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Abstract: In this article we develop a comprehensive conceptual framework for resource efficiency
indicators with a consistent link of resource use to the socio-economic system and activities therein as
well as to the natural system and its ecosystem functioning. Three broad groups of indicators are
defined: (1) resource use indicators representing pressures on the environment; (2) resource efficiency
indicators relating resource use indicators to the socio-economic side; and (3) environmental impact
indicators linking resource use impacts on the state of the natural system. Based on this conceptual
framework we develop a structure for possible resource efficiency indicators and conduct a RACER
evaluation on the Relevance, Acceptance, Credibility, Easiness and Robustness of indicators. With
the RACER evaluation, we identify areas where indicators are well established and available as well
as areas where indicators still need further development or even need to be designed first.

Keywords: resource efficiency; biodiversity; ecosystem services; indicators

1. Introduction

Ecological economics and industrial ecology are interdisciplinary areas of research focused on the
study of the interactions between socio-economic systems and the natural environment. Commonly,
these interactions are studied by investigating and monitoring the use of resources by society (the
input-side) and the amount of wastes released to nature (the output side). The underlying concept is
the one of societal or industrial metabolism [1–5], which considers societies as equivalent to organisms,
characterized by the resource inputs and outputs required to produce and maintain socio-economic
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stocks and processes. The concept of social metabolism links into both spheres, the socio-economic
system and the natural system, and societies form a hybrid of material and symbolic realm [6]. Resource
use is, on the one hand, aiming at providing benefits or services to the socio-economic system and,
on the other hand, interfering in ecosystem functioning in the natural system. The overall goal of
sustainable development is to maximize socio-economic benefits and at the same time minimizing the
effects on the natural system. Most commonly, the socio-economic benefits are expressed as economic
production or growth (measured as gross domestic production (GDP)), which should be decoupled
from resource use [7–9].

The physical scale of socio-economic activities and the limitations to these in terms of maintaining
the processes of the Earth System operating within known and safe limits [10–12] are very much
in discussion both in research and in policy debates. In recent years, concerns with sustainable
development issues have led to the development of policy initiatives on resource efficiency, which aim
at maximizing the economic output derived per unit of physical input needed (or physical output
produced). For example, the European Union (EU) published, in 2011, a flagship initiative and a
roadmap towards a “resource-efficient Europe” [13]; the United Nations Environment Programme
(UNEP) launched the International Resource Panel in 2007 [14], which provides “assessment on the
sustainable use of natural resources and the environmental impacts of resource use” [14]; and the
Organisation for Economic Co-operation and Development (OECD) published a Recommendation
on “Material Flows and Resource Productivity” in 2004 and provides regular assessments for the
OECD countries [15,16]. Despite resource efficiency being used as the concept to capture sustainability
problems, there is not yet a conceptual framework available that clearly puts socio-economic activities,
resource use, and environmental impacts on the natural system, biodiversity and ecosystem functioning
in relation to each other (see also [17]). Additionally, in these policies, the term resource is based
on a very broad definition that encompasses very different physical dimensions such as material
extraction or land use or biodiversity. The EU policy for example addresses materials, energy, water
and land as resources and as the core focus of action needed, but in addition also requests the
consideration of wastes and emissions as well as biodiversity and ecosystem services when discussing
resource efficiency [18,19]. This is so far implemented by a proposal of one headline indicator
(GDP per unit of material use; see [13]) complemented by a dashboard of indicators. Indicators
on and methods for materials use, CO2 emissions, biodiversity loss, water exploitation, expansion of
settlement area etc. are often developed in isolation and listed next to each other and lacking a clear
conceptual relation or causal link between them (see also [5]). Conceptual frameworks either focus on
the socio-economic system and related pressure indicators such as environmental accounting tools
(SEEA) [20], Eurostat [21], OECD [22], Environmentally Extended Input-Output Models (EEIO) [23,24],
or they put all socio-economic activities in a bundle side by side to ecosystem functioning without
detailing the linkages between different aspects of the socio-economic activities (e.g., resource use by
production and emissions by consumption) and ecosystem functioning; e.g., Millennium Ecosystem
Assessment (MEA) [25], The Economics of Ecosystems and Biodiversity (TEEB) [26], IPBES [27], or the
EU and UN framework on ecosystem assessment [28,29].

In this article, we want to contribute to this discussion and propose a conceptual framework that
defines resource use, links it to socioeconomic activities (resource efficiency) and ecosystem functioning
(environmental impacts). The article starts with a section on the dual interpretation of resource use
as an input to economic activities and as playing a role in environmental impacts (environmental
pressure), including ecosystem services, biodiversity, and planetary boundaries. In Section 3, we
present the conceptual framework and a structure for resource efficiency indicators. In Section 4,
we present the results from a RACER evaluation (evaluating the Relevance, Acceptance, Credibility,
Easiness and Robustness of indicators) and needs for indicator development.
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2. Society–Nature Interactions and Their Physical Representation

Societies extract resources from the natural system, or change the natural system in a way that
it becomes more useful for societal needs [6]. These society–nature interactions can be understood
as metabolic or colonizing (or managing) activities [2–4,30,31]. Metabolic activities, described by the
concept of social or industrial metabolism [2,4,5,32], refer to the flows of raw materials, energy carriers
and water that enter the socio-economic system in order to maintain, built up or run socio-economic
stocks and leave it later again as wastes and emissions emitted to the natural system. These natural
resources are processed and transformed during economic production along economic sectors and are
finally “consumed” by households or governments or accumulated in anthropogenic stocks. At the end
of the societal use phase, physical goods are transformed to wastes and emissions, which are emitted to
the natural system (outputs from the socio-economic system) and have to be absorbed and reintegrated
into natural cycles [33]. Accounting for and monitoring resource use and biophysical anthropogenic
stocks (such as build infrastructure or houses as well as durable consumer goods) allows for analyzing
the biophysical structures and overall dimension of a society’s activities. Material or energy flow
accounts (in metric tons or Joules) are the statistical methods to monitor material and energy use in
close correspondence to economic accounts. These two accounting procedures as well as the definition
of derived indicators is well established and broadly implemented [20,34–40]. Water use is another
physical accounting routine also implemented in the statistical reporting procedures [41,42]; however,
its alignment with the system of national accounts is still in process. Societies also interfere with the
natural system by colonizing or managing activities [3,43], which refer to deliberate interventions
of a society in natural systems in order to make them more useful for socio-economic purposes.
Management activities include changes and interference into land and biomass cycles (e.g., plowing of
land, cultivating activities, etc.), water resources and water sheds (river regulation and dams). These
management activities are also termed land use or water use. Metabolic and colonizing activities
directly take place at the society–nature interface and represent most interventions of societies onto
nature; thus, these activities are directly linked to socio-economic activities.

Society–nature interactions do not only have a biophysical dimension (the tons or Joules extracted
and used) but are also determined by the socio-economic system through their cultural, social,
economic and political structures and programs [6]; in turn, socio-economic structures and processes
are also adapted to and shaped by the biophysical and ecological surrounding in a co-evolutionary
process [44,45].

In the current policy documents on resource efficiency [7,13,15,18] a very broad and unstructured
definition of resources is used. Next to the physical flows (of materials, energy and water) crossing the
border between the socio-economic and natural system (for a definition see for example [20]) land,
biodiversity, and ecosystem services, which provide part of these physical inputs, are also considered
in the same way. Krausmann and colleagues [46] argued that under this broad definition, everything
is potentially a resource but not all of those resources are actually used or provide services to societies.
Instead, there are metal resources and reserves that constitute a potential resource (which is a natural
stock), but only a fraction of it is actually used as an annual flow to the socioeconomic system. This
is different with regard to land, because its use is not a physical flow extracted and incorporated
in economic goods but stays within bio-geochemical cycles. Land use can be perceived as the land
area used for different purposes (agriculture, forestry, built-up infrastructure, etc.) with a specific
productivity or with the capacity to absorb emissions, which strongly links to ecosystem services. The
functionality of land is strongly linked to land cover (Walz et al., 2007 in [47]) but also to the soil and soil
quality which adds another perspective on “land”. The intensity of land use (as a management option)
accompanied by increased socio-economic inputs and outputs is crucial in the discussion of land as a
potential resource. Another function of land is the area provided for socio-economic infrastructures.
Conceptually, these different categories and perspectives on land have to be reflected adequately. An
analogous rationale can be made for biodiversity and other components of (renewable) natural capital.
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Ecosystem functioning and biodiversity are also different processes as compared to material or
energy inputs so economic processes. Ecosystem functioning can be assessed using the ecosystem
services framework. Ecosystem services (ES) can be defined as the direct and indirect contribution
of ecosystems to human well being [48]. Four types of ecosystem services can be distinguished:
provisioning, regulating, cultural and supporting services. Provisioning services are all the resources
extracted from the natural system and that are used in socio-economic processing. They are the
abiotic resources (metals, minerals, and fossil energy carriers) provided mainly by the lithosphere
and the biotic resources (fish stock, freshwater body, and biomass stock) provided by ecosystems.
Regulating services can be considered the benefits that people derive from the regulation of ecosystem
processes, for example the absorption of societal outputs (wastes and emissions) by natural cycles [49].
Cultural services refer to all nonmaterial “uses” of society that can produce socio-economic value (in a
monetary as well as a non-monetary sense). For example, landscape available for recreational purposes
and tourism, the aesthetic appreciation, inspirational and educational purposes (see Chapter 3 in [50]).
Supporting services describe the basic functioning of ecosystems such as net primary production or
soil formation. Supporting services can be seen as the essential basis enabling for all other ecosystem
services provided to societies; for this reason, some do not consider them as services but rather a
function of ecosystems [51]. Trade-offs may occur between the different categories of ecosystem
services due to transformation of ecosystems: for example, increasing fishing is achieved at the cost of
changes in the food web structure and the regulation of trophic cascades [52].

Ecosystems hold stocks of natural resources that become an ES when they are turned into a flow
(resource use flows) to the socioeconomic system. The capacity of an ecosystem to provide ES in the
long term, in a sustainable way, is called ES capacity [53,54]. ES capacity can change over time due to
management decisions [53,54]. If the flow of ES is higher than capacity then there is an unsustainable
use of ES. The unsustainable use of an ES over time will damage the ES capacity and reduce the
available stocks of ES.

Measuring environmental impacts in the sense of changes in the natural environment driven by
socio-economic activities are most commonly assessed by measures of biodiversity loss or changes in
ecosystem functioning [55,56]. It is, however, difficult to link these indicators and processes to resource
use or socio-economic activities. However, to understand the environmental impacts of societies on the
natural system, and in particular on the ecosystem services, we have to relate resource use to processes
or stocks in the natural system. The need for this integrative perspective has already been emphasized
in policy initiatives in the field of biodiversity and ecosystems. For example, the Strategic Plan for
Biodiversity 2011–2020, from the Convention on Biological Diversity has a set of 20 targets [57], which
seek not only traditional conservation objectives but also more society oriented ones. Targets under
Strategic Goal A (Aichi Targets 1 to 4) aim to address the underlying causes of biodiversity loss by
mainstreaming it across governments and society. These targets have also been identified as those
having the highest level of interactions with the other targets, hence having the potential to strongly
contribute to the reduction of biodiversity loss and ecosystems degradation [58]. It is thus essential to
develop a strong link between resource use frameworks and the natural system.

The analysis on resource-indicators along their environmental impacts became more urgent with
the debate on planetary boundaries (e.g., [10,11]). Steffen et al. [11] suggest that for genetic diversity,
phosphorus emissions and nitrogen emissions thresholds have been passed, whereas climate emissions
and land system change are in the zone of uncertainty. Fang et al. [59] and Tukker et al. [60] made
estimates of, e.g., maximum carbon emissions, water extraction and arable and forest land use given
sustainability thresholds and/or policy targets, and compared these with the footprints per capita
for carbon, land and water to see if there is an overshoot. They hence created a system of indicators
that could be directly linked to planetary boundaries. Life-Cycle Assessment studies (LCA) [61] try
to capture specific environmental impacts for products or processes along the following categories:
climate change, ozone depletion, acidification, eutrophication (terrestrial, fresh water, and marine),
photochemical ozone formation, human toxicity (cancerous and non-cancerous), respiratory inorganics
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(particulate matter), ecotoxicity, ionizing radiation (human health and ecosystems), resource depletion
(abiotic materials and water) and land use. LCA studies thus far have not been applied to the macro
level. Currently, attempts are made to develop comprehensive indicators such as the “Environmental
Pressure Index” and “Policy Performance Index” [62].

3. Proposal for an Indicator Framework Structured along Three Parts: Resource Use, Resource
Efficiency and Environmental Impacts

In the following, we will propose a conceptual framework for society–nature interactions and
resource use that aims at linking metabolic and colonizing activities to socioeconomic processes as
well as to their environmental impacts in the natural system. In this way, we intend to contribute to a
structuring of resources, resource use and resource efficiency that better supports policy programs.

Figure 1 illustrates the hybrid structure of the socioeconomic and the natural system as two
overlapping spheres rather than one being the subset of the other [5,6]. Physical flows crossing the
border between the two spheres comprise resource use in the form of material (including regenerative
and non-regenerative resources), energy and water inputs as well as outputs to nature (wastes and
emissions) (Pauliuk and Hertwich [5] (p.88) add a further differentiation to these interactions by
introducing seven compartments). Land is a cross-cutting resource, which is not physically extracted
and entering the socioeconomic system, but is the area and location of socioeconomic infrastructure, of
extractive activities (e.g., mines) as well as ecosystems. Physical flows crossing the border between
society and nature can be captured by environmental accounting frameworks [20,35,38] and are
referred to as pressure indicators. We consider these resource use flows as the central flows between
the socio-economic system and the natural system, which need to be linked to both spheres in order to
capture resource efficiency and environmental impacts. The structure for the conceptual framework
thus differentiates three perspectives: (1) resource use as the direct exchange between society and
nature representing the total physical scale of these society–nature interactions; (2) resource efficiency
as the link between resource use and socio-economic services derived; and (3) environmental impacts
as the effect of socio-economic resource use on natural stocks and ecosystem functioning.
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When talking about the sustainable use of resources, we want to emphasize the importance
of considering resource use in its absolute scale, and thus independent from either the impact on the
environment or the efficiency of its use for societies. The absolute scale of all biophysical flows is
a necessary measure which can be contrasted with the biophysical limits of our earth system, as
previously discussed for, e.g., fossil energy related carbon emissions and water extraction [63]. This
type of resource use indicators has a major advantage of directly linking to both mutually interacting
systems: the socio-economic activities, which induce extractive activities in mining and agriculture,
as well as the natural system. Finally, resource use indicators are easily available because they
are—mostly—part of standard statistical reporting and they use physical units without any normative
interpretation, such as weighting per impacts, etc., and which makes these indicators comparable
across temporal and spatial scales. They are easily available in time series and are also consistent
with economic thinking and reporting, for example, through the System of Integrated Economic and
Environmental Accounts (SEEA) [20] and thus provide a good complement to economic reporting in
monetary units.

Considering the different definitions and understanding of a natural resource, it is necessary to
differentiate between potentially available resources (a stock) and resource use (a flow), which is the
actual, deliberate intervention of the socio-economic system with the aim of deriving a certain use
or service to society. Resource use flows (inputs to the socioeconomic system) are used to maintain
and built up socioeconomic stocks (see also [5]). Resource efficiency is about using natural resources
efficiently, or in other words minimizing the flow from or to the natural environment and maximizing
socio-economic outputs. Consequently, resources (stocks) cannot be “efficient” themselves; resource
efficiency is rather “resource use efficiency”, i.e., an efficiency in relation to the resource use flow.

Relating resource use indicators to the socio-economic side is what is commonly termed
“resource efficiency”. Two perspectives can be taken in this regard: relating resource use to economic
production and value added, or to the societal services provided by natural resource use [64]. The
first is about relating resource use to production (intermediate use) or final consumption (in economic
terms final demand). For sectors associated with specific technologies, the relation between resource
use and value added reflects the sector’s specific resource efficiency. In general, these relations result
in various types of resource efficiency, i.e., economic output or value added per unit of resource
input or waste/emission output. GDP is the most common indicator to which resource use is related
and the GDP/resource use ratio, expressing the economic value generated by the amount of used
resources, is comparable to labor productivity for example. However, other macro or beyond GDP
indicators, such as subjective well-being, can also be linked to resource use indicators, in order to
investigate other dimensions of efficiencies [65–67]. The second perspective puts resource use, i.e.,
biophysical inputs or accumulated outputs, into relation with the societal service generated. Services
can be adequate housing facilities, heated rooms, nutrition, possibilities for commuting (mobility), or
electricity for running various appliances. These relations are difficult to tackle on the macro level
but much better addressed on a rather detailed, even micro level such as total energy consumption
per m2 for space heating, efficiency of cars and household appliances, bathing water quality, or calorie
intake per capita. The two perspectives on production and consumption fit nicely with the structure of
environmentally-extended input–output tables [23,24,68], which have been increasingly and broadly
used to trace resource inputs to and through the economy and thus allocating resource inputs to final
demand. The environmental extensions represent the resource use indicators and data, i.e., pressure
indicators in absolute values.

Linking resource use to the natural system is addressing the environmental impacts of
socio-economic activities on the natural system and its functioning. As mentioned above, the
provisioning services refer to the potential stock of natural resources. Hence, resource inputs to
society in the form of resource extraction activities directly draws on these provisioning services. With
the capacity of ecosystems to absorb societal outputs, regulating services directly link to wastes and
emissions. Furthermore, we propose to consider environmental impacts from both a quantitative and
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a qualitative perspective. The quantitative perspective captures the pressure indicators in relation
to the size of the stocks of the natural resource. For example, the amount of water extraction in
relation to the amounts of available water (e.g., addressed by the water exploitation index) indicates a
potential quantity-related impact due to scarcity of water available for ecosystems. Other examples
for the quantitative impact are carbon emissions in relation to the current carbon concentration in the
atmosphere, or extraction of crude oil in relation to oil reserves. These relations are closely linked to
the socio-economic system and addresses “resource depletion”, i.e., how much reduction to or change
in the natural stocks is caused by societal activities.

However, this quantitative relation does not consider the different qualities of ecosystems and
their capability to deal with interventions, thus demanding for a second, qualitative perspective.
Examples for the qualitative impact perspective are biomass extraction in relation to the productivity
of the local land area; or carbon emissions in relation to the carbon sequestration potential. This
qualitative perspective goes beyond a mere evaluation of scales and natural stocks but also considers
the complex functioning of ecosystems.

Linking the three perspectives (i.e., resource use and resource efficiency and environmental
impacts) and the different resource categories, we generate a two-dimensional indicator framework,
which is presented in Figure 2.
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Figure 2. Comprehensive framework for resource efficiency indicators. Note: Legend: C = carbon;
ffuel = fossil fuels; HANPP = Human appropriation of net primary production (see [69]); DE = domestic
extraction; ES = ecosystem services; LCA = life-cycle assessment.

The indicator framework presented in Figure 2 translates the conceptual framework of Figure 1
into more practical terms. In the middle, we place resource use indicators that measure physical flows
crossing the society–nature boundary (both inputs and outputs) in absolute terms. These indicators
represent the absolute physical scale of societies. The link of resource use to the socioeconomic system
represents resource efficiency. Resource use is either put in relation to the macro-economic output
(e.g., GDP derived per unit of material use, i.e., material efficiency; or CO2 emissions per unit of GDP,
i.e., carbon intensity), or put in relation to a desired socioeconomic service (e.g., transport, housing,
nutrition, etc.).

Links to the natural system are covered in the green columns on the right. They cover on the
one hand side the quantitative relation to available natural stocks and thus address issues such as
resource depletion. The other dimension that has to be considered is a qualitative one: water use is
not just a matter of the total amount of water available in the local water shed but also relates to the
water quality, the ecosystems around and their water requirements, or possible tipping points of the
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respective ecosystem interfered in. Alternatively, in the case of metals, natural reserves differ with
regard to their metal concentration (measured as ore grades) or accessibility of the metal ore.

The effects on the natural system are manifold and highly complex; they are not as static and
distinct as suggested by Figure 2. On the contrary, there are many cross-links such as water use,
which also has an effect on land degradation, or emissions, which also have an effect on water body
and quality. A conceptual framework and a set of indicators are likely to fail in terms of covering
all possible links and causal relations. However, a reduction of the complexity is necessary. We
therefore suggest focusing on key threats identified by the Millennium Ecosystem Assessment [56]
or by Rockström et al. [10] in their article on planetary boundaries: climate change, land degradation
and land use change, biodiversity loss, freshwater use, nitrogen and phosphorus cycles, and major
pollution issues (chemical pollution, aerosol loading, ocean acidification, and stratospheric ozone
depletion). Pressure indicators in direct relation to these threats are biomass extraction, land use
as well as CO2 emissions. With regard to CO2 emissions, the climate change debate and indicator
development therein is highly advanced. We can easily draw on the indicators developed there.
Biomass use, water use and land use issues are highly interlinked and can be addressed by indicators
related to indicators on net primary production (NPP) such as HANPP (Human Appropriation of Net
Primary Production) [70,71]. High primary production (implemented as NPP) and high biodiversity
are considered fundamental indications of intact ecosystems. Both are threatened by land degradation
and desertification. Furthermore, biodiversity and NPP are in themselves strongly linked. Which
indicators or which set of indicators best selected and put in relation to biomass extraction still needs
to be developed.

We have thus far referred to the interactions of a nation state to the natural environment. However,
domestic resource use induces resource use outside the economy of observation due to highly
interlinked supply- and use-chains in global markets. Thus, indicators considering the total global
resource demand associated with domestic production and consumption, i.e., including resources used
outside the economy of observation, are increasingly requested [63,72–74]. Those indicators with a
global scope allow for reflecting possible outsourcing of environmental burden from one country to
other world regions. Consumption-based or footprint-type indicators are so far only weakly covered
in policy programs and need to be developed.

4. Resource-Efficiency Indicators—Where Do We Stand?

We have applied our indicator classification framework to existing indicator sets in order to
assess how well they cover all three aspects of resource efficiency. We investigated seven indicator sets
addressing sustainable resource use and the indicator coverage therein: (1) Environmental Data Centre
on Natural Resources, which includes around 40 indicators [75]; (2) EEA Core set of indicators (CSI),
which includes 37 indicators [76]; (3) EEA Sustainable consumption and production indicators (SCP),
which includes 39 indicators [77]; (4) Eurostat Sustainable Development Indicators (SDI) which selects
ca. 46 indicators [78]; (5) Europe 2020, which has around eight indicators [79]; (6) UNEP yearbook Key
Environmental Indicators, which includes 15 indicators [80]; and (7) OECD Environmental and green
growth indicators with 25 indicators under “environment” [81].

Within the indicator sets, no single indicator occurs in all sets and only six out of 160 indicators are
shared by the majority of the sets. It is no surprise that there is a bias towards energy and climate with
the two most frequently occurring indicators being in this category. However, no single biodiversity
indicator is present among the frequent indicators. Forest fellings and built-up land indicators are the
only ones with an indirect focus on biodiversity because they relate to habitat change. Material use
indicators were found three or more times but with different indicator definitions across sets. Domestic
material consumption (DMC) is used twice, whereas also the direct material input (DMI) is covered
in the EE SCP set, the EDCNRP set describes the resource productivity (measured as GDP/DMC)
and two more sets use the DMC of specific material categories only (non-renewable materials and
biomass). Thus, material use is covered across most sets, but not through a single harmonized indicator.
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In most indicator sets, the state of the environment as well as the policy effectiveness of indicators
is clearly underrepresented. Finally, most indicators focus on a national (or territorial) scale while
not considering the global aspect of resources use. In the case of water use, the global perspective
is covered, however for energy, material and land, footprint-based indicators (or life-cycle-based
indicators) only represent 10% or less of all indicators integrated in the indicator sets.

For all resource categories, around half of the indicators were given in absolute values.
For material use, indicators were also used in per capita values as well as shares. Efficiency
(e.g., DMC/GDP, GJ/m2, €/tonne, etc.) made up only 10% of all material use indicators. Likewise for
energy use, with the only difference that shares gain higher importance as compared to per capita
values. We see that absolute indicators are well represented across the material categories. The
importance of the total scale of the socio-economic systems seems to be broadly covered. However,
efficiencies (besides indices) are least represented. Neither technical efficiencies, nor the efficiency in
relation to natural stocks are yet in the focus of indicator sets. (For more details on the indicator sets
and indicator selection, see [82]).

We then grouped the available indicators in the indicator framework described above and
conducted a RACER evaluation, with RACER stands for Relevant, Accepted, Credible, Easy and
Robust. The European Commission specified in its publication “Impact Assessment Guidelines” [83]
that indicators should not only be scientifically sound and robust but should be equally valuable for
policy making. RACER is an evaluation framework applied to assess exactly this, i.e., the value of
scientific tools for use in policy making. The RACER methodology evaluates indicators according
to five criteria: Relevance, Acceptance, Credibility, Easiness and Robustness. Relevance is given if
the indicator is closely linked to the objectives to be reached; acceptability is given if the indicator is
perceived and used by policy makers and civil society; credibility is measuring the methodological
transparency; easiness to compile indicates the possibility to produce readily available data; and
robustness indicates high data quality. For each of the five criteria, two to five sub-criteria were
identified and defined (for further details on the RACER analysis see supplementary material or [82]).
Applying the RACER framework allows assessing the general value of scientific tools for their use
in policy making and providing an indication on the general properties and quality standards of
indicators. The RACER framework has been applied in previous studies on indicators for the Resource
Strategy for DG Environment [64,84] and in research projects such as Wiedmann et al. [85].

Sustainability 2016, 8, 201  9 of 14 

 

We see that absolute indicators are well represented across the material categories. The importance 

of the total scale of the socio‐economic systems seems to be broadly covered. However, efficiencies 

(besides indices) are least represented. Neither technical efficiencies, nor the efficiency in relation to 

natural  stocks  are  yet  in  the  focus  of  indicator  sets.  (For more details  on  the  indicator  sets  and 

indicator selection, see [82]).  

We  then  grouped  the  available  indicators  in  the  indicator  framework  described  above  and 

conducted a RACER  evaluation, with RACER  stands  for Relevant, Accepted, Credible, Easy and 

Robust. The European Commission specified in its publication “Impact Assessment Guidelines” [83] 

that indicators should not only be scientifically sound and robust but should be equally valuable for 

policy making. RACER is an evaluation framework applied to assess exactly this,  i.e., the value of 

scientific tools for use in policy making. The RACER methodology evaluates indicators according to 

five criteria: Relevance, Acceptance, Credibility, Easiness and Robustness. Relevance is given if the 

indicator  is closely  linked  to  the objectives  to be  reached; acceptability  is given  if  the  indicator  is 

perceived and used by policy makers and civil society; credibility is measuring the methodological 

transparency;  easiness  to  compile  indicates  the possibility  to produce  readily available data; and 

robustness  indicates high data quality. For  each of  the  five  criteria,  two  to  five  sub‐criteria were 

identified and defined (for further details on the RACER analysis see supplementary material or [82]). 

Applying the RACER framework allows assessing the general value of scientific tools for their use in 

policy making  and  providing  an  indication  on  the  general  properties  and  quality  standards  of 

indicators.  The  RACER  framework  has  been  applied  in  previous  studies  on  indicators  for  the 

Resource Strategy for DG Environment [64,84] and in research projects such as Wiedmann et al. [85].  

Out of the more than 160 indicators in the evaluated indicator sets, around 100 were identified 

to be  applicable  to  the  conceptual  framework developed  (the other  60  indicators  focus on  socio‐

economic issues such as taxes, household size, education, etc.). The indicators were allocated to the 

indicator  structure  (Figure  2)  and  entered  the  RACER  evaluation.  The  results  of  the  RACER 

evaluation are summarized in Figure 3. 

 

Figure 3. Evaluation of indicators according to the RACER criteria: relevance, acceptability, clarity, 

easiness,  robustness. Note: Legend: numbers  indicate  the number of  indicators  available.  “dom.” 

refers  to  indicators  considering  the  national  (domestic)  territory  of  a  country,  “global”  refers  to 

footprint‐type of  indicators  that consider global  resource use. Color of cells  refers  to  the  status of 

indicator development with  regard  to acceptability,  credibility,  easiness,  robustness. grey:  further 

development needed, black: no indicator available yet, light grey: indicators well developed. Color of 

font: black indicates high relevance, white indicates less relevance, i.e., indicator should be adapted to 

better cover the needs of science and policy.  

The RACER evaluation of available indicators showed a clear lack of footprint‐type of indicators 

in all three categories. There is also a need for indicator development with regard to most indicators 

in the resource efficiency and environmental impact category.  

  

dom. global dom. global dom. global

materials  1 2 12 5 2 1

energy  1 1 14 4

water  1 2 2 5 1

land  2 7 1 8 2

CO2 emissions 2 11 1 2

other emissions, wastes

resource efficiency resource use env. impacts

3 4 4

Figure 3. Evaluation of indicators according to the RACER criteria: relevance, acceptability, clarity,
easiness, robustness. Note: Legend: numbers indicate the number of indicators available. “dom.”
refers to indicators considering the national (domestic) territory of a country, “global” refers to
footprint-type of indicators that consider global resource use. Color of cells refers to the status of
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font: black indicates high relevance, white indicates less relevance, i.e., indicator should be adapted to
better cover the needs of science and policy.
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Out of the more than 160 indicators in the evaluated indicator sets, around 100 were identified to
be applicable to the conceptual framework developed (the other 60 indicators focus on socio-economic
issues such as taxes, household size, education, etc.). The indicators were allocated to the indicator
structure (Figure 2) and entered the RACER evaluation. The results of the RACER evaluation are
summarized in Figure 3.

The RACER evaluation of available indicators showed a clear lack of footprint-type of indicators
in all three categories. There is also a need for indicator development with regard to most indicators in
the resource efficiency and environmental impact category.

5. Conclusions

In this article, we propose a comprehensive conceptual framework for resource efficiency
indicators. The work took its start from the gaps and needs identified in current resource efficiency
programs, among those the need for indicators taking into account effects in foreign countries, the need
for a better integration of biodiversity and ecosystem services as well as the limitation of natural stocks.
In the article, we showed the need for a consistent link of resource use to the socio-economic system
and activities therein as well as to the natural system and its ecosystem functioning. Three groups of
indicators were defined: (1) Resource use indicators representing pressures on the environment are
considered to be crucial because they represent the mediating flow linking socio-economic activities to
natural and ecosystem functioning. Resource use indicators should be looked at in absolute values in
order to capture the total scale of the society-nature interactions; (2) Relating resource use indicators to
the socio-economic side is what is commonly termed “resource efficiency”. These relations have two
perspectives: first, resource use related to economic products and value added. These efficiencies can
be derived as direct results of an input-output framework for example. Second, resource use related
to the societal services provided by natural resource use. Services can be adequate housing facilities,
heated rooms, nutrition, possibilities for commuting (mobility), or electricity for running various
appliances; (3) Linking resource use to the natural system (the impacts or the natural state) results in
indicators that are commonly termed “environmental impacts”. We argue that these environmental
impacts have a quantitative (relating pressures to the available natural stock) and a qualitative aspect
(land use in relation to the land productivity). Besides that, the effects on the natural system are
manifold and highly complex.

We then translated the conceptual framework into a structure for resource efficiency indicators,
which is structured along the categories of resources (energy, materials, water, land on the input side,
as well as CO2 emissions and other wastes and emissions on the output side) and the three groups of
indicators (resource efficiency, resource use, environmental impacts quantitative and qualitative). The
structure was compared to existing indicators and an RACER evaluation conducted to identify areas
where indicators are well established and available as well as areas where indicators still need further
development or even need to be designed first.

Findings from the conceptual and empirical work showed that in particular indicators addressing
the global perspectives are not yet fully available, but efforts in providing footprint-type of indicators
are increasing. Indicators on the environmental impacts are not yet well developed and in particular
lack a good link to resource use and the socio-economic system. Further research is needed to address
these issues.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/8/3/201/s1,
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