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Global gain modulation generates time-dependent
urgency during perceptual choice in humans
Peter R. Murphy1,2, Evert Boonstra1 & Sander Nieuwenhuis1

Decision-makers must often balance the desire to accumulate information with the costs of

protracted deliberation. Optimal, reward-maximizing decision-making can require dynamic

adjustment of this speed/accuracy trade-off over the course of a single decision. However,

it is unclear whether humans are capable of such time-dependent adjustments. Here,

we identify several signatures of time-dependency in human perceptual decision-making and

highlight their possible neural source. Behavioural and model-based analyses reveal

that subjects respond to deadline-induced speed pressure by lowering their criterion on

accumulated perceptual evidence as the deadline approaches. In the brain, this effect is

reflected in evidence-independent urgency that pushes decision-related motor preparation

signals closer to a fixed threshold. Moreover, we show that global modulation of neural

gain, as indexed by task-related fluctuations in pupil diameter, is a plausible biophysical

mechanism for the generation of this urgency. These findings establish context-sensitive

time-dependency as a critical feature of human decision-making.
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D
ecision-makers are adept at trading speed for accuracy to
meet contextual demands1–3. If time is at a premium,
decisions can be made quickly at the potential expense of

accuracy. Conversely, the decision-making process can also be
prolonged to facilitate additional information gathering and more
accurate choices. By negotiating the speed-accuracy tradeoff
(SAT) in this manner, behaving agents can maximize their
rate of reward in environments with different temporal
constraints4–6.

Studies of decision-making support a broad class of models in
which noisy evidence for each available choice is accumulated
over time and a decision is made once the accrued evidence
passes a criterial level, termed the decision bound7–13. Within this
framework, one intuitive and parsimonious account of SAT
asserts that speed emphasis is regulated by adjusting the level of
the decision bound, such that less evidence is required for
decision commitment in situations that demand faster decision-
making. Aside from such situational or ‘static’ adjustments, the
bound is typically assumed to be constant over the course of a
single decision, thereby enforcing a fixed policy on commitment
for a given decision-making context. For decades, models that
invoked such a context-dependent, time-invariant bound
have provided good fits to empirical SAT data (for example,
refs 9,14–17).

Recently, convergent lines of research have brought the
principle of time-invariance into question. Theoretical treatments
have shown that a time-invariant decision policy is sub-optimal
when the potential cost of continued deliberation grows over
time18,19—as is the case, for example, when speed pressure is
generated by means of a temporal deadline on choices20. In such
settings, maximizing reward instead relies on dynamically
lowering the evidence required for commitment as elapsed
decision time increases. Additionally, recent primate single-unit
recording studies indicate that a time-dependent, evidence-
independent influence on the decision process is observable in
the activity of neurons that reflect evolving decision formation21–23,
and moreover, that the strength of this time-dependency is highly
sensitive to SAT manipulations. In particular, in both lateral
intraparietal22 and dorsal premotor23 neurons, greater speed
emphasis manifests in a combination of statically increased
baseline firing rates (see also ref. 24) and a clear evidence-
independent increase in firing rates with greater elapsed time. It
has been proposed that these contextually-sensitive influences
combine to form a neural urgency signal that expedites the

evolving decision process by driving it closer to a fixed threshold,
which translates to a dynamic criterion on evidence19,22,23,25–28.

While these findings have illuminated the mechanistic basis of
SAT regulation in non-human primates, time-invariance remains
a dominant assumption in the human decision-making
literature10 and recent empirical and model comparison
reports have reinforced this stance15,29–31. Moreover, even in
non-human primates, little is known about the neuro-
physiological source of urgency. In the present study, we
address these outstanding issues. We first present convergent
behavioural, electrophysiological and model-based evidence that
human subjects do invoke an urgency signal with both static and
time-dependent components to adapt to deadline-induced speed
pressure. Next, we show that global modulation of neural gain, as
reflected in task-related fluctuations in pupil diameter, is a
plausible biophysical mechanism for the generation of urgency.
Lastly, we report that human behaviour bears hallmarks of time-
dependency even when speed pressure is mild and not a central
feature of task design.

Results
Behaviour under deadline and free response. In the first
experiment that we report, twenty-one individuals made two-
alternative perceptual decisions about the dominant direction of
motion of a cloud of moving dots32 (Fig. 1a). Each subject
performed this task at a single level of discrimination difficulty
that was tailored to their perceptual threshold, but under two
levels of speed emphasis. In the ‘free response’ (FR) regime,
subjects were under no external speed pressure, were instructed to
be as accurate as possible, and were monetarily rewarded
(penalized) for correct (incorrect) decisions. In the ‘deadline’
(DL) regime, the same task instructions and incentive scheme
applied, with the addition of an especially heavy penalty—ten
times that for an incorrect decision—if a decision was not
made by 1.4 s after motion onset. The speed pressure imposed
by this deadline led to faster median response times (RTs:
DL¼ 0.70±0.02 s; FR¼ 1.19±0.07 s; t20¼ 8.1, Po1� 10� 6)
and less accurate decision-making (DL¼ 77.8±1.2%;
FR¼ 86.8±1.3%; t20¼ 6.6, Po1� 10� 5) relative to the FR
regime (Fig. 1b).

Given the large penalty for missed deadlines, a sensible strategy
in the DL regime is to always execute a response before the
deadline20. Indeed, subjects missed the deadline on a median of
only 0.14±0.13% of trials, compared to 38.8±4.0% of RTs
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Figure 1 | Perceptual task and associated behaviour. (a) Schematic of a single-trial of the random dot motion task. (b) Subjects performed under

‘free response’ (FR) and ‘deadline’ (DL) conditions to manipulate speed pressure. Histograms depict pooled RT distributions from each condition. Box plot

at lower right shows the sample median (centre line), interquartile range (box) and full range (whiskers) of proportion of missed deadlines in the DL

condition. (c) Conditional accuracy functions. Points indicate mean accuracy of trials sorted by RT into 25 equal-sized bins and coloured lines show best fits

of piece-wise logistic regressions to each subject’s single-trial data. Error bars and shaded areas indicate±s.e.m. of data points and regression lines,

respectively. Box plot at inset shows the sample median (centre line), interquartile range (box) and full range (whiskers) of estimated accuracy at deadline

in the DL condition.
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exceeding this time in the FR regime (Fig. 1b). In accumulation-
to-bound models of decision-making, this marked change in
behaviour can primarily be achieved in two ways: by imposing a
diminishing criterion on accumulated evidence as the deadline
draws nearer, culminating in zero required evidence (and
consequently, chance performance) around the time of the
deadline; or, by lowering an otherwise static criterion sufficiently
to ensure that effectively all decisions are made before the
deadline, but are always based on the same quantity of
accumulated evidence. While the latter mechanism predicts that
the slope of the conditional accuracy function (CAF) relating
accuracy to RT will be similar across speed emphasis regimes and
that performance will generally not reach chance levels, the
former predicts that the slope of the CAF will be substantially
more negative in the DL regime and should arrive at
approximately chance performance by the time of the deadline.
Thus, empirical CAFs can, in principle, be used to arbitrate
between different mechanistic accounts of SAT adjustment.

We employed single-trial logistic regression to estimate
the shape of the empirical CAFs (see Methods; Fig. 1c).
After accounting for a small percentage of fast inaccurate
decisions, the estimated CAF slopes were negative in both
the FR (b¼ � 0.35±0.07, t20¼ � 5.2, Po1� 10� 4) and DL
(b¼ � 2.03±0.22, t20¼ � 9.3, Po1� 10� 8) regimes, but much
more so in the latter (FR versus DL: t20¼ � 8.3, Po1� 10� 7).

Moreover, using the DL regression fits to estimate accuracy at the
time of the deadline revealed that this was not different from
chance across subjects (50.4±2.7%; one-sample t-test with
H0¼ 50%: t20¼ 0.2, P¼ 0.9).

A negative CAF slope by itself does not necessarily imply time-
dependency in the decision process; indeed, it should be expected
whenever the strength of decision evidence fluctuates across trials,
because trials with weak evidence will tend to be both slower and
less accurate and thereby produce an asymmetry in correct and
incorrect RT distributions33. Such evidence fluctuations can be
due to variation in objective stimulus strength, but also to
endogenous variation in attention or arousal34. We therefore
examined the possibility that the CAF difference that we observed
between the DL and FR conditions was simply caused by
condition-related differences in arousal state. To do so, a second
cohort of subjects performed the same motion discrimination
task and we compared their CAFs on subsets of DL and FR trials
that were precisely matched for pre-motion pupil size,
a commonly-used metric of arousal and ‘brain state’ (see
below). Even in this case of matched pupil-linked arousal, we
observed a much more negative CAF slope under deadline
(t22¼ � 7.7, Po1� 10� 6; Supplementary Fig. 1).

Combined, the above observations are consistent with the
adoption of a time-dependent decision policy in the DL regime.
Two additional observations illuminate the nature of this policy
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Figure 2 | l power tracks motor preparation and reveals urgency signatures under deadline-induced speed pressure. (a) Time-frequency plot of

oscillatory power over lateral motor channels, aligned to motion onset (left) and response (right). Plots show the trial-averaged change in power over the

channel contra-lateral to the executed response on each trial, relative to a pre-motion baseline. (b) Onset and response-aligned m (8–14 Hz) signals,

separated by speed regime and lateralization relative to the executed response. Topographies at left, middle and right depict distribution of pre-motion

effect of speed emphasis, stereotyped onset-evoked power decrease maximal over occipital scalp, and lateralization of m power immediately prior to

response execution in the FR condition, respectively. The level of contra-lateral desynchronization prior to response is highly similar across speed regimes,

consistent with a common motor threshold. (c) Response-aligned m signals contra-lateral to the executed response after sorting trials by RT into 4

equal-sized bins, separately for the FR and DL conditions. (d) Contra- minus ipsi-lateral difference waveforms, again after RT-sorting into 4 bins.

Contra-lateral dominance prior to response execution decreases with slower RTs under deadline. (e) Scatterplot illustrating the linear relationships between

RT and the contra-/ipsi-lateral m difference for each speed regime. Points and error bars are mean±s.e.m. of data that were z-scored within subjects,

pooled across subjects and grouped into 20 bins; z-scoring was carried out across speed regimes to preserve main effects of speed emphasis.

In b–d, shaded grey regions show measurement windows for scalp topographies and associated effects reported in text.
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adjustment further. First, the smooth gradient of the right tail of
the DL RT distributions and their associated CAF indicate that
the time-dependent change in required evidence was gradual, not
abrupt. Second, despite task difficulty being fixed across both
speed emphasis regimes, peak decision accuracy across all RTs
(as measured at the inflection point of the estimated CAFs) was
reliably lower under deadline (84.3±1.4 versus 89.8±1.2%;
t20¼ � 4.0, P¼ 0.0008). This suggests that, further to the time-
dependent effect, additional speed emphasis was generated by a
static, time-invariant lowering of the criterion on accumulated
evidence which ensured that even fast decisions were less accurate
in the DL regime.

EEG motor preparation signatures of urgency. Although these
behavioural findings suggest that greater speed emphasis under
deadline was achieved by a combination of static and time-
dependent adjustments to the decision policy, they are not
decisive about the mechanistic basis of these adjustments. One
possibility is that the decision bound itself varies with speed
emphasis and progressively collapses as the deadline approaches
(for example ref. 35). Alternatively, the bound might remain fixed
and an urgency signal could generate speed emphasis by
providing additional input to each evidence accumulator. In an
attempt to adjudicate between these competing mechanistic
accounts of the static and time-variant influences on decision-
making behaviour, we measured scalp EEG and examined motor
preparatory activity via oscillatory power in the m (8–14 Hz)
frequency range. Previous studies have shown that the commonly
observed decrease in m power during decision formation reflects
dynamic motor preparation that appears to be driven by the
evidence accumulation process36–38. Here, we used effector-
selective m signals that were contra- and ipsi-lateral to the
executed response as proxies for trial-by-trial preparatory activity
in favour of the chosen and unchosen motion directions,
respectively.

We observed that bi-lateral motor m signals (Fig. 2a) were
sensitive to speed emphasis in several distinct ways. First, there
was a reliable effect of speed emphasis on m power prior to
motion onset such that pre-motion power was lower in the DL
regime compared with the FR regime (mean b¼ � 0.102±0.044,
t20¼ � 2.3, P¼ 0.03; Fig. 2b, left). There was no main effect
of lateralization (contra- versus ipsi-) during this period
(b¼ � 0.019±0.015, t20¼ � 1.2, P¼ 0.2), and no speed empha-
sis by lateralization interaction (b¼ 0.016±0.021, t20¼ 0.8,
P¼ 0.5). Thus, potentially indicative of a static urgency effect,
greater speed pressure was accompanied by increased baseline
motor preparation in both effectors. Topographic visualization of
this pre-motion effect revealed that although foci of decreased
power in the DL regime were apparent over bi-lateral motor
channels, the effect also extended over posterior scalp. However,
the effect over lateral motor areas remained marginally significant
even when posterior 8–14 Hz activity was included as a co-variate
(b¼ � 0.068±0.038, t20¼ � 1.8, P¼ 0.09), suggesting that this
motor effect was at least partially distinct from the more posterior
effect.

Next, we turned to m power prior to response execution in
order to examine effector-specific motor preparation at decision
commitment (see Methods for rationale behind selectively
focusing on this measurement period). Consistent with previous
findings36–38, there was a lateralization in pre-response m power:
a greater decrease was present in contra-lateral rather than
ipsi-lateral channels, reflecting greater motor build-up in favour
of the ultimately executed response (Fig. 2b, right). Accordingly,
a main effect of lateralization was observed in a statistical model
with lateralization and speed emphasis regime as factors
(b¼ � 0.120±0.044, t20¼ � 2.7, P¼ 0.013). However, this

effect was also accompanied by a main effect of speed emphasis
(b¼ � 0.089±0.034, t20¼ � 2.6, P¼ 0.016) and a lateralization
by speed emphasis interaction (b¼ 0.095±0.025, t20¼ 3.8,
P¼ 0.001). Post-hoc models revealed that while the expected
contra/ipsi lateralization was clearly apparent in the FR regime
(b¼ � 0.129±0.043, t20¼ � 3.0, P¼ 0.007), it was not reliable
under deadline (b¼ � 0.040±0.034, t20¼ � 1.2, P¼ 0.3).
Moreover, the pre-response ipsi-lateral signals representing
motor preparation for the unchosen alternative were of
significantly lower power in the DL relative to the FR regime
(b¼ � 0.093±0.031, t20¼ � 3.0, P¼ 0.008), whereas the
contra-lateral signals reached a highly similar level (P¼ 0.9). All
of these effects were also present when only subsets of
RT-matched trials from each speed emphasis condition were
analysed (Supplementary Fig. 2).

The stereotyped level of pre-response contra-lateral m power
suggests that the level of motor preparation required to execute a
response was the same across both speed emphasis regimes.
We also observed that this metric was invariant to RT within
each regime (FR: b¼ � 0.012±0.014, t20¼ � 0.8, P¼ 0.4; DL:
b¼ 0.025±0.014, t20¼ 1.8, P¼ 0.09; Fig. 2c). To the extent that
pre-response m may provide a proxy for the level of the decision
bound, this pattern of findings is consistent with a fixed bound
across speed emphasis regimes and decision times and therefore
argues against the notion that speed emphasis is generated by
bound adjustment. Instead, the lower m power that was evident in
the DL regime during the pre-motion period, and in the
ipsi-lateral signal at the time of commitment, might plausibly
reflect an urgency signal that provides an additional source of
input to the evidence accumulation process.

In the above respects, our findings are consistent with recent
studies of the neural basis of SAT regulation in non-human
primates22,23. In a further analysis, we investigated whether, as in
these studies, there was a time-dependent component to the
urgency signal. In non-human primates, time-dependency in the
neural urgency signal manifests as a building, common increase
in the firing rates of neurons reflecting evidence accumulation
for both the chosen and unchosen task alternatives21–23. In the
case of our pre-response motor preparation signals, this
time-dependent increase in common activation (or put
differently, the time-dependent decrease in the difference
between accumulators) should translate into a diminishing
contra/ipsi lateralization with increasing RT (see Methods).
Accordingly, we observed a speed regime by RT interaction
(b¼ 0.055±0.023, t20¼ 2.4, P¼ 0.026; Fig. 2d,e) in a model
that examined the effect of these factors on pre-response
m lateralization. Post-hoc tests indicated that although there was
no reliable relationship between m lateralization and RT in the FR
regime (b¼ � 0.020±0.013, t20¼ � 1.6, P¼ 0.1), the strength of
lateralization decreased as predicted for slower RTs in the DL
regime (b¼ 0.020±0.009, t20¼ 2.2, P¼ 0.038). This finding
supports the hypothesis that, in addition to the static pre-
motion effect described earlier (Fig. 2b, left), greater speed
emphasis under deadline was generated by a time-dependent
urgency signal that increased in magnitude as the deadline drew
nearer.

Drift diffusion modelling corroborates urgency account.
In light of this combined behavioural and electrophysiological
support for static and time-varying urgency as mechanisms for
generating greater speed emphasis, we proceeded to verify that a
computational model that incorporates these features can account
for the observed behavioural data. In our model, a decision is
made when one of two anti-correlated evidence accumulators
reaches a fixed decision bound, and the accumulators are subject
to the same additive, time-varying urgency signal that is free to
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take different shapes across speed emphasis regimes (Fig. 3a;
Methods). Without urgency, this model reduces to the popular
drift diffusion model (DDM) in which a single accumulation
process plays out between two opposing bounds10 (Fig. 3f).

We fit a variety of models with urgency to the data and found
that the best-fitting model allowed both the shape of the urgency
signal and a non-decision time parameter to vary across speed
emphasis regimes (Supplementary Table 1). The rate of evidence
accumulation, known as the drift rate, was allowed to vary across
trials in this model (Wilcoxon signed-rank tests on BIC
differences: Po0.1 for all pair-wise comparisons of otherwise
identical model variants with and without drift rate variability),
but mean drift rate and the magnitude of this between-trial
variability were fixed across speed regimes. This best-fitting
urgency model fit the observed RT distributions well (Fig. 3c) and
was able to reproduce the key qualitative behavioural effects of
increased speed emphasis under deadline (Fig. 3d,e): the more
negative CAF slopes; the very low proportion of missed deadlines;
and, in most subjects, the tendency toward near-chance

performance at the time of the deadline. Notably, there were
effects of speed emphasis on both the baseline offset and the
time-varying shape of the fitted urgency signals, corresponding to
greater static and time-dependent urgency under deadline,
respectively, and the shape of the fitted urgency signals was
highly consistent across subjects (Fig. 3b). Moreover, non-
decision times were found to be marginally faster in the DL
regime compared with the FR regime (Supplementary Table 2).

By contrast, the standard DDM with condition-dependent but
time-invariant decision bounds (Fig. 3f) provided a considerably
poorer fit to the observed data (Fig. 3g–i; Supplementary Table 1;
Wilcoxon signed-rank tests on BIC differences: Po0.001 for all
pair-wise comparisons of urgency models with their standard
DDM counterparts). This poor fit stems from the fact that the
standard DDM is incapable of generating a more negative CAF
slope, to the extent required here, without also increasing the
proportion of missed deadlines. Its main mechanism for lowering
the slope of the CAF is to increase the between-trial variability in
drift rate33,34; but, this produces a relative increase in the
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Figure 3 | Comparison of diffusion model fits with and without urgency. (a) Schematic representation of the drift diffusion model (DDM) with
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indicate fits for individual subjects; darker lines indicate group-averages. (c) Observed and fitted RT distributions (histograms and lines, respectively),
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proportion of trials that have a near-zero drift rate, which are less
likely to reach the decision bound before the deadline. As a
consequence, in our standard DDM fits, leaving between-trial
variability in drift rate free to vary across speed emphasis regimes
did not even yield an increase in goodness-of-fit (Supplementary
Table 1). Thus, quantitative model comparisons corroborated the
presence of urgency with time-dependency in the decision
process under deadline.

Using the closed-form function for the urgency signal in the
above model fits (equation 4), we also approximated the optimal,
reward-maximizing shape of time-dependent urgency on our task
for a representative set of remaining model parameters
(Supplementary Fig. 3). This optimal urgency signal required a
fast transition from a flat early portion to a steep deflection
toward the decision bound closer to the deadline (cf. refs 20,30)
that is qualitatively very different from the gradual, approximately
linear urgency signals that subjects in the current study appeared
to implement. As such, although our subjects responded to
deadline-induced speed pressure by adjusting their decision
policies in a time-dependent fashion, they failed to do so
optimally. Interestingly, when the urgency signal was further
constrained to be strictly linear in the optimality calculations, its
reward-maximizing trajectory was matched much better by the
fitted signals derived from the observed data (Supplementary
Fig. 3). Combined, these observations may point to limitations of
the neural mechanisms responsible for urgency generation (see
Discussion).

Pupillometry highlights gain modulation as source of urgency.
While the above findings describe the effects of urgency on
behaviour and cortical signatures of decision-related motor pre-
paration, they do not shed light on the neural origins of the
urgency signal. Theoretical accounts have identified gain mod-
ulation, which affects the responsivity of both excitatory and
inhibitory neural connections, as a potential mechanism for
generating urgency in the brain19,26,27,39,40. However, this
possibility has not been tested empirically. In the second
experiment, we investigated whether global, brain-wide gain
modulation, as indexed by pupil diameter, may be implicated in
the injection of urgency into the decision process. Under constant
luminance, changes in pupil diameter have been linked to
the activity of diffusely-projecting neuromodulatory systems,
in particular the locus coeruleus-noradrenergic (LC–NA)
system41–43, that are thought to control global neural gain44–47.

A second cohort of twenty-three subjects (whose CAFs are
already reported in Supplementary Fig. 1) performed the motion
discrimination task optimized for measurement of decision-
related changes in pupil diameter. We first examined the effect of
speed emphasis on unbaselined pupil diameter prior to motion
onset, which has previously been used as a proxy for ‘tonic’
fluctuations in neural gain45,48. Consistent with a static increase
in gain under greater speed pressure, this metric was larger in the
DL regime than in the FR regime (t22¼ 6.9, Po1� 10� 6;
Fig. 4a).

Next, we examined the effect of speed emphasis on evoked,
‘phasic’ pupil dilations after motion onset and whether this effect
interacted with RT, as expected of an urgency signal with a
strength that depends on elapsed decision time. We observed a
main effect of speed regime on trial-by-trial pupil dilation
magnitude, driven by larger dilations in the DL regime than the
FR regime (b¼ 0.143±0.048, t22¼ 3.0, P¼ 0.007; Fig. 4b).
Moreover, there was a significant speed regime by RT interaction
(b¼ 0.189±0.040, t22¼ 4.7, Po1� 10� 4; Fig. 4c,d). Post-hoc
tests revealed that while no reliable relationship existed
between dilation magnitude and RT in the FR regime
(b¼ � 0.022±0.020, t22¼ � 1.1, P¼ 0.3), pupil dilations were

larger for slower RTs in the DL regime (b¼ 0.085±0.017,
t22¼ 5.0, Po1� 10� 4). These effects were present across a broad
range of both stimulus- and response-aligned measurement
windows (Supplementary Fig. 4).

We next sought to identify the most likely shape of the neural
input to the pupil system during decision formation by
combining linear systems analysis with formal model selection.
In accordance with recent reports49,50, the trial-related input to
the pupil system was modelled as a linear superposition of three
temporal components: a transient at motion onset, a transient at
response, and a sustained component throughout the intervening
period of decision formation, each convolved with a pupil
impulse response function51. Using this approach, we then
compared the goodness-of-fit of a variety of models in which the
shape of the sustained decisional component varied (Fig. 5a;
Methods). The model that best fit the pupil data from the FR
regime was one in which the input to the pupil system maintained
a constant amplitude throughout the decisional period
(a ‘boxcar’), irrespective of how long the decision took to be
made (Fig. 5b). In contrast, the best fit to the DL data was
provided by a model in which input strength ramped up
monotonically with elapsed decision time (Fig. 5c). The latter
finding reflects a truly time-dependent increase in the neural
input to the pupil system in the DL regime, thus supporting the
hypothesis that the gain of neural processing increased with
elapsed time under speed pressure. Additionally, the boxcar
and linear up-ramp remained the best-fitting models of the
FR and DL data, respectively, across a wide range of different
parameterizations of the pupil impulse response function
(Supplementary Fig. 5).

In both speed emphasis regimes, each of the three modelled
temporal components contributed significantly to the measured
pupil time series (Fig. 5d,e). Hence, we also tested whether the
observed relationship between pupil dilation and RT in the DL
regime (Fig. 4c,d) was fully captured by the RT modulation
inherent in the ramping decisional component of the associated
best-fitting model, or if the onset and response components also
contributed to this effect. In model variants that included
additional terms representing the parametric modulation of each
temporal component by RT, neither modulated term for the onset
or response components contributed consistently to the DL
pupil time series (Effect size for parametrically modulated
onset term¼ � 4.5±3.2, t22¼ � 1.4, P¼ 0.2; Effect size for
parametrically modulated response term¼ 2.7±3.2, t22¼ 0.8,
P¼ 0.4). This suggests that the dilation/RT relationship in the
raw DL data reflects a time-dependent modulation of input to the
pupil system that was specific to the period of decision formation.

Global gain modulation alone produces urgency effects. To
build on these pupillometric observations, we next verified that a
combination of static and time-dependent changes in global gain
is capable of producing the qualitative effects of deadline-induced
speed pressure on both overt behaviour and decision-related
neural dynamics. We modelled global gain modulation as a
change in the slope of the input-to-output transfer function of a
simple neural network that incorporates basic principles of neural
computation12 (Fig. 6a,b). Informed by our pupillometric results,
gain was fixed at a low level throughout a trial in the FR regime
but subject to static and time-dependent increases in the DL
regime (Fig. 6c). All other model parameters, aside from
non-decision time, were fixed across regimes (Methods).

When fit to the pooled behaviour of the cohort of subjects from
the first experiment reported above, this model successfully
reproduced all of the key qualitative effects of deadline-induced
speed pressure on both behaviour (Fig. 6d,e; proportion of missed
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deadlineso0.1%) and the dynamics of the evidence accumulation
process. With respect to the accumulation dynamics, the
activation time-series of the simulated accumulator units in the
model displayed the two critical characteristics of static and time-
dependent urgency that we observed under deadline in motor
preparation signals in the human EEG: a baseline increase in
activation during the pre-motion period (Fig. 6f); and, stronger
common activation of both accumulators (reflected in a smaller
difference between accumulators) at the time of commitment for
slower decision times (Fig. 6g,h). These simulations suggest that
global gain modulation is a plausible biophysical mechanism for
generating static and time-dependent urgency in the brain.

It has recently been argued that, rather than relying on gradual
evidence accumulation, decisions are determined by a more
instantaneous estimate of the current sensory evidence combined
with a growing urgency signal19,23,28,52. In our simple network
model, such a regime can be approximated by constraining the
effective time constant of accumulation (t) to be particularly
short (Supplementary Methods). When we enforced this
constraint, the model still provided a reasonable account of
behaviour and accumulation dynamics (Fig. 6d,e,h, thin grey
lines). Thus, evidence accumulation with a long time constant
does not appear to be a necessary prerequisite for generating the
data observed presently.

Time-dependent urgency under mild speed pressure. The sig-
natures of urgency that we report above were observed in task
contexts of high speed pressure. In a final set of analyses, we
examined whether the same mechanism might also be invoked
in situations where speed pressure is less severe. We re-analysed
data from two experiments in which subjects again made motion
discrimination decisions, but without any manipulation of speed
emphasis. Instead, they performed under a deadline of 1.5 s at all
times and there was no explicit penalty for missed deadlines. This
task feature has been employed previously in studies of human

perceptual decision-making that were not designed to interrogate
the mechanistic basis of SAT regulation (for example, refs 34,53).

In the first of our re-analysed studies34 (Fig. 7a), subjects
missed a low proportion of deadlines (median¼ 0.50±0.16%),
and their CAFs arrived at a mean accuracy level at the time of the
deadline that was not different from chance across subjects
(48.0±3.9%; t25¼ � 0.5, P¼ 0.6). In the second study
(unpublished; Fig. 7b), subjects performed under two difficulty
levels and again missed very few deadlines (easy¼ 0.15±0.13%;
hard¼ 0.63±0.15%). Moreover, despite the CAFs for each
difficulty level being significantly different for almost the entire
range of RTs, they converged to approximately chance accuracy
at the deadline (easy: 51.9±4.5%, t20¼ 0.4, P¼ 0.7; hard:
46.2±2.0%, t20¼ � 1.9, P¼ 0.07; paired-samples t-test for easy
versus hard: t20¼ 1.3, P¼ 0.2). As described previously, this
repeatedly observed combination of few missed deadlines,
strongly negative CAF slopes and chance performance around
the time of the deadline is a hallmark of a time-dependent
decision policy.

Discussion
In models of decision-making, a common assumption is that the
accuracy and timing of decision commitment are determined by a
context-dependent but time-invariant criterion on accumulated
evidence7–10,16. Theoretical considerations suggest that such a
time-invariant policy is sub-optimal if the potential cost of
continued evidence accumulation grows with elapsed decision
time, as is often the case in decision-making contexts that place a
premium on fast responding18,20. Yet, in support of the principle
of time-invariance, recent reports have suggested that human
decision-makers may fail to implement a dynamic, time-variant
commitment policy that would yield higher reward rates in such
settings15,29,30. In the present study, we describe strong,
convergent evidence to the contrary. Through analysis of
observed behaviour, computational modelling and scalp
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electrophysiological and pupillometric findings, we show that
human subjects are capable of adapting to deadline-induced
speed pressure via a combination of static and time-dependent
changes to their criterion on accumulated evidence.

Recent studies that applied quantitative model comparison
techniques to multiple behavioural datasets provided some
support for the presence of a time-dependent influence on the
decision process of highly-trained monkeys, but little evidence for
time-dependency in mostly naı̈ve human subjects15,31. By
contrast, we observed clear support for model variants with
strong time-dependency in humans that, aside from brief initial
training sessions, had no prior experience with the imperative
task. How might this discrepancy in findings be explained? One
likely contributing factor is differences in the nature of the speed
pressure created by the various decision-making contexts in
question. In our task, the heavy punishments levied for missed
deadlines created strong, time-sensitive speed pressure that was
likely sufficient to mitigate the bias toward accurate over reward-
maximizing behaviour that human subjects can display can
display in choice RT settings4,54. On the other hand, this may not
have been the case in previous studies that imposed only small,
implicit penalties for slow responses (in the form of foregone
rewards; for example, ref. 30), or did not provide performance-
related incentives at all (for example, ref. 31).

It is also possible that mild time-dependency was present in
previous investigations but not identifiable in model fits
to behaviour. Specifically, popular time-invariant sequential
sampling models can include variability parameters that produce
similar behavioural effects as moderate time-dependent changes

in the decision policy7,33,34, potentially rendering the two
indistinguishable via model comparison alone. In our case,
targeted analysis of overt behaviour, measured in contexts of both
strong and mild deadline-induced speed pressure, revealed
signatures of time-dependency that cannot, in principle, be
produced solely by variability parameters. These behavioural
patterns are driven by a small percentage of trials with RTs close
to the deadline and in many cases may exert a negligible influence
on likelihood estimates commonly used for model fitting,
but can nonetheless be highly informative when attempting to
arbitrate between competing mechanistic accounts. Thus, future
investigations of time-dependency in the decision process
might benefit from invoking a combination of formal model
comparison and assessment of such behavioural trends.

A third possibility is that the duration of the deadline that we
imposed, which is long relative to the sub-second deadlines in
some previous studies (for example, ref. 30), was particularly
well-suited to revealing signatures of time-dependency.
This prospect may point to a dependence of precisely-timed
within-trial adjustments of decision policy on neural systems
dedicated to the estimation of relatively long temporal intervals55

or, perhaps complementarily, to constraints on the timescale
over which the neural mechanisms responsible for these
time-dependent adjustments operate. We note, however, that
time-dependency operating over much faster timescales has
previously been reported in the animal literature21,22.

Although our behavioural and modelling results provide
strong support for the existence of adaptive, time-dependent
adjustments in subjects’ decision policies under deadline, the
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time-course of these adjustments was not strictly optimal. If
afforded high flexibility of form, the optimal, reward-maximizing
policy given our task design is to adopt a predominantly static
criterion on accumulated evidence that steeply declines to zero at
a latency determined by the subject’s level of deadline timing
uncertainty20,30. In our data, however, the shape of the observed
time-dependency approximated the reward-maximizing case only
if the criterion change in these calculations was constrained to be
linear in time. This approximately linear trajectory was strikingly
preserved across all subjects, and is similar in form to the
time-dependent policy adjustments that have been observed in
brain and behaviour in non-human primates21–23. Collectively,
these findings could point to basic limitations of the neural
mechanisms responsible for generating time-dependency in
the decision process and, consequently, to constraints on the

application of such policy adjustments for reward rate
maximization in different settings.

Using lateralized 8–14 Hz oscillations in the EEG as a proxy for
decision-related motor preparation36–38, it was possible to
establish that speed emphasis appeared to affect the dynamics
of decision formation via a combination of static and time-
dependent urgency, rather than a change in the level of the
decision bound. Specifically, while the motor signals reflecting
preparation for the ultimately chosen alternative reached a
stereotyped pre-response level across speed regimes, we observed
a deadline-induced bi-lateral increase in baseline preparation
prior to decision onset, coupled with peri-decisional common
activation of both effectors that was greater for slower responses.
These effects have clear analogues in previous reports. In humans,
functional MRI studies indicate that speed emphasis is at least
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partly generated by an increase in the baseline activation of a
network of decision-related brain regions (reviewed in ref. 1).
In monkeys, speed pressure has similarly been shown to manifest
in higher baseline firing rates of single neurons that reflect the
developing decision process, but also in a time-dependent,
evidence-independent increase in firing rates indicative of a
growing urgency signal21–24. In light of the latter, our findings
suggest that the mechanistic basis of SAT adjustment may be
conserved across species. They also highlight that correlates of
this mechanism in action are observable at the level of scalp
electrophysiology.

How such urgency might be generated in the brain has
been the subject of recent interest. Biophysically detailed
computational analyses indicate that modulation of the gain of
neural processing is one plausible mechanism for generating
urgency in decision circuits19,26,27,39,40. Building on associations
between pupil diameter and the activity of brainstem neuro-
modulatory systems (the LC–NA system in particular41–43)
and the established role of these systems in global gain
modulation44–47, we provided empirical support for these ideas.
We observed that pupil diameter during the pre-motion period
was reliably larger under deadline and that decision-related pupil
dilation increased with elapsed time specifically in this condition,
thereby identifying pupillometric counterparts to the static and

dynamic signatures of urgency that were observed in brain and
behaviour.

Pupil-linked neuromodulatory nuclei like the LC project to
almost the entire cerebral cortex and their associated neuromo-
dulator release exerts a multiplicative influence on neural
dynamics that interacts with the strength and location of ongoing
processing44,46,56. The implication of such a general, global
mechanism for urgency generation is appealing in part because it
affords a simple yet very powerful means for affecting decision-
making that is not specific to any one sensory input modality or
effector. Indeed, global gain modulation might plausibly account
for recent observations that urgency manifests not only in the
firing rates of neurons that track the evolving decision process,
but also in the gain of sensory inputs to decision circuits57, in
more downstream neurons involved directly in movement
execution23, and in the ‘vigour’ of task-irrelevant saccades
during manual reaching decisions28. Similarly, such a global
mechanism for urgency generation affords a parsimonious
explanation for two potentially related observations in our data
that can be viewed as distinct from effects of speed emphasis on
the evidence accumulation process per se: the marginally quicker
non-decision times under deadline; and, the deadline-induced
desynchronization of baseline 8–14 Hz EEG power over occipital
scalp, a phenomenon which itself has been associated with
increased gain of responses in visual cortex58.

We adapted a simple neural network model12 to verify that
global gain modulation alone can produce the behavioural and
neural effects of deadline-induced speed pressure. To this end, a
key qualitative effect that required reproduction was the time-
dependent increase in the common activation of both
accumulators under speed pressure, which we observed in EEG
motor preparation signals and has also been reported in the firing
rates of single neurons involved in decision formation22,23.
Interestingly, this effect breaks the winner-take-all attractor
dynamics characteristic of typical configurations of
biophysically detailed spiking network models of decision-
making59,60, and in general cannot be generated via gain
modulation alone in simpler models (like the DDM) that do
not incorporate a recurrent excitation component. In our model,
the effect was reproduced by constraining the recurrent excitation
of accumulators to be stronger than the lateral inhibition between
them, such that increasing network gain over time effectively
heightened the dominance of excitation over inhibition and led to
building activation in both accumulators. In principle, though,
such an effect would also be produced by a network with more
balanced excitation/inhibition in combination with stronger
gain modulation for excitatory than inhibitory connections
(cf. refs 39,40). Physiological data exploring potential differences
in the neuromodulation of NMDA and GABAergic receptors
could be highly informative about whether such dynamic changes
in the ratio of excitation to inhibition occur in decision circuits.

Finally, although our analyses indicate that global gain
modulation is sufficient to produce the qualitative effects of
deadline-induced speed pressure, this does not preclude the
existence of other sources of urgency in the brain. In particular,
it has been suggested that enhanced speed pressure leads to the
recruitment of cortico-basal ganglia pathways that in turn
generate an effective additive input, via release from inhibition,
to decision and motor circuits1,61,62. Such an influence could
act in tandem with multiplicative gain modulation to amplify
both the static and time-dependent effects of speed emphasis
observed here.

Methods
Subjects. We report data from four independent cohorts of subjects. All subjects
were over the age of 18, had normal or corrected-to-normal vision, and no history
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of psychiatric illness or head injury. They provided written informed consent and
all procedures were approved by the ethics committee of the Leiden University
Institute of Psychology. Subjects received either course credit or a fixed or
performance-dependent gratuity for their participation. Sample sizes were
pre-planned and consistent with other studies of human decision-making, from
our lab and others, that interrogated similar physiological signals and invoked
similar analytical methods. Cohort-specific information is given in the
Supplementary Methods.

General task procedures. All reported studies employed variants of the random
dot motion (RDM) paradigm32. Here we report general task procedures; additional
study-specific information is provided in the Supplementary Methods.

Stimuli were presented using the Psychophysics Toolbox63 for Matlab. Subjects
maintained fixation on a centrally presented cross and decided whether the
dominant direction of motion of a cloud of moving dots centred on fixation was
either leftward or rightward. The difficulty of these discriminations was determined
by the coherence c0 of the cloud of dots. Subjects indicated their decision by
pressing one of two spatially compatible response keys with their left/right index
fingers and were typically given feedback about the accuracy of their response on
each trial. The interval between a subject’s response and subsequent trial onset was
randomly drawn from uniform distributions with study-specific bounds, and as
such the response-to-stimulus interval did not depend on RT from the previous
trial. Subjects completed initial practice and difficulty calibration routines prior to
main testing, and in most cases were monetarily rewarded and punished in a
performance-dependent manner under study-specific incentive schemes. Of
particular note, subjects in studies 1 and 2 received 0.5b for every correct decision,
lost 0.5b for every incorrect decision and, in the DL regime of these studies, lost 5b
if they failed to respond within a temporal deadline of 1.4 s following motion onset.
This relatively heavy punishment for missed deadlines serves to heighten the
deadline-induced speed pressure and was implemented to mitigate the ‘accuracy
bias’—a prioritization of accurate decisions even at the cost of decreased reward
rate—that human subjects sometimes display on choice RT tasks4,54 and could
attenuate time-dependent adjustments to decision policy30.

In all studies, subjects attended a single testing session and discrimination
difficulties were calibrated to yield approximately similar response accuracies
across individuals. In study 1, 21 subjects performed 8 blocks of 180 trials at a fixed
discrimination difficulty per individual (equating to 75% accuracy under deadline),
with 4 blocks under a deadline of 1.4 s and 4 under free response. In study 2, 23
subjects performed 10 blocks of 90 trials, split into the same DL/FR conditions at
the same subject-specific difficulty setting. In study 3, 26 subjects performed 5
blocks of 100 trials, this time all at a lower discrimination difficulty (equating to
85% accuracy) and a response deadline of 1.5 s. In study 4, 21 subjects performed 8
blocks of 160 trials, again under a 1.5 s deadline but now two difficulty levels
(corresponding to 70 and 85% accuracies) that were interleaved in random order
across trials within each block. In all cases subjects were familiarized with the task
and encouraged to form stable estimates of the precise timing of the response
deadline during practice routines.

Several task design features were implemented to minimize contamination of
EEG (study 1) and pupillometric (study 2) signals: Upon response execution,
coherent dot motion transitioned to purely random motion for a fixed time to
avoid sensory or feedback-related transients at the time of response execution and
minimize post-decisional evidence accumulation64; a mask of static dots was
displayed during the inter-motion interval to avoid luminance-related transients at
motion onset; and, during pupillometry, the inter-trial interval was extended to
negate contamination of the baseline period by the previous trial’s dilation
response, and post-response feedback was not provided so that the dilation
response was not contaminated by feedback-related processes.

All statistical tests were two-tailed. In cases where data were non-normal
(as determined by the Kolmogorov–Smirnov test), non-parametric tests were used
as described below.

Analysing empirical conditional accuracy functions. Single-trial logistic
regression was used to estimate mean accuracy as a function of RT (the CAF),
for each task condition and subject. To account for both the dominant decreasing
portion of the observed CAFs and an initial increasing portion due to a small
percentage of inaccurate premature responses, we constructed an algorithm that
minimizes the combined sum of squared errors of piece-wise logistic regressions
of accuracy (1¼ correct, 0¼ error) onto RT, splitting trials before and after a
temporal inflection point a such that

Pcorrect ¼
1þ e� b0 þb1� RT� að Þð Þ� �� 1

; RT� a � 0

1þ e� b0 þ b2� RT� að Þð Þ� �� 1
; RT� a40

(
ð1Þ

Here b0 is accuracy at a, b1 is the slope of the CAF before a, and b2 is the slope of
the CAF after a. b1 was constrained to be Z0 to reflect the fact that the left
segment of the piece-wise fit should only account for the initial increasing portion
of the CAF. This model was fit using Nelder-Mead simplex minimization to
estimate the b0, b1 and b2 parameters while conducting an exhaustive search of
possible a values (step-size¼ 10 ms ending at 1 s). Whichever piece-wise segment is
fit first determines b0 and thus constrains the fit of the remaining segment;

therefore, the algorithm was run twice (left segment fit first and right segment fit
first) for each a to find the true minimum30. In fits to FR trials from task 1, all RTs
longer than 5 s were excluded.

To estimate accuracy at the time of the deadline (Fig. 1c), we used the
piece-wise regression fits for each subject to calculate accuracy when RT¼ 1.4 s.
The low number of trials immediately preceding the deadline prohibits a precise
characterization of the shape of the empirical CAF at this time point. However, the
above single-trial regression approach allows for a reasonable approximation by
exploiting consistencies in the temporal evolution of the CAF. The appropriateness
of this approach relies on any change in decision policy being gradual rather than
abrupt, which appeared to be the case in our data given the smooth right tails of the
DL RT distributions (Fig. 1b) and the shapes of the fitted urgency signals (Fig. 3b).

EEG acquisition and analysis. Continuous EEG was acquired from the first study
cohort using an ActiveTwo system (BioSemi, The Netherlands) from 64 scalp
electrodes, configured to the standard 10/20 setup and digitized at 512 Hz. Eye
movements were recorded using two electrodes positioned above and below the left
eye and two electrodes positioned at the outer canthus of each eye. EEG data were
processed in Matlab via custom scripting and subroutines from the EEGLAB
toolbox65. We describe the full EEG preprocessing pipeline in Supplementary
Methods. In brief, we used Morlet wavelet convolution to estimate the power of
effector-specific m (8–14 Hz) oscillations, which we then employed as an index of
decision-related motor preparation36–38. Pre-stimulus m power was measured as
the mean power from � 0.3 to � 0.1 s preceding motion onset. 8–14 Hz power in
the human EEG is subject to a prominent decrease in the immediate post-stimulus
period that is generated over lateral occipital scalp (Fig. 2b, middle inset) but
spreads anteriorly and contaminates early portions of the motor preparation
signals of interest here. For this reason, we restricted our analyses of post-onset
m signals to the period immediately preceding response execution, which is less
susceptible to contamination by this early occipital response. Pre-response m was
measured as the mean power from � 0.17 to � 0.05 s preceding response
execution (a window that was centred on the latency of peak desynchronization in
the response-aligned grand-averages and chosen in a manner that was orthogonal
to potential RT and condition�RT effects; Fig. 2b, right).

We interrogated relationships between m power and decision-making behaviour
via a series of single-trial within-subjects regression models that are described in
the Results section and specified in full in Supplementary Methods. For all analyses,
FR trials with RT45 s were not included. Additionally, to mitigate the influence of
the stereotyped stimulus-evoked occipital response (Fig. 2b, middle inset) on the
motor m signals of interest here and also exclude ‘fast guesses’ from analysis,
we discarded trials with RTo0.5 s from all EEG analyses. For all models, the
group-level significance of effects represented by individual regression coefficients
(bi) was tested via one-sample t-test (H0: bi¼ 0).

In one analysis, we examined m signals for evidence of a time-dependent
influence on motor preparation that varied with speed pressure. With the decision
bound fixed, the difference in activation between accumulators at the time of
decision commitment can provide a proxy for the strength of an additive urgency
signal. Specifically, if the decision process is driven by evidence accumulation
without urgency in a winner-take-all competitive network (for example, ref. 59),
then the winning accumulator will inhibit the losing accumulator and the
difference in their activations will be large by the time the decision bound is
reached. On the other hand, if both accumulators also receive additional, evidence-
independent input due to urgency, then the common activation of both
accumulators at the time of commitment should increase in proportion to the
strength of the urgency signal at that time and there will be less of a difference
between accumulators when urgency is stronger22,23. Thus, the shape of the
urgency signal over time can be approximated by examining, across all levels of RT,
either the raw amplitude of the losing accumulator at the time of commitment, or
the difference in activation between accumulators at that time. We focus on the
latter because a difference metric is, in principle, more robust to any RT-dependent
contamination of m signals by the strong bi-lateral occipital response described
above (Fig. 2b, middle inset). However, we also examined the pre-response
amplitude of the ipsi-lateral m signal alone for time-dependency, and this analysis
yielded similar effects (Supplementary Fig. 6).

We also explored the relationship between decision-making behaviour and
effector-specific power in the b frequency band (14–30 Hz), which has also been
linked to decision-making36–38. However, b power did not exhibit several of the
critical effects that we identified in the m signals (Supplementary Fig. 7).

Pupillometric acquisition and analysis. Pupil diameter and gaze position of the
second study cohort were recorded at a sampling rate of 250 Hz using an Eyelink
1000 eye-tracker (SR Research, Canada), and analysed in Matlab. After data
cleaning and artifact rejection (see Supplementary Methods), we employed a
paired-samples t-test and single-trial within-subjects regressions to examine speed
regime effects on pre-motion pupil diameter and post-onset pupil dilation,
respectively. Pre-motion pupil diameter was measured as the mean, unbaselined
pupil diameter from � 0.2 to 0 s relative to motion onset. Evoked pupil dilation
was measured as the mean pupil diameter within a 0.7 s window centred on the
latency of peak dilation in the response-aligned grand-average waveforms from
each speed regime (0.55 s post-response in FR, 0.75 s post-response in DL; Fig. 4b),
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baselined relative to the pre-stimulus interval, though we also show that the
reported effects are robust to different measurement windows (Supplementary
Fig. 4).

The phasic input to the peripheral system controlling pupil diameter was
modelled as a linear combination of three temporal components: transients at
motion onset and response, and a sustained component throughout the intervening
period49,50. For each subject and speed emphasis condition, eight different models
were constructed in which the sustained component took one of the following
shapes (Fig. 5a): (1) a boxcar with constant amplitude throughout the decision
interval; (2) a linear up-ramp that grew in amplitude with increasing decision time;
(3) a ramp-to-threshold; (4) a linear decay with a starting amplitude that was larger
for slower RTs but whose amplitude always terminated at zero; (5) a linear
decay-to-threshold which began at a fixed amplitude and terminated at zero; and,
(6–8) versions of the boxcar, up-ramp and down-ramp in which the sustained
component for each trial was normalized by the number of samples in that trial’s
decision interval, thereby negatively modulating these components by RT. To fit
each model, a vector of concatenated pupil dilation waveforms, from 0.2 s pre-
stimulus to 2.5 s post-response, was regressed onto a general linear model
composed of the three temporal components (onset, sustained, response)
convolved with a pupil impulse response function51:

h tð Þ ¼ tw�e� t w=tmaxð Þ ð2Þ

where w¼ 10.1 and tmax¼ 930 ms (matching the function used in refs 49–51,
though the key findings were robust to specific parameter combinations;
Supplementary Fig. 5). Model fit was assessed using the Bayes Information
Criterion (BIC) for models estimated via least squares:

BIC ¼ nþ n log 2pð Þþ log SSR=nð Þþ kþ 1ð Þ log nð Þ ð3Þ

where n is the number of samples, SSR is the residual sum of squares, and k is the
number of free parameters. The relative goodness of fit between two given models
was assessed non-parametrically by subjecting difference values (BIC1-BIC2) to
Wilcoxon signed rank tests.

Drift diffusion modelling. Behavioural data from the study 1 cohort were fit with
several versions of the DDM for two-alternative decisions10, both with and without
an urgency component. In its most basic form, the DDM assumes that noisy
sensory evidence is accumulated from a starting point z at drift rate v and a
decision is made when a criterial amount of cumulative evidence reaches one of
two opposing boundaries corresponding to either choice option. The distance
between boundaries is the boundary separation a, while the model ascribes all non-
decision-related processing to a non-decision time parameter ter. Noise in the
evidence is determined by s, the s.d. of a zero-mean Gaussian distribution, and is
fixed at 0.1 to scale all other parameters66. Given any combination of the above
parameters, the DDM yields a flat CAF and thus cannot account for the negative
CAF slopes that we observed in our data. However, including between-trial
variability in drift rate (normally distributed with s.d.¼ Z) allows the model to
produce decreasing CAFs33,34, and so we also included this parameter in our model
fits. In all models, z was fixed at a/2. Thus, what we refer to as the ‘standard DDM’
had, at a minimum, four free parameters (v, Z, a, ter).

Informed by our EEG findings, we also considered DDM variants that
incorporate an additive urgency component. In the ‘urgency DDM’, decisions are
determined by the states of two perfectly anti-correlated accumulators that are
subject to regular drift diffusion, and are each summed with the same time-varying,
evidence-independent quantity (the urgency signal). A decision is made when the
total activation (diffusion þ urgency) of one of the accumulators passes a common
decision bound (fixed at 1 for all conditions and subjects). The shape of the
urgency signal was parameterized by a logistic function:

u tð Þ ¼ u0 þ 1� e� t=lð Þk
� �

ð4Þ

where u(t) is the magnitude of the urgency at decision time t, u0 is the static
component of the urgency (that is, the value of u when t¼ 0), and k and l are
shape and scale parameters that determine the shape of the time-dependent
component of the urgency. The logistic function was chosen because it can produce
a variety of different shapes of urgency signal (concave, convex, approximately
linear, flat) using few free parameters. Although conceptually distinct, this urgency
model is mathematically identical to a model in which the standard DDM is
coupled with time-varying decision bounds. The urgency DDM had a minimum of
five free parameters (v, ter, u0, k, l), or six in cases where Z was also included.

We fit a number of models with varying parameter constraints (Supplementary
Table 1) and estimated parameters for each model and subject using maximum
likelihood estimation procedures that are described in the Supplementary Methods.
Of particular note, for the urgency DDM we invoked a method for analytically
deriving first passage time densities through continuously differentiable time-
varying bounds67. This approach is based on the analysis of renewal equations and
described in detail by Smith68 and Zhang et al.69. The Supplementary Methods also
contain a detailed description of our approach for estimating the optimal, reward-
maximizing time-dependent urgency signals, given our task, for a representative set
of time-invariant parameters.

Leaky competing accumulator modelling. To interrogate effects of global gain
modulation on decision-making, a modelling approach must be employed that
allows basic features of neural information processing, such as the relative strength
of recurrent excitation and lateral inhibition, to be dissociated; these properties of a
neural network, which are not distinguished in the more abstract DDM, determine
the nature of effects of gain modulation on accumulation dynamics and decision-
making behaviour39,40. We therefore modelled gain modulation by adapting the
LCA model12, which is built upon such principles of neural computation and offers
a tractable means of interrogating gain effects without the level of complexity
inherent in more biophysically detailed models of decision-related neural
population dynamics39,40,59. Note that we did not employ this model for earlier
quantitative model comparison because, despite its simplicity relative to more
biophysically plausible neural networks, it is under-constrained (see Supplementary
Methods).

In the two-alternative LCA model, decision-making is driven by a simple two-
layer neural network consisting of two units over which external input is
represented, and two accumulator units, one for each response alternative, that
determine choice (Fig. 6a). Each unit, which represents a population of functionally
equivalent neurons, is characterized by two variables: its activation, which captures
the net input to the unit, and its output, which is related to activation via a
nonlinear transfer function (see below). The activation values of the first (correct)
and second (incorrect) input units are I1 and I2, respectively, and their associated
outputs to the accumulator units are f(I1) and f(I2). The momentary change in the
activation of each accumulator unit xi can be approximated by the following finite
difference equations12:

Dx1 ¼ f I1ð Þ� lx1 þ af x1ð Þ� bf x2ð Þþ f N 0; sð Þð Þ
Dx2 ¼ f I2ð Þ� lx2 þ af x2ð Þ� bf x1ð Þþ f N 0; sð Þð Þ ð5Þ

and the accumulator units are subject to a lower bound on activation such that:

x1 tþ 1ð Þ ¼ max 0; x1 tð ÞþDx1ð Þ
x2 tþ 1ð Þ ¼ max 0; x2 tð ÞþDx2ð Þ ð6Þ

In Equation (5), l represents the leak or decay of activation over time, a represents
recurrent excitation, b represents lateral inhibition, and N(0,s) is a zero-mean
Gaussian-distributed noise term with s.d.¼ s. A decision is made in the model
when the activation of one of the accumulator units exceeds a decision bound A.

Note that, with the exception of the leak, every term that contributes to Dxi in
Equation (5) is passed through the transfer function relating a unit’s activation to
its output. Varying the slope of this function provides a natural way to implement
global gain modulation in the LCA. In accordance with extensive previous
modelling work (for example, refs 27,45,47,70,71), we assumed that the transfer
function is sigmoidal in shape. The sigmoid places upper and lower bounds on
output and thus prevents runaway activation in cases where the effective recurrent
excitation is greater than the leakage (i.e. af(xi)–bf(xi0ai)4lxi), which can happen
when gain is high. We favored a transfer function that becomes linear within the
range of possible outputs as gain approaches 0, thus approximating the threshold-
linear function employed in the original LCA model12, and step-like as gain
approaches N. This function took the following form70:

f x j 0;
1
g

� �
¼

� y; x � � y

� yþ 2y
R x

� y
j y j 0;1g
� �

dyR y

� y
j y j 0;1g
� �

dy
; � y � x � y

y; x4y

8>><
>>: ð7Þ

where j(0,1/g) is the cumulative function of a normal distribution with mean¼ 0
and s.d.¼ 1/g, and y determines the symmetric upper and lower bounds on output.
The gain parameter g determines the steepness of the non-linearity in the function
(Fig. 6b).

Informed by our pupillometric findings, we realized urgency through global
gain modulation in this adapted LCA model by allowing both the baseline offset
and within-trial time-varying trajectory of the g parameter to vary with speed
regime (Fig. 6c). All other model parameters were fixed across speed regimes. Full
specifications of the remaining model parameters, fitting procedures, and approach
used for simulating accumulator time-series are all provided in the Supplementary
Methods.

Data availability. The data and computer code that support the findings of this
study are available from the corresponding author on request.
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