1. Each

player earns a payoff 1 if it succeeds to transmit its packet without collision with the

other. Waiting does not bring neither cost nor reward for the player. Each player’s

utility is its reward minus the cost. This game has three Nash equilibria: (A , W ),

(W , A) and a mixed strategy Nash equilibrium where each player transmits with the

probability 1 − c [14, Sec. 2.3, 2.4]. The utilities of Nash equilibria strategies are:

(1 − c , 0), (0 , 1 − c) and (0 , 0), respectively. It is clear that the mixed strategy is

not resistant to an improving deviation. In the following, we give the possibility of

preplay communication to achieve a stable Nash equilibria.

In the game with “cheap conversation”, each player simultaneously and publicly

announces whether it decides to access or wait. Following the announcements each

player makes its choice. Suppose the players agree to participate to the game binding

the following agreement: each player announces A with probability 3
4 . If the profile

of announcements is either (A , W ) or (W , A), then each player plays its own an-

nouncement. Otherwise, each player plays A with probability 1
2 . Note that no further
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replacemen

k1

k2

10+32c
64

11−16c
32

11−16c
32

10+32c
64

W

W

A

A

u = [uk1 = uk2 ]

Tab. 1.4: The strategic form matrix of the multiple access game with preplay agreement.

communication is possible. The use of joint deviation requires the unanimity of all

members of the deviating coalition. A player agrees to be a part of a joint deviation

if given its own information the deviation is profitable. Thus, if a joint deviation is

used, it is common knowledge that each deviator believes that deviation is profitable.

This tradeoff results in an expected payoff for each player of 11−16c
32 > 0, while in

the mixed Nash equilibrium of the original game each player has an expected payoff

of 0. In this coordinated Nash equilibrium of the game, the players effectively play

the correlated strategy [69, 70] (of the original game) given in Tab. 1.4, in order to

face a higher utility in strategy profiles (A , W ) and (W , A). It is important to note

that, this joint probability distribution is not the product of its marginal distributions

and therefore cannot be achieved from a mixed strategy profile of the game without

correlation among players.

As can be seen, the proposed correlated deviation from the mixed strategy equi-

librium makes both players better off. Note that the players are allowed to bind an

agreement only on the space of feasible outcomes. In the correlated multiple access

game the outcome is feasible since the correlated results are in the range between the

smallest and highest possible payoff. In fact, the set of correlated equilibria contains

those equilibria from which no coalition has a self-enforcing deviation making all

members better off.

Let us describe a more complicated correlated equilibrium. We study the near-far

effect game established by G. Bacci et al. in [71, Fig. 6]. The basic idea of near-
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k1
(near player)

k2
(far player)

AP

Fig. 1.3: The network scenario in the near-far effect game.

far effect game scheme is depicted in Fig. 1.3. Two wireless terminals k1 and k2,

are placed close to and far from a certain access point (AP), respectively, in a code

division multiple access (CDMA) network with high SINR regime. The strategy of

each player is either to transmit with the maximum power p, or with a weakened level

ηp, where 0 < η < 1. Due to the interference at the AP, the throughput (the amount of

delivered information) of each player depends on the strategies chosen by both players.

Transmitting with a higher power increases the BER, and this results decreasing the

throughput. Each player is rewarded u if it successfully delivers its packet and a

reduced δu, if it delivers a corrupted version of the packet, where 0 < η < δ < 1. If

the near player k1 decides to transmit with the power p, the farther player k2 will not

be able to deliver any information to the AP.

This results in no benefit for k2 and causes a power consumption cost equal to −ηc if

k2 chooses strategy ηp and −c otherwise, where c≪ u. Obviously, transmitting with

power p for k1, results in a complete information delivery. This concerns a payoff equal

to reward minus power consumption cost, i.e. u − c, irrespective of the k2 strategy.

The packets of player k2 are successfully delivered if it chooses the maximum power p,

and player k1 that reduced ηp. On the other hand, if both players decide to transmit

with reduced power ηp, the near player takes the payoff δu−ηc > 0, whilst the farther

player k2 will not successfully deliver any packet and suffers only a power cost −ηc.

The payoff matrix of the near-far effect game is depicted in Tab. 1.5. As can be

seen, the unique pure strategy of this game is represented by the strategy (p , ηp)

with benefits u− c and −ηc for k1 and k2, respectively. This means that, at the Nash

equilibrium point, the farther player is not able to send any information. On the

other hand, the Pareto optimal5 solution of the game are the strategies (p , ηp) and

5Pareto optimal is named after Vilfredo Pareto (1848-1923). He was an Italian engineer and
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replacemen

k1

k2

δu− ηc , −ηc δu− ηc , δu− c

u− c , −ηc u− c , −c

ηp

ηp

p

p

u = [uk1 , uk2 ]

Tab. 1.5: Payoff matrix for the near-far effect game with power control and variable

throughput.

(ηp , p). This is an unsatisfactory outcome for the far player k2, while the near player

k1 takes the highest possible payoff. Now, let us find the mixed strategy of the game.

We denote α1 the probability with which the near player k1 decides to transmit with

the maximum power p and α2 the same probability for the far player k2. The payoffs

of the players k1 and k2 are represented by:

uk1 = α1

(

(1− δ)u − (1− η) c
)

+ (δu− ηc) (1.22a)

uk2 = α2

(

(1− α1) δu − (1− η) c
)

− ηc (1.22b)

Both players want to maximize their own payoff. As can be seen, uk1 takes its

maximum value u− c with α1 = 1. On the other hand, with α1 = 1, the far player k2

earns a negative payoff whatever α2 ∈ [0, 1]. Instead, with α1 = 0 the near player k1

gains δu− ηc, and the player k2 setting up α2 = 1 achieves the payoff δu−c. Thus, the

best values for α1 and α2 are 0 and 1, respectively. The conclusion os that the mixed

strategy is equivalent to the pure strategy (ηp , p) with payoff u = [ δu− ηc , δu− c ].

In this game there is no (totally) mixed strategy and that is equal to the one of the

pure Pareto optimal points.

The near player earns the highest possible payoff at the Nash equilibrium, hence, it

does not leave this strategy profile. The highest possible payoff for the far player is

on the contrary δu − c. We show that an appropriate agreement among players can

economist and he made several important contributions to economics.
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k1

k2

0 , 0 0 , 0

κ , κ
(δu− c)

(u− c)
1− κ , (1− κ)

(δu− c)

(u− c)

ηp

ηp

p

p

u = [uk1 , uk2 ] normalized to 1

Tab. 1.6: The strategic form matrix of the near-far effect game with preplay agreement, and

with κ =
δu

(1− η) c
.

satisfy both of them at correlated equilibrium. Players k1 and k2 can guarantee an

expected payoff of u = [u− c , δu− c ] by playing the correlated strategy profile:

δu

(1− η) c
· (p , ηp) +

(

1−
δu

(1− η) c

)

· (p , p) (1.23)

This is a plausible end, since both players earn their own highest possible payoff.

The correlated strategy (1.23) is derived from the fact that, picking any real number

κ in the expression κ · (p , ηp) + (1− κ) · (p , p) is indifferent for the near player k1,

since it gets its own highest possible payoff, u − c as well. To satisfy the far player

k2, it is enough to solve the following equation for uk2 :

κ · (p , ηp) + (1− κ) · (p , p) = [u− c , δu− c ] (1.24)

Supposing κ =
δu

(1− η) c
< 1, the correlated strategy (1.23) means that the near

player always transmits at its highest power level p, and the far player transmits at

that reduced ηp with probability
δu

(1− η) c
, and the maximum power p otherwise.

Actually, the near and far players effectively play the matrix form game of Tab. 1.6.

Bonneau et al. in [72] show that the coordination among mobile users can signifi-

cantly increase the performance of access to a common channel in ALOHA setting.

A coordination mechanism is also considered by Bonneau et al. in [73] to achieve

the optimal power allocation in a wireless network wherein each terminal knows only
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its own channel state. The concept of correlated equilibrium is also introduced in

a multi-user interference channel context in [74]. Different types of coordination is

deeply discussed and widely used in [70].

1.8 Dynamic learning

Until now, we have realized that the Nash equilibrium suffers from the lack of far-

sighted stability, i.e., the relative results can be unsatisfactory and because of this

any player can have incentive to improve its outcome by moving to another strategy.

The existence of the strong and coalition-proof Nash equilibrium is not guaranteed

and even if so, when the number of pure strategies is large, finding such solutions

is very complicated. The challenge of finding a profitable accord among players is

persistent in coordinated equilibria solution. In this section, the main question we

seek an answer to is: How can the players be led to a stable joint pure strategy gaining

an acceptable payoff? This question is important, even if multiple equilibrium points

with the same payoff have been identified, since each player may autonomously decide

to stay in a different strategy.

Dynamic learning [75] has been widely used in order to get rid of the anarchy

derived from the conflicts between selfish decisions. Learning is a joint adaptive

process for agents to converge and to get the best final response. The agents either

have a common interest like a team work, or each agent has its own greedy goal.

Generally, there are three learning process types: individual learning, joint-action

learning and stochastic learning. In individual learning process, the independent

agents cannot observe one another’s actions; i.e. for each players the opponents

are passive agents. Instead, during joint-action learning process, the notion of the

“optimality” is improved by adding the observation of other concurrent learners to

accomplish a stable optimal solution. The stochastic learning framework, having

Markovian property and a stochastic inter-state transition rule, enables each player

to observe the opponents’ actions history.

In the network engineering literature, Schaar et al. in [76] introduce a stochastic

learning process among autonomous wireless agents for the optimization of dynamic

spectrum access given QoS of multimedia applications. A reconfigurable multi-hop

wireless network is studied by Shiang et al. [77] wherein a decentralized stochastic

learning process optimizes the transmission decisions of nodes aimed at supporting
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mission-critical applications. In [78], Lin et al. propose a reinforcement learning

among agents of a multi-hop wireless network based on Markov decision process.

Each terminal autonomously adjust transmission power in order to maximize the

network utility, in a dynamic delay-sensitive environment.

Here, we study a well-known individual reinforcement learning task, namely the so-

called Q-Learning [79]. We assume a set of players K, and each player k has a finite

set of individual actions Ak. Each agent k individually chooses a pure joint action

(strategy) to be performed ak = (a1, . . . , aK) ∈ A1× . . .×AK from the available

joint strategy space. Q-learning enables the individual learners to achieve optimal

coordination from repeated trials. Q-learning introduces a certain value Q as the

immediate reward obtained after having moved to the new strategy. Each player

individually updates a Q value for each of its actions. In each time step and after

having selected the new joint action ak, the values of Qtk is individually updated. In

particular, the value of Qt+1
k (ak) estimates the utility of performing the joint strategy

ak for user k. In the seminal paper of Watkins et al. [79], the Q value is updated by

the following recursion:

Qt+1
k (ak) ←−

(

1− f t+1
k

)

·Qtk(ak) + f t+1
k ·

(

uk(ak) + δk ·Q
t
k(ak)

)

(1.25)

where δk ∈ (0, 1) is a discount factor and uk(ak) is a reward of the joint action ak

for the respective player, and fk is a function of t which is related to “learning rate”.

Watkins et al. showed that given bounded rewards, learning rate 0 ≤ f tk < 1, and

∞
∑

t=1

f tk =∞ , and

∞
∑

t=1

(

f tk
)2
<∞ ∀k ∈ K (1.26)

all Qk values updating (1.25) converge a common joint pure strategy with probability

one. The reward uk is defined by a learning policy and it is not necessarily equal

to the payoff defined by the game. The learning policy is greedy with respect to

the Q value, i.e. the particular action ak will be selected in long-run if it makes Q

value better off. Q-learning is guaranteed to converge to an optimal and stable joint

strategy regardless of the action selection policy. Q-learning is not applicable where

the strategy space is continuous or the number of strategies is not finite. Claus et

al. [80] establish a simplified version of the Q recursion (1.25) which updates the Q

value by the following recursion:

Qt+1
k (ak) ←− Qtk(ak) + δk ·

(

uk(ak) − Qtk(ak)
)

(1.27)
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For the sake of simplicity, we apply the Q recursion (1.27). In a multi learners

scenario, a major challenge of Q-learning is strategy selection. When the number of

strategies and players are large, the number of time step to achieve an optimal joint

action exponentially increases. It is fairly clear that the best manner is to start with

“exploration” of different strategies and then focus on “exploitation” of the strategies

with the best value of Q. Kaelbling et al. in [81] recall Boltzmann function as an

efficient strategy selection to strike a balance between exploration and exploitation.

Boltzmann functions define a probability distribution among different joint actions.

At each time step t+1, every player will individually select the joint strategy ak with

the probability p(ak):

p(ak) =
eEk(ak) / T

∑

∀ ai∈ ×
∀k∈K

Ak

eEk(ai) / T
(1.28)

The Ek(ak) = (δk)
t·uk(ak) is the discounted reward for taking action ak by the user k

in time step t. The T is a function which provides a randomness component to control

exploration and exploitation of the actions. Practically, the temperature function T is

a decreasing function over time to decrease the exploration and increase exploitation.

High values of T yields a small p(ak) value and this encourages exploration, whereas a

low T makes Q(ak) more important, and this encourages exploitation. At time t = 0,

each player randomly chooses a strategy and assign a random number to its own Q

value. At time step t, after having been updated funtion T , each concurrent agents’

experience consists of a sequence of stages [80]:

1) Computing p(ak) for all ak ∈ ×
∀k∈K

Ak,

2) Generating a random number ξtk uniformly distributed in [0, 1], and then choosing

the best joint strategy ak, i.e. the highest p(ak) such that ξtk ≥ p(ak). If ξ
t
k < p(ak)

for all ak ∈ ×
∀k∈K

Ak, then the learner randomly picks a strategy,

3) Updating the Qtk value according to (1.27). If Qtk grows, then the learner moves

to selected joint strategy ak, otherwise it stays in the current joint action and do

not update Q.

Despite the individual best strategy selection of the learners, this process reach a

common stable joint strategy such that all players stay there forever, i.e. no player

deviates from the (common) achieved joint strategy.
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The theory of learning in games studies how and which equilibria might arise as a

consequence of a long-run non-equilibrium process of learning. A natural question is:

Can learning algorithms find a Nash equilibrium? The reason for asking this question

is in the hope of being able to achieve Nash equilibria, as a plausible concept, via a

reasonable learning algorithm in particular when there are a large number of players

and strategies. At the first look, the stability of the above addressed dynamic learning

approach is described as to converge to a pure joint strategy and it is clear that the

existence of a pure Nash equilibrium is not guaranteed. The fact is, in general, a

dynamic learning algorithm is not able to guarantee to achieve a non-cooperative or

cooperative Nash equilibrium. In the literature, there are some efforts to present a

dynamic learning algorithm that achieves a Nash equilibrium in dynamic and repeated

games under particular constraints [82–85].

We present now some results about Q-learning in a CDMA network. In what follows,

the experimental work is presented highlighting how the agents learn to increase

their individual rewards by revealing their actions. As above mentioned, the strategy

selection can significantly influence the number of time steps to converge. Choosing an

appropriate temperature function is a heuristic search. In our experiment, we define

T = q · e−mt as our temperature function wherein m controls the rate of exponential

decay and q > 1 encourages the exploration of different strategies in the initial time

steps.

We illustrate the behavior of mobile terminals as Q-learners in a CDMA network.

Our example is a power control problem in a CDMA network applying Q-learning and

Boltzmann function. Assume a CDMA network with K mobile terminals denoted by

set K. The players wish to transmit data to a certain AP. The strategies of every

player is a set of discrete power levels denoted by A = Ak = [∆p , 2.∆p , . . . ,M.∆p ]

where ∆p is our power step and M > 1 is an integer number. Each user has M

actions to choose from, and accordingly the matrix game is made by ×k∈KA which

consists of MK joint strategies. The Shannon capacity between player k and the AP

is

Ck = log2

(

1 +
Ns · |Hk|

2 pk
∑

K∋i6=k |Hi|
2
pi + σ2

w

)

(1.29)

with Ns, |Hk|
2
and σ2

w denoting (the common) spreading factor for all players, user’s

k path gain, and the AWGN power, respectively, and where the pk ∈ A denotes the

transmit power of user k.
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Fig. 1.4: Achieved rates as functions of the iteration step.

We introduce an individual work in which each player must individually choose the

joint strategy at which achieves the best Shannon channel capacity. We simulate a

learning process with K = 8 players such that each player k must choose the best

pk between M = 5 strategies. The power step is assumed to be ∆p = 100mW, the

power of AWGN σ2
w = 1nW and the spreading factor Ns = 64. The players are

uniformly located at a distance between 3 and 50m from the AP. The matrix form of

this game is composed of 390625 joint strategies and there may exist different power

combinations (joint strategies) which achieve the same Shannon channel capacities.

Q-learning leads the players to that joint strategy (p1, . . . , p8) ∈ A8 in which all

players are satisfied of the proper achieved Shannon channel capacities. In the Q

function of (1.27) for all players the discount factor parameter is fixed to δk = 0.09

and the payoff function uk is defined as:

uk(ak) = Ck ∀ k ∈ K (1.30)

Our experiments with different parameters show that good values of the temperature

function parameters are m = 0.001 and q = 50, and we start with Qt=0
k = 0. It is

obvious to say that existing a strategy in which all uk(ak) are maximal value is not
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always guaranteed. Since, there is a huge conflict of interest between the players to

choose different strategies.

Fig. 1.4 reports the behavior of the (reward) achievable rate Ck ofK = 8 terminals as

a function of the time step t in our scenario. The figure exhibits the convergence of all

lerners to a stable joint strategy after 6 time steps. Numerical results of 500 random

realization of a network show the convergence of all players to a stable joint strategy

after (in average) 6 steps of the iterative Q-learning algorithm wherein each joint

action is probabilistically chosen according to the distribution of Boltzmann function.

Furthermore, it is experimentally observed that the sum of the achieved Shannon

channel capacities is (in average) 22.4 b/s/Hz and that is 94% of the maximum

possible of
∑

k∈K Ck.

1.9 Summary

Cooperation can be seen as the action of obtaining some advantage by giving, sharing

or allowing something. In this contribution, we aimed at mapping different coalitional

game approaches into communications and networking systems. A very important

boundary condition for cooperation is that each participating entity is gaining more

by cooperation than they would by operating alone. It is not important that all

entities contribute the same effort, gain the same amount, or even have the same

gain to cost ratio, but the effect of cooperation should bring advantage or gain to

each cooperating entity. One different form of cooperation is altruism, a strategy

wherein one of the players may sacrifice and does not gain from the cooperation to

support others. In networking, for instance, one terminal sacrifices battery power and

bandwidth to act as a relay for others terminals and to increase the throughput of the

whole system. In some communication systems, network protocols themselves can be

seen as an implicit cooperation to achieve better performance, e.g. ALOHA system.

In some communication systems, network entities establish a cooperation with each

other to achieve better performance, e.g. relay communications.

Cooperative game theory is a branch of game theory which aims at studying the

cooperations among individual and rational participants. Unlike non-cooperative

game approaches, cooperative game concepts are centralized and they need a central

authority for exchange of information and policy making process. The most chal-

lenging part of a cooperative game theoretic framework is the choice of characteristic
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function, since it interprets the agents perceptions of gain and satisfaction.

The main fundamental question in coalitional game theory is the question how to

allocate the total generated gain by the collective of all players over the different

players in the game. The distribution of payoff is described as a binding contract

between the players and various criteria have been developed. The problem of the

gain distribution is approached with the aid of solution concepts in coalitional game

theory like core, Shapley value, kernel, and nucleolus. Core solution is the most classic

solution whose result is stable against deviation of coalitions. The core solution

is useful where the negotiation process is centralized and no subset of players can

selfishly and privately negotiate with each other. The core set can be empty. Shapley

value is the unique single-valued solution which explores the fairness in every possible

prospective coalition forming. The kernel solution be understood as the set of all

efficient allocations for which no pair of players want to exchange payoff. The nu-

cleolus selects the unique imputation that successively (lexicographically) minimizes

the maximal excesses. This defining property makes the nucleolus appealing as a

fair single-valued solution. The kernel of a game always contains the nucleolus. The

process of computing the kernel and nucleolus of arbitrary transferable utility games

is hard.

The most fundamental solution concept for non-cooperative game is that of Nash

equilibrium. In a Nash equilibrium no agent is motivated to deviate from its strategy

given that the others do not deviate. If every player individually agrees on a certain

profile of strategies without binding an agreement, then these strategies constitutes a

Nash equilibrium. Nash equilibrium does not account for the possibility that groups

of agents (coalitions) can change their strategies in a coordinated manner. A strategy

profile is in strong Nash equilibrium if no subgroup of agents is motivated to change

their strategies given that others do not change. Often the strong Nash equilibrium

is too strong a solution concept, since in many games no such equilibrium exists.

Coalition-proof has been suggested as a partial remedy to this problem. This solution

concept requires that there is no sub-group that can make a mutually beneficial

deviation (keeping the strategies of nonmembers fixed) in a way that the deviation

itself is stable according to the same criterion. These solution concepts which allow

coalitions to make agreements simultaneously typically suffer from incompatibility

of agreements, which can give rise to empty solution sets in games of networking

interest. Mixed (vs. pure) strong and coalition-proof Nash equilibrium have not been
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introduced.

In a game wherein there are a huge number of agents and strategies, finding a pure

cooperative/non-cooperative Nash equilibrium is hard and maybe even impossible.

A learning process leads participants to a common joint action with an acceptable

payoff. During a learning process agents act as independent learners, i.e. they only

get information about their own action choice and payoff. As such, they neglect the

presence of the other agents. The learning process happens at regular time steps

and is basically a signal for the agents to start an exploration phase. During each

exploration phase, some agents exclude their current best action so as to give the

team the opportunity to look for a possibly better joint action. This technique

of reducing the action space by exclusions was only recently introduced for finding

periodical policies in games of conflicting interests. There are two problems in the

process of learning optimal cooperative pursuit strategy for multiple agents. One is

the probability of circulation among the actions chosen by agents which make the

learning, process not converging, the other is there are many conflicts among the

actions chosen by agents which make the learned pursuit strategy not optimal. Q-

learning with the Boltzmann action-selection strategy guarantees the convergence of

multi agents to a common and optimal joint strategy after a few time step.

1.10 Discussion

This chapter has provided a unified reference for network engineers investigating the

applicability of coalitional game theory to practical problems. Different approaches

such as core solution, Shapley value, kernel and nucleolus, were shown to provide a

strong foundation for finding possible and stable resource/cost sharing arrangements.

The results confirm the apparent analogy between the definition of Nash equilibrium

in non-cooperative and coalitional game theory: both strong and coalition-proof Nash

equilibria reflect on unprofitability of coalition deviations rather than an individual

player deviation. In a network wherein informational exchange is possible, either

through a central controller or among players themselves, the concept of coordinated

equilibrium arises. The results of intuitive examples show a significantly improvement

in coordinated equilibrium when compared with non-cooperative schemes. When the

number of agents or strategies is large, the ability of jointly reach a consensus through

environmental learning guarantees convergence to the best joint action.



Chapter 2

A survey on resource

allocation techniques in

OFDM(A) networks

Interest in orthogonal frequency-division multiplexing (OFDM), has grow steadily, as

it appears to be the most efficient air-interface for wireless communications primarily

due to its inherent resistance to frequency-selective multipath fading and the flexibility

it offers in radio resource allocations. One of the crucial issues in OFDM transmission

is the allocation of the power resources to the available subchannels.

This chapter presents a survey on the radio resource allocation techniques in OFDM

and orthogonal frequency division multiple access (OFDMA) networks. This problem

goes back to 1960s and that is related to properly and efficiently allocate the radio

resources, namely subcarriers and power. We start by overviewing the main open

issues in OFDM. Then, we describe the problem formulation in OFDMA, and we

review the existing solutions to allocate the radio resources. The goal is to discuss the

fundamental concepts and relevant features of different radio resource management

criteria, including water-filling, max-min fairness, proportional fairness, cross-layer

optimization, utility maximization, and game theory, also including a toy example

with two terminals to compare the performance of the different schemes. We con-

clude the survey with a review of the state-of-the-art in resource allocation for next-

generation wireless networks, including multicellular systems, cognitive radio, and

relay-assisted communications, and we summarize advantages and common problems

of the existing solutions available in the literature. The distinguishing feature of this
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contribution is a tutorial-style introduction to the fundamental problems in this area

of research, intended for beginners on this topic.

The use of orthogonal frequency division multiplexing (OFDM), as a modulation,

and of orthogonal frequency division multiple access (OFDMA), as a channel access

scheme, has grown steadily, as they appear to be the most efficient solutions for

wireless communications, primarily due to their inherent resistance to frequency-

selective multipath fading and the flexibility they offer to radio resource allocation [86].

One of the crucial issues in OFDM(A) transmission is the allocation of the power

to the available subchannels. Even though the OFDM(A) concept is simple in its

basic principle, building a practical OFDM(A) system is far from being a trivial task

without a well-devised resource allocation algorithm. In the case of a multiple-access

network, a typical resource allocation problem in OFDMA is based on assigning a

subset of available subcarriers to simultaneously transmitting (and thus interfering)

wireless terminals and (possibly jointly) adjusting the power amount over each used

subcarrier in order to guarantee the minimum required quality of service (QoS). An

efficient algorithm for subcarrier selection can significantly increase the signal-to-

interference-plus-noise ratio (SINR), that is necessary to enhance the throughput

in a dynamic scenario. Similarly, regulating the transmit power in wireless cellular

networks constitutes a key degree of freedom in the management of interference,

energy, and connectivity. This motivates us to revisit the relevant criteria for resource

management in present and next-generation wireless networks.

This chapter aims at providing a survey on state-of-art research, providing an

overview of selected topics in the context of OFDM(A) systems. We start with

historical notes in the following section. Then, we provide a description of resource

allocation issue in OFDM in Sect. 2.2. In Sect. 2.3, we describe different fashions

of allocation of radio resources in OFDMA. We continue with exploration of three

classic power allocation solutions of water-filling, max-min fairness, and weighted

proportional fairness in Sects. 2.3.1,2.3.2, and 2.3.3, respectively. Sects. 2.3.4 and

2.3.5 discuss about two important resource allocation issues in multi service traffic

networks: utility maximization, and cross layer. Different solutions based on game

theory are reviewed in Sect. 2.4. Finally, we summarize key features of the existing

solutions in Sect. 2.8.



2.1 Orthogonal frequency division modulation and multiple access 49

2.1 Orthogonal frequency division modulation and

multiple access

The basic principle of OFDM is to transmit data by dividing them into several

interleaved bit streams, and using these to modulate several carriers. This concept

helps reducing the detrimental effects of multipath fading in communication systems.

In brief, OFDM is a parallel transmission scheme, where a high-rate serial data stream

is split up into a set of low-rate substreams with generally equal bandwidth, each

of which is modulated on a separate subcarrier (called also subchannel or tone).

Thereby, the bandwidth of the subcarriers becomes small compared with the co-

herence bandwidth of the channel, so that the individual subcarriers experience flat

fading, thus enabling a simple equalization. This implies that the symbol period of

the substreams is made long compared to the delay spread of the time-dispersive radio

channel. While each subcarrier is separately modulated by a data symbol, the overall

modulation operation across all the subchannels (multicarrier modulation) results in

a frequency multiplexed signal, so as to accommodate very high throughputs in severe

frequency-selective scenarios.

This solution was proposed for the first time by Doelz et al. for the U.S. military HF

communication applications in 1957 in the pioneering Collins Kineplex system [87].

This led to a few OFDM schemes in the 1960s, which were proposed by Saltzberg [88]

and Chang [89]. In the late 1960s, the multicarrier concept was adopted in some

military applications, such as KATHRYN [90] and ANDEFT [91]. These systems

involved a large hardware complexity, since the parallel data transmission was es-

sentially through a bank of oscillators, each tuned to a specific subcarrier. The first

patent on OFDM was granted in 1970 [92]. The major contribution to the OFDM

scheme came after the results of Weinstein and Ebert [93], who demonstrated that

using discrete Fourier transforms (DFT) to perform the baseband modulation and

demodulation considerably increases the efficiency of modulation and demodulation

processing. The adoption of OFDM has been finally facilitated by the efficient

implementation of fast Fourier transform (FFT) and inverse FFT (IFFT) algorithms

in digital signal processing (DSP) chips.

OFDM is extremely effective in a time dispersive environment where signals can

have many paths to reach their destinations, resulting in variable time delays. With

classical modulations, these time delays cause one symbol to interfere with the next
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one(s) (giving rise to inter symbol interference, ISI) at high bit-rates. With the

OFDM, all of the sinus cardinal (sinc)-shaped subchannel spectra exhibit zero cross-

ings at all the other subcarriers’ frequencies, and the subchannel spectra result to

be orthogonal to each other. The orthogonality among different tones ensures that

the subcarrier signals do not interfere with each other, when communicating over

perfectly distortionless channels.

Although the ISI is mitigated by the guard interval between consecutive OFDM

symbols and the raised-cosine filtering OFDM imposes, it is not completely eliminated.

To attain perfect orthogonality between subcarriers in a time dispersive channel, Peled

and Ruiz [94] introduced the notion of cyclic prefix (CP): the guard interval is filled

with a cyclic extension of each time domain OFDM symbol, in order to overcome the

inter-OFDM symbol interference due to the channel memory. The CP performs the

circular convolution by the channel under the assumption that the channel impulse

response is shorter than the length of the CP, thus preserving the orthogonality of

subcarriers. Although adding the CP causes power and spectrum efficiency loss, this

deficiency is highly compensated by the ease of receiver implementation that makes

OFDM both practical and attractive to the radio link designers.

OFDM has in fact been adopted by many European and American telecommunica-

tion standards in the last few decades. In the context of wired environments, OFDM

is applied for high speed digital voice services, e.g., asymmetric digital subscriber

lines (ADSL) [95] and its faster version, very-high-bit-rate digital subcarrier line

(VDSL) [96]. In wireless communications, the OFDM technique is the fundamental

building block of the IEEE 802.16 standards and it has been considered as a solution

to mitigate multipath propagation in broadband multimedia broadcasting, e.g., digital

video broadcasting for terrestrial television (DVB-T) [97], digital audio broadcasting

(DAB) [98], and 3G mobile communication (3GPP-LTE) [99]. To summarize, the

wide interest in OFDM technique is due the following advantages:

• high spectral efficiency;

• interference suppression capability through the use of the CP;

• protection against narrowband interference and inter carrier interference (ICI);

• efficient implementation using FFT;

• flexible spectrum adaptation; and
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• separated subcarrier modulation, which implies that different constellations can

be applied on individual subcarriers, thus allowing for several resource allocation

strategies.

Even though the concept of multicarrier transmission is simple in its basic principle,

the design of practical OFDM systems is far from being a trivial task. Synchroniza-

tion, channel estimation, and radio resource management are only a few examples of

the numerous challenges related to multicarrier technology. As a result of continuous

efforts of many researchers, most of these challenging issues have been studied and

several solutions are currently available in the open literature. Besides its significant

advantages, OFDM suffers from the following disadvantages:

• high peak-to-average power ratio (PAPR), which requires highly linear ampli-

fiers and consequently high power consumption [100];

• sensitivity to Doppler effects and carrier frequency offsets [101];

• sensitivity to phase noise, and time and frequency synchronization problems

[102]; and

• loss in data rate due to the guard interval insertion.

OFDM is also good from the standpoint of multiple access opportunities. Compared

to single carrier systems, OFDM is a versatile modulation, that can be adopted to

provide channel access scheme for multiple access systems, in that it intrinsically

facilitates both time-division multiple access (TDMA) and frequency-division (or

subcarrier-division) multiple access. In a multiuser scenario, the available bandwidth

must be shared among several users. Each user may experience different conditions

in terms of path loss and shadowing. Furthermore, each user may have different

requirements in terms of QoS. An acceptable design of the network should therefore

take into account the different user conditions while providing fairness, without a

drastic reduction in the overall spectral efficiency.

To meet these needs, in 1998 a combination of OFDM and frequency division

multiple access (FDMA), called OFDMA, was proposed by Sari and Karam for cable

television (CATV) networks [103]. OFDMA is a promising multiple access scheme

that has attracted interest for wireless metropolitan area networks (MANs), as it

inherits the immunity to ISI and frequency selective fading of OFDM. Furthermore,
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in OFDMA systems different modulation schemes can be employed for different users.

For instance, each user, according to its distance from the base station (BS), can

invoke different orders of modulation schemes (either high- or low-order modulation)

to increase its data rate.

An extension of the multiple-access technique ALOHA [86] over OFDMA was first

proposed by Shen et al. in [104], and further discussed in [105, 106]. In [107], Qin

et al. propose a distributed access protocol denoted as channel-aware ALOHA. The

authors extend this idea in [108] to OFDMA systems where water-filling is performed

on subcarriers. It can be easily applied to OFDMA selecting subcarriers for different

users. Besides, the authors show that the algorithm can reach the Shannon capacity:

the users with best channel conditions are usually transmitting if the channel is

invariant over the necessary time to manage collisions.

To conclude, its implementation flexibility, the low complexity equalizer required

in the transceiver, as well as the attainable high performance, make OFDMA a

highly attractive candidate for high data rate communications over time-varying

frequency selective multiuser radio channels. Compared to classical FDMA, OFDMA

presents a higher spectral efficiency by avoiding the need for large guard bands

between different users’ signals. The main advantages of OFDMA are the increased

flexibility in resource management and the ability for a dynamic channel assignment.

OFDMA can exploit the channel state information (CSI) to provide users with the

best subcarriers (in terms of channel condition between transmitter and receiver over

different subcarriers) that are available, thereby leading to remarkable gains in terms

of achievable data throughput. In terms of architecture complexity, OFDMA systems

can now be implemented using powerful integrated circuits optimized to perform

FFT operations. Because of its increasingly widespread acceptance as the modulation

scheme of wireless networks of the future, it attracts a lot of research attention, in

areas like resource allocation, time-domain equalization, PAPR reduction, phase noise

mitigation and pulse shaping.

Thanks to its favorable features, OFDMA is widely recognized as the technique that

is able to meet the requirements for fourth generation broadband wireless networks, as

witnessed by the IEEE 802.16m [86] and LTE-Advanced standards [109]. In the next

sections, we will focus on resource allocation techniques which includes subcarriers

selection and power allocation, by leveraging on multiuser diversity and channel

fading.
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2.2 Resource allocation in OFDM

The research interest on resource allocation in multicarrier systems was encouraged

by the successfully development of ADSL services in the 1990s [95]. This technol-

ogy employs, for high-speed wireline data transmissions, a digital multitone (DMT)

modulation, a particular form of frequency multitone (FMT) technology, which is a

frequency-division-based transmission technique. Due to crosstalk from adjacent cop-

per twisted pairs, the ADSL channel is characterized by strongly frequency-selective

noise. This scenario is similar to that experienced in the OFDM transmission scheme,

which is flexible enough to allocate individual power and modulation on different

subcarriers.

In the context of OFDM, different criteria to allocate the available resources can

be performed depending upon whether the network is trying to maximize the overall

data rate under a total power constraint, or to minimize the overall transmit power

given a fixed data rate or bit error rate (BER). The optimal OFDM adaptation

algorithm, called the water-filling (WF) criterion [110] and originally derived for DMT

systems, tends to allocate most information bits onto the highest signal-to-noise ratios

(SNRs) carriers. Note that the number of bits determines the constellation size as

follows: 1 bit corresponds to binary phase-shift keying (BPSK) modulation, 2 bits to

quadrature phase-shift keying (QPSK) modulation, 4 bits to 16-quadrature amplitude

modulation (16-QAM), and so on. In some situations, some subcarriers may even be

left unassigned if their SNRs are too low to provide reliable data transmission.

In the literature, the problem of efficient bit allocation on the available subchannels

and using the best efficient modulation (to each subcarrier) is equivalently referred to

as bit loading, adaptive modulation, and link adaptation. In an OFDM communication,

the (unique) transmitter spending power pn ≤ pn over the nth subcarrier, with pn

being the maximum power constraint on subcarrier n, can use a number of bits bn

that is calculated using the Shannon channel capacity formula as [111, Eq. 1]:

bn =

⌊

log2

(

1 +
|Hn|

2
pn

(ξ + Γ) · σ2
w

)⌋

(2.1)

where ⌊·⌋ is the floor operator, |Hn|
2
is the amplitude of the (complex) frequency

response of subcarrier n, σ2
w is the noise power on each subcarrier, ξ is the additional

amount of noise that the system can tolerate while achieving the minimum desired
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BER requirement [111], even when the noise level is increased by a factor ξ, and Γ

is the SNR gap (also known as the normalized SNR), used to evaluate the relative

performance of a modulation scheme versus the theoretical capacity of the channel

[112]. Therefore, by increasing the value of ξ, we can improve the system robustness

against noise, and hence have the new operating point of the constellations at a

distance of 10 log10 (ξ + Γ) dB from the Shannon limit.

There are many theoretical works that aim at regulating the transmit powers {pn} to

perform the adaptive bit loading (2.1). In the following we cite some of the pioneering

and well-known bit loading algorithms in the context of OFDM systems:

• Hughes-Hartogs in 1987 [113] designed a greedy algorithm to approximate the

WF (e.g., see [110]) for twisted-pair channels over an additive white Gaussian

noise (AWGN) channel with ISI. The goal of this discrete bit loading algorithm

is the minimization of the transmit power under a BER and data rate constraints

for each tone. This is accomplished by successively assigning bits to carriers,

each time choosing the carrier that requires the least incremental power, until

the given target rate is reached. Bingham in [114] proposes to apply sinc

functions for each individual spectra instead of using quadrature amplitude

shift keying (QASK) in [113]. Applying the technique proposed in [114] allows

us to separate signals at the receiver using computationally efficient FFT tech-

niques, although the high complexity burden of the proposed algorithm makes

it unsuitable for a practical implementation is high-speed wireless networks.

• The principle of adaptive modulation and power over OFDM was recognized

in 1989 by Kalet [115], who simulates a twisted-pair OFDM system, in which

each subcarrier uses QAM to maximize the bit rate. The power distribution

between the subcarriers and the number of bits per symbol per subcarrier

is optimized for a given BER, showing that the proposed power allocation

achieves similar results to the WF solution. Furthermore, multicarrier QAM

performance is about 9 dB worse than the channel capacity, irrespectively of

the channel response. Quantitative results for a twisted-pair cable show that

multitone QAM transmission outperforms single-tone QAM by more than 40%.

The Kalet’s algorithm is often referred to as WF in the frequency domain,

which is a simpler version of the technique proposed by Cimini in [116] for

mobile communication channels.
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• Chow et al. in [111] proposed an iterative bit loading algorithm which offers

significant advantages over the Hughes-Hartogs algorithm [113] and the WF

method [115, 116]. The simulation results over high-speed ADSL service using

a required BER of 10−7 show a maximum degradation of only 1.3 dB in terms

of SNR compared to [115]. Even though the proposed algorithm is faster than

that Hughes-Hartogs one, it is not optimal in terms of number of iterations and

computational load.

• Czylwik [117] in 1996 simulates an OFDM transmission system with time-

variant channel functions, measured with a wideband channel sounder with

fixed carrier frequency antennas. The simulation results show that the proposed

subcarrier-adaptive modulation demands a total power consumption at least

5 dB lower (and reaching 15 dB lower, depending on the propagation scenario)

than that required by the non-adaptation (fixed modulation) OFDM, by placing

a requirement in terms of BER equal to 10−3. Different modulation formats can

be selected so as to minimize the BER under a constant data rate constraint.

• Fischer and Huber in 1996 [118] proposed a bit loading algorithm to reduce

the computational complexity of Hughes-Hartogs and Chow algorithms. This

algorithm distributes bits and transmit power to maximize the SNR over each

carrier. Van-der Perre et al. in [119] apply [118] to simulate the performance

of OFDM-based high speed wireless LANs (with data rate on the order of

100 Mb/s). Simulation results show that the proposed adaptive loading strategy

improves the system performance considerably, with an SNR gain of 6 dB with

respect to the fixed QPSK or 16-QAM modulations, under a BER constraint of

10−2.

As a conclusion, all link adaptation studies reported here have demonstrated that a

performance improvement in OFDM systems can be attained by properly adjusting

power and data rate over each subcarrier, so as to exploit the channel frequency

selectivity. To further increase the capacity of the system, state-of-the-art solutions

always adopt coding techniques. In the practice, a frequency-selective radio channel

may severely attenuate the data symbols transmitted on several subcarriers, leading

to bit errors. By spreading the coded bits over the bandwidth of the transmitted

system, an efficient coding scheme can correct for the erroneous bits and thereby

exploit the wideband channel frequency diversity.
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To this aim, all communication systems include forward error correction (FEC)

coding techniques [86] to attain the system SNR requirements at low required BER

values. In FEC schemes, only the error correction is performed, whereas in automatic

repeat request (ARQ) [86] schemes, the retransmission of erroneous blocks is requested

whenever the decoded data is labeled as unreliable. OFDM systems that utilize

adapting modulation and coding per subcarrier are often referred as coded OFDM

(COFDM) systems [120]. COFDM increases the data rate and outperforms solutions

using only either modulation or channel coding. COFDM does not adapt the data

rate of each subcarrier due to the differing SNRs, rather it uses the same high-order

modulation on an all subcarriers and uses coding to correct the errors.

Recently, there has been numerous interest on the design of good error-correcting

codes achieving near-Shannon performance, particularly low-density parity-check (LDPC)

codes [121], that are well suited for OFDM systems [122], as they can reduce the

impact of deep channel fades in both the time and the frequency domains. In high

data rate wireless OFDM systems, current challenges include the design of LDPC

codes with reasonable block length (and thus with feasible encoding and decoding

complexity) and overhead delay [123].

In addition to the signal strength, the wireless medium may also affect the original

signal through dispersion, which includes time dispersion (frequency selective) and

frequency dispersion (time selective) fading. While OFDM is immune to the time

dispersion effect at the expense of CP, it is not guaranteed whether the signals across

different subchannels will not interfere to each other. Hassibbi and Hochwald in [124]

pioneered to propose a linear space-time coding, called linear dispersion coding and

also linear constellation coding, for high data rate communications with large number

of subcarriers. The codes are designed to optimize mutual information between

transmitter and receiver. To reduce the decoding complexity, [125] divides subcarriers

into a number of disjoint groups based on criterions in [126] and [127] for reducing

multiuser interference and PAPR, respectively. Then, to apply the same linear

dispersion coding to subcarriers within each group and to transmit every information

symbol over subcarriers within only one group. The idea of grouping subcarriers in

smaller groups is used by references [128] and [129] which aims at minimization BER

in single user and multi users, respectively. The open problem of linear pre-coding

related works is the gap between achieved data rate and the outer region capacity.
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2.3 Resource allocation in OFDMA

A typical case of a multiple access channel is the uplink of a cellular system. In general,

in the OFDMA uplink scenario, each user receives a channel assignment and a power

allocation from the BS that consists of a (usually exclusive) subset of subcarriers and

power levels on each of them. In an OFDMA network, the BS must optimally allocate

power and bits over different subcarriers based on instantaneous channel conditions

of different active wireless terminals. The only requirement is that the fading rate

is not too fast (compared to the OFDMA symbol time), as instantaneous resource

allocation is impractical in the presence of rapidly-varying transmission channels of

mobile terminals. Other impairments include interference management and limited

resources, such as bandwidth and transmit power. This makes the link adaptation

task much more challenging than in single-user systems. Recent exhaustive surveys

on these topics include [130] (with emphasis on scheduling schemes), [131] (with focus

on ICI mitigation), [132] (with emphasis on relay communications), and [133] (with

focus on game-theoretic approaches). In the remainder of this contribution, we aim

at introducing the very basics for OFDMA resource allocation by means of detailed

problem formulation and numerical examples, which, to the best of our knowledge, is

not available in the literature.

It is clear that, compared to a point-to-point single-user OFDM-based connection,

a multiuser OFDMA link adaptation is much more complicated and hardly scal-

able [134]. In particular, one of the main problems with OFDMA is the large amount

of feedback required from the users. Since different users can be scheduled over

different subcarriers, they must feed the measurement information back about every

subcarrier to the BS. Consider a network with K active OFDM mobile terminals and

N total available subcarriers. The scheduler requires full channel state information

(CSI) consisting of K · N complex numbers (the values of the channel frequency

response at each subcarrier for every user). This feedback information represents

a very large overhead if there are many users and subcarriers in the system. To

reduce it, Cimini et al. [135] proposed to group adjacent subcarriers into clusters and

to feed back the information about the best cluster(s) in terms of channel quality.

In [136, 137], it is shown that sending back only heavily quantized CSI dramatically

reduces the feedback needs without significantly sacrificing the overall performance.

In this context, Svedman et al. [138] showed that a suitable cluster size, which highly
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impacts on the performance in terms of achieved downlink throughput, must be

selected according to the average channel delay spread of the users.

In this context, let us start to review the main concepts and the main categories

behind bit and power loading in OFDMA-based transmissions. Generally, a resource

allocation algorithm can either be centralized or distributed. In centralized schemes,

such as [16,139], the algorithm is run by a central unit (in an infrastructure networks,

typically the BS) that is aware of the demands and of the channel conditions of all

mobile terminals, as described in the previous paragraph. In a distributed model

(such as [140]), each mobile terminal tries to accomplish its own (minimum) QoS

autonomously, sometimes resorting to cross-layer approaches (e.g., [141]), to reduce

the total power consumption and to support different services and traffic classes,

mostly for the downlink of an OFDMA system. In general, centralized techniques

show better performance at the expense of a higher signaling between terminals and

the central unit, and lower scalability than distributed techniques.

Another typical classification of resource allocation techniques for OFDMA networks

is based on the objective of the optimization problem. The solutions available in

the literature mainly fall into two different categories: margin-adaptive and rate-

adaptive methods. The goal of margin adaptive schemes [142] is to minimize the total

transmit power expenditure given a set of fixed user data rates and BER requirements.

Algorithms based on the rate-adaptive criterion [143] aim on the contrary at achieving

the maximum total (continuous) sum-rate over all users subject to different QoS

constraints, e.g., power expenditure. Note that, unlike some broadband systems,

e.g., based on code division multiple access (CDMA), ultra-wideband (UWB), and

multicarrier CDMA (MC-CDMA), in which the whole bandwidth is shared by all

active wireless terminals, OFDMA-based networks do not consider resource allocation

strategies based on the mean-BER minimization, in which the robustness of the

system is enhanced by allocating bits and powers to subcarriers to minimize the

error rate of an entire symbol. This scheme is not of major interest for OFDMA

systems, since, as will be seen in the next subsection, in (almost) all OFDMA resource

allocation techniques each subcarrier is not permitted to be assigned to more than

one user. This means that a well devised algorithm to maximize the total data rate

also results in minimizing each user’s BER.

The first resource allocation strategy presented here is the minimization of the

OFDMA system power expenditure for a given target data rate, solving the following
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margin-adaptive optimization problem:

min
p, N

K
∑

k=1

∑

n∈Nk

pkn (2.2a)

s.t.
∑

n∈Nk

Rkn ≥ Rk ∀ k ∈ K (2.2b)

and
∑

n∈Nk

pkn ≤ pk ∀ k ∈ K (2.2c)

and Nk ∩ Nm = ∅ ∀ k, m ∈ K, k 6= m, (2.2d)

where k ∈ K = [1, . . . ,K] denotes the index of the wireless terminal which transmits

with powers pk =
[

pk1, . . . , pkn, . . . , pkN
]

over the N subcarriers, which are repre-

sented by the set N = [1, . . . , n, . . . , N ], and p = [p1, . . . ,pk, . . . ,pK ]. Let Nk ⊂ N

be the set of subcarriers assigned to user k, and Rkn be the channel capacity that can

be achieved by user k over the nth subcarrier. The sets of assigned subcarriers are

disjoint, as explicitly stated by (2.2d): this means that each subcarrier is not allowed

to be shared by more than one terminal. Each user k wishes to attain its target rate

Rk, as specified in (2.2b), under the constraint pk on its total transmit power, as

formulated in (2.2c). It is clear that, for each terminal k and every n /∈ Nk, we have

pkn = 0, and accordingly, Rkn = 0. The overall data rate of each user is obtained by

the Shannon capacity formula as:

Rk =
∑

n∈Nk

Rkn =
∑

n∈Nk

log2

(

1 +
|Hkn|

2
pkn

σ2
w

)

(2.3)

in which |Hkn|
2 denotes the amplitude of the Gaussian-complex path gain experienced

by user k on subcarrier n, and, similarly to Sect. 2.2, σ2
w is the power of the AWGN

zero mean Gaussian noise on each subcarrier.

Two levels of decomposition are necessary to turn this NP-hard problem into the set

of subproblems, subcarrier allocation and power control [144]. In fact, the exclusive

assignment of subcarriers to users is a way to reduce the complexity computation of

the optimization problem (2.2a), as the rate Rkn can be computed using (2.3). On

the other hand, as users are not allowed to share a common subcarrier, the allocation

process boils down to a combinatorial optimization problem, for which no optimal

greedy solution exists. Kivanc et al. [145] developed a computationally inexpensive

method for OFDMA resource assignment which achieves a comparable performance
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with respect to the solution of the NP-hard problem (2.2) in terms of transmission

power and bandwidth efficiency at a reduced computational complexity. However,

this approach does not provide a fair apportionment among users, so that some of

them may be dominant in terms of resource occupancy even when the minimum rate

requirement is not satisfied for the others.

In addition to this limitation, the margin-adaptive formulation that focuses on the

minimization of transmit powers is often of lower interest compared to the maximiza-

tion of the data rates. For this reason, the most common optimization problem for

OFDMA systems is the rate-adaptive one, that aims at maximizing the bit rate as

follows:

max
p, N

K
∑

k=1

∑

n∈Nk

Rkn (2.4a)

s.t.
∑

n∈Nk

Rkn ≥ Rk ∀ k ∈ K (2.4b)

and
∑

n∈Nk

pkn ≤ pk ∀ k ∈ K (2.4c)

and Nk ∩ Nm = ∅ ∀ k, m ∈ K, k 6= m. (2.4d)

The objective of this problem is to distribute bits and power among different sub-

carriers in such a way that the overall data rate of the system is maximized. Most

algorithms focus on the downlink scenario, with constraints on the total power trans-

mitted by the radio BS. In the uplink scenario, restrictions apply on an individual

basis to each user terminal, and the simplest solution to maximize the channel capacity

of mobile devices under a power constraint is the WF criterion [146], described in the

following subsection.

2.3.1 The water-filling solution

Cheng and Verdú in [147] pioneered the application of the WF solution in an uplink

OFDMA network scenario, and derived the capacity region and the optimal power

allocation of individual users. In the rate-adaptive optimization, the channel capacity

is obtained by maximizing the right-hand side of (2.3) with respect to (2.4c), i.e.,

max
p ,N

{

K
∑

k=1

∑

n∈Nk

log2

(

1 +
|Hkn|

2
pkn

σ2
w

)}

. (2.5)



2.3 Resource allocation in OFDMA 61

Since the objective function in (2.5) is convex in the variables {pk}, the optimum

power allocation under the convex constraints of overall transmit power can be found

using Lagrangian methods [148]. The optimal strategy to satisfy (2.4a) is such that

each subcarrier n ∈ N is assigned to the user with the largest channel gain in a

centralized way as follows:

k ←− arg max
ℓ∈K

|Hℓn|
2
. (2.6)

The resulting optimal power allocation for user k is given by:

pkn =

[

1

λk
−

σ2
w

|Hkn|
2

]+

(2.7)

where [x]
+
= max{x, 0}, and λk is the Lagrangian parameter (“water-level”), chosen

such that the sum of the allocated powers satisfies the total power constraint pk:

λk = |Nk| ·

(

pk +
∑

n∈Nk

σ2
w

|Hkn|
2

)−1

. (2.8)

To conclude, the WF is a greedy (centralized) power allocation scheme that increases

the channel capacity by assigning every subcarrier to the user with the best path

gain, and by distributing the power according to (2.7). Note that the WF solution

is highly unfair, since only users with the best channel gains receive an acceptable

channel capacity, while users with bad channel conditions (e.g., far users) achieve very

low data rates. More information-theoretic discussions on related topics can be found

in [149]. To derive fair resource allocation schemes, we resort to other techniques,

described in the following subsections.

2.3.2 The max-min fairness criterion

In an OFDMA network, one possible approach to overcome the unfairness of WF is

described in [150]. This alternative formulation aims at maximizing the minimum data

rate across users, thus enforcing the notion of max-min rate-maximization fairness

that avoids the starvation of some users.

Definition 17 A feasible1 rate vector R = [R1, . . . , Rk, . . . , RK ] is defined to be max-

min fair if any rate Rk cannot be increased without decreasing some other rate Rm,

m 6= k, which is smaller than or equal to Rk. �

1A rate allocation R is feasible if the network resources are enough to provide every user k in
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Roughly speaking, in the max-min power control the objective is to optimize the

performance of the worst link amongst all users for a fixed QoS-based power control

approach. The idea behind the max-min fair approach is to treat all users as fairly

as possible, by making all rates as large as possible [151]. The work of Rhee and

Cioffi in [150] is an extension of [152], which is a dual problem of minimizing the total

transmit power for given data rate requirements. The problem is formulated as the

following convex optimization problem [150]:

max
p, N

min
k∈K

∑

n∈Nk

Rkn (2.9a)

s.t.
∑

n∈Nk

pkn ≤ pk ∀ k ∈ K (2.9b)

and Nk ∩ Nm = ∅ ∀ k, m ∈ K, k 6= m. (2.9c)

The Lagrangian relaxation [148] algorithm proposed in [150, 152] approaches the

solution to (2.9a) by slowly increasing the power level for each user. By elaborating

on a simple iterative algorithm to compute a suboptimal max-min fair rate vector

proposed by Bertsekas and Gallager in [153, p. 527], we can easily extend it for an

OFDMA network as follows:

1) Zero initialization: Supposing K ≪ N , the algorithm starts with an all-zero data

rate vector, i.e., Rk = 0 and Nk = ∅ ∀ k ∈ K.

2) Round-robin step: Assign every user k ∈ K the subcarrier n whose channel gain

|Hkn|
2
is the highest among the remaining ones, using a uniform power pk/N as:

n←− arg max
m∈N

|Hkm|
2; (2.10a)

Nk = Nk ∪ {n}; (2.10b)

N ← N \ {n}; (2.10c)

Rk = R
1/N
kn , (2.10d)

the network with rate Rk . To the best of the authors’ knowledge, the algorithms available in the

literature do not propose criteria to assess the a-priori feasibility of a certain vector R. The remainder

of this paper is thus based on the assumption that the network resources can guarantee achievable

rates Rk, e.g., based upon the Shannon capacity [111] and some performance gaps, such as those

mentioned in Sect. 2.2 for the single-user scenario.
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where

R
1/N
kn = log2

(

1 +
|Hkn|

2
pk

Nσ2
w

)

. (2.11)

At this point, every user k ∈ K is assigned exactly one subcarrier.

3) Best user rate update: Find the user k with the smallest attained data rate, i.e.,

k ← arg minℓ∈KRℓ, and then assign to it the subcarrier n ∈ N with the best

channel condition |Hkn|
2
, and update its data rate as:

k ← arg min
ℓ∈K

Rℓ; (2.12a)

n←− arg max
m∈N

|Hkm|
2
; (2.12b)

Nk = Nk ∪ {n}; (2.12c)

N ← N \ {n}; (2.12d)

Rk = Rk +R
1/N
kn . (2.12e)

4) Exit condition: If there exists some unassigned subcarrier, then go back to step 3,

else exit the algorithm.

As can be seen by inspecting the steps of the algorithm, the rationale behind max-

min fairness solution, in contrast to the WF result, is to assign more power to users

exhibiting poor channel conditions (step 3) so that they can achieve a data rate

comparable to that of other users with better channel quality. It is worthwhile to

note that the max-min fair rate allocation is unique when the number of resources

and flows, i.e., subcarriers and wireless terminals, are both finite [151]. Unfortunately,

due to the nonlinear nature of the integer problem (2.9), the algorithm proposed

in [150, 152] is computationally very expensive.

In [150, Eq. 2], the formulation (2.9a) is extended to:

max
p, N

min
k∈K

∑

n∈Nk

tkn Rkn (2.13a)

s.t.
∑

n∈Nk

pkn ≤ pk ∀ k ∈ K (2.13b)

and

K
∑

k=1

tkn ≤ 1 ∀ n ∈ N , (2.13c)
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wherein the positive coefficient tkn ∈ [0, 1] introduces the percentage of time each

subcarrier n is used by a given user k. With tkn, each subchannel can be shared by

different users in a TDMA fashion. Clearly, the assumption behind this approach is

that the users’ channel responses do not change significantly over a timing interval.

However, practical solutions, such as those reported in [150], assume K ≪ N and

that no subchannel is shared among users, i.e., tkn is a binary value and
∑

k∈K tkn =

1 ∀ n ∈ N , or, equivalently, (2.9c). In addition, determining the best values for

tkn ∈ (0, 1) and indicating a time-sharing allocation policy is not always feasible for

K > N , as reported in [154].

In addition, to achieve a max-min fairness data rate vector, Kelly [155] suggested to

formulate the problem as:

max
p, N

K
∑

k=1

−

(

− log2

(

Rk
β

))ρ

(2.14)

wherein ρ > 1 is a constant parameter, and β is a positive constant, measured in

bits/s, satisfying Rk < β ≪ ∞ ∀ k ∈ K. Thus, the collection of utility functions

(2.14) provides a priority to smaller data rates, which increases as ρ increases, and

becomes absolute as ρ → ∞. Furthermore, instead of choosing the best user in step

3, (2.12a), an alternative criterion is defined in [155]:

k ←− arg max
ℓ∈K

{

1

Rℓ
·

(

log2

(

Rℓ
β

))ρ−1
}

(2.15)

to find the best user k for subcarrier n. Note that, for ρ → ∞, the condition (2.15)

becomes:

k←− arg min
ℓ∈K

Rℓ (2.16)

which coincides with the original strategy of max-min fairness to allocate a subcarrier

to the user with the minimum achieved data rate.

Although the max-min criterion gives priority to the weakest users, thus balancing

the near-far effect, this solution cannot be used in the practice, because, in general, the

number of allocated bits may not correspond to any practical modulation scheme [156].

Furthermore, the results show that under the max-min fair solution, some users may

consume significantly more bandwidth than others [157], at the cost of a reduction in

the overall throughput of the network.
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2.3.3 The weighted proportional fairness criterion

Achieving traffic fairness and efficiency either in the energy or in the spectral domains

are two conflicting goals. Hence, the optimization of the radio resource utilization

tends to penalize terminals with low SINRs, irrespectively of their traffic level perfor-

mance. The max-min fairness scheme described in Sect. 2.3.2 is however inappropriate

when different users have different priorities. Generally, the problem is how to balance

between fairness and utilization of the resources. This led Kelly et al. to formulate

in [158] the notion of weighted proportional fairness. Under a proportional maximiza-

tion rate constraint, the rate of each user should adhere to a set of predetermined

proportionality constants which make a concrete way of assigning priorities to the

users as follows:

R1 : · · · : Rk : · · · : RK = ϕ1 : · · · : ϕk : · · · : ϕK (2.17)

where {ϕk}’s are the proportion constants. In the practice, ϕk can be interpreted

as the amount user k is willing to pay per unit time. At the end, user k receives in

return a data rate Rk which is proportional to ϕk.

Definition 18 A vector data rate R = [R1, . . . , RK ] is proportional fair if it is

feasible and, for any other feasible rate vector R
′

=
[

R
′

1, . . . , R
′

K

]

, the aggregate

of proportional changes is non-positive, i.e.:

K
∑

k=1

ϕk
R

′

k −Rk
Rk

≤ 0. (2.18)

�

This method is also useful for service level differentiation, which allows for flexible

allocation mechanisms to different classes of users with separable constraints. The

proportional-fair objective of (2.18) is continuously differentiable, monotonically in-

creasing, and strictly concave, therewith admitting a convex optimization formulation

[148]. In [158], Kelly et al. suggested an algorithm that converges to the proportionally

fair rate vector, using the maximization of the sum of the (logarithmic) long-run

average data rates provided to the users, based on the Kuhn-Tucker conditions for

the problem (2.4a). Otherwise stated, a proportional-fairness rate allocation can be
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achieved by formulating the problem as [158]

max
p, N

K
∑

k=1

ϕk log2 (Rk) (2.19)

over all feasible rate allocations. Thus, since the logarithm function is strictly concave,

proportional-fair rates are unique [159, Sect. 6.7]. Note that the logarithmic utility

function indicates that users with low average rates benefit more in terms of utility

from being scheduled than users with high average rates. The iterative algorithm

to compute proportionally max-min fair rate vectors is similar to that for max-min

fairness, except for the choice of the best user for each unassigned subcarrier n in

(2.12a) and (2.12b) (step 3). In this case, it follows the following criterion instead:

k ←− arg max
ℓ∈K

ϕℓ
R

1/N
ℓn

Rℓ
(2.20)

where R
1/N
ℓn is computed according to (2.11). The rationale behind this approach is

the following. Using (2.20), users compete for resources not directly based on their

channel conditions, as happens in Sect. 2.3.2, but according to the combination of

priorities ϕℓ and rates normalized by their respective average throughputs, R
1/N
ℓn /Rℓ.

In other words, each subcarrier is assigned to a user when its channel, weighted by

its priority, is near its own peak in the frequency domain, thus trading off multiuser

diversity and fairness.

The update of the data rate Rk can be done in different ways. A low-complexity

update equation that also bears low memory requirements is defined in [159, Sect.

6.7], by keeping track of the average throughput Rk of each user in an exponentially-

weighted time window of length Tc as follows:







Rk =
(

1− 1
Tc

)

Rk +
1
Tc
R

1/N
kn ,

Rk =
(

1− 1
Tc

)

Rk k 6= m,
(2.21)

where k is the index of the preferred user for the next updating round and m is

the selected user for the current round, both selected following (2.16). The update

(2.21) is an exponentially weighted filter that, instead of using (2.12e), includes all

historical rates in the average rate. Note that using a very large time-scale Tc, (2.21)

is equivalent to maximization problem (2.14) [159, Sect. 6.7].
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In the literature of OFDMA resource allocation, some other instantaneous sum-rate

maximization methods with proportional rate constraints have been studied (e.g.,

[160–162]). In terms of problem formulation, the main emphasis of these works is on

the maximization of the data rates with instantaneous proportional rate constraints,

exclusive subcarrier assignment, and constrained total transmit power. The solution

is achieved by resorting to integer programming methods, with time complexity (i.e.,

number of time steps in the iterative algorithm) on the order of O (NK log2N) or

higher.

The notion of weighted proportional fairness has been extended by Mo and Wal-

rand in [163], observing some particular transmission control protocol (TCP)-based

network traffics, in which the total throughput of weighted proportional fairness is

not optimal in terms of spectral efficiency. To overcome this drawback, the problem

is then formulated using the following definition.

Definition 19 Let α be a non negative constant, and ϕ = [ϕ1, . . . , ϕK ] be a positive

weight vector. A vector data rate R = [R1, . . . , RK ] is (ϕ, α) proportional fair if it is

feasible and, for any other feasible rate vector R
′

=
[

R
′

1, . . . , R
′

K

]

,

K
∑

k=1

ϕk
R

′

k −Rk
Rk

α ≤ 0. (2.22)

�

Obviously, if α = 1, (2.22) reduces to the weighted proportional fairness introduced

in (2.18). If α → ∞, R approaches the max-min rate vector [163, Lemma 3]. In

other words, this generalization includes arbitrarily close approximation of max-

min fairness. Unfortunately, the challenge of choosing the best value of α makes

this framework (almost) impractical. Further examinations clarify that (ϕ, α > 1)

proportional fairness maximizes [163, Lemma 2]:

K
∑

k=1

ϕk (1− α)
−1Rk

1−α (2.23)

over all feasible data rate vectors.

Mathematically, (2.22) is a twice continuously differentiable and strictly concave

function. Algorithms for computing (ϕ, α) proportionally fair rates have been devel-

oped in [163], where each transmitter adapts its window size based on the total delay
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between the transmission of a packet and the reception of its acknowledgment. The

main drawback of the proportionally fair rate allocation is that utility (maximization)

functions are commonly assumed as concave. Lee et al. [164] showed that, if the

abovementioned algorithms developed for concave utility functions are applied to non

concave utility functions, the system can be unstable and cause excessive congestion

in the network. Since the rate adaptive functions of some real-time applications are

not concave (e.g., a multimedia communication) [165], they cannot be dealt with in

this kind of systems.

2.3.4 Utility maximization

Max-min fairness (Sect. 2.3.2) and weighted proportional fairness (Sect. 2.3.3) con-

sider the same QoS requirements among network users with a strictly concave rate

adaptive function. As mentioned above, in some systems, e.g., multimedia applica-

tions, the rate maximization functions are not concave. Furthermore, in such contexts

we are not able to formulate real-time constraints, e.g., in terms of delay. In their

seminal work [166], Cao and Zegura overcome these disadvantages by introducing

the concept of utility maximization in terms of application-layer performance, whose

aim is to provide individual QoS requirements for each user with a (not necessarily

concave) function for rate maximization. More in general, a utility function is a

function that can be used to mathematically describe the QoS characteristics of

an application, thus allowing the system designers to put the emphasis on specific

QoS parameters of the network. Unlike rate-adaptive formulations, in which the

objective, as described in the previous subsections, is the sum-rate maximization

with constraints in terms of power expenditure, the utility maximization approach can

guarantee the application-specific demand which can be characterized by bandwidth,

delay, delay jitter, or time spent to complete data deliveries, just to mention a few

examples.

In other words, this framework allows for more general resource allocation problems,

that can be formulated in different ways according to the goal of the system. For

instance, a power control scheme for optimal uplink SNR assignment can be expressed

in a centralized way as follows:

max
p, N

K
∑

k=1

∑

n∈Nk

uk(γkn) (2.24a)
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s.t.
∑

n∈Nk

pkn ≤ pk ∀ k ∈ K (2.24b)

and Nk ∩ Nm = ∅ ∀ k, m ∈ K, k 6= m. (2.24c)

where

γkn =
|Hkn|

2
pkn

σ2
w

(2.25)

denotes the SNR of the user k on the nth carrier (used by user k only in an exclusive

fashion) as measured at the BS, and uk(·) is user k’s individual maximization function

that is a function of each user’s relevant parameters. The maximization function can

also be represented as a greedy function for each user as follows:

max
pk, Nk

∑

n∈Nk

uk(γkn) ∀ k ∈ K (2.26)

that makes the power control a distributed problem, in which each user k seeks the

optimal vectors pk and Nk that maximize its own sum-utility (2.26). However, note

that selecting the set Nk by each user while meeting the exclusive assignment of the

subcarriers, i.e., (2.24c), implies a certain amount of feedback information among the

users, which, although less demanding in terms of feedback rate than the problem

(2.24), makes this scheme not completely distributed.

In the literature, many utility-based resource allocation formulations appeared in the

last few years. As already mentioned, [166] proposed the use of a utility function to

maximize the performance of the application layer. The drawback in [166] is a high de-

lay in the communication network among users. Cho and Chang et al. in [167] extend

this formulation to address the limitation in terms of delay, by proposing a control-

theoretic utility max-min flow control algorithm, and showing that the algorithm

converges to a utility max-min fair rate vector by using Dewey and Jury’s stability

criterion [168]. Among the others, Huang et al. in [169, 170] introduced scheduling

and radio resource allocation algorithms in OFDMA-based wireless networks in the

downlink and the uplink direction, respectively, using a dual formulation, and showing

a complexity O (KN +N log2N). In particular, [169] looks at joint scheduling and

resource allocation for the downlink by considering several practical constraints largely

ignored in the previous literature (e.g., self-noise). Reference [170] aims at maximizing

the achieved data rates taking into account the queue length of each user, using an
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algorithm that can also be applied to downlink transmissions. Zhou et al. [171]

solve a scheduling and resource allocation problem in an OFDMA system using an

approach based on utility functions, that eventually results in a discrete optimization

problem with a non-differentiable non-convex objective with minimum data rate

constraints. The idea is to transform the discrete problem into a suitable weighted

max-min fairness problem which is easier to be implemented. In [172], Kim and

Lee present a general utility-based framework for joint uplink/downlink optimization,

where the user’s satisfaction is modeled by two different utility functions, one for the

uplink, and another one for the downlink. The resource allocation is formulated as a

maximization problem with an objective based on the sessions’ utility functions and

allocation probabilities as scheduling constraints that are solved via dual optimization

techniques. To investigate radio resource allocation in OFDMA with heterogenous

traffic classes, reference [173] defines a utility function as a sinusoidal function that

depends on minimum and maximum data rates.

References [174–176] address the problem of energy efficiency maximization subject

to power constraints according to the circuit power consumed. Xiong et al. in [175]

devise a joint uplink/downlink water-filled energy efficient resource allocation under

users priority constraints. The WF based iterative algorithm proposed by [175]

converges faster than that of [174], while the spectral efficiency of the algorithm

proposed by [174] is higher than that of [175].

To summarize, even though the utility maximization approach has made advances

in dealing with heterogeneous resource allocation issues, it also exhibits serious lim-

itations. As already mentioned, there exists a tradeoff between average throughput

and fairness in the system. Sometimes there also exists a conflict between the QoS

balance and the utility maximization. If users select utility functions based on their

actual QoS requirements, then the optimal achieved data rate may result in a to-

tally unfair resource allocation within the network. Applying advanced optimization

methods of geometric programming [148], majorization theory [177], and fractional

programming [178] may achieve an admissible tradeoff between fairness and overall

throughput [176, 179, 180]. However, depending on the problem formulation, it is

impossible to achieve the desired network performance if the resource allocation

scheme operates on the link layer only. To further generalize the problem formulation,

and thus to increase its potential, it is worth resorting to the cross-layer approach

described in the next subsection.
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2.3.5 Cross-layer optimization

So far, we talked about the design of an OFDMA system based on classical link-

level approach. The wireless link level primarily addresses two challenges that arise

from the physical medium: channel fading and multiple access interference (MAI).

Advances in link design for wireless channels have led to different modulation and

channel coding schemes that provide increased robustness to MAI and multipath

and, thereby, enhance the radio band capacity. While OFDMA provides a powerful

physical layer engine for broadband communications, applying it without thorough

application level considerations may lead to poor results. In high-speed data networks,

in which the traffic is in fact highly diverse (i.e., with distinct QoS parameters), and

channel conditions that may vary dramatically over a short time scale, the traditional

(decoupled) layer design cannot meet such requirements. For instance, if the medium

access control (MAC) layer does not interact with the upper layers, it cannot obtain

information regarding the type of service and the associated QoS parameters. As a

consequence, the MAC has no ability to adjust itself to the variable characteristics of

the traffic.

An OFDMA radio allocation module can be designed to be both channel-aware and

application-aware through cross-layer interactions [181] that break the traditional

layered paradigm of communication by relying on the concept of joint optimization

across multiple layers. The cross-layer approach allows different layers to be grouped

and/or assumes the existence of protocols that work with more than one layer, thus

optimizing the protocol stack. With cross-layer techniques, decision making can be

more accurate, bringing forth several benefits to the performance of the network. Bo-

hge et al. in [182] provides basic definition and knowledge of cross-layer optimization

in the context of OFDM and in the downlink direction of OFDMA systems.

In the context of cross-layer design, many joint scheduling-routing-flow control algo-

rithms have been proposed, including multiuser techniques such as: maximization of

the rate delivered on the radio channel [183]; a fair allocation of resources among users

belonging to the same traffic class [184]; shaping the dynamics of traffic sources by

limiting the delay of data packets in the queues [185]; and maximization of the QoS at

the application layer [186]. Sometimes the difference between cross-layer and utility

maximization schemes blur away, since cross-layer schemes may require to improve

their performance by applying a non-concave utility function, that may consist of
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parameters from different layers. The common idea behind cross-layer schemes is to

properly maintain packet queues to dynamically adapt packet transmission as well as

rate allocation. Some pioneering works in the field of resource allocation in OFDMA

using cross-layer design have appeared in [187–189].

Jiang et al. in [190, Ch. 6] present a more general framework of cross-layer OFDMA

resource allocation, with [169,170] as special cases (Sect. 2.3.4). References [141,191,

192] propose some feasible solutions to maximize the throughput for the downlink

of an OFDMA system under QoS constraints, also reducing the computational com-

plexity. This is achieved using the method of Lagrangian relaxation [148], that is

effective to provide users with very low SINRs with good performance. However, in

the case the channel conditions and the QoS requirements vary significantly between

successive frames, a new set of Lagrangian multipliers must be found in each frame,

that may reveal to be impractical.

2.4 OFDMA resource allocation based on game the-

ory

In the utility maximization (Sect. 2.3.4) and cross-layer (Sect. 2.3.5) schemes, different

utility functions apply for different users. Sometimes the interests of wireless terminals

are not aligned, so that they compete for the scarce wireless resources, namely

bandwidth and power. Each user’s interest could also be in conflict with others’.

In this situation, the wireless terminals can decide to behave in either an altruistic

or a selfish manner. In both cases, the related problems can be formulated applying

game theory [10], which considers the users as players in a game. In particular, in

an OFDMA network, there are multiple interacting users which occupy a fraction

of the whole bandwidth, using a fraction of their available transmit power on each

subcarrier based not only on their decisions, but also on the interests of any other

mobile terminal in the network. This kind of interactions is just the main field of

application of game theory, which thus represents an effective analytical tool not only

to extend the optimization methods described in the subsections above (see [133]

and references therein), but also to address the problem of Pareto optimality [10].

In resource allocation problems, one of the major challenges is in fact to achieve a

Pareto-optimal rate vector, i.e., a rate allocation such that each user is provided with a
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certain performance, and any allocation other than that will degrade the performance

of at least one user in the network. Interestingly, Pareto-optimal solutions can be

investigated by means of game-theoretic formulations.

In the context of game theory, depending on the interaction rules, there exist various

types of games. For instance, if the users are allowed to exchange their proper interests

and information before the game starts in order to form coalitions and coordinate

their actions, the game is said to be cooperative (and thus studied by coalitional

game theory). If coordination among users is not present, the game is said to be

non-cooperative, and modeled according to non-cooperative game theory. In both

frameworks, the players act according to their strategies. The strategy of a player

can be a single move or a set of moves during the game. For games in wireless

communications, each transmitter represents a player whose strategy space covers

the choices of modulation level, coding rate, transmit power, transmission frequency,

just to mention a few examples. Another factor that identify different types of games

is the number of times the users interact. If users play the game over multiple rounds,

the game is said to be a repeated game. Contexts where the users only interact once

are referred to as static games [10, 22].

2.4.1 Non-cooperative solutions

Non-cooperative game theory has been vastly applied to wireless communication

problems, and much progress has been made on distributed power control in Gaussian

interference channels. In [193], Wu et al. investigates a joint power and (exclusive)

subcarrier assignment scheme in single-cell uplink OFDMA systems based on non-

cooperative game theory, using the sum-capacity as the utility function to be maxi-

mized. This game bears a unique Nash equilibrium (NE), which is a stable outcome

of the game (i.e., a stable resource apportionment across users) in which no player has

incentive to unilaterally (i.e., non-cooperatively) deviate from [10]. In [140], Yu et al.

apply a different convex utility function to the same scenario, aiming at maximizing

the power efficiency of the network. In the utility function, a (transmit) power pricing

factor [194] is introduced to overcome the near-far effect, reaching a (nearly) Pareto-

optimal NE point. The fairness of both approaches [140,193] is experimentally showed

among a small number of users.

Kwon et al. in [195] aim at maximizing the weighted sum-rate of the users in the
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uplink of a multicell OFDMA scenario. This objective, together with power and rate

constraints, defines the non-cooperative game. The simulation results show that the

performance of the proposed algorithm strictly depends on the power pricing coeffi-

cient, which represents the cost imposed on each BS for the co-channel interference

generated by it as well as its power consumption.

Han et al. in [16] analyze the previous scenario to maximize the data rates under

a constraint in terms of maximum transmit power, showing that the pure non-

cooperative game may have some undesirable NE points with low system and indi-

vidual performance. The authors suggest to introduce a centralized “virtual referee”

whose role is to prevent users with high co-channel interference from sharing one

subcarrier, or to reduce the demanded transmission rates that prove to be unfeasible.

Even though the results significantly outperforms the WF solution in terms of reduced

transmit power and increased data rate, the proposed algorithm suffers from high

computational complexity. Tan et al. in [196] experimentally show that their non-

cooperative game-based algorithm achieves a good performance in terms of total data

rate, computational complexity, and fairness among users.

The problem of energy-efficient resource allocation for a multicell OFDMA system

is studied in [197, 198]. In [197], the authors devise a non-cooperative potential

game [199] aimed at maximizing the users’ energy efficiency, which proves to bring

performance improvements in terms of goodput (error-free delivery) for each unit

of energy. In [198], the same purpose is accomplished by a centralized subcarrier

allocation procedure and a distributed non-cooperative power control game. The

simulation results in a realistic multicell network scenario show that the proposed

algorithm achieves an acceptable performance and computational complexity burden.

Non-cooperative game theory is also flexible enough to investigate resource allocation

problems for contexts different from the data detection phase, popularly considered

in the literature. For instance, in [200] Bacci et al. formulate a non-cooperative game

to regulate the transmit powers in an OFDMA uplink during the initial, contention-

based network association.

2.4.2 Cooperative solutions

Recently, several other methods which use various heuristics based on cooperative

(coalitional) game theory [10, 22] have been proposed to address the problem of
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fair resource allocation for OFDMA systems, using either centralized or distributed

algorithms. The Nash bargaining solution (NBS) [10] is the most refined technique

applied to wireless resource allocation problems in an OFDMA network. The NBS

proves the existence and uniqueness of an NE point of the following convex utility

function:

max
p, N

K
∏

k=1

(Rk −Rk) (2.27a)

s.t. Rk =
∑

n∈Nk

Rkn ≥ Rk ∀ k ∈ K (2.27b)

and
∑

n∈Nk

pkn ≤ pk ∀ k ∈ K (2.27c)

and Nk ∩ Nm = ∅ ∀ k, m ∈ K, k 6= m, (2.27d)

In other words, the goal is to maximize the product of the excesses of the transmitters’

rates over their own minimum demands Rk. The NBS guarantees each user to achieve

its own demand, thus providing an individual rationality to the resource allocation.

The important result of applying NBS is that the final rate allocation vector is Pareto

optimal. Taking into consideration the strictly concave increasing property of the

logarithm function, we can transform (2.27a) into:

max
p, N

K
∑

k=1

log2 (Rk −Rk) (2.28)

Clearly, when Rk = 0, the NBS fairness scheme reduces to the weighted proportional

one, with ϕk = 1 [201].

Han et al. in [139] introduce a distributed algorithm for an OFDMA uplink based

on the NBS and the Hungarian method [202] to maximize the overall system rate

under individual power and rate constraints. The underlying idea is that once the

minimum demands are provided for all users, the rest of the resources are allocated

proportionally to different users according to their own conditions. The proposed

algorithm shows a complexity O
(

K2N log2N +K4
)

, without considering the (ex-

pensive) computational load to solve the (convex) equations of the NBS. In [203], Lee

et al. solve two subproblems of exclusive subcarrier assignment and power control

in an OFDMA network aiming at maximizing the NBS fairness. The simulation

results show an overall end-to-end rate between the nodes comparable to that achieved

in [139].
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One main drawback of applying NBS in resource allocation problems is that this

scheme guarantees minimum requirements of the users, but it does not impose any

upper bound constraint. In fact, the achieved data rate may be much higher than

the initial demands and this is unsatisfactory from the wireless network provider

viewpoint. One of the most prominent alternatives to the NBS is the Raiffa-Kalai-

Smorodinsky bargaining solution (RBS), defined by Raiffa [13] and characterized by

Kalai and Smorodinsky [204]. The RBS requires that a user’s payoff data rate should

be proportional not only to its minimal rate, but also to its maximal one. Whereas

the NBS takes into account the individual gains, RBS emphasizes the importance of

one’s gain and others’ losses. For an OFDMA resource allocation problem, the RBS

bargaining outcome is the solution to:

max
p, N

K
∏

k=1



Rk −Rk +
1

K − 1

∑

m∈K,m 6=k

(

Rm −Rm
)



 (2.29a)

s.t. Rk ≤ Rk ≤ Rk ∀ k ∈ K (2.29b)

and
∑

n∈Nk

pkn ≤ pk ∀ k ∈ K (2.29c)

and Nk ∩Nm = ∅ ∀ k, m ∈ K, k 6= m, (2.29d)

wherein Rk denotes the upper bound of the transmission rate of the each user. When

applying RBS, if the channel quality of a terminal improves, it will get a better

capacity without any reduction to that of the other users (individual monotonicity).

The existence and uniqueness of RBS can be shown, but a Pareto optimal NE point

is not always attained for more than two players, as Roth stated in [205]. By using

again the properties of the logarithm function, the utility maximization (2.29a) can

be equivalently investigated using the following objective function:

max
p, N

K
∑

k=1

log2

(

Rk −Rk
Rk −Rk

)

(2.30)

Using this formulation, the RBS is a point at which each individual’s gain is propor-

tional to its maximum gain. When Rk = 0 ∀ k ∈ K and R1 : · · · : RK = R1 : · · · : RK ,

the RBS achieves the same results of the max-min fairness criterion. In RBS formu-

lation, the achieved data rate vector satisfies:

R1 −R1

R1 −R1

= · · · =
Rk −Rk
Rk −Rk

= · · · (2.31)
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In [18], Chee et al. propose a centralized algorithm for the OFDMA downlink

scenario based on RBS. The results show a good performance only when the gap

between the maximum and the minimum rate is (very) large. Even though the

subcarriers are assigned in an exclusive manner, the computational complexity of this

algorithm is O
(

KN +K2
)

. Reference [206] investigates the problem of time-space

resource allocation in a MIMO-OFDMA network in the downlink direction with aim

at maximization data rate of each terminal, without specifying the complexity of

the iterative algorithm to solve the NBS convex equation. In Chapter 3, we will

attempt to improve the fairness of the solution and to reduce the complexity in the

uplink direction of OFDMA-based networks, by deriving a coalition-based algorithm

to provide each terminal with exactly the desired rate, so as to satisfy both wireless

terminals and the network service provider.

Auction methods are another cooperative game scheme which has recently drawn

attention in the resource allocation research literature. In [19], Noh proposes a

distributed and iterative auction-based algorithm in the OFDMA uplink scenario with

incomplete information. The time complexity of the algorithm is experimentally equal

to O (KN log2K). However, the simulation parameters are not realistic (three users

and three subcarriers), and it is thus hard to estimate the computational complexity

when using real-world network parameters. Alavi et al. in [207] propose an auction-

based algorithm to achieve near a proportionally fairness data rate vector, although

the computational complexity is not specified. Reference [208] propose a joint down-

link/uplink subcarrier allocation (with fixed power) based on stable matching game to

maximize data rate of each terminal in downlink and uplink directions, simultaneously.

2.5 A toy example with two terminals

In this section, we apply the different problem formulations introduced above to a

simplified scenario, namely a network populated by just two terminals (K = 2). For

the reader’s convenience, we report the optimization formulas for this specific case:

Max rate: arg max
U

(R1 +R2) (2.32a)

Max-min rate: arg max
U

min
k=1,2

Rk (2.32b)

Proportional fairness: arg max
U

(R1 +R2) s.t. R1 : R2 = ϕ1 : ϕ2 (2.32c)



78 A survey on resource allocation techniques in OFDM(A) networks

0
0

Proportional
Max−min  

Max rate

NBS

RBS

) |

−

(R1 −R1) · (R2 −R2) = β

ΣMR

ΣMMR

ΣPF

ΣNBS ≃ ΣRBS

ϕ1

ϕ2

R1

R2

R1

R2

U

R̃1

R̃2

(R̃1, R̃2)

Fig. 2.1: Two-user rate optimization.

NBS fairness: arg max
U

(R1 −R1) · (R2 −R2) (2.32d)

RBS fairness:

arg max
U

(

R1 −R1 +
(

R2 −R2

))

·
(

R2 −R2 +
(

R1 −R1

))

(2.32e)

The (network) overall rate (the sum-rate) can be maximized using the max rate

optimization formula (2.32a). However, although globally efficient, this solution is

unfair: users with bad channel quality (e.g. cell-edge users) may be completely

excluded from communication. On the contrary, max-min rate optimization protects

terminals with a low data rate, and to this aim the lowest data rate is maximized

according to (2.32b). In this case, a user with bad channel quality limits the system

performance, and, if the channel quality of one user improves, all users will achieve

a higher data rate. To maximize the sum-rate while balancing the ratios among the

rates, we can use the formulation (2.32c).

To better visualize the problem, Fig. 2.1 reports the case in which user 2 experiences

a better propagation channel than user 1. This is confirmed by the gray area U
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representing the feasible ranges for R1 and R2, that can be computed by assuming

that both terminal receivers treat co-channel interference as noise [209]. As can be

seen, U is a convex area, with R2 > R1, due to user 2’s better channel conditions.

By numerically solving (2.32a), we can find the max rate solution, represented by

the black circle in Fig. 2.1. Geometrically, it can be obtained by identifying the

point at which the Pareto boundary, given by the contour of U , osculates a straight

line with slope −1, depicted by the black dashed line labeled2 with ΣMR. Note

that such line, given by all pairs (R1, R2) such that R1 + R2 = ΣMR, is the only

constant-sum-rate line that is tangent to the Pareto boundary: all other lines such

that R1 + R2 = ξ < ΣMR intersect the Pareto boundary in two points, whereas all

lines such that R1 + R2 = ξ > ΣMR do not intersect it. Using numerical methods

and setting ϕ1/ϕ2 = 3.2 in this example, we can also find the solutions to (2.32b)

and (2.32c), represented by the red and the green circles, respectively. It is worth

noting that the such points intersect the red and green dashed lines, corresponding

to R1 + R2 = ΣMMR and R1 + R2 = ΣPF, respectively, confirming that the sum

rate achieved by such formulations is of course lower than that given by (2.32a), as

ΣMMR < ΣMR and ΣPF < ΣMR. This result is valid in general, and can be met with

equality only under special settings of the network.

In addition to the proportional fair method, we can use two cooperative game-based

solutions, namely NBS and RBS, to introduce fairness into our resource allocation

problem. The NBS, formulated by the convex formula (2.32d), can be seen as a general

case of the weighted proportional fairness, in which all users are guaranteed to receive

some resources Rk. The RBS solution, represented by (2.32e), is a generalization of

the max-min solution, in which the achieved rates are bounded between a minimum,

Rk, and a maximum, Rk, demanded rates. Similarly to the max-min allocation,

if the channel quality of a user improves, in the RBS solution he/she will get a

higher data rate wihtout any reduction for the other users’ rates. In the cooperative-

game formulations, we consider a minimum demanded (R1, R2) and a maximum

constraint
(

R1, R2

)

as disagreement points. NBS and RBS solutions must then satisfy

Rk ≤ Rk and Rk ≤ Rk ≤ Rk, respectively. If the demanded rates, ignored in max

rate, max-min rate, and proportional fairness solutions, are not met, in NBS and

2For the sake of graphical presentation, all line labels Σ(·) correspond to the lines whose points

are such that R1 +R2 = Σ(·).
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RBS solutions a user would leave the negotiation (hence the name “disagreement

point”). As a consequence, the feasible regions for max rate, max-min rate, and

proportional fairness solutions is U , whereas it is U
⋂

{[R1, R2] ≤ R} for NBS and

U
⋂
{

[R1, R2] ≤ R ≤
[

R1, R2

]}

for RBS, respectively, with R = [R1, R2].

The NBS and RBS solutions can be found numerically in this example, and are

depicted by the blue diamond and the brown square in Fig. 2.1, respectively. As

can be seen, the difference between the NBS and RBS pairs is negligible. Although

this does not always hold in general, here is due to having only K = 2 sources, and

placing the same maximum achievable rate R for both solutions. Similarly to the

max-rate case, we can obtain such points graphically [11, Ch. 35]. The NBS point

can be identified as the point of tangency between the Pareto boundary of U and the

hyperbola (R1 −R1) · (R2 −R2) = β, where β > 0 is chosen properly to ensure only

one intersection between the two curves. Note that, if we draw the tangent line to

U at the NBS point, the length of the segment between the NBS solution and the

vertical line drawn through R2 is equal to the length of the segment between the NBS

solution and the horizontal line drawn through R1 (see Fig. 2.1, yellow segments).

To obtain the RBS point graphically, we need to identify the “utopian point”

(R̃1, R̃2), where R̃k is the maximum achievable rate by user k when the other user

demands its minimum one Rm (see Fig. 2.1). This point is named utopian, as both

terminals cannot achieve such rates simultaneously, as confirmed by the feasible region

U . The RBS solution is thus the intersection between the Pareto boundary of U

and the segment connecting the utopian point (R̃1, R̃2) and the disagreement point

(R1, R2). To measure the global efficiency of the cooperative solutions, we can draw

the constant-sum-rate lines ΣNBS and ΣRBS, depicted by the blue and brown dashed

lines, respectively. As expected, the sum-rate achieved by both solutions is nearly

the same, and lower than that provided by the max-rate solution, although in this

particular example the gap is significantly reduced with respect to the max-min and

proportional-fair solutions. Note this is true in general, as NBS and RBS outperform

max-min and proportional-fair solutions in terms of achieved sum-rate [11, Ch. 35].
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Fig. 2.2: Different frequency reuse schemes.

2.6 Toward 4th generation of wireless networks

2.6.1 Multicellular networks

Until now, we focused on a single-cell OFDMA network scenario wherein the BS and

the mobile terminals use one set of frequency bands. In a multi-cell network scenario,

the same frequency band can be reused by cells which are physically separated far

enough to endure mutual interference. A BS that uses the same frequency band

begets co-channel interference. The allocation of frequency bands to BSs is called

frequency reuse which has a significant impact on system performance. Existing

frequency reuse schemes can be divided into three classes: static frequency channel

allocation, dynamic channel allocation, and combined channel allocation. In static

frequency reuse, the partitions of frequency band do not adapt to traffic dynamics and

interference conditions experienced by users. A subcarrier under a deep fade for one

user at a given time may not be in a deep fade for other users. Therefore, every sub-

carrier may have a good channel response for some users in a multiuser environment.

Unevenly loaded traffic results in unbalanced performance over the cells, which leads
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to degraded overall system performance. Instead of predicting and averaging, dynamic

subcarrier allocation takes advantage of multiuser channel and traffic diversity to

adjust the channel allocation over time. Although dynamic subcarrier requires higher

computation complexity and signaling overhead during operation, its ability to utilize

real-time system information leads to higher spectrum efficiency. Basically, dynamic

radio resource allocation in a multi-cell network can be performed in centralized or

distributed manner. In centralized schemes, the terminals and BSs are responsible for

gathering traffic/channel information and feed back the information to the controller

and then participate in protocol implementation. Combine channel allocation can be

reputed as the combination of static and dynamic channel allocation, where some of

the channels are fixed for each BS and others are dynamically assigned to cells.

Static frequency reuse approaches are based on fractional frequency reuse (FFR)

where frequency bands are divided into a number of segments. Fractional frequency

reuse is divided into two schemes: strict fractional frequency reuse (FFR), and soft

frequency reuse (SFR). Typically, in an FFR approach, each segment is reserved for

a certain reuse factor and is associated with a particular transmission power profile.

When (strict) “frequency reuse 1” (called also universal frequency reuse) is supported,

all BSs operate on the same frequency channel (Fig. 2.2(a)). In this case, to maximize

frequency efficiency, decreasing the inter-cell interference is a major concern. Since

a link will experience co-channel interference from signals from neighboring cells, the

SINR for a link between the bth BS and the kth terminal via the nth subcarrier is

defined as:

γbkn =
hbknpkn

∑

b6=c∈B h
c
knpkn + σ2

w

(2.33)

wherein B denotes the set of cells (BSs). In domain of frequency reuse 1, the result

of contribution [210] written by Gjendemsjø et al. show that in a two-cells setup

scenario, a binary power allocation policy which assigns either full power to both

cells or shuts down one cell significantly increases the whole data rate in downlink

direction under power constraints per-BS. Venturino et al. in [211] use a distributed

approach based on optimization problem with aim at maximization downlink rate

region subject to power constraints per BS. Yu et al. in [212] applied the idea of

“interference pricing” which measures the impact of each terminal’s interference on

its neighbors cells and then BSs dynamically allocate radio resources based on the

exchange of these measures.
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The scheme called (strict) “frequency reuse 3” divides the frequency band into

3 sub-band and allocates one sub-band to a given cell, so that adjacent cells use

different frequency band as illustrated in Fig. 2.2(b). A “hybrid frequency allocation”

is proposed which is, in general, a mix of reuse 1 and 3 approaches. A hybrid approach

can be applied to avoid interference at cell edges. For example, suppose we have three

cells covering a certain area, and there are four frequency segments. Then, frequency

segment F4 can be reserved for cell-interior users (with less interference from other

sectors), and frequency segments F1,F2,F3, for cell-edge users (more interference

from other sectors) in cells 1, 2, 3, respectively (Fig. 2.2(c)). As a result, we have

1/3 reuse for far users and 1/1 reuse for close users. Reference [213] proposes an

algorithm to apply hybrid frequency allocation in an OFDMA-based network that

maximizes the total cell throughput. Reference [214] introduces an FFR optimization

technique wherein the edge-region of each is divided into three sectors as illustrated

in Fig. 2.2(d). The optimal configuration of the proposed algorithm is based on

maximizing the average sector data rate subject to a minimum cell-edge data rate. In

a SFR deployment, the cell-interior users are allowed to share frequency bands with

edge-users in other cells (Fig. 2.2(e)). Typically, cell-interior users in SFR transmit

at lower power than cell-edge users [215]. While SFR outperforms FFR in terms

of spectral efficiency, it results in more interference to users [216]. Some studies

in the literature (e.g., [217, 218]) suggest that power control does not always yield

significant performance gain in OFDM systems compared to the complexity it adds

to the operations of the system. Accordingly, these studies adopt a simple binary

power control model in which either a subcarrier can be assigned to a terminal with

maximum power or not. In the scheme proposed by Kwon et al. in [217], resource

allocation is managed independently at each “pseudo-cell” composed of the major-

interfering sectors belonging to the neighboring cells (Fig. 2.2(f)) in order to reduce

the signaling and computation overhead. For each subcarrier, the transmission power

is fixed, while varying the transmission rate by using adaptive modulation. The

subcarriers are dynamically divided into different groups according to their load

condition and for each group it is applied either frequency reuse 1 or frequency reuse

Ns, where Ns denotes the number of sectors within one pseudo-cell.

For OFDMA networks, centralized FFR approaches available in references [219,220]

show results with equal/unequal power levels and adaptive power levels as well. These

works consider fixed partitioning of radio resources for cell center and edge users.
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The parameters such as distance and SINR to partition cell center and edge regions

are used as fixed thresholds. References [221–226] investigate the problem of game-

theoretic radio resource allocation in OFDMA-based multi-cell networks. Reference

[131] surveys different techniques for ICI mitigation in OFDMA-based multicellular

networks.

There are few open issues in applying existing channel assignment approaches to

OFDMA-based multi-cell networks. First, traditional frequency assignment assumes

a predefined SINR threshold, which is rather suitable for homogenous services, but

cannot be adopted for multimedia services. Secondly, traditional frequency assign-

ment deals with flat fading channels and consequently overhead and computational

complexity due to the measurement and signaling is associated to one frequency band.

However, an OFDMA network needs to exchange information on all of the subcarriers

which dramatically increases the complexity of measurements. As a result, fully

centralized schemes are often too heavy for implementation as all the interference

information on all channels has to be gathered and calculated at a central controller.

On the other hand, fully distributed schemes have difficulties dealing with uneven

and instantaneous loaded traffic.

2.6.2 Pico- and Femto-cell networks

One of the key expectations for the future wireless system is to provide ubiquitous

high data rate coverage. But with the traditional cellular architecture, increasing

the capacity together with the coverage requires the deployment of a large number

of BSs, which is very costly. Multi-tier networks consist of a conventional cellular

network overlaid with low-power and small range micro- and pico-BS (e.g. femto-

cells, distributed antennas, or wired/wireless relays) which offer a cost effective way

to enhance cellular system performance. Small BSs act as access points which extend

network coverage and enhance capacity without incurring in the cost of backhaul

connections. Femto-cells can be installed by end-users to improve the indoor coverage

and capacity in residential and office environments. On the other hand, a pico-cell

can be installed by a wireless service provider in public spaces or large buildings.

In multicellular networks, macro-, micro-, and pico-cells suffer from a problem of

co-channel interference between them in the neighboring cells. In radio resource

allocation the problem of co-channel interference must be taken into consideration
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to evaluate the improvement of system throughput and economical feasibility by em-

ploying the different types of BSs. The coverage of a pico-/femto-cell becomes smaller

when it is closer to a high power macro BS [227]. Under the pre-allocated frequency

band within a macro-cell through the FFR optimally, a radio resource management

allocates sub-bands the small BSs efficiently to consider macro-cell having a priority

over micro-/femto-cells and total/edge throughputs.

References [228–230] propose spatial reuse schemes to mitigate the co-channel inter-

ference for OFDMA femto-cell networks and increasing femto-cells throughput as well.

Ko et al. in [231] present a self-organizing femto-cell networks where users optimize

their performance in a distributed manner. References [232,233] investigate spectrum

allocation techniques for femto-cells, based on Markov modeling and Q-learning [79]

, respectively. Contributions [234–236] propose game theoretic algorithms to adjust

the transmit powers of femto-BSs to mitigate interference, improve total capacity, and

approach fairness among users. An efficient power allocation to femto-cells to cover

specific terminals is presented by [237]. References [227, 238] propose algorithms

to adjust pico BSs power as a tradeoff between cell coverage and cell throughput.

Reference [239] devises a cross layer design for joint resource allocation and admission

control in a two-tier OFDMA based network. The admission control is optimally

designed based on Markov decision and the power of femto BSs is efficiently allocated

using non-cooperative game theory.

2.6.3 Relay assisted networks

Cooperative communication with intermediate relay stations is an emerging technol-

ogy to improve the performance of a wireless communication system. A relay is used

to improve the transmission quality between a source node and a destination, and it

can operate in either the amplify-and-forward (AF), the decode-and-forward (DF),

or compress-and-forward (CF) mode. In the AF mode, the relay simply retransmits

its received signal, including the interference and its local additive noise. A DF relay

decodes its received signal before retransmission. Since the interference generated in

the source-to-relay transmission is eliminated, the DF mode improves the effective

SINR considerably, but at the cost of an increased hardware complexity. When the

relay is not able to perfectly decode the received signal, the CF strategy is used to

estimate the transmitted signal by the source node.
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The most important factor which impacts on performance of relay-aided commu-

nications is radio resource management, i.e., how different subcarriers of OFDMA

sources/relays should take part into a relayed transmission. References [240, 241]

study the capacity of relaying in OFDMA applying AF and DF strategies. They also

propose algorithm to subcarrier assignment with fixed-power. The algorithm proposed

by Hammerström et al. in [242] provides a power allocation on the different subcarriers

at the AF relay and the transmitter node, in a dual-hop OFDM relay communication

scenario. The goal of the proposed power allocation is the maximization of the

channel capacity with respect to the separate constraints on the transmitted power

on the relay and source. In [243] and [244] L. Vandendorpe et al. propose some

power allocation techniques in an OFDMA dual-hop relay communication applying

the DF strategy. In particular, [243] places a constraint on the sum of the power

consumption by the relay and sender, whereas [244] uses two individual constraints.

References [245–248] investigate the resource allocation problem in an OFDMA-based

point-to-point communication assisted by multiple relays to maximize the data rate

under a power constraint.

Relaying is one of the enabling techniques for the next generation wireless networks.

The first commercial relay-assisted OFDMA network has been standardized by IEEE

802.16j [249]. In single-cell scenarios, references [250, 251] evaluate the performance

of a relay-assisted OFDMA network for a specific setup with three relay stations in a

cell with and without intracell frequency reuse. The numerical results show that the

relay-assisted system significantly outperforms the conventional cellular system with

respect to system capacity and coverage. References [252,253] present radio resource

approaches in the downlink and uplink direction, respectively, assisted by multiple

relays. The optimization is formulated as a spectrally efficient maximization, and

the results show good performance in terms of spectral efficiency and fairness. Game

theoretic frameworks for the best relay selection policy and efficient spectral usage

in relayed OFDMA networks are presented in [254–257]. These schemes significantly

increase the system performance and achieve a fair achieved data rate vector.

In the multicellular environment, the deployment of relay stations in the co-channel

cells can be jointly optimized to maximize the overall spectral efficiency. Joung et al.

in [258] introduce a power efficient radio resource allocation algorithm in relay multi-

cellular networks in the downlink direction. Reference [259] present a dynamic FFR,

like Fig. 2.2(e), in a multicellular relay-assisted network in the downlink direction to
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mitigate ICI. For the maximization system data rate in multicellular relay assisted

OFDMA-based networks, different resource management approaches are presented

by [260–266] under the constraint on the total power consumption. For further details,

in the context of relay assisted OFDMA networks, the reader is referred to the survey

provided by Salem et al. [132].

2.6.4 Cognitive radio

IEEE 802.22 [267], a continuously developing standard, employs OFDMA for the

physical layer with cognitive radio technology in the MAC layer, thus opening new

topics of radio resource management for OFDMA-based cognitive radio. In a cognitive

radio system, a secondary user (SU) identifies available or unused licensed parts of

the spectrum and exploit them with the goal of maximizing the throughput while

minimizing the interference to primary users (PUs). The inherent FFT operation

and the capability of assigning disjoint subsets of subcarriers to different secondary

users make OFDMA adaptive for spectrum sensing in frequency domain and spectrum

shaping, respectively [268]. The SUs can change the assigned subcarriers, the transmit

powers, and the modulation and coding over each subcarrier according their channel

gains. This flexibility helps OFDMA terminals to adapt to the environment with goal

of minimizing BER and maximizing throughput. The limiting factor of the system

performance is ICI between PUs and SUs. The interference can be limited not only

by a proper radio resource allocation, but also usingthe channel state information. In

[269], Weiss et al. provide a quantitative evaluation of the mutual interference between

SUs and PUs that is caused by non-orthogonality of their respective transmitted

signals. The “adjacent channel interference” can be mitigated by providing a flexible

guard bands between PUs and SUs. They show that, although cyclic prefix and

postfix help to reduce interference, they result in a reduced system throughput. To

this aim, the authors propose dynamic deactivation of subcarriers lying adjacently to

PU allocated sub-bands.

Generally, the resource allocation problem in OFDMA-based cognitive radio systems

is formulated as the maximization of the total transmission rates of SUs by adjusting

the power of selected subcarrier while the interference introduced to the PU must be

kept below a tolerable threshold, and the total power of subcarrier does not exceed

the total power constraint. An SU may not able to detect existence a PU when there
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is a large distance between them, but they can interfere when the SU is transmitting.

In order to avoid unacceptable interference to the PUs that may not be detected by

a SU, the SU should limit its transmit power even when no PU is detected [270].

As a result, the traditional WF approach is not suitable to maximize the capacity

of an SU in an OFDMA-based cognitive radio system. For this purpose, [271–273]

reformulate the WF problem and propose iterative algorithms based on convexity

programming. Mao et al. in [274] introduce an iterative energy efficient WF-based

power allocation which converges after few time steps. To maximize the sum rate in

OFDMA-based cognitive radio multicellular networks, [275–278] propose algorithms

based on convex geometric programming to optimize allocation of radio resources.

Ma et al. in [276] propose a (reconfigured) WF solution to achieve weighted sum

rate of SUs over multiple cells. The centralized and iterative algorithm proposed

by [277] outperforms the one introduced in [275] in terms of computational complexity

and spectral efficiency. The computational complexity of algorithm MLWF proposed

by [278] is lower than that of ELCI proposed by [277]. Wang et al. in [279] propose

an algorithm to achieve a proportional fairness data rate vector with a good sum data

rate.

Applying game theory in the context of cognitive radio systems where OFDMA

terminals can be useful to sense the environment and adaptively adjust their trans-

mission power over the best selected subcarriers. To this aim, both non-cooperative

(e.g., in [280, 281]) and cooperative (e.g., [282]) approaches are used to address this

problem.

2.7 Summary

In this chapter, we have presented a survey on the state-of-the-art techniques to

apportion the resources in both single-user systems, based on the OFDM modula-

tion, and multiuser networks, based on the OFDMA channel access scheme. While

resource allocation in OFDM systems is a mature field of investigation, with current

trends of research attempting to further increase the efficiency towards near-Shannon

performance, similar techniques for OFDMA still represent a hot topic of research.

Many optimization have been proposed in the literature, focusing on both energy- and

spectral-efficient approaches, using the margin- and the rate-adaptive formulations,

respectively. The latter optimization problem has received most attention, appearing
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to be the most appealing one from both the centralized and the distributed point

of view, and many practical solutions have been proposed in the last two decades.

Important issues such as fairness and algorithmic complexity have also been included

into the loop. To improve the performance of the proposed schemes, cross-layer

formulations and several optimization tools, including game theory, have been recently

adopted. Nevertheless, many drawbacks that limit the application of state-of-the-art

algorithms to practical contexts still hold, mainly due to the high computational

complexity and the weak scalability of the proposed techniques, that often make

real-time solutions intractable problems, as they also require a considerable amount

of feedback information across the network nodes. In this respect, we have tried

to summarize the most relevant state-of-the-art techniques, also outlining current

open problems in this active area of research, and including an overview of current

challenges for next-generation networks, such as macro/micro multicellular planning,

relaying and cognitive communications.

2.8 Discussion

It is a matter of controversy whether the OFDMA resource allocation techniques

in the literature are actually usable in the practice. All the mentioned schemes,

which represent, to the author’s knowledge, the most relevant algorithms for OFDMA

resource allocation with cooperative game theory, exhibit a good trade-off between

overall system rate and fairness. The fairness schemes in the solutions based on

cooperative game theory are extended approaches of that in classic solutions of: max-

min fairness, and weighted proportional fairness schemes. Unfortunately, they also

present a number of common problems:

1) In almost all algorithms the utility function is restricted to either be convex or

strictly concave;

2) Most algorithms are based on non-linear programming, which is computationally

intensive and hardly scalable when considering thousands of subcarriers and tens

of users. Thus, they are not suitable for a cost-effective real-time implementation

by network designers;

3) Although the resource apportionment turns out to be fair from the users point of

view, the achieved QoS may be much larger than demanded. This implies a waste
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of network resources from a network service provider perspective, which is often

overlooked by previous works;

4) To reduce the computational complexity, each subcarrier is allocated to mobile

terminals in an exclusive manner, although this may limit the number of concurrent

connections in the uplink channel;

5) To reduce the computational complexity, the power constraint is usually defined

as the overall energy consumption of each user over all subcarriers rather than

individual limitation on each subcarrier, and this may result in impractical spectral

power distribution.

We reviewed the concepts of coalitional game theory in Chapter 1. In Chapter 3

we will introduce an algorithm based on cooperative games to overcome most of the

above mentioned disadvantages of the existing schemes. We aim at designing a low-

complexity algorithm that achieves each users QoS requirement in terms of target

transmit rates, with the best utilization of the network resources, so as to satisfy

both the users and the network service provider.



Chapter 3

A resource allocation

cooperative game in OFDMA

Following what discussed in Chapter 2, various attempts have been made to stan-

dardize a certain protocol for resource allocation in OFDMA, but all have fallen

into disuse largely because of their over-complexity, and unfairness from the network

service provider point of view. We also showed that cooperative game theory is

a suitable tool to face resource allocation problems, especially when altruism and

fairness play crucial roles.

The focus of the first part of this thesis is to introduce a scheme for resource

allocation in OFDMA based on cooperative games, wherein applicability and fairness

are target criterions. This chapter investigates a fair adaptive resource management

criterion for the uplink of an OFDMA network populated by mobile users with con-

straints in terms of target data rates. We aim at fulfilling each users QoS requirement

in terms of target transmit rates exactly with the best utilization of the network

resources, so as to satisfy both the users and the wireless service provider. We also aim

at designing a low-complexity algorithm that allows a centralized solution for the joint

power and bandwidth allocation for OFDMA uplink channels to be achieved in a few

steps using typical network parameters. In our approach, we allow every subcarrier

to be possibly shared among more than one user, and we add a constraint on the

maximum number of used subcarriers per terminal. This is achieved by dividing the

available bandwidth into a number of disjoint blocks of consecutive subcarriers, and

forcing each terminal to use at most one subcarrier per block. The motivation of this

is twofold: we wish to i) increase the signal-to-interference-plus-noise ratio (SINR)

on the used subcarriers, which also simplifies channel estimation; and ii) exploit
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frequency diversity across carriers used by one user to increase the performance of

forward error correction (FEC) techniques.

In Sect. 3.1 we propose two methods to allot subcarriers to mobile terminals, in a

possibly shared assignment. Next, the inherent optimization problem is tackled with

the analytical tools of cooperative game theory aiming at accomplishment of data rate

demanded exactly. The definition of the players, coalitions and utility function are

formally discussed, and we prove the existence of the core set solution by means of the

analytical tools of cooperative game theory. To accomplish data rate demanded we

propose a utility function which is neither convex nor concave. Sect. 3.2 proposes a

dynamic learning algorithm based on Markov modeling to achieve optimum transmit

power over each subcarrier at each individual wireless terminal. Simulation results

in Sect. 3.3 show that the average number of operations of the proposed algorithm is

much lower than K ·N , where N and K are the number of subcarriers and users. We

also show that the transmit power is comparable to the remarkable existing power

effective literature results. Low-complexity, efficient use of available spectrum, and

low power consumption bring promise to usability of the proposed scheme in each

time slot at physical layer in the 4G of cellular networks.

3.1 Problem formulation

Let us consider the uplink of a single-cell infrastructure OFDMA system with total

bandwidth W , subdivided in N subcarriers with frequency spacing ∆f = W/N .

The cell is populated by K mobile terminals, each terminal k ∈ K = [1, . . . ,K]

experiencing a complex-valued channel gain Hkn on the nth subcarrier to the base

station and having a data rate requirement R
⋆

k (in bit/s). We assume that fulfilling

such constraints simultaneously by all terminals is feasible. To exploit frequency

diversity, the subcarriers set N = [1, . . . , N ] is grouped in B blocks of N/B contiguous

subcarriersN (b) =
[

N
B (b − 1) + 1, . . . , NB b

]

⊂ N , with 1 ≤ b ≤ B, as shown in Fig. 3.1.

Each terminal is allowed to take at most one subcarrier per each subblock.

Our resource allocation strategy consists in finding a vector of transmit powers pk,

where pk =
[

pk1, . . . , pkN
]

, with pkn representing the power allocated by terminal

k over its nth subcarrier, that allows the QoS constraint R
⋆

k to be satisfied. We

decouple the problem into the subsequential resolution of subchannel assignment and

(subsequent) power allocation.
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N :

N (1) N (2) N (B)

N/B subcarriers

Fig. 3.1: Block partitioning of the available bandwidth.

3.1.1 Subchannel assignment

We describe here two different options to perform this function:

Best-carrier assignment

For every subblock N (b), every terminal k ∈ K is assigned its best subcarrier n
(b)
k =

arg maxn∈N (b) |Hkn|
2
. The probability of assigning the same subcarrier to multiple

mobile terminals is non-null.

Vacant-carrier assignment

In a sequential manner, for every subblock N (b), every terminal k ∈ K is assigned its

best subcarrier n
(b)
k = arg maxn∈N (b) |Hkn|

2
. But, if k ≤ N/B, we would like to ensure

exclusive use of each subcarrier n ∈ N (b) to better exploit the available bandwidth

W (i.e., to reduce the multiple access interference). So, if n
(b)
k has been already

assigned to some other terminal ℓ < k, then terminal k is assigned the nearest vacant

(unassigned) subcarrier to n
(b)
k within the channel coherence bandwidth. Clearly, this

is not considered if k > N/B, so that terminal k is assigned its best subcarrier in

the subblock anyway. Note that the ordering of K has a negligible impact on system

performance when N is sufficiently high and, as usual, N ≫ K (e.g., 2048 subcarriers

in LTE).

Both assignment strategies can be easily extended to the case in which each terminal

is allowed to have a different number of assigned subcarriers (different B for each

mobile terminal), based on its own data rate requirement R
⋆

k, without any change in

the strategy that we describe below. For the sake of simplicity, we consider the same

B for all terminals.
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3.1.2 Power allocation

To derive a stable solution to the power allocation subproblem, we consider it as a

coalitional game, in which each subchannel n
(b)
k ∈ N is identified as a player in the

game. To model the coalitional game, we build K coalitions ψ = [A1, . . . ,AK ], to

be assigned to the K terminals. Each coalition Ak, k ∈ K, contains the B players

n
(b)
k : Ak =

[

n
(1)
k , . . . , n

(B)
k

]

. Note that i) the members of each coalition are fixed,

since one player cannot move from one coalition to another; and ii) since a subcarrier

n ∈ N can be shared among multiple users, there exist virtual copies of it belonging

to different coalitions. For the sake of notation, we will identify with a generic n ∈ Ak

any of the subcarriers assigned to terminal k. The strategy of each player n ∈ Ak

is represented by the optimal power expenditure pkn ≤ pkn. Note that i) if n /∈ Ak,

pkn = 0; and ii) if n ∈ Ak, we can also have pkn = 0, which means that the kth

terminal does not transmit on the nth subcarrier, and it thus bears an actual number

of active subcarriers B′
k < B.

The system under investigation aims at fulfilling the QoS requirement of every

terminal k in terms of target rate R
⋆

k. For simplicity, we estimate the achieved data

rate as the Shannon capacity Rk of terminal k, that can be approached by using

suitable channel coding techniques [283]:

Rk =
∑

n∈N

Rkn (3.1)

where Rkn is the Shannon capacity achieved by terminal k on subcarrier n:

Rkn = ∆f · log2

(

1 +
|Hkn|

2 pkn
∑

m 6=k |Hmn|
2
pmn + σ2

w

)

. (3.2)

Clearly, Rkn = 0 if n /∈ Ak, since pkn = 0. If n ∈ Ak, Rkn depends on the received

SINR at the base station on subcarrier n, which is a function of the strategy (i.e.,

the transmit power) chosen by player n (i.e., one of the B subcarriers assigned to

the kth terminal), of the transmit power of other terminals on the same subcarrier

(if n /∈ Am, pmn = 0), of the corresponding channel gains, and of the power of the

additive white Gaussian noise (AWGN) σ2
w. Note that, in an OFDMA system, there

is no interference between adjacent subcarriers. Hence, Rkn considers only intra-

subcarrier noise, that occurs when the same subcarrier is shared by more terminals.

Each player n ∈ Ak causes interference only to its virtual copies, i.e. to the players

of other coalitions such that n
(b′)
m = n ∈ Am, with m 6= k and for any b′, 1 ≤ b′ ≤ B.
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Fig. 3.2: Shape of the utility as a function of the Shannon capacity.

The network service provider are satisfied at most when each mobile terminal k

achieves its own data rate requirement exactly: Rk = R
⋆

k. In view of this goal, we

can force all players in each coalition Ak to select their strategies (i.e., the power

allocation for terminal k over the available bandwidth W ) so as to maximize a utility

function for the kth coalition Ak, defined as:

ν (Ak) =
1

|Rk/R
⋆

k − 1|
− β · u

(

1− Rk/R
⋆

k

)

(3.3)

where u (·) is the unit step function, with u (y) = 1 if y ≥ 0 and u (y) = 0 otherwise

(see Fig. 3.2).

If Rk = R
⋆

k, Ak earns the highest possible payoff ν (Ak) = +∞. If Rk > R
⋆

k, Ak

gets a positive payoff, whereas it obtains a negative payoff if Rk < R
⋆

k. The factor

β is a positive constant (much) greater than zero that ensures ν (Ak) to be negative

when Rk < R
⋆

k. This is expedient to let the players distinguish a capacity Rk that

is lower/upper than R
⋆

k only by knowing their own coalition’s payoff. Note that,

in practice, +∞ can be represented by the largest countable number available (e.g.,

264 − 1) in a given computational platform.

The payoff of each coalition is a real number and, in our formulation, the most

important parameter is the gain of each coalition, whereas the outcome of each player

does not matter at all. Therefore, this game is a transferable utility (TU) one [10,22].
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The specific shape of our utility function (3.3) is actually immaterial, and was chosen

to ensure fast convergence of the iterative algorithm that will be introduced later

on. We could have considered any utility function which increases as its argument

moves from ±∞ to 0, just to make sure that, for any Rk 6= R
⋆

k, each coalition has an

incentive to move towards Rk = R
⋆

k.

To provide further insight into the problem, we investigate now some properties

of the proposed game G. As a first step, we note that the players in G = (K =
⋃

k∈KAk, ν) with the utility function (3.3), do not tend to form the grand coalition.

This is because every player n ∈ Ak can not leave its coalition Ak: the members

of each coalition are fixed and do not change during the game. This may appear

inappropriate to the notion of a coalitional game. However, our assumption is fairly

common in economic problems like the study of a bargaining game between two

corporations when each corporation has its own business branches [284]. In this case

the members (branches) of each coalition (corporation) are fixed.

A relevant result for our game is the following:

Theorem 3 The core of the game G = (K =
⋃

k∈KAk, ν) with utility function (3.3)

is not empty.

Proof The number of coalitions and the number of players in each coalition are both

fixed. Since each player belongs just to one coalition, the unique balanced collection

of weights (µA)A∈ψ is µA = 1 ∀A ∈ ψ. To conclude the proof, we must verify

that
∑

A∈ψ ν (A) ≤ maxψ∈Ψ

∑

A∈ψ ν (A). Since the target rates of all terminals are

assumed to be feasible, then every coalition expects Rk to approach R
⋆

k. Therefore,

every coalition is allowed to earn the highest possible payoff. �

In the following section, we will show how the fundamental properties of our game

lead to a practical allocation algorithm.

3.2 The best-response algorithm

We are interested in answering questions like: How do the players set their proper

transmit powers? Dynamic learning models provide a framework for analyzing the

way the players may set their proper strategies. A player adopts a certain power

amount if and only if this matches its coalition’s interests, and this goal can be



3.2 The best-response algorithm 97

achieved through a best-response iterative algorithm [285] based on Markov modeling

[286]. Each player takes its own decisions individually, myopically, and concurrently

with the others, so as to lead its own coalition’s payoff toward +∞ (Rk = R
⋆

k). At

each (discrete) time step of the algorithm, the (autonomous) players simultaneously

adjust their transmit powers based on a model to increase the payoff of their own coali-

tions. Although this leads to interference when virtual copies of the same subcarriers

simultaneously change their powers, we show that this dynamic myopic procedure

guarantees the maximum payoff to each coalition.

The process starts up at time step t = 0 with an arbitrary assignment of the transmit

powers pt=0
kn to all K · B players in the game (that are grouped in K coalitions

with players n ∈ Ak with n = n
(b)
k , 1 ≤ b ≤ B). At the generic time step t,

our system is in the state ωt = (ψt,νt), where ψt is the set [At1, . . . ,A
t
K ], and

νt = [ν (At1) , . . . , ν (A
t
K)] ∈ RK contains the payoffs of the coalitions in ψt. The

evolution of the Markov chain is then dictated by the strategy of the game. The

strategy of each player n ∈ Ak is to find the best power amount ptkn that leads to

an increase in the payoff ν (Atk) of its own coalition Ak. In practice, player n ∈ Ak

decides whether to change its power allocation, making its coalition better off, or to

keep transmitting at the same power level (e.g., when its coalition’s payoff is infinite).

The following pseudocode shows how each player n ∈ Ak takes its decision at time

step t:

if ν (Atk) = +∞, then pt+1
kn = ptkn, exit;

else //setting correct power range

if ν (Atk)≤0, then p̃kn=p
t
kn, p̃

max
kn =pkn;

else p̃kn= 0, p̃max
kn =ptkn;

repeat

p̂kn = p̃kn; //saving tentative power

compute ν(Ãk); //tentative payoff

∆p̃kn = unif
[

0,∆pkn
]

; //random power step

p̃kn = p̃kn +∆p̃kn; //tentative power

until (ν(Ãk) > ν (Atk)) or (p̃kn > p̃max
kn )

if (ν(Ãk)>ν (Atk)), then pt+1
kn = p̂kn; //accept

else pt+1
kn =ptkn; //discard

In this algorithm, ν(Ãk) is the “trial” value of the current payoff of the coalition
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when the tentative power p̃kn is adopted: it is computed with pmn = ptmn for all n ∈ N

and for anym 6= k, and pkn = p̃kn. At each step of the update process, the power step

∆p̃kn is the particular outcome (value) of a random variable uniformly distributed

between 0 and ∆pkn, with ∆pkn ≪ pkn. As better detailed in Sect. 3.3, optimal

values for ∆pkn can be found in order to minimize the algorithm computational load,

based on experimental results. If ν (Atk) ≤ 0, then Rk < R
⋆

k, and the best strategy for

player n ∈ Ak is to increase its current transmit power so as to increase its coalition’s

payoff. As a result of the random power stepping, the tentative power is a random

number in the interval [ptkn, pkn]. Player n ∈ Ak accepts this value if and only if

the coalition payoff ν (Atk) increases, otherwise it ends up transmitting at its previous

value. If 0 < ν (Atk) <∞, player n ∈ Ak’s best strategy is on the contrary to decrease

ptkn, and thus the tentative (random) transmit power belongs to the interval [0, ptkn].

At the end of each time step t, the base station computes the payoff ν (Ak) , ∀k ∈ K

with updated power amounts. As shown in the pseudocode, a uniformly distributed

random power stepping is adopted to increase the probability of picking the best

adjustment value, and thus both to reduce the convergence time of the algorithm and

to possibly minimize the overall power consumption. As is apparent, the convergence

speed of the algorithms depends not only on the parameters of the network, but also

on the choice of the maximum update step ∆pkn.

As already stated, two copies n ∈ Ak and n ∈ Am (the virtual copies of the same

subcarrier n) may happen to wish to adjust their transmit powers in a conflicting

(and thus incompatible) way. If we assume that each player just follows the decision

rules listed in the pseudocode above, then the probability of conflicting decisions

will be high. To reduce the occurrence of this event, we modify our algorithm by

requesting each player not to update its transmit power at every step of the game

with a probability λ ∈ [0, 1]. At each time step t, every player n ∈ Ak selects a

random number ξtkn uniformly distributed in [0, 1]. If ξtkn > λ, then the player applies

the algorithm and (possibly) update pt+1
kn , otherwise pt+1

kn = ptkn (i.e., during time step

t, it skips the update process, and the value of ptkn is kept). If λ is close to 1, then

the probability of conflicting decisions tends to 0, but the algorithm will have a large

convergence time, since the probability of updates is low. In addition to the conflicts

described above, another potentially disruptive condition may arise between different

subcarriers belonging to the same coalition: if both (myopic) players simultaneously

increase their powers ptkn > 0 and ptkn′ > 0, it may occur that Rk > R
⋆

k. To optimize
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the update mechanism and to cope with both negative kinds of events, we could

consider a variable and adaptive threshold λtkn for each virtual copy of the same

subcarrier (each player). However, to reduce the complexity of the algorithm, we

assume λtkn = λ > 0 for all the players (i.e., virtual copies of the subcarriers). As

better detailed in Sect. 3.3, the optimal value of λ must be selected as a suited trade-

off. Note that the value of λ is common knowledge among the players at every step

of the algorithm. Nevertheless, interference between concurrent, conflicting decisions

may prevent the coalitions from achieving the expected payoff. If all coalitions earn

less than the previous time step, all players assign the previous power amount for

the next time step. There may exist network configurations in which the iterative

algorithm is not guaranteed to converge. To account for these situations, we place a

maximum number of operations Θ, beyond which the algorithm is stopped, and the

sum of the users demands is thus labeled as unfeasible.

We show now that our proposed algorithm reaches a stable state at which no player

attempts to change its own transmit power. Moreover we show that the stable state

corresponds to the core apportionment of the game. We model the evolution of the

algorithm as the output of a finite-state Markov chain with state space Ω = {ω =

(ψ,ν )|ψ ∈ Ψ,ν ∈ RK}. For all time steps t, ψt = ψ belongs to the subset of all

possible disjoint coalitions Ψ with exactly B members, and remains fixed for the

whole duration of the algorithm. The time evolution of the algorithm as a Markov

chain is due to the time variability of νt, which depends on the power levels ptkn
chosen by the players in the coalitions collected by ψt. We use this notation for the

sake of convenience, to emphasize that νt is directly connected to ψt.

The Markov process asymptotically tends towards a stable coalition structure state,

where no player has any incentive to change its power. In other words, all coalitions

get their maximum payoffs. Our algorithm guarantees that, when t→∞, this Markov

chain tends towards a singleton steady state with probability 1.

Definition 20 ([286]) A set Φ ⊂ Ω is an ergodic set if, for any ω ∈ Φ and ω′ /∈ Φ,

the probability of reaching the state ω′ starting from ω is zero. Once the Markov chain

falls into a state belonging to an ergodic set, it never leaves that set, and it wavers

between the states in that ergodic set from then on. The probability of reaching any

state in the ergodic set is strictly positive.

Lemma 4 ([286]) In any finite Markov chain, no matter which state the process
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starts from, the probability of ending up into an ergodic set tends to 1 as time tends

to infinity.

Definition 21 ([286]) Singleton ergodic sets are called absorbing states.

If Φ is an absorbing state and ω ∈ Φ, the probability of ending up into state ω when

beginning from ω is one. In fact, absorbing states individually represent points of

equilibrium.

Lemma 5 The state ω = (ψ,ν ) is an absorbing state of the best-response process if

and only if

ν (Ak) = +∞ ∀Ak ∈ ψ (3.4)

Proof This condition ensures that no player has any incentive to change its power

amount. If this condition is met, then no coalition can get a higher payoff by deviating

from state ω = (ψ,ν ). Since all the target rates are feasible, this condition is also

necessary. �

Theorem 4 The best-response process has at least one absorbing state.

Proof Since the best-response algorithm is a Markov process, Lemma 4 ensures that

the best-response process reaches an ergodic set Φ. To conclude the proof, it is enough

to show that Φ is singleton. Suppose that the number of states in the ergodic set is

|Φ| > 1. Then all players revise their strategies without conflicting decisions with a

non-null probability. As a consequence, the Markov process moves to a new state,

in which all coalitions’ payoff are higher than those achieved in the previous state.

This means that the probability of going back to the previous state is null, which

contradicts the notion of an ergodic set. �

Note that Theorem 4 does not ensure the uniqueness of the ergodic set in the best-

response process. There may exist some different combinations of the power allocation

for the players to reach to a steady state. It means that the game possesses multiple

equilibria. The major finding of Theorem 4 is that, according to the way the players

adjust their strategies, the best-response process leads to one of the steady states, in

which no player has any incentive to revise its power allocation.
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Theorem 5 The set of payoffs associated to an absorbing state of the best-response

process coincides with the set of core allocation:

i) if ω = (ψ,ν ) is an absorbing state, then ν is a core allocation.

ii) if ν is a core allocation, then all ω = (ψ,ν ) are absorbing states.

Proof Part i) Suppose ω = (ψ,ν ) is an absorbing state but ν is not a core allocation.

In this case, there exist some coalitions that can obtain a higher payoff. This is

contradictory, since the game reaches an absorbing state when every coalition gets

the maximum payoff.

Part ii) If ν is a core allocation, then no coalition can earn by letting its member

change their powers. This implies that the state will not move to a new state, and

thus the current state is absorbing. �

Coalitional games aim at identifying the best coalitions of the agents and a fair

distribution of the payoff among the agents. Interestingly, in this game the absorbing

state coincides with one of the Nash equilibria [10] of the game. Suppose there are

K = 2 mobiles connected to a base station with N = 1 subcarrier only. In this case,

the K = K ·N = 2 copies of the subcarrier, each constituting a coalition, are engaged

in a 2 × 2 game. Every player has two strategies: either pk = 0 or pk = pk. It is

straightforward to verify that, in this game, a mixed (vs. pure) Nash equilibrium exists

which satisfies the stability of the static game. With due attention to the notation,

we can extend this result to a general case.

Theorem 6 The set of absorbing states in the best-response process and the set of

Nash equilibria of the static game are asymptotically (in the long run) equivalent.

Proof Let us consider the coalitions in the best-response process as players in a static

game. Lemma 4 ensures that this process reaches an ergodic set in the long run.

According to Theorem 4, this set is singleton, and thus its member is an absorbing

state. Hence, no coalition (i.e., no player in the static game) has any incentive to

revise its strategy. In static games, this is the definition of a Nash equilibrium. �

We can now conclude that the absorbing state is an extension of the Nash equilib-

rium, since the coalitions bind agreements with each other as economic agents and

earn a vector value rather than a real number. Once the coalitions reach the absorbing
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state, their payoff is the highest possible (+∞), and no coalition is willing to revise

its current strategy. In general, as follows from Theorem 6, the Nash equilibrium of

the game is Pareto-optimal (efficient), since no other strategy can achieve a payoff

greater than +∞.

3.3 Numerical results

In this section, we evaluate the performance of the best-response algorithm presented

in Sect. 3.2. We consider some cases with different numbers of mobile terminals,

target data rates, and subcarriers, showing that our suggested scheme reaches a steady

state after a few steps only. To increase the convergence speed of the algorithm, we

introduce a tolerance parameter ε in our utility function, such that, if
∣

∣Rk/R
⋆

k − 1
∣

∣ <

ε, then we assume that the payoff is +∞. We can possibly set an asymmetric range

[ε1, ε2] such that ε1 ≤ (Rk/R
⋆

k − 1) ≤ ε2, so as to favor solutions with Rk > R
⋆

k.

We consider the following parameters for our simulations: the maximum power of

each terminal k on each subcarrier n is pkn = p = 3µW; the power of the ambient

AWGN noise on each subcarrier is σ2
w = 100 nW, and the constant number in (3.3)

is β = 5000. We also set Θ = 10K · N as the stopping criterion of the iterative

algorithm, where K and N depend on the network parameters of the simulation. The

path coefficients |Hkn|
2
, corresponding to the frequency response of the multipath

wireless channel at the carrier frequency n∆f , are computed using the 24-tap ITU

modified vehicular-B channel model adopted by the IEEE 802.16m standard [68].

To account for the large-scale path loss, we assumed the terminals to be uniformly

distributed between 3 and 100m. Based on numerical optimizations, the parameter

λ that reduces the probability of conflicting decisions among members of different

coalitions for different number of terminals, subcarriers, and signal bandwidth, is

λ = 0.97. The initial power allocation is pkn = 0 ∀k ∈ K and ∀n ∈ N . This

experimentally provides the minimal power consumption at the steady state, and in

most cases the minimum number of steps of the algorithm.

Fig. 3.3 reports the behavior of the achievable rate Rk as a function of the time

step t in a network with K = 10 terminals, N = 1024 subcarriers, and bandwidth

W = 10MHz using the vacant-carrier assignment scheme. The target rates, reported

in Fig. 3.3 with solid markers on the right axis, are assigned randomly to each terminal

using a uniform distribution in the range [100, 250] kb/s. Further parameters are:
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Fig. 3.3: Achieved rates as functions of the iteration step.

tolerance ε1 = 0, ε2 = 0.01, power update step ∆pkn = pkn/25 = 120 nW, and

number of subblocks B = 32. Numerical results show the convergence of Rk to the

respective target rates R
⋆

k after 31 steps of the best-response algorithm.

In the remainder of this section, we will evaluate by simulation the average perfor-

mance of our proposed algorithm in terms of power expenditure and computational

burden using realistic system parameters and extensive simulation campaigns. Note

that we are not able to compare our technique with the joint resource allocation

techniques available in the literature and reviewed in Chapter 2.4, mainly due to the

unfeasible algorithmic complexity of the implementation of the latter when using tens

of terminals, hundreds of subcarriers, and high data rates (on the order of Mb/s).

As a consequence, in the following we will compare our measured results with the

theoretical performance provided by the literature.

Figs. 3.4 and 3.5 report the simulation results obtained after 500 random realizations

of a network with R
⋆

k = R
⋆

= 200 kb/s ∀k ∈ K, N = 1024, W = 10MHz, and

ε1 = 0, ε2 = 0.04 again with the vacant-carrier assignment strategy. Solid lines

represent the case ∆pkn = pkn/5 = 600 nW, whereas dashed lines depict the case

∆pkn = pkn/25 = 120 nW. Circles, squares, upper triangles and lower triangles

correspond to B = {8, 16, 32, 64}, respectively.

Fig. 3.4 shows the average normalized power expenditure ζk at the steady state

as a function of K, computed by averaging ζk = 1
N

∑

n∈N
pkn

pkn
over all terminals.
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Fig. 3.4: Average normalized power expenditure as a function of K, with W = 10MHz,

N = 1024, and R
⋆

k = R
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= 200 kb/s ∀k ∈ K in the case of vacant-carrier assignment model.
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This serves as a measure for the average total power consumption normalized to

the maximum power expenditure available to each terminal. As can be noticed,

ζk increases for K ≥ N/B, since the number of shared subcarriers increases and

the terminals must spend more power to overcome the intra-subcarrier noise. Inter-

estingly, the power expenditure of the proposed centralized algorithm shows higher

efficiency than the distributed and cross-layer schemes available in the literature (e.g.,

see [16, 17, 287, 288]). For instance, when considering 500 random realizations of a

system with bandwidth W = 10MHz and N = 1024 subcarriers, and using the

vacant-carrier assignment model, we find that, in the case of a total sum-rate demand

of 20Mb/s (i.e., with a spectral efficiency of 2 b/s/Hz) and R
⋆

k = R
⋆

= 200 kb/s

(i.e., K = 100 terminals), the maximum power consumption per user is 31µW and

the average power consumption of the system is 0.53mW. In the multicell scenario

of [16], the average power expenditure for each cell is 8mW when the achievable

data rate is 40Mb/s. When considering the cross-layer algorithm proposed in [17],

the average power expenditure per mobile terminal is 0.4W with maximal spectral

efficiency of 2 b/s/Hz, whereas the average power expenditure per mobile terminal

required by the energy-efficient techniques proposed in [288] is 0.4 and 1.2W when

the achieved data rate is equal to 40 and 140 kb/s, respectively.

Fig. 3.5 shows the computational complexity of our algorithm expressed in terms of

the average number of operations per terminal required to reach the steady state as

a function of the number of terminals K with the vacant-carrier assignment model.

The number of operations is measured experimentally by counting the number of

steps required by the subchannel assignment plus the total number of trials required

to update the transmit power according to the best-response algorithm. As can be

seen, the complexity increases as B increases. This can be justified since increasing

B increases the number of players K · B, which yields an increase in the number of

conflicting decisions. Note that the proposed algorithm is able to provide a spectral

efficiency higher than 1 b/s/Hz, which occurs, for instance, when we assume more

than K = 50 users with rates R
⋆

k = 200 kb/s over a bandwidth W = 10MHz in

the proposed scenario, with a linear computational burden at the base station using

appropriate values for the parameters. In this particular example, a good tradeoff

between performance and complexity is B = {8, 16} and ∆pkn = 600 nW. Using

these values, the number of operations of the proposed algorithm is experimentally

lower than the product K · N , and so considerably lower than the complexity of
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Fig. 3.6: Average normalized power expenditure as a function of K, with W = 10MHz,

N = 1024, and R
⋆

k = R
⋆

= 200 kb/s ∀k ∈ K in the case of best-carrier assignment model.

the schemes available in the literature (e.g., see [18, 19, 139]). Our experiments with

different data rate demands show that a smaller data rate reduces also the number

of operations significantly. To further reduce the number of operations, we can also

increase the tolerance parameters (e.g., with ε2 = 0.1, we experience a complexity

reduction on the order of 20 ÷ 30%). Note also that the spectral efficiency achieved

by the proposed fair resource allocation method, while showing a linear computational

burden, is comparable with that provided by sum-rate maximizing algorithms (e.g.,

see [289]). In the practice, a reasonable value for the maximum spectral efficiency

achieved by the network in the region of linear complexity in all simulated scenarios

(not reported here for the sake of brevity) is slightly lower than 2 b/s/Hz. For

higher spectral efficiencies, no parameter selections can achieve the optimal resource

allocation with linear complexity, and the number of operations appears to increase

exponentially with the number of mobile terminals. However, note that the solutions

can be found in most cases.

Figs. 3.6 and 3.7 depict the simulation results of a network with R
⋆

k = R
⋆

= 200 kb/s

∀k ∈ K, N = 1024, W = 10MHz, and ε1 = 0, ε2 = 0.04 using the best-carrier

assignment model. Solid lines represent the case ∆pkn = pkn/5 = 600 nW, whereas

dashed lines depict the case ∆pkn = pkn/25 = 120 nW. Squares, upper triangles
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Fig. 3.7: Experimental average number of operations as a function of K, with W = 10MHz,

N = 1024, and R
⋆

k = R
⋆

= 200 kb/s ∀k ∈ K in the case of best-carrier assignment model.

and lower triangles correspond to B = {16, 32, 64}, respectively. Fig. 3.6 shows the

average normalized power expenditure ζk at the steady state as a function of K. As

can be seen, the average power expenditure using the best-carrier assignment model

is lower than with the vacant-carrier assignment, since the terminals having better

channel conditions spend less power.

A drawback of the best-carrier assignment is an increased complexity of the algo-

rithm. Fig. 3.7 shows the average number of operations per terminal required to reach

the steady state as a function of the number of terminals K. As can be seen, the

best-carrier assignment model has a computational complexity higher than vacant-

carrier assignment model, since the number of shared subcarriers in the best-carrier

assignment model is larger than in the vacant-carrier assignment, which increases the

probability of interference between simultaneous decisions in the best-reply algorithm.

Note that, using the best-carrier assignment model, the case B = 8 appears to be

computationally expensive.

Fig. 3.8 shows the average number of operations per terminal in the case of a network

with parameters R
⋆

k = R
⋆

= 500 kb/s ∀k ∈ K, N = 512, W = 10MHz, and ε1 =

0, ε2 = 0.04 using vacant-carrier assignment model. Solid and dashed lines represents

the cases ∆pkn = 3µW and ∆pkn = 600 nW, respectively, whereas circles, squares,



108 A resource allocation cooperative game in OFDMA

5 10 15 20 25 30
0

2500

5000

7500

10000

12500

15000

 

 

number of mobile terminals K

av
er
a
g
e
n
u
m
b
er

o
f
o
p
er
a
ti
o
n
s

∆pkn = 3µW

∆pkn = 600 nW

B = 8

B = 16

B = 32

B = 64

Fig. 3.8: Experimental average number of operations as a function of K, with W = 10MHz,

N = 512, and R
⋆

k = R
⋆

= 500 kb/s ∀k ∈ K in the case of vacant-carrier assignment model.
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∆pkn = 600 nW in the case of vacant-carrier assignment model.

upper triangles and lower triangles depict B = {8, 16, 32, 64}, respectively. Even in

this case, with more severe requirements in terms of target data rates, the number of

operations is shown to be lower than K · N , again using spectral efficiencies higher

than 1 b/s/Hz.

Finally, Fig. 3.9 shows the average number of operations per terminal in the case

of a network with parameters W = 20MHz, N = 2048, R
⋆

k = 2Mb/s, ε1 = 0, and

ε2 = 0.04 with vacant-carrier assignment model. Solid and dashed lines represents

the cases ∆pkn = 3µW and ∆pkn = 600 nW, respectively, whereas circles, squares

and upper triangles depict B = {64, 128, 256}, respectively. The complexity is again

lower than K ·N .

As can be seen in Fig. 3.5, 3.7, 3.8, and 3.9, due to the random behavior of

the proposed algorithm, there is a strict relation between the average number of

operations, the network parameters, and the algorithm parameters (including the

channel assignment model). Depending on the parameter selection, we see differ-

ent shapes (linear or exponential behavior) for the average number of operations.

Thus, estimating the analytical complexity function for the best-response algorithm

is hard to do. However, for all tested scenarios (not reported here for the sake of
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brevity), there exist properly tuned values (such as B,∆pkn) that provide an average

number of operations for the proposed algorithm that are lower than the product

K ·N , even with high data rate demands like in the cases of Figs. 3.8 and 3.9. The

parameter that most impacts on the number of operations is B. Our experiments

show that, for the optimal parameter selection (i.e., when the number of operations

scales linearly with N and K), the average number of used subcarriers per terminal

(i.e., those which bear pkn > 0) is approximately B/2 when the vacant-carrier model

is adopted. This rule-of-thumb can be used as a design criterion for the proposed

algorithm. Let us consider Fig. 3.10, that reports the average number of assigned

subcarriers to each mobile terminal as a function of the achieved rate R
⋆

, in the

linear complexity regime and using ∆pkn = 600 nW. Dashed and solid lines depict the

cases W = {10, 20}MHz, respectively, whereas circles, squares and upper triangles

represent N = {512, 1024, 2048}, respectively. For instance, when W = 20MHz,

N = 512, and R
⋆

= 500 kb/s, the average number of used subcarriers is 4. If we

look back at Fig. 3.8, we can verify that the linear complexity can be achieved using

B = 8. Note that the number of assigned subcarriers in the case of W = 10MHz is

higher than in the case W = 20MHz, since the subcarrier spacing is halved.

3.4 Discussion

This chapter described a computationally inexpensive centralized algorithm based on

coalitional game theory to address the issue of fair optimal resource allocation (in

terms of subcarrier assignment and power control) for the uplink of an infrastructure

OFDMA wireless network. The scheme derived here is designed to meet the required

data rates exactly, thus ensuring a fair performance apportionment to both users and

service providers, with the best utilization of the network resources (minimum power

expenditure and good spectral efficiency). The proposed algorithm can be analyzed

as a Markov model that converges to an absorbing state with unitary probability

in the long run. Our criterion also allows us to tradeoff system performance and

computational burden of the algorithm, based on the number of subblocks used to

apportion the available bandwidth and the data rate requirements of the terminals.

Simulations show that the target rates are achieved with a low complexity procedure,

even in the case of populated networks and stringent QoS requirements. The (greedy)

best-carrier assignment rule results into a higher complexity but a lower power expen-
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diture compared to the case with full use of the available subcarriers. The presented

coalition-based strategy appears to be a good tradeoff between computational com-

plexity and power efficiency in comparison with the schemes available in the literature,

and achieves a spectral efficiency larger than 1 b/s/Hz.





Chapter 4

Power trading coordination in

smart grids

In traditional power distribution models, consumers acquire power from the central

distribution unit, while “micro-grids” in a smart power grid can also trade power

between themselves. In this paper, we investigate the problem of power trading coor-

dination among such micro-grids. Each micro-grid has a surplus or a deficit quantity

of power to transfer or to acquire, respectively. A coalitional game theory based

algorithm is devised to form a set of coalitions. The coordination among micro-grids

determines the amount of power to transfer over each transmission line in order to

serve all micro-grids in demand by the supplier micro-grids and the central distribution

unit with the purpose of minimizing the amount of dissipated power during generation

and transfer. We propose two dynamic learning processes: one to form a coalition

structure and one to provide the formed coalitions with the highest power saving.

Numerical results show that dissipated power in the proposed cooperative smart grid

is only 10% of that in traditional power distribution networks.

The remainder of the paper is structured as follows. After a brief motivation in the

next section, Sect. 4.2 studies the circuit of transmission lines in a smart power grid.

Sect. 4.3 consists of two subsections which contains the smart power network model,

and models it as a coalitional game, respectively. The two subsections in Sect. 4.4

propose an innovative algorithm to form coalition and to maximize the performance

in terms of power saving, respectively. Sect. 4.5 presents some simulation results and

finally Sect. 4.6 concludes the paper.
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4.1 Motivation

Interest in use of renewable electricity sources, the need for more efficient power

distribution systems, lower energy delivery costs, and the improvement of reliability

converge in the concept of the smart grid technology. The smart grid technology

is an excellent candidate for exploiting information and communications technology

(ICT) advantages at every line-powered device. The smart grid may be considered

as the technological enabler of a variety of future applications that probably would

not be available otherwise. The intelligence of smart grid relies upon the real-time

communication either to or from the devices installed in homes and energy providers

within the distribution and transmission grids.

While “macro-grids” were traditionally viewed as a technology used in remote area

power supplies at a high-voltage, a “micro-grid” (MG) is introduced as a collective

of geographically proximate, electrically connected loads and generators based on

renewable energy technologies at a medium-voltage [290]. In general, an MG may or

may not be connected to the wider electricity grid. Fig. 4.1 shows conceptual differ-

ences between the traditional grid, which is hierarchical, and a grid including MGs.

In traditional electricity transmission, distribution networks act like the branches of

the tree, interconnecting loads and the long-distance transmission network. The MG

concept offers a path to autonomous, intelligent low-emissions electricity systems, by

creating a localized smart grid that allows advanced and distributed control while

being compatible with traditional electricity infrastructure. With such promise, MGs

are of growing interest to grid operators, as a way of enhancing the performance of

electricity systems [291]. However, realizing MGs is not without challenges, among

which we will investigate the problem of coordination between MG electricity gen-

erators in order to minimize of the power dissipation over the transmission lines.

The minimization of energy dissipation is and will be an important focus in elec-

tricity markets considering that power dissipated is accompanied with the cost of

energy. Refs. [292–295] investigate the problem of power loss reduction in smart

grids. Refs. [292, 293] focus on the optimization of various electricity parameters

during peak load times.

Integration of renewable and distributed energy resources encompassing large scale

at the transmission level, medium scale at the distribution level and small scale on

commercial or residential building can present challenges for the controllability of
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Fig. 4.1: Traditional vs. smart power grid electricity distribution.

these resources and for operation of the electricity system. Energy storage systems,

both electrically and for thermally based, can alleviate such problems by decoupling

the saving and delivery of energy. Smart grids can help through automation of control

of generation and demand response to ensure balancing of supply and demand [296].

The potential economic impact of deploying power storage units and the possibility

of having groups of storage and control units are studied in [297, 298].

Game theory [10] is a potential mathematical tool to model smart grid [298–300].

Non-cooperative game theory can model the distributed operations in smart power

grids and cooperative/coalitional game theory can model the cooperation among

nodes [301, 302]. To the best of our knowledge, in the existing literature there are

only two game theory based algorithms with aim at minimization of power dissipated.

Refs. [294,295] propose coalitional game theory based algorithms which form a set of

disjoint coalitions and enable MGs in each coalition to trade power among themselves

with aim at minimization the overall power dissipated. The authors in [294] maximize

the utility function of the grand coalition (coalition of all MGs), while the authors

in [295] maximize Shapley values [48] of MGs. The results of [294] show that the

proposed algorithm improves the performance reaching up to 31% (with 30 MGs)

compared to the traditional transmission grids. Unfortunately, the performance of

the proposed algorithm in [295] is evaluated with non realistic smart grid network

area 10×10 km2. It is obvious that in small areas the amount of power dissipated is
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less than in a realistic network area 100×100 km2. In addition, in Refs. [294,295], the

circuit of transmission lines is not realistic (We explain why in Sect. 4.2).

In this work, we investigate the problem of power trading coordination between MGs

in smart power grids. Each MG has either a surplus or deficit quantity of power.

Each MG with a surplus amount of power can transfer to the central distribution

unit (CDU), and meanwhile it can serve MGs with deficit power. Each MG with a

deficit amount of power can receive from the CDU and from MGs with surplus power.

With the aim of power loss minimization during power generation and transfer, we

will introduce a power trading coordination strategy among MGs. We formulate the

problem using coalitional game theory in which MGs form a set of not necessarily

disjoint and possibly singleton coalitions. MGs in each coalition can trade power

between themselves and with the CDU. Each non-singleton coalition consists of one

MG with surplus power which will serve the needed MG(s) with deficit power. On

the other hand, the micro-grid in a singleton coalition only trades directly with the

CDU.

For achieving the best power distribution over transmission lines, we propose two

dynamic learning algorithms: 1) coalition formation dynamic learning, and 2) power

loss minimization dynamic learning. The dynamic learning process 1) is nested in

2) one. In other words, the dynamic learning process 2) iteratively executes learning

process 1) until it achieves a fixed point at which the performance can no longer

improve. Coalition formation dynamic learning achieves a coalition formation struc-

ture and then the complementary power loss minimization dynamic learning leads the

MGs to the maximum performance in terms of power saving. We show the stability

(the convergence to a fixed-point) of both dynamic processes using the Kakutani fixed

point theorem [303]. As our evaluation shows, our approach enables MGs to come to

a power trading coordination among themselves that yields a significant power saving

compared to the traditional power trading.

4.2 Transmission line model

Fig. 4.2(a) shows the single-phase equivalent1 circuit of a medium-length (up to

200km) transmission line [290]. On an electricity transmission line from the sending-

1This circuit is suitable for analysing its symmetrical three-phase operation.
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Fig. 4.2: Single-phase circuit of a medium-length transmission line.

end s to the receiving-end d, the variables of interest are the (complex-valued) voltages

and currents per phase
−→
Vs,
−→
Vd,
−→
Is, and

−→
Id at the end-line terminals. The variables Vs

and Is denote the amplitudes of
−→
Vs and

−→
Is, respectively, and likewise for Vd and Id.

As the transmission line model in Fig. 4.2(a) has many parameters, it is convenient

to replace each line with its π-equivalent shown in Fig. 4.2(b) where the impedance
−→
Z = R + iωL Ω and the admittance

−→
Y = 1/R1 + iωC Ω−1 with i as the imaginary

unit and ω = 2πf as the (sinusoidal) angular frequency in electrical radians at the

frequency f .

Suppose the sending-end wants to supply a power amount Ps [W] and transfers it

toward the receiving-end. A fraction of Ps will be dissipated during generation and

transfer and the receiving-end d can load a power amount Pd < Ps. The real power

loss is calculated by the following formula:

Dsd = Ps − Pd = Vs.Is. cos θs − Vd.Id. cos θd [W] (4.1)

where the parameter θs is the “power factor angle”, in the range of (−90◦,+90◦), and

that is the phase difference between
−→
Vs and

−→
Is, and likewise for θd. So, the received

power at the receiving-end d from the transmission line s → d can be formulated as

Pd = Ps −Dsd.

In a transmission line, the amplitude of the voltage at sending-end Vs is known and

we suppose
−→
Vs to be the reference vector, i.e,

−→
Vs = Vs∠0

◦. We suppose also, as usual,

that the power factor at the sending-end, cos θs, is known with the assumption that

the current waveform comes delayed after the voltage waveform, i.e.,
−→
Is = Is∠−θs.

For supplying and transferring Ps amount of power, the sending-end regulates the

amplitude of the current as Is =
Ps

Vs. cos θs
and synchronizes its phase at −θs. Knowing

the parameters of the transmission line in the nominal π-circuit in Fig. 4.2(b), the



118 Power trading coordination in smart grids

voltage and the current at the receiving-end are calculated by the following equations:

−→
Vd =

(

1 +
−→
Y.
−→
Z
)

.Vs −
−→
Z.
−→
Is

−→
Id = −

−→
Y.
(

2 +
−→
Y.
−→
Z
)

.Vs +
(

1 +
−→
Y.
−→
Z
)

.
−→
Is

(4.2)

Now, we can calculate the receiving-end’s parameters Vd, Id, and θd using (4.2) and

then the amount of power loss is calculated as in (4.1). It is simple to show that the

power loss equation (4.1) is a concave function of Is when L = C = 1/R1 = 0 (short-

length transmission line model [290] as considered in Refs. [294, 295]), otherwise its

shape strictly depends upon the values of the parameters.

4.3 System model and Problem formulation

4.3.1 System model

We study a smart power grid consisting of a single CDU which is connected to one or

more main power plants at a high-voltage. The CDU is connected to K MGs denoted

by the set K. At any given time frame [299], each MG k ∈ K has a Qk residual

power load which is defined as the difference between the generated power and the

overall demand. A positive quantity Qk > 0 determines the surplus power that the

MG can transfer to other MGs or to the CDU, whereas a negative quantity Qk < 0

determines the deficit power the MG needs to acquire from other MGs or from the

CDU. When Qk = 0, the MG k meets its demanded power and it will not interact

with any other MG or the CDU. We divide MGs into three groups: “suppliers”

(Qk > 0), “demanders” (Qk < 0), and “inactives” (Qk = 0) denoted by K+, K−, and

K0, respectively, such that K = K+ ∪ K− ∪ K0. In the rest of this paper, we assume

K0 = ∅, |K+| ≥ 1, and |K−| ≥ 1.

Our goal is to develop an efficient power transfer policy between active MGs and the

CDU themselves to minimize the overall power dissipation in the network. We will

propose an algorithm which assigns to each supplier s ∈ K+ a subset of demanders

in K− and determines different fractions of Qs to be transferred to each assigned

demander and to the CDU. Doing so, traded power may be transferred on short

distance lines. As values of each transmission line components (resistor, inductor, and

capacitor) are an inverse function of the distance, the amount of dissipated power will

be much lower than that in a traditional distribution. However, a MG can decide to
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Fig. 4.3: A sample of formed coalitions for cooperative power distribution.

act as a non-cooperative MG which trades only with the CDU. Each MG in demand

can be assigned to more suppliers to acquire the whole or a fraction of its own needed

power. Two suppliers will not belong to the same coalition, since they do not trade

power between themselves.

4.3.2 Problem formulation

To study the cooperative behavior of the MGs, we use a coalitional game theory

framework [301]. A coalitional game is defined as G = (K, ν) where K is the player’s

set (the active MGs), and ν : 2K −→ R is the characteristic function of each coalition

(subset of K) that assigns a real number representing the benefit earned by the

coalition. We will propose an algorithm which forms a set of not necessarily disjoint

and possibly singleton coalitions denoted by M = {M1, . . . ,MM}. The (unique)

MG in a singleton coalition will trade only with the CDU. A non-singleton formed

coalition consists of only one supplier and one or more demanders, i.e., the unique

supplier MG provides the whole or a fraction of the overall power demanded by the

assigned demander(s). Each demander in K− may belong to more coalitions, i.e., the

whole or a fraction of its needed power can be provided by more suppliers. Then, all

MGs can trade with the CDU for the rest, if any. Fig. 4.3 shows a sample wherein

two cooperative coalitions and one non-cooperative singleton coalition are formed.

For instance, MG1 can decide to transfer 10% of its (surplus) quantity to MG2 and

30% to MG3 and the rest to the CDU. MG4 can decide to transfer 50% of its quantity

to MG3 and the rest to the CDU. The rest of deficit quantities of MG3 and MG4 will

be provided by the CDU. MG5 will be completely served by the CDU.
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A coalition structure will be formed only if (i) surplus power quantities of all

suppliers are completely loaded, and (ii) deficit power quantities of all demanders

are completely served, as the following equations state:



















∑

d∈K−

Psd + Ps0 = Qs ∀s ∈ K+

∑

s∈K+

(Psd −Dsd) + (P0d −D0d) = −Qd ∀d ∈ K−

(4.3a)

(4.3b)

where the subscript 0 denotes the CDU index. The parameter Pij denotes the amount

of loaded power by the sending-end i as Pij = Vij .Iij . cos θij to transfer over the

transmission line i → j. We suppose that the power network is meshed, i.e. each

sending-end can regulate a different voltage, current, and power factor angle over each

connected transmission line. The parameter Dij is the amount of power dissipated,

calculated as in (4.1) while the sending-end terminal i loads Pij over the transmission

line i → j. Condition (4.3a) guarantees that the power quantity of each supplier

s ∈ K+ is completely loaded over the connected transmission lines and condition

(4.3b) guarantees that each demander d ∈ K− receives the whole deficit quantity

(demanded) power.

We divide the MGs in each formed coalitionMm into two subsets of suppliers and

demanders denoted by M+
m and M−

m, respectively. For a singleton coalition Mm,

either M+
m orM−

m is empty. In each non-singleton coalitionMm, M+
m is singleton

since the supplier MG is unique. For each coalitionMm with M+
m = {s}, we define

the characteristic function as the inverse of total dissipated power over the distribution

lines incurred by the power generation and transfer, as:

ν (Mm) =





∑

d∈M−

m

Dsd +Ds0 +
∑

d∈M−

m

D0d





−1

(4.4)

wherein the power minus accounts for the maximization problem, term Dsd refers to

the power dissipated incurred by the generation and transfer of Psd from the supplier s

to each d ∈M−
m, the term Ds0 refers to the power dissipated incurred by the transfer

of the power amount Ps0 from the supplier s to the CDU, and D0d refers to the power

dissipated incurred by the power transfer from the CDU to the demanders in M−
m.

For a singleton coalition which consists of one non-cooperative supplier MG, terms

Dsd and D0d are equal to zero and term Ds0 is calculated with setting Ps0 = Qs.
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On the other hand, for a singleton coalition which consists of one demander MG,

terms Dsd and Ds0 are equal to zero and the term D0d is calculated with setting

P0d = −Qd +D0d, i.e., the demanded power −Qd will be served only by the CDU.

We assign ν (Mm) =−∞ when the power distribution conditions (4.3) do not hold.

We assume the unit of currency as the price of unit amount of power. It is worthwhile

to note that in the proposed framework it could also be considered coefficient minus

instead of power minus in (4.4), since the power loss is neither a concave nor convex

function.

For the grand coalition, the characteristic function is the inverse of the total amount

of power loss in the entire network as the following formula:

ν (K) =

(

∑

s∈K+

∑

d∈K−

Dsd +
∑

s∈K+

Ds0 +
∑

d∈K−

D0d

)−1

(4.5)

We assign ν (K) = −∞ when the power distribution conditions (4.3) do not hold.

A central question in a coalitional game is how to divide the earnings among the

members of the formed coalition. The payoff of each MG (player in the game) can

show the power of influence of the MG and it is obvious that a higher payoff is

an incentive to cooperate more efficiently. The Shapley value [48] assigns a unique

outcome to each MG. Let us denote φk as the Shapley value of MG k ∈ K in the

game. For each MG k ∈ K:

φk =
∑

∀Mm⊆K
s.t. k∈Mm

(|Mm| − 1)! · (K − |Mm|)!

K!

(

ν (Mm)− ν (Mm\{k})
)

(4.6)

The expression ν (Mm) − ν (Mm\{k}) is the marginal payoff of the MG k to the

coalitionMm. The Shapley value can be interpreted as the marginal contribution an

MG makes, averaged across all permutations of MGs that may occur.

4.4 Best response algorithm

In this section we provide an answer to the question: How do the MGs form the

best coalition structure with aim at minimization of the amount of power dissipated?

Dynamic learning models provide a framework for analyzing the way players set

their proper strategies. To address this question, we propose an “adaptive learning
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algorithm” [304] in which the learners use the same learning algorithm. Typically,

these types of algorithms are constructed to iteratively play a game with an opponent,

and, by playing this game, to converge a solution. Forming a coalition structure by

MGs is equivalent to distribute Qk ∀ k ∈ K over the transmission lines satisfying

conditions (4.3). Obviously the solution is not unique. In the next subsections, we first

propose a dynamic learning process to form a coalition structure where each formed

coalition earns a positive bounded payoff and each MG earns a bounded Shapley

value. We then introduce another complementary dynamic process which iteratively

executes the coalition formation dynamic learning process in order to choose the best

coalition structure with minimum power dissipated.

4.4.1 Coalition formation dynamic learning process

To realize a coalition formation structure, we use dynamic learning. Our goal is

to determine the best amount of power loaded at the sending-end sides of the uni-

directional transmission lines denoted by L = {lsd} ∪ {ls0} ∪ {l0d}, ∀ s ∈ K+ and

∀ d ∈ K− where the symbol lij denotes the transmission line from the sending-end i

to the receiving-end j. We denote L = |L| = |K+| · |K−|+ |K+|+ |K−| as the number

of individuals. We denote the parameters of the sending-end i over the transmission

line lij (to the receiving-end j) by Iij , Vij , Pij , and θij . We will propose an algorithm

to determine the best value of Pij . The values of Vij and θij are known at the sending-

end i and it will regulate the electricity current as Iij =
Pij

Vij cos θij
to load Pij toward

the receiving-end j.

In our dynamic learning process, each transmission line lij ∈ L is an individual

learner which, during learning process learns about the best amount of the power

Pij to be loaded by the sending-end i to transfer over the transmission line lij . By

doing so: 1) each supplier s ∈ K+ will be aware of the amount of power to load over

the transmission lines toward all demanders and the CDU, i.e., over ls0 and {lsd}

∀ d ∈ K−, and 2) the CDU will be aware of the amount of power to load over the

transmission lines toward all demanders, i.e., over {l0d} ∀ d ∈ K
−. If one supplier s

loads a power Psd > 0 over the transmission line lsd, the MGs s and d will belong

to the same coalition. If one supplier s loads Ps0 = Qs over ls0, the supplier s will

form a singleton coalition. One demander d ∈ K− will form a singleton coalition if it

receives the whole −Qd from the CDU, i.e., P0d −D0d = −Qd.
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For each Pij , let us denote the maximum power constraint and the best power

amount by P̄ij and P ∗
ij , respectively. We set P̄sd = min {Qs,−βQd}, P̄s0 = Qs, and

P̄0d = −βQd with β > 1 for ∀ s ∈ K+ and ∀ d ∈ K−. About P̄s0, it is obvious

that loaded power by a supplier cannot be greater than its residual power load. With

respect to P̄0d, whenever the CDU wants to completely serve one demander d, it must

load a power amount P0d > −Qd to overcome power loss over the transmission line

0 → d and so to guarantee received power −Qd at the proper demander side. Now,

the setting of P̄sd is obvious. As is apparent, choosing an appropriate value for β

strictly depends upon the parameters of the transmission lines and the value of Qks.

In our simulation in Sect. 4.5, we set β = 2, i.e., the CDU should load at most −2Qd

for completely serving the proper demander (the maximum power loss over the line

0 → d is −Qd). Instead of using the parameter β, the appropriate solution is to

answer this question: How much must be the load power Ps at the sending-end s, if

it wants to guarantee a power amount Pd at the receiving-end d? Multiplication the

both sides of
−→
Vd in (4.2) to the correspondence sides of

−→
Id approaches a quadratic

equation of Is with complex coefficients for whose roots, in general case, we could not

find a presentable algebraic expression. For the special case of C = L = 1/R1 = 0,

we refer the reader to [294, 295].

During the learning process, in each (discrete) time step t every learner lij ∈ L

individually and distributively updates its temporary power value P tij in a myopic

manner, i.e., supposing that all other learners L\ {lij} are inactive and their power

values are fixed. In the following, we propose a method to distributively update

the power values P tij in order to lead it to the best value and we will show that

the updating process has a fixed point, i.e., for a given t large enough P t+1
ij = P tij

∀ lij ∈ L, and then we set P ∗
ij = P t+1

ij .

The power value of learners lsd appear in both conditions (4.3), whereas that of ls0

only in (4.3a) and that of l0d only in (4.3b). From conditions (4.3), the following
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equations are derived:


























































Pij = Cij ; ∀ lij ∈ L

Cs0 = Qs −
∑

d∈K−

Psd ∀ ls0 ∈ L ; // ∀ s ∈ K+

C0d = −Qd −
∑

s∈K+

Psd +D0d +
∑

s∈K+

Dsd ∀ l0d ∈ L ; // ∀ d ∈ K−

Csd = 0.5



Qs −Qd −
∑

d 6=d′∈K−

Psd′ −
∑

s6=s′∈K+

Ps′d − Ps0 − P0d +D0d +
∑

s′∈K+

Ds′d





∀ lsd ∈ L. // ∀ s ∈ K+, ∀ d ∈ K−

(4.7)

According to (4.7), the rationality of each learner lij ∈ L is focusing on updating

the proper value Pij in order to achieve the value of Cij exactly, i.e., Psd = Csd,

Ps0 = Cs0, and P0d = C0d. At each time step t, the learner lij will update the proper

power value P tij in a myopic manner, i.e., supposing that Ctij is a constant. To this

end, we define the following learning utility function for each learner lij ∈ L:






uij = −
√

|Pij − Cij | + α · u (Pij − Cij) ; 0 ≤ Cij ≤ P̄ij

uij = −α otherwise.
(4.8)

where u (·) is the step function, with u (y) = 1 if y ≥ 0 and u (y) = 0 otherwise (see

Fig. 4.4), and α is a constant. When the value Cij is out of the range of [0, P̄ij ],

the proper learner will gain the minimum possible payoff, −α. For a Cij ∈ [0, P̄ij ], if

Pij = Cij , the learner lij earns the highest possible payoff uij = α. Whereas when

Pij 6= Cij , the learner lij gets a payoff lower than α. The factor α is a sufficiently

large positive constant that ensures uij to be positive when Pij > Cij . This is an

expedient to let the learners distinguish the value of Pij that is either smaller or larger

than Cij only by knowing their own payoffs. In practice, it is obvious that the payoff

of each learner is bounded from below by the finite negative number −α. Setting

an appropriate value to α in order to guarantee a positive uij when Pij ≥ Cij is

strictly dependent upon the values of Qk. Note that the proposed framework could

also consider any bounded utility function which increases as its argument moves

from ±∞ to 0. This means that, for any Pij 6= Cij , each learner lij has an incentive

to move towards the point zero where Pij = Cij and the learner gains the highest

possible payoff. When all learners gain α, then all conditions (4.3) hold, and obviously

Pij = P ∗
ij .
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Fig. 4.4: Learner utility as a function of Pij −Cij with 0 ≤ Cij ≤ P̄ij and α ≫ 0.

The pseudocode in Tab. 4.1 shows how each learner lij takes its myopic decision

during time step t. In this algorithm, sign(·) is our sign function, with sign(y) = 1

if y ≥ 0 and sign(y) = −1 otherwise. The parameter ũij is the “trial” value of the

current payoff of the learner lij when the tentative power P̃ij is adopted. As each

learning time step, the power step ∆P̃ij is the particular outcome (value) of a random

variable uniformly distributed between 0 and ∆P ij , with ∆P ij ≪ P̄ij . Optimal values

for ∆P ij can be found in order to minimize the computational load of the algorithm,

based on experimental results. If utij < 0, then P tij < Cij , and the best strategy

for the learner lij is to increase its power so as to increase its payoff. Consequently,

the tentative power is a random number in the interval [P tij , P̄ij ]. The learner lij

accepts this value if and only if the utility utij increases, otherwise it ends up to keep

its previous value. If 0 ≤ utij < α, the learner lij ’s best strategy is on the contrary

to decrease P tij , and thus the tentative (random) power level belongs to the interval

[0, P tij ]. As is apparent, the convergence speed of the algorithm depends also on the

choice of the maximum update step ∆P ij .

The process starts at time step t = 0 with P t=0
ij = 0 for all learners in L. Thus, at

t = 0, we have Ct=0
s0 = Qs = P̄s0 ∀s ∈ K+ and Ct=0

0d = −Qd < P̄0d ∀d ∈ K−, i.e.,
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function P t+1
ij = Powerupdate(lij , t)

if
(

utij = α
)

or
(

utij = −α
)

, then P t+1
ij = P tij, exit;

P̃ij=P
t
ij ; //saving the current power

repeat

P̂ij = P̃ij; //saving tentative power

compute ũij ; //tentative payoff

∆P̃ij = unif
[

0,∆P ij
]

; //random power step

P̃ij = P̃ij − sign
(

utij
)

·∆P̃ij; //tentative power

until
(

ũij > utij
)

or

(

P̃ij > P̄ij

)

or

(

P̃ij < 0
)

if
(

ũij>u
t
ij

)

, then P t+1
ij = P̂ij; //accept

else P t+1
ij =P tij; //discard

end function.

Tab. 4.1: Myopic decision of the learner lij at time step t.

ut=0
s0 and ut=0

0d are in the range of (−α, 0). Depending on Qs, −Qd, and β, the values

of Ct=0
sd can be either in or out of the range of

[

0, P̄sd
]

. At t = 1, each learner ls0 and

l0d may increase the proper power amount which results that some of Ct=1
sd < Ct=0

sd .

After some time steps, some of the learners lsd will have 0 ≤ Ctsd ≤ P̄sd and they can

update the proper powers.

Each learner lij individually decides to adjust its power value P tij in a myopic manner

while supposing that the value of Ctij is fixed and all other learners are inactive. The

value of Ctij depends upon the power values of other learners and therefore the decision

of adjusting the power value by each learner influences other C values in conflicting

and incompatible ways which prevent learners from gaining the expected payoff. At

each time step t, adjusting P tij changes all Cts0 and Ct0d ∀s ∈ K
+ and ∀d ∈ K−. To

reduce the number of occurrences of this event, we modify our algorithm by requesting

each learner lij not to update its power value at every time step with a probability

λij ∈ [0, 1]. At each time step t, every learner lij picks a random number ξtij uniformly

distributed in [0, 1]. If ξtij > λij , then the learner applies the algorithm and possibly

update P t+1
ij , otherwise P t+1

ij = P tij . Note that each learner lij is aware of the value

of λij . The algorithm is executed in a central computing unit [9], e.g. the CDU, and

it can transmit the best amount of power load over each transmission line to MGs.

We show now that our proposed algorithm reaches a fixed point at which P tij = Ctij
∀ lij ∈ L. We model the evolution of the algorithm as the output of a Markov chain
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with state space Ω =
{

ω = (u)|u ∈ [−α, α]L
}

. At time step t, our system is in the

state ωt = (ut), where ut is the set
{

utij
}

∀ lij ∈ L. For all time steps t, since

uij is continuous and bounded in [−α, α], ut is bounded in the L-dimensional space

[−α, α]L. So, ut is compact and Lebesgue measurable. The evolution of the Markov

chain is then dictated by the strategy of the learning process. The strategy of each

learner lij is to find the best power amount P tij that leads to an increase its own payoff

utij . In practice, each learner lij autonomously decides whether to change its power

value P tij , making its payoff better off, or to keep the power at the same power level

(when its payoff is equal to α or −α). The transition from the state ω = (u) to a

new state ω̌ = (ǔ) occurs if and only if the new state ω̌ “dominates” the state ω , i.e.,

compared to u, no learner gets worse off in ǔ. The CDU computes Ct+1
ij ∀ lij using the

values of P t+1
ij and then computes all utility payoffs ut+1. If the transition from the

state ωt to the state ωt+1 occurs, then the CDU communicates to all learners sending

them the proper Ct+1
ij , otherwise announce them to keep the previous power amount,

i.e., P t+1
ij = P tij . The Markov process asymptotically tends towards a stable power

distribution state at which no learner has any incentive to change its power value.

In other words, all learners get their maximum payoffs, u = {α}L, and consequently

P tij = Ctij ∀ lij ∈ L, and then, obviously, no learner has any incentive to update

its power value. Our algorithm guarantees tending the Markov chain towards a fixed

point state with probability one when t→∞. Obviously, the stable state is not unique

and according to the way the learners generate random numbers, the algorithm leads

them to one of the possible solutions and then the power values are no longer updated.

Theorem 7 The coalition formation learning process converges a stable state.

Proof Denote by P the set of all possible ut’s. Obviously P = [−α, α]L is not

empty and it is Lebesgue measurable, compact and convex set. We construct a

correspondence Γ : P → P with Γ(u) = {ǔ} where {ǔ} is the set of all possible next

states of the (current) state u in the proposed best-response algorithm, i.e., the states

ǔs dominates u. According to the best-response algorithm, the transition probability

from u to one member of {ǔ} is one and zero to the others members. Show that

a fixed point exists. Now we claim that there is upper hemi-continuity (uhc)2 for a

given ut. To this end, let u−t (resp. ǔ−t), for t large enough, be some sequences in P

2There is uhc for f : X → X when the graph of f is close i.e., for all sequences {xn} and {yn}

such that yn ∈ f(xn) for all n, xn → x, and yn → y, we have y ∈ f(x) [10].
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converging to the current ut (resp. ǔt). Best response transition rule confirms that :

ǔt−1 = Γ(ut−1) = ut. Study such correspondence sequence in best-response process

confirms that: ǔt−1 = ut = Γ(. . .Γ(Γ(ut=0))) after t times of Γ operation. This is

somehow obvious to claim that ǔt ∈ Γ(u). Then, by the arguments above, all the

conditions for the Kakutani fixed point theorem [303] are satisfied, and there exists

u∗ ∈ P such that u∗ ∈ Γ(u∗) which corresponds to the best value of P ∗
ij ∀ lij ∈ L.�

Note that, during the learning process for achieving stable state, the payoffs of all

coalitions are equal to −∞ since the conditions (4.3) are not still satisfied. Once all

learners achieve the coalition formation stable state, the conditions hold a possible

coalition structure M is formed, but the power dissipated is not necessarily the

minimum one. In the next subsection, we propose another “complementary” Markov

model which, in each of its time steps τ , executes coalition formation dynamic process

and calls the achieved stable state ω = (u). The evolution during time τ leads to a

network with the minimum amount of power dissipated.

4.4.2 Power loss minimization dynamic learning process

At the stable state of the coalition formation process, conditions (4.3) hold, a possible

coalition structure M is formed, and each coalition earns a limited payoff. The

payoff of each coalition is the inverse of total power dissipated and so higher payoffs

for coalitions means lower amount of power dissipated. Obviously, the coalitions’

payoffs strictly depend upon the distribution of power over transmission lines, i.e.,

the achieved coalition formation stable state ω = (u). In general, the payoffs of

coalitions and MGs is neither a convex nor a concave function of the loaded power

over transmission lines. Hence, it is not possible to find an analytical solution for

finding the absolute best payoffs of coalitions. With aim at minimization of the

overall power dissipated, we propose a complementary dynamic learning process. In a

similar fashion as the coalition formation dynamic learning, we model the evolution of

these learning processes as a Markov model Π =
{

π = (u, ρ) | u = {α}L , ρ ⊂ RK
}

wherein ω = (u) is the achieved coalition formation stable state. For the second

input ρ, we will consider one of the characteristics of the network which is limited

and Lebesgue measurable. In the simulation results, we will consider the following

two values for ρ and we will compare the performance of them:

(i) We will set ρ = ν (K) ∈ R. In fact, in this case we disregard the coalition
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structure and MGs payoffs, but we aim at maximization of ν (K) which is,

according to (4.5), limited and Lebesgue measurable.

(ii) We will set ρ = φ ∈ RK where φ = {φk} denotes the MGs Shapley values. In

this case, the structure of the coalitions and their payoffs are important.

In the simulation results we will show that maximizing Shapley values outperforms

maximizing ν (K) in terms of power saving. At each time step τ , the central computing

unit, first, executes the coalition formation dynamic learning. Once the coalition

formation learning achieves a stable state, the complementary Markov model evolu-

tion is in the state πτ = (uτ , ρτ ), i.e., either πτ = (uτ , ν (K)τ ) if we choose (i), or

πτ = (uτ ,φτ ) if (ii), where uτ is the stable state of the coalition formation dynamic

learning. At the next time step τ + 1, the CDU re-executes the coalition formation

dynamic learning picking different random numbers and achieves a new stable state

uτ+1 with a different power distribution and coalition structure. The transition from

πτ to πτ+1 occurs if and only if ρτ+1 dominates ρτ , otherwise the Markov model Π

stays at the same state πτ . If we set ρ = ν (K) the transition occurs when the grand

coalition earns a higher payoff, whereas with ρ = φ it occurs when no MG will get

worse off. At time step τ + 1, if the coalition formation learning process happens

to achieve the same uτ , again the complementary Markov model stays at the same

state πτ . Since the values of ρ are limited, with a same discussions in Theorem 7,

it is easy to show that the evolution of Π achieves a fixed point for ρ, i.e., for a

given time step τ large enough, ρτ+1 = ρτ for a uτ+1 6= uτ . At the fixed point of

the complementary dynamic learning process, in case (i) the grand coalition earns

the highest possible payoff, and in case (ii) all MGs in K earn the highest possible

Shapley value φk. This means that the amount of power dissipated is the lowest

possible. Obviously, this algorithm can not guarantee the absolute minimum power

loss, since the shape of the power loss function strictly depends upon the parameters

of the transmission line. For this, the power loss minimization stable point is not

necessarily unique and the proposed learning process leads micro-grids to one of the

stable points. For the reader’s convenience, the power loss minimization algorithm is

summarized in Tab. 4.2 and for better readability, the coalition formation dynamic

process part is colored blue.
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Initialization:

//Initialization for Π = {π = (u, ρ)} Markov model:

set τ = 0, ρτ = −∞, and a tolerance ε;

Power loss minimization process:

while 1

//Coalition formation dynamic process:

set t = 0, P tij = 0; ∀ lij ∈ L //Initialization for Ω = {ω = (u)} Markov model

compute Ctij ; ∀ lij ∈ L

compute ut;

repeat

execute P t+1
ij = Powerupdate(lij , t) ; ∀ lij ∈ L //parallel decisions

t = t+ 1;

compute Ctij ; ∀ lij ∈ L

compute ut;

if
(

ut dominates ut−1
)

then //ωt =
(

ut
)

ωt−1 −→ ωt; //the transition occurs

else

ωt = ωt−1; //discard: P t
ij = P t−1

ij and then Ct
ij = Ct−1

ij , ut = ut−1

end

until min
lij∈L

((

−ε ≤ utij < 0
)

or
(

utij ≥ α− ε
))

;

// ωt =
(

ut
)

is the stable state of the coalition formation dynamic learning process

τ = τ + 1;

uτ = ut;

compute ρτ ; //either ρ = ν (K) or ρ = φ

if
(

ρτ dominates ρτ−1
)

then

πτ−1 −→ πτ ; //the transition to πτ = (uτ , ρτ ) occurs

if
(

| ρτ − ρτ−1 |≤ ε
)

then

break; //stable state

end

else

πτ = πτ−1; //discard: transition does not occur

end

end

//πτ is the stable state of the power loss minimization dynamic learning process.

Tab. 4.2: Power loss minimization algorithm.
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Fig. 4.5: Snapshot of a formed coalition structure.

4.5 Numerical results

In this section, we show the performance of the proposed algorithm. Through-

out the simulations, we make use of the following transmission lines parameters:

ωC = 4.518 µΩ−1/km, ωL = 367 mΩ/km, R = 37 mΩ/km, and R1 = 1 Ω [290, p.

68]. Power transfer among MGs themselves is done at a medium voltage 100 kV, while

between the central transmission unit and the MGs that is done at 345 kV [290, p.

68]. The MGs are uniform randomly distributed within an area with radius 100 km

and the CDU located at the center. For each MG k ∈ K, the amount of residual

power Qk is supposed to be a normal random distribution with zero mean and a

standard deviation uniformly distributed in the range [100, 500] MW [291]. In the

following set of evaluations, based on numerical optimizations, we consider the fol-

lowing parameters in the function Powerupdate: the power update step ∆P sd = P̄sd/5,

∆P s0 = P̄s0/10, and ∆P 0d = P̄0d/10; the parameter that reduces the probability

of conflicting decisions among learners λsd = 0.7, λs0 = 0.85, and λ0d = 0.85 for

∀ s ∈ K+ and ∀ d ∈ K−. All results are obtained by averaging over 2, 000 random

realizations of a network with different positions and different values of Qks.

Fig. 4.5 reports a snapshot of the achieved coalition formation dynamic learning

process stable state in a network consisting ofK = 6 MGs randomly located in an area

with residual quantities Qks equal to {+150, +350, +200, −150, −200, −450}MW,

respectively. After one execution of coalition formation dynamic learning process,

the power distribution at the coalition formation stable state is as follows: P16 =
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Fig. 4.6: Learners behaviour during coalition formation process.

0.43Q1, P25 = 0.38Q2, P26 = 0.42Q2, P34 = 0.53Q3, P36 = 0.47Q3 and consequently

the coalition structure is M1 = {1, 6}, M2 = {2, 5, 6}, M3 = {3, 4, 6}, and K.

The achieved coalitions payoffs are {107, 14.9, 29, 9.5} nW−1, respectively, and the

Shapley values of the MGs are {4.426, −0.430, 0.038, 0.038, −0.430, 5.888} nW−1,

respectively. The total amount of power dissipated, 1/ν (K), is 59% of that of the

traditional non-cooperative model which is calculated as a network wherein each MG

trades only with CDU as in Fig. 4.1(a). Note that here we report the results at the

stable point of one execution of coalition formation dynamic learning process only.

Fig. 4.6 exhibits the behaviour of the learners during coalition formation dynamic

process. At t = 0, all Pij = 0 and only the learners of Ps0 and P0d ∀ s ∈ K+ and

∀ s ∈ K+ may increase the proper power, since they have a negative payoff not equal

to −α. As can be seen, after some time steps, some other learners earn a utility

not equal to −α, and so may update their power value. Despite conflicts between

simultaneous and myopic decisions, Fig. 4.6 shows the convergence of Pij the stable

point after 52 time steps.

Fig. 4.7 reports the average number of time steps τ for achieving the stable point of

the power loss minimization process in the network scenario with the above mentioned

(fixed) residual quantities. The dashed line reports the grand coalition’s payoff and

other curves report the Shapley values of the MGs during the dynamic process as a

function of τ . As can be seen, when we choose ρ = ν (K) as the input of the Markov
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Fig. 4.7: Shapley values and grand coalition’s payoff during power loss minimization dy-

namic learning.

state π = (u, ρ), the algorithm achieves stable state after 7 time steps, while this

happens in τ = 12 with ρ = φ. It is worthwhile to emphasize that, at each time step

τ , first coalition formation dynamic learning process is executed (Fig. 4.6), and then

the inputs of the state πτ are updated.

To measure the power dissipated improvement, now we compare the performance

of our proposed algorithm to the traditional non-cooperative power transmission.

Fig. 4.9 reports the percentage of improvement in terms of average dissipated power

amount expressed as the ratio of the whole power dissipated amount DNC achieved

by the traditional non-cooperative power transferring to the whole power dissipated

amount DC achieved by the proposed coalitional game theory based algorithm. The

parameter DNC =
∑

s∈K+ Ds0 +
∑

d∈K− D0d with Ps0 = Qs and P0d = −Qd, and

the parameter DC = 1/ν (K). As can be seen, the growing rate of the curves slightly

decreases after K = 25. The average of power loss improvement is 1.2% per MG with

setting ρ = ν (K), while that is 1.5% per MG with ρ = φ. As a result, considering the

Shapley values in which the coalition structure and all coalitions’ payoffs are involved

outperforms setting ρ = ν (K) in which only the grand coalition payoff is considered,

at the cost of more computational complexity. The proposed algorithm in this paper

outperforms the proposed coalition formation algorithm in [294].

Fig. 4.8 depicts the average of power loss fraction that is defined as the proportion of
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function of K.

the overall amount of dissipated power to the overall loaded power. The dashed line

reports the traditional non-cooperative scheme withD =
∑

s∈K+ Ds0+
∑

d∈K− D0d by

setting Ps0 = Qs and P0d = −Qd, and the solid line reports the proposed cooperative

scheme withD = 1/ν (K). In other words, the total power dissipated in the traditional

non-cooperative scheme is calculated as a network with K singleton coalitions. The

average of the loss fraction in the non-cooperative scheme is 11% and that is not very

sensitive to the number of MGs. However, in our cooperative scheme the average

of the ratio decreases with the increasing number of MGs and its average is 0.83%

with ρ = ν (K), and 0.69% with ρ = φ. Considering the range of the quantities (in

±[100, 500] MW), the power dissipated in non-cooperative scheme is significant and

that reduces significantly in the cooperative scheme. As can be seen, with applying

the proposed cooperative algorithm, the power dissipated will become 10% of the

traditional distribution networks. As a result, setting ρ = φ in which the coalition

structure and all coalitions’ payoffs are involved outperforms setting ρ = ν (K) in

which only the grand coalition payoff is considered, at the cost of more computational

complexity. Fig. 4.8 shows also that any value greater than 1.2 is a sufficient value

for β in the power constraints P̄sd and P̄0d, as we set β = 2.
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Fig. 4.9: Percentage of power dissipated improvement as a function of K compared to the

traditional power distribution.

4.6 Conclusion

In this chapter, we have investigated the problem of power trading coordination in a

smart power grid consisting of a set of micro-grids (MGs) each of which has a quantity

of either surplus or deficit amount of power to sell or to acquire, respectively. The

proposed coalitional game theory based approach allows micro-grids (MGs) to form a

set of coalitions and trade power between themselves in order to achieve the minimum

power dissipated during power generation and transfer. In this context, we propose

a dynamic learning process to form a set of non necessarily disjoint and possibly

singleton coalitions. In the proposed dynamic learning process each transmission line,

as a learner, adjusts the best power load such that: i) all suppliers to be completely

loaded, and ii) all demanders to be completely served. A complementary dynamic

learning process is proposed to lead the coalition structure to the best performance

in terms of power saving. Numerical results show power dissipated in the proposed

cooperative smart grid is 10% of that in the traditional non-cooperative networks.





Chapter 5

Summary and perspective

In this thesis, we have used coalitional game theoretic solutions for resource manage-

ment in OFDMA-based networks and smart power grids. In OFDMA networks, we

studied radio resource allocation techniques in the uplink direction scenario, focusing

in particular on the issue of fairness. In smart grids, we studied the problem of power

trading coordination among micro-grids with the purpose of minimizing of the amount

of dissipated power over transmission lines.

In OFDMA-based networks, the main concern in the identification of the game has

been the best utilization of the network resources applying a low complexity algorithm.

This has led us to introduce a utility function with which each active wireless terminal

achieves its request data rate exactly. This fairness criterion satisfies the expectation

of both the wireless service provider and each user’s terminal. To cope with the non-

convexity and non-concavity of the utility function we proposed a dynamic learning

algorithm. The algorithm enforces every terminal to adapt its transmit power to

approach the maximum value of the utility function. The proposed algorithm ap-

proaches a distribution of transmit powers over different assigned subcarriers for each

user from which no terminal wishes to unilaterally deviate (the core set). We showed

that the core set coincides with a sort of Nash equilibrium point for cooperative games.

The convergence and stability of the algorithm was proved by using Markov modeling,

and the complexity of the algorithm favorably compared to the existing literature.

In smart grids, a micro-grid acts as a seller or a buyer depending on its current

generation and demand state. To model the cooperative behaviour of micro-grids

in smart power grids, we proposed an algorithm based on coalitional game theory.

The proposed algorithm aims at minimizing the amount of dissipated power during

generation and transfer using an approach that combines coalitional game theory and
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dynamic learning. In particular, the coalitional game theory-based algorithm finds a

set of coalitions of micro-grids that achieves a feasible power distribution condition

where all the surplus power from micro-grids is absorbed by the network and, dually,

all the deficit power of micro-grids is provided by the network. The dynamic learning

algorithm, instead, modifies the set of coalitions in order to minimize the power loss.

Members of each coalition will locally trade power among themselves. They can also

trade power with the (traditional) central distribution unit, if it is necessary. We

modeled the evolution of the algorithm using Markov chain and the convergence of

the algorithm is proved using Kakutani fixed point theorem.

Let us draw some future works. In OFDMA-based networks, we plan a cooperative

resource allocation game in a multiple-access OFDMA wireless network consisting

of multiple terminals and multiple relays. The transmitted symbols by the source

nodes reach the base-station and all relays. Each relay decodes/estimates the re-

ceived signals on poor channels, encodes them, and forwards toward the base-station.

The communication is full-duplex mode. The algorithm will consist of subcarrier

assignment and power allocation at each node for maximizing the frequency spectral

efficiency at the minimum cost of power consumption. At the relays and the base-

station each subcarrier is allowed be shared by more terminals. There are different

subcarrier assignments at each transmitter, and the relays are not constrained to

transmit the same subcarriers over which receive the symbols. There are also separate

power constraints on each subcarrier at every nodes. Taking into account the relaying

strategy, we will introduce a condition under which source nodes discern the needed

subcarriers to be assisted.

In smart grids, we plan to develop an interaction mechanism in which micro-grids

can bargain with each other to achieve an agreement on both price and the amount

of power. The strategies of each micro-grid correspond to determining the price at

which it is willing to buy/sell energy and the quantity that it wishes to sell/buy. The

objective of each micro-grid is to determine the optimal quantity and price over each

transmission line at which it wants to trade so as to optimize its objective function.

Our goal is to achieve a bargaining mechanism with a good tradeoff between the price

at which the trade takes place and the amount of overall power loss in the whole

network.
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