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Abstract

Transition metals and transition metal compounds are important to catalysis, to

photochemistry and to many superconducting systems. We study the performance of

diffusion Monte-Carlo (DMC) applied to transition metal containing dimers (TMCDs)

using single-determinant Slater-Jastrow trial wavefunctions and investigate the pos-

sible influence of the locality and pseudo-potential errors. We find that the locality

approximation can introduce non-systematic errors of up to several tens of kcal/mol in

the absolute energy of Cu and CuH if Ar or Mg core pseudo-potentials (PPs) are used

for the 3d transition metal atoms. Even for energy differences such as binding ener-

gies, errors due to the locality approximation can be problematic if chemical accuracy
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is sought. The use of the Ne-core PPs developed by Burkatzki et al. (J. Chem. Phys.,

129, 164115, 2008), the use of linear energy minimization rather than unreweighted

variance minimization for the optimization of the Jastrow function and the use of large

Jastrow parametrizations reduce the locality errors. In the second section of the paper,

we study the general performance of DMC for 3d TMCDs using a database of bind-

ing energies of twenty TMCDs, for which comparatively accurate experimental data

is available. Comparing our DMC results to these data, in our results that compare

best with experiment, we find a mean unsigned error (MUE) of 4.5 kcal/mol. This

compares well with the achievable accuracy in CCSDT(2)Q (MUE = 4.6 kcal/mol) and

the best all-electron DFT results (MUE = 4.5 kcal/mol) for the same set of systems

(Truhlar and co., J. Chem. Theory and Comp., 234105, 2015). The mean errors in

DMC depend less on the exchange-correlation functionals used to generate the trial

wavefunction than the corresponding mean errors in the underlying DFT calculations.

Furthermore, the QMC results obtained for each molecule individually vary less with

the functionals used. These observations are relevant for systems such as molecules in-

teracting with transition metal surfaces where the DFT functionals performing best for

molecules (hybrids) do not yield improvements in DFT. Overall, the results presented

in this paper yield important guidelines for both the assessment of the achievable ac-

curacy with DMC and the design of DMC calculations for systems including transition

metal atoms.

1 Introduction

Transition metals and their compounds constitute interesting chemical systems. They are

omnipresent in catalytic reactions due to their numerous oxidation states and their ability

to adsorb molecules on their surfaces; furthermore, they often have interesting magnetic

and attractive transport properties (electronic transport, superconductivity, thermal trans-

port). Unfortunately, the energetic properties of transition metal compounds are difficult to

calculate due to their complicated electronic structure and the presence of strong correlation.
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Although the ultimate goal may be to study catalytic reactions, superconductivity and

other bulk properties, small transition metal containing molecules are ideal test-cases for elec-

tronic structure methods, since the small number of electrons involved still allows compara-

tively complex calculations such as large scale CASPT2 or CI calculations to be performed.

Furthermore, the correct description of the interaction with the transition metals, which can

be tested easily in these small systems, will also be of crucial importance when describing

bulk phenomena and interactions with transition metal surfaces. Consequently, various stud-

ies on transition metal containing dimers (TMCDs) have been published. The methods used

include high level quantum chemical methods such as CASPT2, CI and CCSD(T) (e.g. Ref.

1–3), and also DFT or DFT+U (e.g. Ref. 4–7). Although some DFT functionals give aston-

ishingly accurate results on average7, the strong correlation leads to a large dependence on

the exchange-correlation (XC) functional (see for example Tab. 1). In fact, even the more

advanced methods and in particular the “gold standard” of quantum chemistry, CCSD(T),

have problems describing the interactions in TMCDs accurately: mean unsigned errors of

4.5 kcal/mol for CCSD(T) and similar values for CCSDT(2)Q have been found by Truhlar

and co. in Ref. 7 (see again Tab. 1).

More recently, also quantum Monte Carlo (QMC) methods have been applied to transi-

tion metal atoms11,12, TMCDs10,13–17, clusters18 and to solids19,20 including transition metals.

The interest in applying QMC methods, such as reptation Monte Carlo and diffusion Monte

Carlo (DMC), to these systems is sparked by the fact that QMC methods are able to treat

correlation effects explicitly rather than using approximate density functionals, while scaling

asO(N3)+cO(N4), where c is a small constant and N is the number of particles, if a constant

statistical error-bar in the total energy is sought and localized basis functions are used21,22.

This scaling with system size allows the treatment of large molecular complexes and solids

such as transition metal oxides. This would be impossible to achieve with CCSD(T) and

other explicitly correlated quantum chemistry methods.

In spite of the comparative wealth of DMC studies applied to transition metal containing
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Table 1: Comparison of the mean unsigned error (MUE) of binding energies for a database of
20 3d TMCDs obtained with different methods. (Data taken from Ref. 7 and this work.) Ba-
sis set definitions: a: def2-TZVP, minimally augmented on the ligands; b: aug-cc-pwCVTZ-
DK8, aug-cc-pVTZ-DK for ligands; c aug-cc-pwCVTZ-DK8 (see Ref. 7 for details); BFD-PP:
small core pseudo-potentials by Burkatzki et al.9,10 DMC(B97-1) denotes a DMC calculation
based on a Slater-Jastrow trial wavefunction generated from a B97-1 Slater function. The
last result for DMC(B3LYP) with the note “Padé func.” was obtained using a Jastrow factor
parametrized by Padé functions in QWALK, while all other DMC calculations were obtained
with polynomial Jastrow functions in CASINO.

method details MUE Ref.
[kcal/mol]

B97-1 all e−, non-rel., bas. a 5.1

R
ef

.
7

B3LYP all e−, non-rel., bas. a 6.1
M05 all e−, non-rel., bas. a 7.1
B97-1 all e−, scalar rel., bas. b, 4.5
CCSD(T) all e−, scalar rel., bas. c, 4.5
CCSDT(2)Q all e−, scalar rel., bas. b 4.6

B97-1 BFD-PP, TZV 6.3

th
is

w
or

k

B3LYP BFD-PP, TZV 7.9
DMC(B97-1) BFD-PP 5.4
DMC(B3LYP) BFD-PP 5.3
DMC(B3LYP) BFD-PP 4.5
Padé func.
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dimers (e.g. Refs. 10,13–17), the results do not allow one to judge the overall performance

of QMC for TMCDs for several reasons. First, the above references only cover transition

metal oxides and transition metal sulfides. Next, the studies all used different computational

set-ups (different pseudo-potentials, some of which are not readily available, different trial

wavefunction generation methods, different parametrizations of the Jastrow function and

different move schemes in DMC). Additionally, all mentioned references compare the DMC

energies directly to the experimental energies, taking the scalar relativistic effects included in

the pseudo-potentials into account but ignoring the effect of spin-orbit coupling. This effect

can, however, be on the order of several kcal/mol in TMCDs. Last but not least, no reliable

experimental data exists for comparison for most molecules studied and — as mentioned

above — even the comparison to CCSD(T) results is problematic for TMCDs.

In our present work, we therefore aim at reassessing the performance of DMC by studying

the bonding in a wide range of TMCDs in a systematic and consistent way. More precisely,

we study a database of 20 TMCDs with experimental error bars in the dissociation energy

lower than 2 kcal/mol. As mentioned above, such a database has been published by Truhlar

and co.7 and it includes best estimates of the bond length and estimates for the spin-orbit

coupling calculated by quantum chemistry methods. On the basis of this database, we

address important questions, such as “How well can DMC describe the bonding in transition

metal systems when using single-Slater-Jastrow trial wavefunctions?”, “Does it perform as

well as or better than the best density functionals without depending so strongly on the

functional used in the trial wavefunction generation?” and “Can QMC, in spite of its good

scaling with system size, compete with CCSD(T)?” Additionally, we address several other

questions, which are of specific relevance for DMC calculations including transition metals.

Most importantly, we address the performance of different optimization schemes for the

trial wavefunctions and the influence of the locality approximation23,24 — an approximation,

which is necessary in DMC calculations when non-local PPs are used (see Sec. 2).

The paper is structured as follows: in Sec. 2, we introduce the methods used and present
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the computational details. In Sec. 3, we discuss tests performed for Cu and CuH concerning

the choice of pseudo-potentials and optimization method. Sec. 4, focuses on the results

obtained for the database of transition metal molecules tested. Sec. 5 comprises the summary

and the conclusion.

2 Methods

2.1 Variational Monte Carlo and diffusion Monte Carlo

In the course of this work, we use two quantum Monte Carlo methods, namely variational

Monte Carlo (VMC) and diffusion Monte Carlo (DMC). These methods are described in

length in, for example, Refs. 25–27. Here, we shall therefore only give a brief introduction.

In VMC, a variational wavefunction

ψT = ψS · eJ({rij ,rIi,rIj}) (1)

is constructed by multiplying a Slater determinant, ψS, by a so-called Jastrow factor eJ . The

Jastrow function J is a function of electron-electron distances rij and ion-electron distances

(rIi and rIj) and serves to introduce many particle correlation effects. Since the integrals

involved in evaluating the energy of the resulting many-particle correlated wavefunction are

high-dimensional, the variational energy EV = 〈ψT |Ĥ|ψT 〉
〈ψT |ψT 〉

is evaluated stochastically using

Monte Carlo sampling and the Metropolis algorithm.

The Jastrow function J is parametrized, generally by several tens to a few hundreds

of parameters, and is optimized either by minimizing the variance of the local energies

EL(R) = Ĥψ(R)
ψ(R)

(“variance optimization”) or by minimizing the variational energy (“energy

optimization”) for a finite set of configurations {R = (r1, . . . , rN)} of the electronic coor-

dinates ri. Traditionally, only variance minimization was used, since stable and efficient

algorithms allowing the optimization of the energy were only derived in the very late 1990s
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and the 2000s (e.g. Ref. 28; we refer the reader to Ref. 29 for a more detailed discussion of

the development of optimization schemes).

In DMC, an initial wavefunction ψ(τ = 0) = ψT is propagated in imaginary time τ

according to the imaginary time Schrödinger equation −dψ
dτ

= Ĥψ (atomic units are used).

Subject to the fixed-node constraint, in which the nodes of the wavefunction ψ(τ) are fixed to

those of the trial wavefunction ψT , this allows the fixed-node ground-state ψFN
0 = ψ(τ →∞)

to be projected out and the fixed-node energy E to be calculated. The projection itself is

carried out using stochastic approaches and moving a set of configurations according to a

drift-diffusion and rate equation resulting from the imaginary time Schrödinger equation at

a finite time-step ∆τ .

If non-local pseudo-potentials are used, an additional approximation is necessary in DMC

calculations. The use of PPs is very common in DMC due to the unfavourable scaling of the

computational cost30,31 with the nuclear charge Z (O(Z5.5) toO(Z6.5)). The evaluation of the

non-local potential, however, requires approximations. The so-called locality approximation

consists in evaluating the non-local part of the pseudo-potential on the trial wavefunction ψT ,

instead of on ψ. Traditionally23,24, this localized potential was added to the local potential.

This has the disadvantage of giving DMC energies that may or may not satisfy the variational

principle (i.e., which can be lower than the true fixed-node energy). There is, however,

a slightly different way of treating the non-local pseudo-potential, which is known as the

“T-move” scheme. This scheme, in which the non-local potential is not fully localized,

re-establishes the variational principle32–34.

2.2 Computational details

Four our comprehensive study on TMCDs, we use the same database of TMCDs as Ref.

7. For completeness, the 20 molecules present in this database are listed in Tab. 2. Their

experimentally measured bond dissociation energies De (corrected for zero-point energy) lie

between 21.6 kcal/mol (ZnH) and 151.0 kcal/mol (VO) with maximum experimental uncer-
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tainties of 2.0 kcal/mol.

Table 2: List of the 3d TMCDs studied together with their experimental bond dissociation
energy Dexp.

e (corrected for zero-point energy) and the experimental uncertainty thereof.
Data taken from Ref. 7.

Dexp.
e uncert. Dexp.

e uncert.
[kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol]

TiCl 100.8 2.0 FeCl 78.5 1.6
VH 51.4 1.6 CoH 45.5 1.2
VO 151.0 2.0 CoCl 80.5 1.6
VCl 101.9 2.0 NiCl 88.0 1.0
CrH 46.8 1.6 CuH 62.6 1.4
CrO 104.7 1.2 CuCl 87.7 0.4
CrCl 90.1 1.6 ZnH 21.6 0.5
MnS 70.5 2.0 ZnO 37.9 0.9
MnCl 80.7 1.6 ZnS 34.3 1.0
FeH 36.9 0.8 ZnCl 53.5 1.0

Although all-electron DMC calculations may be achievable for TMCDs, the computa-

tional cost associated with all-electron computations of crystals and solids including heavy

atoms renders such large-scale calculations impossible with current computational resources.

We therefore chose to apply pseudo-potentials (PP) even for the dimer calculations. The

choice of pseudo-potential is of special relevance in DMC, since the PP does not only de-

termine the physical description of the system in terms of core-valence correlation but can

also have a large impact on the errors in DMC due to the locality approximation23,24,33,34.

For the PP tests in Sec. 3, we use several different PPs. More precisely, we use three dif-

ferent Ar core PPs: 1.) an Ar core Troullier-Martins-type35 PBE PP from the standard

PP set in Abinit36 with an s local channel (i.e. lloc = 0) , 2.) an in-house developed Ar

core Troullier-Martins-type PBE PP generated with the fhi98PP code37 with local channel

f (i.e. lloc = 3) and 3.) a Trail-Needs Ar core Dirac-Fock average relativistic effective PP38,39

(lloc = 2 for QMC, lloc = 0 for DFT to avoid ghost states) . Furthermore, we used two

PPs with smaller core sizes, namely a Mg core Trail-Needs Dirac-Fock average relativistic

effective PP39 (lloc = 2 for QMC, lloc = 0 for DFT to avoid ghost states), and the Ne core

PPs generated for the use in DMC by Burkatzki, Filippi and Dolg9,10 (denoted by BFD-PPs
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in the following) (lloc = 2). Based on these test calculations for Cu and CuH (see Sec. 3),

we chose to apply the BFD-PPs to all atoms except hydrogena in the database calculations.

These PPs do not only allow for small locality errors (see Sec. 3), their Ne core for the 3d

metals also allows the correlation of the semi-core electrons. This has been shown to be im-

portant for transition metals (e.g. Refs. 8,41–47). We note that the BFD-PPs are of course

not the only possible choice of small core PPs that can be used in diffusion Monte Carlo.

The PPs from the Stuttgart-Köln table48, for example, can be adapted to allow their use

in diffusion Monte Carlo by smoothing the divergence at the center of the PP, as has been

done in the past (e.g. Refs. 13,14,44).

The Slater part ψS of the trial wavefunction is generated with the program Gamess-

US49 and a version of that code50 that allows direct interfacing to CASINO51. For the

calculations in Sec. 3 Gaussian09 and pwscf52 are used. All single determinant wavefunctions

are calculated without symmetry constraints, allowing convergence to the lowest energy

state. The multiplicity is set to the value corresponding to the ground states listed in Ref.

7. The initial guess used in the wavefunction generation was chosen to be compatible with

the experimental ground state symmetry, also listed in Ref. 7. We note that this may not

necessarily lead to convergence to the global minimum in DFT. On the other hand, this

approach is reproducible and will lead to trial wavefunctions that are most closely related to

the experimental structure, which is an advantage in DMC. Multi-determinant calculations

were based on a second-order configuration interaction (CI) calculation using the molecular

orbitals from restricted open shell B3LYP calculations as in Ref. 16. The CI space included

a full CI in the partially occupied degenerate subspace and singles and doubles excitations

to unoccupied orbitals. As basis sets, the following sets were used: a.) the triple zeta version

of the basis given in Refs. 9,10 without g-functions but augmented by the augmentation set

of the Dunning correlation consistent basis to ensure good basis set coverage even at the

relatively long bond distances of some of the dimers (single Slater wavefunctions), b.) the

aWe note parenthetically that a hydrogen PP40 was used for the PP test calculations
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same triple zeta basis with g-functions but without augmentation (CI calculations) and c.)

a plane wave basis for calculations including the Ar core PPs (plane wave cutoff: 80 Hartree)

and the Ne core PP (plane wave cutoff: 160 Hartree). For the PP tests in Sec. 3, the

Slater wavefunction is constructed using the method which was used to generate the PP,

i.e. with Hartree-Fock calculations for the BFD-PP and the Trail-Needs PPs, and with PBE

calculations for the Troullier-Martins-type PBE PPs.

The QMC part of the calculations was mainly performed using the CASINO program51.

In some cases, QWALK53 was used additionally in order to take advantage of slightly differing

capabilities. In all calculations, the Jastrow function J is taken as a sum of one-, two- and

three-body terms (χ(riI), u(rij) and f(rij, riI , rjI))

J({ri} , {rI}) =
∑
I,i

χ(riI) +
∑
i,j 6=i

u(rij) +
∑
I,i,j 6=i

fI(riI , rjI , rij). (2)

In the calculations performed with the CASINO program package, the functions χ(riI) and

u(rij) are given by a polynomial of degree N multiplied by a cutoff-function for each of their

variables x:

PN(x) · (x− Lx)3 ·Θ(Lx − x). (3)

Here, PN(x) is a polynomial of degree N , Lx denotes the cutoff-length with respect to

variable x and Θ is the Heavyside Theta function, which is zero for negative values and one

otherwise54. The three-body function f(rij, riI , rjI) is given equivalently as a polynomial in

the three independent variables multiplied with a cutoff-function in riI and rjI . The cutoff-

length Lx and the polynomial coefficients are optimizable parameters. Different parameters

are used for spin up and spin down electrons in the χ term and for the different spin pairs

in the u and the f term. The u(rij) term is restricted to satisfy the electron-electron cusp

conditions. Unless explicitly stated, the polynomial degree of the u and the χ terms is 4 and

the polynomial degrees in rij, riI and rjI in the f term is 2. In the PP tests (Sec. 3), we use

several different Jastrow parametrizations, which we discern by the number of parameters
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used. The Jastrow function with 31 optimizable parameters contains only one and two body

terms with polynomial orders of 4. The Jastrow functions with 81 parameters additionally

contain three body terms with polynomial order 2. Finally, the largest parametrization used

(256 parameters) uses polynomial orders of 8, 8 and 4 for the u, the χ and the f term,

respectively.

Calculations performed with the QWALK program package use a different form of the

Jastrow function. In this case, the one-, two- and three-body terms are parametrized using

functions Pk(x), which have the form of a Padé approximant

Pk(x; β0) =
1− z(x/Lx)

1 + βk · z(x/Lx)
. (4)

In this expression, βk = exp(β0 + 1.6k) − 1 and z(y) = y2(6 − 8y + 3y2). The one-, and

two-body terms are each parametrized by a function g1

g1 =
∑
k

ckPk(x; β0), (5)

where the index k runs from zero to 3 if x denotes an electron-electron variable and from

zero to 4 if x denotes an electron-nucleus variable55. The optimizable parameters are the ck

and β0. These parameters differ for the χ-function (cχk and βχ0 ) and the u-function (cuk and

βu0 ). The three-body term is given as

f =
∑
klm

cfklm [Pk(riI ; β
χ
0 )Pl(rjI ; β

χ
0 ) + Pl(riI ; β

χ
0 )Pk(rjI ; β

χ
0 )]Pm(rij; β

u
0 ). (6)

Several of the cfklm are restricted to zero and only a total of 12 terms is used for the f -

function. Since the Padé functions cannot satisfy the cusp conditions, these are taken care

of by a function55

c · Lx · z̃(x/Lx)

1 + γ · z̃(x/Lx)
, (7)

where x is the distance between the two electrons, c is 1/4 or 1/2, for same-spin and opposite-
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spin electrons respectively, and z̃(y) = y − y2 + y3/3. The parameter γ is optimizable.

In all calculations performed with CASINO, the Jastrow factor J is optimized first by

minimizing the variance without reweighting the summands according to the wavefunction

change at the walker location (“variance optimization”)56,57 and thereafter by minimizing

the energy of the trial wavefunction ψT = ψS · eJ (“energy optimization”) via a linear

method28,54,58. For the initial variance optimization, 50 000 configurations are used in each

of the 5 optimization cycles. Several optimization cycles are used to allow the configurations

to adapt to the optimized function. In the energy minimization 100 000 configurations are

used in each of the five optimization cycles to allow the linearized method to converge. Tests

on several of the atoms and molecules in the database showed that an additional energy

optimization cycle with twice as many configurations slightly lowered the variational Monte

Carlo (VMC) energy in some cases, but no relevant influence on the DMC energies was

found. The optimization strategy is thus considered to give converged results (the observed

differences were within the statistical error bars of less than 0.5 kcal/mol). The general

procedure for the PP test calculations is similar, but the exact parameters may deviate.

In the calculations performed with QWALK, the procedure is similar, with the only

difference that the cutoff-length Lx is kept fixed at 7.5 a u and that only one optimization

cycle (i.e. one set of configurations) is used for both variance and energy optimization.

The number of configurations used in QWALK also differs from that used in CASINO: For

variance minimization close to 10 000 configurations were used, for energy optimization up

to about 300 000 configurations were used, depending on the convergence.

For some of the calculations in Sec. 4.3.3, also a backflow transformation59 ζ({ri}) is

applied to the coordinates ri of the Slater determinant (in addition to multiplying with a

Jastrow factor):

xi = ri + ζ({ri}). (8)

Such a transformation allows the nodes of the trial wavefunction to be shifted and to intro-

duce further correlation to the trial wavefunction. Similarly to the Jastrow function, ζ({ri})
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is expanded in one-, two- and three-body terms, each described by a polynomial function

with a cutoff function. The polynomial orders used are N = 6 for the one- and two-body

terms and N = 2 for the tree-body terms. The parameters in the backflow transformation

are optimized in an additional energy optimization step, in which both the parameters of

the backflow function and the parameters of the Jastrow function are allowed to vary.

The optimized trial functions are subsequently used in diffusion Monte Carlo (DMC)60

calculations, again using the software package CASINO51 or QWALK53. Unless otherwise

stated, all energies are computed using the “T-move” scheme33,34 in order to re-establish the

variational principle for the DMC results in spite of the use of non-local pseudo-potentials. In

the DMC calculations performed in CASINO, a target number of 7680 configurations is used.

After an equilibration length of 850, 1600 or 2000 steps (depending on the time step), the

DMC data is accumulated for statistical analysis. The equilibration length used is probably

not optimal in terms of computer time for most calculations. Shorter equilibration length

could have been chosen thereby reducing the computational effort, but the constant equili-

bration length allowed straightforward automatic input generation and does not make up a

large amount of computing time for most calculations. On the other hand, the equilibration

length is checked to be long enough, by comparing the results with results of using a longer

equilibration time. To obtain statistical error bars on the data, the DMC data accumulated

after equilibration is re-blocked61 using the automatic re-blocking facility of CASINO.

In QWALK, 9600 configurations are used. Instead of performing a reblocking analysis,

the energies are averaged over subsequent blocks of 1 a.u. in the imaginary time propagation.

The equilibration length is automatically determined by detecting the blocks at the beginning

of the time series that lie outside the error bars. In order to minimize time-step errors, we

perform calculations at τ = 0.008 au, τ = 0.005 au and τ = 0.002 au. Subsequently, a linear

extrapolation is performed for τ → 0. We note that the choice of time-step is not the most

efficient in terms of computational cost62, but it allows us to check the validity of the linear

extrapolation by comparing the results with results from an extrapolation using only the
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two shorter time steps in an extrapolation. The parameters used in the PP tests are similar,

but the exact values used may differ.

The bond dissociation energies De are calculated from the zero-time-step extrapolated

DMC energies E as

De(MX) = E(M) + ESO(M) + E(X) + ESO(X)− E(MX)− ESO(MX), (9)

where M denotes the transition metal atom and X is the other atom (H, O, S or Cl).

The equilibrium geometry of the molecules MX is taken from Ref. 7, as are the spin orbit

corrections ESO, which were calculated at the MCSCF level. Scalar relativistic corrections

for the core electrons are already taken care of in the PPs. Note that the values of De given

in Tab. 2 were corrected for zero-point energy by Truhlar and co.7 using DFT calculations.

All statistical error bars obtained for the final dissociation energy lie below 0.4 kcal/mol.

Finally we note that a spin-orbit-correction using MCSCF results may not be possible

for larger systems than addressed here due to the unfavourable scaling of MCSCF. For large

systems, a spin-orbit correction using relativistic TDDFT63 may be an option. Furthermore,

depending on the system under investigation, spin-orbit corrections may not be necessary,

as is also in the case for some of the systems addressed here (CuH→ Cu + H).

3 Pseudo-potential tests and the locality approxima-

tion

As mentioned above, the use of PPs is favorable from a computational point of view, but their

use is linked to approximations. First of all, the PP gives only an approximate description

of the real, all-electron system. Although it has been shown that the use of PPs does not

degrade the DMC results for the G2 set of molecules64,65, the PP error may become more

important in more complicated systems, especially if very high accuracy is sought in QMC
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calculations (e.g. Refs. 66,67). Apart from these frozen core induced shortcomings of the

PPs, the locality error is another source of error in DMC calculations. In the following, we

focus on this type of error.

We analyze this error using the Cu atom and the CuH molecule as examples. We start

our discussion by demonstrating that the common assumption of a negligible error due to

the locality approximation is not generally true for single determinant trial wavefunctions.

Then, we discuss how to treat systems in which the errors due to the locality approximation

tend to be large. Finally we study the performance of pseudo-potentials with different core

sizes in DMC and anlayze error cancellation effects for the CuH binding energy.

3.1 Absolute locality errors in large core PPs

Using an Ar core Troullier-Martins-type35 PBE PP from the standard PP set in abinit36

for the Cu-Atom, we found DMC total energies that differed by nearly 80 kcal/mol (3.4 eV)

depending on whether variance or energy optimization was used to generate the Jastrow

function (see Fig. 1). In calculations which use local potentials only (i.e. no locality ap-

proximation), the fixed-node approximation remains the only fundamental approximation

in DMC for finite systems and the energies obtained in DMC should, in principle (after

converging the population and timestep bias), not depend on the Jastrow function51, since

the latter does not change the nodes. In this case, the DMC results would be independent

of the method used to optimize the parameters in the Jastrow function, in spite of the fact

that different optimization methods may converge to different Jastrow parametrizations due

to the limited flexibility of the parametrization and due to the possibility to get stuck in

local minima. The dependence of the DMC energy on the Jastrow function can thus only

be ascribed to the locality approximation. Similar results were also found for the other Ar

core PPs given in Sec. 2.2.

A possible explanation for the large locality errors might be a failure of the Kleinman-

Bylander representation: plane-wave atom/molecule-in-a-box calculations and the Kleinman-
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Figure 1: Cu atom absolute DMC energies obtained using a Jastrow factor from energy
optimization or variance optimization for an Ar core PP (see text for details). “var. opt. 1”
and “var. opt. 2” denote two variance optimization cycles with different sets of configurations
used in the optimization. Circles: results using the locality approximation as introduced in
Refs. 23,24; triangles: results using T-moves.

Bylander form of the PP were used to generate the Slater-wavefunction for all the above

calculations. However, bypassing the atom-in-a-box plane wave calculation entirely by con-

structing the trial wavefunction based on the pseudo-orbitals obtained from the PP generator

fhi98PP, we could show unambiguously that it is not the Kleinman-Bylander representation

of the PP which leads to the large locality error.

We therefore conclude that the use of these large core PPs for heavy atoms such as Cu

can lead to considerable locality errors and, as shown in the following, care has to be taken

in calculations involving such PPs.

3.2 Handling locality errors occurring for the large core PPs used

In principle, a large locality error does not necessarily pose a problem in practical calcu-

lations, since the error may largely cancel out when calculating energy differences. This

necessitates though, that the results obtained in DMC are stable with respect to stochas-

tic fluctuations in the wavefunction optimization. However, we found the DMC results to

vary several tens of kcal/mol when using variance optimization with the results depending

strongly on the exact Jastrow function resulting from the optimization (see Fig. 1), which

may lead to problems with error cancellation as explained below.

A large enough number of configurations used in the optimization should in principle
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allow one to obtain a stable convergence to a minimum, and thus a stable Jastrow function

and stable DMC energies. With variance optimization, however, we found that even very

large numbers of configurations do not stabilize the Jastrow function sufficiently to obtain

stable DMC results. A particularly alarming example was found for a case where we used

a very large set of 800 000 configurations in the variance optimization procedure optimizing

49 parameters. Using two different sets of configurations, we found two different Jastrow

functions, which gave the same (comparatively low) VMC energy and would thus be ex-

pected to give similar DMC results. However, the two trial wavefunctions lead to a DMC

energy difference of more than 20 kcal/mol (see Fig. 1). This “instability” in the DMC en-

ergies hinders error cancellation when calculating energy differences since we cannot expect

“randomly” changing errors to cancel.

For trial wavefunctions resulting from energy optimization, on the other hand, we never

observed such drastic changes in energy (although we did observe changes on the order of a

few kcal/mol in some cases). We explain the possible superiority of energy minimization over

variance minimization as follows: there are indications that the wavefunction itself is better

represented when using energy optimization than when using variance optimization. This

claim is based on the observations that expectation values other than the energy, which are

based on a mixed estimator, can be computed more accurately using energy minimized trial

wavefunctions68,69. A better trial wavefunction would also decrease the locality error, which

is proportional to the difference between the trial wavefunction and the exact eigenstate

squared24. We therefore suggest energy minimization as the preferable optimization scheme

when using pseudo-potentials.

Using the T-move33,34 scheme instead of normal moves, we made two interesting observa-

tions: First, we found that the energies obtained using energy optimized Jastrow functions

are generally lower in energy than those found using variance optimization (see Fig. 1 as

example). Secondly, we found that the dependence of the DMC energy on the Jastrow

function is much reduced. To give an example, we only obtain an energy difference of about
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5 kcal/mol between the above mentioned energy and variance optimized results, instead of the

80 kcal/mol difference when using the locality approximation from Refs. 23,24 (see Fig. 1).

The difference in DMC energy for the two examples of variance minimization was even re-

duced to 0.8± 0.6 kcal/mol. The first observation (lower DMC energies for energy optimized

trial wavefunctions) backs our suggestion that energy optimization should be the preferred

optimization scheme and the second observation (smaller dependence of DMC energies on

the Jastrow function) is of interest for obtaining more stable results.

From our experience, we therefore conclude that, contrary to variance minimization,

energy minimization and T-moves allow us to generate stable DMC results to be obtained

even for large core PPs. Energy optimization, and T-moves should therefore be used if

non-local potentials are present.

3.3 Locality errors with different core sized PPs

To get a quantitative estimate of the locality error with different PPs, we studied four

different PPs with different core sizes and local channels in more detail. More precisely we

compare results for the two Ar core PBE PPs (denoted by a and b in the following), the Mg

core PP (c) and the Ne core PP (d) (all PPs are detailed in Sec. 2.2). Focussing on potential

error cancellation for binding energies, we now turn to CuH.

Figure 2 shows the total DMC energy for CuH resulting from trial wavefunctions with

different sized Jastrow-parametrizations. With increasing flexibility of the Jastrow function

(i.e. increasing accuracy of the trial wavefunction), the DMC energies obtained with T-moves

decrease, as expected. With the locality approximation (i.e. no T-moves), the energy con-

verges from below in all cases. This behavior allows us to estimate the locality error from the

difference between the result using T-moves and that using the locality approximation. This

difference (measured at the largest Jastrow parametrization) is approximately 13 kcal/mol

for the Ar-core PPs, 6 kcal/mol for the Mg-core PP and 3 kcal/mol for the Ne-core PP. If

we want to obtain chemically accurate binding energies (errors < 1 kcal/mol) in spite of the
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presence of locality errors, we have to rely on error cancellation in the calculation of the

corresponding energy differences.
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Figure 3: DMC dissociation energy of CuH (see Fig. 2 for details). Note that the y-axis is
shifted between the different plots, but that the scale is constant throughout the 4 plots.

To test the effect of error cancellation, Figure 3 shows the CuH dissociation energies

obtained with and without T-moves. In the case of the Ar-core PPs, for the smallest Jastrow

parametrization (which did not include three-body terms), the CuH dissociation energy

changes by nearly 8 kcal/mol depending on whether T-moves are used or not. Furthermore,

if no T-moves are used, the dissociation energy changes by more than 6 kcal/mol from the

smallest to the largest Jastrow parametrization. This suggests that the influence of the

locality error is too large to obtain precise results for the large core PPs with small Jastrow

parametrizations and without T-moves. If T-moves are used, the dependence on the Jastrow

parametrization is weaker. Large Jastrow parametrizations, including three-body terms are

also clearly favourable. For the in-house Ar core PP, the dissociation energies then vary

only by slightly more than 1 kcal/mol and for the Mg core PP the observed variations are
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then even lower than 1 kcal/mol. If the Ne-core PP is used, independently of the Jastrow

parametrization used and of whether T-moves are used or not, the dissociation energy does

not change by more than 1 kcal/mol. In all these cases, error cancellation leads to changes

in the binding energies (i.e., energy differences) that are much smaller than the changes in

the absolute energies.

Nevertheless, the PPs with different core sizes result in strongly different values for the

dissociation energy (Ar-core ∼ 74 kcal/mol; Mg-core ∼ 56 kcal/mol; Ne-core ∼ 60 kcal/mol;

experiment 62.6 kcal/mol7). Although this difference may still be influenced by the locality

approximation, the fact that the energy differences become stable for large enough Jastrow

parametrizations suggest that the “physical” deficiencies (transferability problems) of the

PP and the fixed-node approximation rather than the locality error cause the deviation

from the experiment. Large core PPs can be expected to result in sizeable errors, since

core-valence correlation has been shown to be important even for atomic properties of 3d

transition metals as early as the 1980’s (e.g. Refs. 8,41–47). However, in systems where

(some) transition metal atoms act as spectators and are not directly involved in the process

of interest, the errors due to the missing core-valence correlation may cancel out to a high

extent allowing for the use of large core PPs, but only if the “random” errors stemming from

the locality approximation are not too large.

Although we have shown in Fig. 3 that the use of large enough Jastrow parametrizations

and the use of T-moves in principle allows using the large(r) core PPs in DMC, we choose

the Ne-core BFD-PPs for the remaining work for several reasons: 1.) we expect semi-core

valence correlation to be of considerable importance in some of the transition metal atoms

and transition metal containing molecules (see above). This is also confirmed by the CuH

results shown above, for which the BFD-PP result is closest to the experiment, indicating

that the other PPs suffer from missing core-valence correlation; 2.) the results for the BFD-

PP depend the least on the choice of Jastrow parametrization.

With this, we now turn to the more general assessment of the achievable accuracy of
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DMC for TMCDs and discuss our results for the database of 20 transition metal containing

molecules.

4 Database results

4.1 DFT results

We start our discussion of the database results with the DFT and Hartree-Fock (HF) results.

This discussion is important for the DMC results, since the DFT and HF results will deter-

mine the quality of the wavefunction nodes and may in turn be influenced by the quality of

the pseudo-potentials and basis set used. Unlike DMC results, which follow the variational

principle if T-moves are used, the absolute energies for different XC-functionals in DFT

cannot be compared against each other since they to not follow the variational principle.

To judge the quality of these results, we therefore look at the deviations of the dissociation

energies from the experimental values. For UHF, PBE, B3LYP and B97-1, we obtain a mean

unsigned error (MUE) in the dissociation energy of 35.2 kcal/mol, 8.4 kcal/mol, 7.9 kcal/mol

and 6.3 kcal/mol, respectively (see Tab. 4). As expected, the Hartree-Fock results are con-

siderably worse than the DFT results and within the DFT results there is a considerable

spread: As one might expect, the hybrid functionals B3LYP and B97-1 perform better than

PBE, which is based on the generalized gradient approximation. The results for B3LYP and

B97-1 are, however, often considerably different for a specific molecule, in spite of the fact

that they both show comparatively small mean errors (see Fig. 4a). This makes it difficult

to decide a priori which of the two functionals is better for a particular system.

To asses the quality of the PPs and the basis set used, we also compare our results with

results from Ref. 7, where a minimally augmented def2-TZVP basis and all-electron calcu-

lations were used. Neglecting scalar relativistic effects, Ref. 7 gives a MUE of 6.1 kcal/mol

for B3LYP and 5.1 kcal/mol for B97-1 for consistently optimized bond-lengths (see Tab. 3).

Including scalar relativistic effects and using the reference geometries, a MUE of 4.9 kcal/mol
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Figure 4: Difference of dissociation energies calculated with DFT (panel a) and DMC (panel
b) corrected for spin-orbit coupling with the experimental values. Negative errors indicate
underbinding. Errors that are larger than the scale chosen, are given as numeric values. The
error-bars (which are barely visible on this scale) include only the uncertainties due to the
stochastic nature of DMC and not the experimental uncertainties.
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is found for B97-1. The errors we obtain are thus about 1.2 kcal/mol to 1.8 kcal/mol larger.

As mentioned in Sec. 2.2, the states we obtain may not in all cases correspond to the lowest

possible DFT energy. We reanalyzed our database performing a stability analysis in Gaus-

sian0970 and reoptimizing the orbitals if necessary. This procedure slightly lowers the DFT

errors (see Tab. 3), but the MUE we observe are still larger than those in Ref. 7. We also

verified that the following DMC results are not strongly affected by the choice of procedure

(see supplementary information for more details).

Table 3: Comparison of the mean unsigned error (MUE) in the dissociation energy obtained
in this work using PPs, results obtained in this work using Gaussian09 and reoptimized
orbitals (see text for details) with results from Ref. 7 using all-electron calculations with and
without inclusion of scalar relativistic effects (see text for details).

method this work this work Ref. 7 Ref. 7
using
PPs

using
PPs

scalar
rel.

Gaus-
sian09

B3LYP 7.9 7.2 6.1 -
B97-1 6.3 5.9 5.1 4.9

A priori, this difference in MUE could be ascribed to a.) the pseudo-potential and b.)

the basis set used since both can easily lead to errors of this order of magnitude as shown,

for example, in Refs. 7 and 13. In an attempt to distinguish between basis set and PP

errors, we applied the quadruple zeta basis set to five of the molecules with especially small

experimental errors, namely CuCl, ZnH, ZnO, ZnS and ZnCl. For this basis set increase, the

absolute energy of the molecules and transition metal atoms constituting these molecules

dropped by 0.3± 0.2 kcal in the DFT. The average error in the dissociation energy, however,

decreased only by 0.2± 0.1 kcal/mol. It is therefore likely that the increase in error between

the results obtained here and in Ref. 7 are mainly due to our use of pseudo-potentials rather

than due to the limited basis set we use. If the PPs are a source of error in DFT, this will

also be true in DMC.

24



4.2 Optimization of the Jastrow function

The next step in obtaining DMC results is the optimization of the Jastrow function. As

noted in Sec. 2.2 and motivated in Sec. 3, this optimization was done in a two step process,

first minimizing the variance of the wavefunction and then using the resulting parameters

in a linearized optimization of the energy. Using energy minimization, the ratio EVMC−EUHF

EDMC−EUHF

was above 85 % in all cases, showing that a large portion of the correlation energy captured

in DMC is already present in variational Monte Carlo (VMC) after the optimization of the

Jastrow function, which is in the range of typical values17.

As we will demonstrate in the following our calculations clearly illustrate that energy

minimization should be used for transition metal containing molecules even if the small core

BFD-PPs are used, thus corroborating our findings from Sec. 3. First, we observe a clear

difference in the trial wavefunctions obtained from energy and from variance optimization:

for our database results we find that the energy optimization step decreases the VMC energy

of the transition metals and transition metal compounds typically by more than 10 kcal/mol

compared to results obtained after variance optimization. Increasing the quality of the vari-

ance optimization step by increasing the number of configurations used in the optimization

to 200 000 , on the other hand, lowered the VMC energy only slightly. Energy optimization

thus leads to considerably lower VMC energies. At the same time, the energy optimiza-

tion increases the variance by more than 0.2 au2. These two facts clearly indicate that the

wavefunction obtained from energy minimization does not coincide with that found using

variance minimization. Finding lower VMC energies for a certain trial wavefunction does not

indicate by itself that the corresponding DMC calculations are also lower in energy. How-

ever, for the DMC(B3LYP) calculations, for which this was tested, the observed differences

in energy prevail at the DMC level: For the atoms and molecules in the database, we found

the DMC energies after energy minimization to be lower in energy by more than 2 kcal/mol,

and often even by more than 6 kcal/mol. We thus conclude once more that the use of energy

optimization is certainly favorable for accurate work with BFD pseudo-potentials.
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4.3 DMC results

We now turn to the DMC energies themselves. To simplify the notation, DMC(x) will denote

a DMC calculation for a trial wave function in which the Slater determinant is obtained with

method x, where x denotes UHF, PBE, B3LYP and B97-1. First, we analyse the absolute

energies and compare DMC energies for different trial wavefunctions. Figure 5 shows the

DMC energies relative to the lowest DMC energy obtained.
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Figure 5: DMC absolute energies [kcal/mol] for different trial wavefunctions with respect
to the lowest result obtained. All energies are given in kcal/mol. Errors that are larger
than the scale chosen are given as numeric values. DMC(UHF) results are not shown, since
they often do not fit the scale, especially for the molecues, where DMC(UHF) tends to give
considerably higher total energies.

The unrestricted Hartree-Fock (UHF) trial wavefunction’s performance is significantly

worse than that of the DFT trial wavefunctions — a fact that has already been noted in Ref.

17 for transition metal oxides. Additionally, the performance of DMC(UHF) is significantly

worse for the molecules than for the atoms, which is most likely due to an insufficient de-

scription of the d-p hybridization15. We note that in most cases where DMC(UHF) performs

badly, the UHF calculation is quite strongly spin contaminated. The only exceptions to this

rule (difference to best DMC result > 10 kcal/mol but no significant spin contamination in
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the UHF result) are CrH and CrCl, which show a large error in DMC in spite of having a

correct S2 value in UHF.

For the DFT-trial wavefunctions studied (PBE, B3LYP and B97-1), the two hybrid func-

tionals (B3LYP and B91-1) perform significantly better than the GGA functional PBE,

following the general trend observed in the DFT results. However, except for V, Fe and

Co, the differences between the QMC results obtained based on PBE, B3LYP and B97-1

with respect to the lowest energy DMC result obtained for a particular system are never

larger than about 3 kcal/mol. For V, the initial PBE result is strongly spin contaminated

(S2 = 4.20 instead of S2 = 3.75.). Such a strong spin contamination is not present in any of

the other DFT calculations. Furthermore, assuming a ground state electronic configuration

of 4s23d3, the orbital which should nominally be the 4s orbital shows considerable mixing

with the 3dzz orbital — a fact that could be observed in several of the calculations. We also

note that the observed difference DMC(PBE)-DMC(B3LYP) of approximately 7.5 kcal/mol

is close to the first excitation energy (4F →6 D) of V of approximately 6 kcal/mol71. In the

case of Fe and Co, it is clear that the ground-state configuration found in PBE corresponds

erroneously to 4s1, 3d7 (4s1, 3d8) instead of 4s2, 3d6 (4s2, 3d7), which is correctly found in

B3LYP and B97-1 (actually, a similar observation applies to Ni). Extensive tests reordering

the guess orbitals and using different convergence schemes available in the GAMESS-US

code did not yield a better energy. It is likely that the first excited state of Co (4s1, 3d8;

a4F ) is found in PBE instead of the ground state (4s2, 3d7; b4F ) (the first excitation en-

ergies tabulated in the NIST database71 lie between 10 kcal/mol and 14 kcal/mol depend-

ing on J ; DMC(PBE)-DMC(B3LYP) ≈ 11.8 kcal/mol). For Fe, however, the difference

DMC(PBE)-DMC(B3LYP) ≈ 11.5 kcal/mol is considerably smaller than the first excitation

energy (5D →5 F ), given by nearly 20 kcal/mol71. It should be kept in mind that these

“outliers” will influence the following analysis.

DMC(B3LYP) and DMC(B97-1), the two DMC calculations based on trial wavefunc-

tions obtained with hybrid functionals, perform similarly well. In terms of absolute DMC
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energy, they give the lowest energy for all atoms and molecules and thus clearly outperform

DMC(UHF) and, to a lesser extent, DMC(PBE). The differences in absolute DMC energy

for trial wavefunctions based on the two different hybrid functionals tested are generally

small. The good performance of the DMC based on hybrid functionals for the database of

TMCDs does not come unexpectedly as hybrid functionals are known to outperform GGA

functionals at the DFT level for molecular systems.

Judging by the absolute energies, we expect DMC with a B3LYP or B97-1 Slater-Jastrow

trial wavefunction to perform best also with respect to the dissociation energies. This ex-

pectation is indeed met as can be seen in Fig. 4 (note also the comparison with the DFT

results in the same figure). The corresponding mean unsigned and signed errors (MUE and

MSE) are given in Tab. 4 (and Fig. 6) together with the corresponding standard error of the

mean unsigned error

σ(MUE) =

√√√√ N∑
i=1

(|De −Dexp.
e | −MUE)2

N · (N − 1)
, (10)

where N = 20. The additional uncertainties in the values of the MUE and the MSE that

arise from the uncertainties in the experimental results and the stochastic nature of QMC are

given by the value-range in the MUE and MSE column of Tab. 4. These uncertainties, which

scale as O(1/
√
N) in the MUE and MSE, are dominated by the experimental uncertainties,

since the stochastic uncertainty in the DMC calculation of each molecule was converged to

significantly less than half a kcal/mol, which is considerably lower than most experimental

uncertainties.

As expected, DMC(B3LYP) and DMC(B97-1) perform best for the dissociation energies,

with a MUE of 5.3 kcal/mol and 5.4 kcal/mol respectively. Taking the standard deviation of

the mean absolute error into account (see Table 4), it is basically impossible to say whether

DMC(B97-1) or DMC(B3LYP) performs better. However, even for these best performing

trial wavefunctions, MUEs obtained for this database of TMCDs are considerably larger than
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Table 4: Mean unsigned and signed error (MUE, MSE) in the dissociation energy (Eq. (9))
and the standard deviation of the mean unsigned error σ(MUE) evaluated for the set of
20 transition metal containing molecules given in Tab. 2 (see text for details). The last
result for DMC(B3LYP) with the note “Padé func.” was obtained using a Jastrow factor
parametrized by Padé functions in QWALK, while all other DMC calculations were ob-
tained with polynomial Jastrow functions in CASINO. Negative values in the MSE indicate
underbinding.

method MUE σ(MUE) MSE
[kcal/mol] [kcal/mol] [kcal/mol]

UHF 35.2± 0.3 7.0 −35.2± 0.3
PBE 8.4± 0.3 1.6 7.4± 0.3
B3LYP 7.9± 0.3 1.0 −3.2± 0.3
B97-1 6.3± 0.3 1.0 −2.7± 0.3

DMC(UHF) 11.2± 0.4 2.8 −10.0± 0.4
DMC(PBE) 6.4± 0.4 1.0 0.5± 0.4
DMC(B3LYP) 5.3± 0.4 0.6 −2.3± 0.4
DMC(B97-1) 5.4± 0.4 0.7 −2.7± 0.4

DMC(B3LYP) 4.5± 0.4 0.6 −1.7± 0.4
Padé func.
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Figure 6: Graphical representation of mean unsigned and signed errors (MUE, MSE) given
in Tab. 4 for wavefunctions based on DFT calculations. DFT results are hatched. The
dotted line shows the location of the best DMC result obtained (using Padé style Jastrow
functions — see Sec. 4.3.2).
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those obtained in DMC for the G2 set: Using a triple zeta basis, a single Slater determinant

trial wavefunction with Hartree-Fock orbitals, and all-electron potentials, the mean unsigned

error for the G2 set is given by MUE = 3.2 kcal/mol65. This demonstrates the difficulty

associated with the accurate determination of dissociation energies for TMCDs.

Since the database is limited to only 20 molecules and the MUE are thus subject to an

uncertainty quantified by σ(MUE) (Eq. 10), we use statistical hypothesis testing to calculate

the probability p that DMC performs better than the best performing DFT functional used

as

p =

∫ Z

−∞
N(x)dx, (11)

where N(x) denotes a normal distribution and

Z =
µDFT − µDMC√
σ2
DFT + σ2

DMC

. (12)

The values for µ and σ are taken from the MUE and σ(MUE) values in Tab. 4. Carrying

out this analysis, we obtain a probability of about 80 % for DMC(B3LYP) to perform as well

or better than the best performing DFT result, DFT(B97-1) (70 %, if the reoptimized DFT

results stated in Tab. 3 are used). The corrected sample variance v of the unsigned error,

given by v = N · σ(MUE)2 (see Tab. 4), is lower for DMC than for DFT, indicating the

presence of fewer “outliers” in DMC, i.e. systems with unexpectedly higher errors compared

to the average error obtained.

For DMC(PBE), the MUE is significantly higher than that of DMC(B97-1) and DMC(B3LYP)

and even lies slightly above that of the DFT(B97-1) results. This clearly shows that, if the

DMC calculations are based on GGA functionals (which do not perform particularly well

for this database), the DFT calculations that are based on hybrid functionals can com-

pete with DMC for this database of TMCDs. A similar conclusion was drawn in Ref.

7 for DFT compared to CCSD(T), where it was shown that DFT can even outperform

CCSD(T) for this particular database. However, in spite of this good performance of hy-

30



brid DFT, it should be noted that the errors of DFT(PBE) are significantly higher than

those of DMC(PBE). Furthermore, for DMC, the MUE increases only by 1.0 kcal/mol from

DMC(B97-1) to DMC(PBE), while for DFT the MUE increases by 2.1 kcal/mol for the same

functional change. This shows that the errors in DMC are not so strongly dependent on the

XC-functional used to generate the trial wavefunction. The weak dependence on the XC-

functional becomes even more evident when the molecules containing V, Fe or Co, which

were marked as “outliers” in PBE, are excluded from the analysis. Then, the MUE of the re-

maining 13 molecules for DMC(PBE) is reduced to 5.1 kcal/mol, while those of DMC(B97-1)

and DMC(B3LYP) decrease only slightly to 5.3 kcal/mol and 5.1 kcal/mol respectively.

The fact that mean errors in the DMC results depend only weakly on the functional used

for the trial wavefunction generation is a very important result: As also obvious from the

present results, hybrid functionals often allow a comparatively good description of molecular

properties. Their use is, however, problematic in metallic systems72–75. In systems, such as

heterogeneous catalysis, where both, the molecular interaction and the metallic surface are

important, this limits the performance of hybrid DFT in spite of its good performance for

molecules. DMC calculations, which seem to depend less on the XC-functional used in the

trial function, may thus well amend some of the problems hybrid DFT encounters in such

systems (see Refs. 72–75, and also Refs. 76,77, which mention these problems). Differently

phrased, since the performance of DMC(PBE) is as good as that of hybrid functionals for

the TMCDs, the use of DMC(PBE) for molecule-metal surface systems might lead to a

similar increase of accuracy as that observed when changing from the use of standard GGA

functionals like PBE to that of hybrid functionals in the description of molecular systems.

Looking at the errors obtained for each molecular species in more detail (see Fig. 4a and

Fig. 4b), an interesting feature of the DMC results strikes the eye: putting the previously

discussed outliers aside, the errors in the DMC calculations seem to be nearly constant for

different functionals used in the trial wavefunction generation for most of the molecules.

This is in stark contrast to the DFT results, where the errors often even have different
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signs depending on the functional, and where even the two hybrid functionals often give

astonishingly different results. To put this observation onto more solid ground, we calculate

the mean of the corrected sample variance of the dissociation energy of the molecules in the

data set for different XC-functionals

v∗DMC =

Nmol∑
i=1

Nxc∑
j=1

(
DDMC
e (i; j)− D̄e

DMC
(i)
)2

NmolNxc −Nmol

, (13)

where i runs over the Nmol = 20 molecules, j runs over the Nxc = 3 XC-functionals and

DDMC
e (i, j) denotes the dissociation energy of molecule i calculated with DMC using a trial

wavefunction generated with one of the XC-potentials j ∈ [PBE, B3LYP, B97-1]. The quan-

tity D̄e
DMC

(i) is the average of DDMC
e (i, j) over all j. The corresponding value for DFT is

calculated by replacing the dissociation energies DDMC
e with the results from DFT. For DFT

we obtain v∗DFT = 65 kcal2/mol2, whereas v∗DMC = 9 kcal2/mol2. Disregarding the results

including V, Fe and Co, for which the PBE results were marked as outliers as discussed

above, the values change to v∗DFT = 46 kcal2/mol2 and v∗DMC = 0.5 kcal2/mol2 respectively.

These numbers show clearly that not only does the average error of DMC depend less on the

XC-functional used in the trial wavefunction generation, but also the actual DMC errors are

more or less independent of the functional, which is in strong contrast to the DFT results .

The remaining discrepancies between DMC and experiment can have several different

origins: 1.) the experimental values come with error bars of up to 2 kcal/mol, 2.) although

the locality error was shown to cancel out to a high degree in CuH if BFD PPs are used,

the influence of the locality error may still be present in other molecules 3.) the fixed-node

approximation may lead to imprecise results (including errors due to a restricted basis in the

trial wavefunction generation) and 4.) the pseudo-potentials may not exhibit the required

transferability in such systems.

We will investigate each of these influences in more detail in the following.
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4.3.1 Influence of uncertainties in the experimental results

Since the uncertainty in the experimental results is on the same scale as the MUE, these er-

rors may considerably influence the results, especially since the DMC results are so strongly

consistent for different trial wavefunction generations. To check the influence of the exper-

imental error, we analyzed a smaller database of 9 molecules with an experimental error

smaller than 1.2 kcal/mol. This value was chosen such that the experimental error is con-

siderably smaller than that of the total database, but that it retains the ratio of molecules

with strong single- and multi-determinant character compared to the full set. In most cases

the MUE did not change significantly. We thus conclude that the experimental quality of

the database is sufficient — a conclusion that was also drawn in Ref. 7, based on different

arguments.

4.3.2 Influence of residual locality errors

To test for the influence of the locality approximation on the above results, we switch from

the CASINO code to QWALK. This allows us to change the computational approaches (most

importantly, the form of the Jastrow factor and the optimization techniques; for details see

Sec. 2.2) much more drastically than just going to a larger parametrization of the Jastrow

function, and permits us additionally to test for code related problems. Reanalyzing the

DMC(B3LYP) results with QWALK using its standard Jastrow factor given by Padé func-

tions, we find an improved MUE of 4.5 kcal/mol, compared to the MUE of 5.3 kcal/mol,

which we found using a polynomial form in the Jastrow function in CASINO (see Tab. 4).

Since both calculations use the same PPs and the same Slater function in the trial wave-

functions, this improvement can only be due to the changes in the Jastrow functions, and,

therefore, the locality approximation. Obviously, the mean error in the dissociation energies

is not only determined by the fixed-node and PP errors, but also by locality errors.

To allow a more detailed investigation, we show in Fig. 7 the differences obtained in ab-

solute energies when using a polynomial form of the Jastrow function (CASINO) and Padé
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functions (QWALK). Especially for the heavier transition metal elements and their com-
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Figure 7: Difference in absolute DMC energies [kcal/mol] obtained using a polynomial Jas-
trow (CASINO) and Padé functions (QWALK). Positive values correspond to systems where
the QWALK result is lower in energy.

pounds, the Padé function parametrization tends to give a lower DMC result, suggesting

that for these elements the structure of the Jastrow factor used in QWALK is more appro-

priate. For ZnO, ZnS, ZnCl and NiCl, the differences in absolute energy between the two

parametric forms are even greater than 2 kcal/mol. We can therefore conclude that, at least

for some TMCDs, the locality approximation adds a systematic uncertainty to the results

which is larger than the error bars aspired to when seeking chemical accuracy.

In the end, we are, however, only interested in relative energies and the change in locality

error may be consistent among the atoms and molecules and thus cancel out. In Figs. 8 and

9, we therefore investigate the dissociation energy itself. Fig. 8 shows the difference in

dissociation energy between the CASINO results with polynomial Jastrow form and the

QWALK results, which use Padé functions. This gives an idea on how stable the results

are when using different forms of the Jastrow function. In Fig. 9, the obtained dissociation

energies are compared to the experimental values, allowing a judgment of the overall quality

of the results. When analyzing this graph, one should keep in mind that for any particular

molecule, the interplay of the locality, fixed-node and PP related errors can lead to error

cancellation in the dissociation energy between different types of error — an error cancellation

that is actually not desirable since it may not be grounded on physical similarities between

the atomic and the molecular system, but on pure chance. A reduction in the error of a

specific dissociation energy does therefore not necessarily go along with an improvement

of the corresponding Jastrow functions. Making this correlation is only possible for total

34



energies.

D
e
(p

o
ly
n
o
m
)-
D

e
(P
a
d
é
)

[k
c
a
l/
m
o
l]

Figure 8: Difference in dissociation energies when using a polynomial Jastrow (CASINO) or
Padé functions (QWALK). (Energies in kcal/mol).
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Figure 9: Comparison of dissociation energies calculated for a polynomial Jastrow (CASINO)
and Padé functions (QWALK) with the experimental results. (Energies in kcal/mol). Neg-
ative values denote underbinding, positive ones, overbinding.

Analyzing Fig. 8, we note first of all that for some molecules like ZnO, ZnS, ZnCl and

NiCl, for which the total energies differ strongly, a large part of the Jastrow-related energy

change cancels out when calculating energy differences. On the other hand, we also observe

that the opposite is true for other molecules and that large differences in the dissociation

energy of two or more kcal/mol are observed for some of the TMCDs, namely for TiCl,

CrCl and MnS. We can thus conclude that, for the dissociation energies as well as the total

energies of TMCDs described by DMC using single-Slater-Jastrow trial wavefunctions, we

have to deal with systematic uncertainties related to the Jastrow parametrization that are

in the order of considerably more than 1 kcal/mol. At this point, it should be stressed

once more that the presence of comparatively large locality errors is not a flaw of DMC in

itself: first of all, many systems, especially those only containing first row elements, will

suffer from considerably smaller locality errors and second, the trial wavefunction can be
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improved, thereby reducing the fixed-node and locality error. The use of multi-determinant

trial wavefunctions and orbital optimization is, while not entirely straightforward due to the

necessity of good optimization schemes, common practice for small systems. For the large

systems, which we ultimately have in mind, this is, however, not feasible. The awareness of

the possible influence of the locality error on the accuracy of the results and an estimate of

its size are thus important.

Although the locality errors we observe are large compared to chemical accuracy, Fig. 9

clearly suggests that it is nonetheless not the locality error which dominates the errors in the

dissociation energies: the change of Jastrow parametrization only seems to add a compara-

tively small fluctuation in the error to an overall often large error bar. In order to decrease

this uncertainty, it might be desirable to eliminate or decrease the uncertainties coming from

the locality approximation as much as possible and thus to optimize the Jastrow factor as well

as possible. We therefore re-investigated the cases for which the largest dependence on the

Jastrow function was found, namely TiCl, CrCl and MnS, with larger Jastrow parametriza-

tions: in CASINO we go from order 4 in the polynomial describing u and χ to order 6 and

in the f -term we go to an order 3x3x3 in the three variables. In QWALK we go from an

f -function with 12 terms to an f -function with 30 terms. The corresponding results are

given in detail in the supplementary information. For the three systems considered, the

added flexibility obtained through the larger Jastrow expansions influenced the result on the

order of about 1 kcal/mol, but it did not systematically lead to smaller deviations between

the computed and the experimental dissociation energies, for both parametric forms.

We therefore conclude our analysis on the Jastrow parametrization by emphasizing that

our results, while not yet allowing a final elimination of the locality error within the single-

Slater Jastrow framework, clearly show that the use of single-Slater-Jastrow trial wavefunc-

tions in DMC can and will lead to considerable uncertainties (of the order of several kcal/mol)

in the dissociation energies of certain TMCDs due to the presence of locality errors. On the

other hand, the large deviations observed between the calculated and the experimental re-
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sults (e.g. for MnS) seem to be dominated by errors other than the locality error (fixed-node

or PP related errors), since the deviations from the experimental values observed in the

dissociation energy are considerably larger than the fluctuations observed when varying the

Jastrow function.

4.3.3 Influence of fixed-node errors and PP related errors

We now turn to the fixed-node and the pseudo-potential errors. The fixed-node error may be

considered as controllable to a certain extent in small systems, since the trial wavefunction

can be improved by adding more determinants. An improvement of the trial wavefunction

will also decrease the locality errors discussed in the previous section. In large systems, how-

ever, the fixed-node error becomes uncontrollable, since there is so far no way to improve the

trial wavefunction systematically until convergence is reached, although embedding schemes

may provide a step in this direction78.

The fixed-node error might be expected to be smaller for molecules with a strong single-

determinant character7. Following Ref. 7, we split the database into 7 molecules with strong

single-determinant character (CuCl, ZnH, ZnS, ZnCl, CrCl, MnCl, FeCl) and 13 molecules

with multi-determinant character. The resulting MUE is shown in Table 5. For molecules

with single-determinant character wavefunctions, the DMC errors are clearly smaller, sug-

gesting that a portion of the remaining error is indeed due to the fixed node approximation.

This is especially true for DMC(UHF), where the MUE decreases from 14.1 kcal/mol for

molecules with multi-determinant character to 5.8 kcal/mol for molecules with single de-

terminant character — a value close to the DMC(PBE) result. On the other hand, the

decrease in error is considerably smaller in DMC than in DFT. This may indicate that the

pseudo-potentials do really constitute another source of error, which would also explain the

consistency in the DMC results for different trial wavefunctions: a PP error would introduce

a systematic error that is different for each molecular system, but might not much depend

on the exchange-correlation functional used in obtaining the trial wavefunction. In terms
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Table 5: Mean unsigned error (MUE) in the dissociation energy, when separating the
molecules in the database in to those with strong single- and those with strong multi-
determinant character of the wavefunction.

method sing. ref. mult. ref. all
MUE MUE MUE

[kcal/mol] [kcal/mol] [kcal/mol]
UHF 17.7 44.6 35.2
PBE 3.5 11.0 8.4
B3LYP 6.0 9.0 7.9
B97-1 4.1 7.4 6.3
DMC(UHF) 5.8 14.1 11.2
DMC(PBE) 5.5 6.9 6.4
DMC(B3LYP) 4.2 5.9 5.3
DMC(B97-1) 4.2 6.0 5.4
DMC(B3LYP) 3.5 5.0 4.5
Padé func.

# of
molecules 7 13 20

of size of error, PP errors which are of the same order of magnitude of the errors obtained,

have been observed in earlier DMC calculations (e.g. Refs. 13,14,16,67,79). One way to im-

prove on these errors would be to use He-core PPs79. Another possibility would be to try to

improve standard DFT-PPs by adding more angular momentum channels80 or to improve

the transferability of the PPs to different chemical environments by designing the PPs in a

different way (e.g. 81,82).

Although PP errors may contribute to the observed errors, fixed-node errors are sure to

come into play on the accuracy scale we aim to reach. For accuracies at and around chemical

accuracy, even small weight excitations can be extremely relevant (see for example Refs. 83–

87). In order to distinguish further between fixed-node and pseudo-potential errors, we

therefore performed multi-determinant DMC calculations and DMC calculations including

backflow transformations59 for Cu, CuH and MnS and its constituents. We chose these

molecules, since Cu and CuH were already analyzed in detail in Sec. 3. MnS was chosen as

an example of a molecule showing a large deviation from the experimental results in DMC.

All calculations were performed at a time-step τ = 0.002 au, without zero-timestep ex-
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trapolations. However, the remaining corrections should be small.

We start our discussion with Cu and CuH. The results from multi-determinant expansions

and when using backflow are shown in Fig. 10.
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Figure 10: Absolute DMC energies obtained for Cu and CuH using spin unrestricted (s.u.)
and spin restricted (s.r.) B3LYP Slater-Jastrow trial wavefunctions, a CI expansion up to
the minimal weight specified, or backflow transformations on the unrestricted B3LYP trial
wavefunction.

For Cu, we used all determinants with a weight larger than 1× 10−4. This corresponds

to a sum weight of 94.8 %. In DMC, this lead to an energy decrease of about 1.4 kcal/mol. A

very similar decrease was observed for the CI expansion of CuH using 47 (weight > 1× 10−4,

sum weight 93.4 %) and 201 (weight > 4× 10−5, sum weight 94.2 %) determinants. The

backflow transformation lead to a much larger decrease in DMC energy of about 16 kcal/mol,

much of which is most likely related to the core. The energy decrease was again very similar

for Cu and CuH, indicating that the fixed node error, while being quite large, cancels out

quite well.

Tests using backflow for MnS also showed the absolute energies to decrease by several

kcal/mol, but no relevant change in the dissociation energy was observed. This observation is

very similar to that made for CuH. Further test for compounds showing a large discrepancy

with the experimental values would be desirable, in order to distinguish further between

fixed-node and pseudo-potential errors.
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5 Summary and Conclusion

We present a systematic investigation of the performance of diffusion Monte Carlo (DMC) for

transition metals and transition metal containing dimers (TMCDs). Studying the database

of twenty 3d-TMCDs, we were able to gauge the accuracy of DMC for such systems. With a

mean unsigned error (MUE) of 5.3 kcal/mol (4.5 kcal/mol when using the structure of Jastrow

which is default in QWALK) our DMC error lies below the MUE we obtain with DFT with

pseudo-potentials. The best performing XC-functional tested (B97-1) shows a MUE which

is 1 kcal/mol higher than that of the best performing DMC calculation, DMC(B3LYP). The

accuracy of our DMC results is close to that of all-electron, scalar relativistic CCSD(T) and

the best all-electron DFT results obtained in Ref. 7 (4.5 kcal/mol — in the case of CCSD(T)

using a very extensive basis set).

Our DMC results exhibit several favorable characteristics: first, the MUE of the DMC

results has a smaller sample variance than the MUE of DFT. This indicates the presence

of fewer cases with exceptionally high (or low) errors. DMC thus has fewer unpredictable

“outliers” that make it difficult to judge the quality of a specific result. Furthermore, the

errors we obtain for each individual molecule are very robust against changes in the XC-

functional used to generate the trial wavefunction. This observation, and the fact that the use

of trial functions based on GGA functionals does not strongly degrade the quality of the DMC

results, are extremely relevant for molecule-metal surface systems relevant to heterogeneous

catalysis. For these systems one does not only need to describe the molecule to very high

precision but also the metallic surface. This is difficult to achieve with hybrid functionals

which generally perform very well for molecular systems but suffer from difficulties for metals

and furthermore exhibit an increased computational cost in DFT calculations.

In the context of this work, we performed an extensive error analysis. Our work highlights

the impact of the use of pseudo-potentials on the results and the possible failure of the locality

approximation, a source of error that is often overlooked. Investigations focusing on Cu and

CuH show that the locality approximation can lead to non-systematic errors of several (tens
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of) kcal/mol in both absolute and relative energies if no care is taken in the construction of

the Jastrow factor, which is used in the evaluation of the non-local part of the PP. Our data

allow us to draw conclusions regarding best practices for treating systems which are prone to

locality errors, such as the TMCDs considered here: first of all, we show that the use of the

Ne core pseudo-potentials (PPs) by Burkatzki, Filippi and Dolg9,10 can greatly reduce the

locality error in Cu and CuH compared to the other PPs tested. Furthermore, the use of large

Jastrow parametrizations is strongly favorable, especially if large core PPs are used. The use

of T-moves instead of the locality approximation introduced in Refs. 23,24 helps reducing

errors in DMC arising from the approximate treatment of the non-local potential. Regarding

the optimization of the Jastrow function, we give evidence that trial wavefunctions optimized

using linear energy minimization give considerably better DMC results for the dissociation

energy of CuH than trial wavefunctions optimized by unreweighted variance minimization,

especially if the T-move scheme is not used. Further evidence for the superiority of trial

wavefunctions which are optimized with respect to energy for TMCDs, is given by the fact

that lower DMC energies are obtained for the entire database of 20 molecules for the trial

wavefunctions optimized by minimizing the energy.

Regarding the achievable accuracy of DMC for TMCDs, our results indicate that locality

errors, remaining in spite of the effort made to keep them small, as well “physical” shortcom-

ings of the PPs due to limits in their transferability and the missing core-valence interaction,

add to the fixed-node error and hence to the mean error observed for the TMCDs. The use

of He core PPs or PPs with improved transferability may therefore further reduce the MUE

obtained in DMC. In order to address the remaining discrepancies between experimental

data and DMC results and in order to reduce the observed MUE, we encourage further

investigations aimed at separating the fixed-node error from pseudo-potential errors.

Taking the performance of a method in describing small molecules as an indicator of its

ability to correctly describe interactions in solids and at transition metal surfaces, we expect

the present work to establish DMC further as an interesting candidate for calculations on

41



large or periodic systems in which the interaction with transition metals is important. For

such systems, higher level quantum chemistry methods cannot be applied directly any more

due to the large size of the system. Quantum chemistry calculations of systems embedded

in a DFT environment78 might still be feasible, but such methods come with additional

challenges due to the requirement to perform the embedding correctly and accurately. DFT,

on the other hand, while being scalable to large systems, often does not yield accurate enough

results and depends strongly on the XC-functional. Since we found the error in DMC for

TMCDs to depend only weakly on the functional used to generate the trial wavefunction,

DMC may be of interest especially for systems such as transition metal surfaces interacting

with molecules, where the hybrid DFT functionals that perform best for the molecular

database offer no improvement over GGA functionals.

Our results provide useful guidelines for achieving greater accuracy in DMC calculations

on transition metal containing systems, such as the use of small core BFD-PPsb, of large

Jastrow functions, and of energy optimization of the trial wavefunction, and provide insights

in the accuracy achievable with QMC. We expect these results to be valuable in view of

the increasing interest in treating strongly correlated, transition metal containing systems

in DMC (e.g. Ref. 15,19,20,88 ), and the inherent relevance of transition metals to catalysis

and superconducting materials.
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(2) Pou-Amérigo, R.; Merchán, M.; Nebot-Gil, I.; Malmqvist, P.-Å.; Roos, B. O. J. Chem.
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(27) Kolorenč, J.; Mitas, L. Rep. Prog. Phys. 2011, 74, 026502.

(28) Toulouse, J.; Umrigar, C. J. J. Chem. Phys. 2007, 126, 084102.
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2.13 ; 2014.

(55) Wagner, L. K. Qwalk manual (accessed Feb. 2, 2016). http://www.qwalk.org/docs/,

2016.

(56) Umrigar, C. J.; Wilson, K. G.; Wilkins, J. W. Phys. Rev. Lett. 1988, 60, 1719–1722.

(57) Drummond, N. D.; Needs, R. J. Phys. Rev. B 2005, 72, 085124.

46



(58) Umrigar, C. J.; Toulouse, J.; Filippi, C.; Sorella, S.; Hennig, R. G. Phys. Rev. Lett.

2007, 98, 110201.
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