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Using the chiral kinetic theory we derive the electric and chiral current densities in inhomogeneous
relativistic plasma. We also derive equations for the electric and chiral chemical potentials that close the
Maxwell equations in such a plasma. The analysis is done in the regimes with and without a drift of the
plasma as a whole. In addition to the currents present in the homogeneous plasma (Hall current, chiral
magnetic, chiral separation, and chiral electric separation effects, as well as Ohm’s current) we derive
several new terms associated with inhomogeneities of the plasma. Apart from various diffusionlike terms,
we find also new dissipationless terms that are independent of relaxation time. Their origin can be traced to
the Berry curvature modifications of the kinetic theory.
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I. INTRODUCTION

Nowadays there is a widespread interest in relativistic
plasmas with a chiral asymmetry. This interest is driven by
a recent progress in the understanding of basic properties of
numerous relativistic or pseudorelativistic systems, ranging
from Dirac and Weyl semimetals in condensed matter [1],
whose low-energy quasiparticle excitations are described
by the Dirac and Weyl equations, to strongly coupled
quark-gluon plasma created experimentally in heavy-ion
collisions [2–4], and to the primordial plasma in the early
Universe [5,6]. One of the most unusual features of a
chiral relativistic plasma, which is absent in a conventional
nonrelativistic one, is the possibility of a macroscopic
realization of the celebrated quantum anomalies [7]. For
example, in a chirally asymmetric plasma in a magnetic
field B with an imbalance between the number densities of
right- and left-handed fermions (described semirigorously
by the chiral chemical potential μ5), the chiral anomaly
induces a new type contribution to the electric current: ej ¼
e2μ5B=ð2π2cÞ [8–11]. The latter is known as the chiral
magnetic effect [12,13]. The Maxwell equations, amended
by such a contribution to the electric current, become
anomalous Maxwell equations [14–23].
The inclusion of the anomalous currents drastically

changes the self-consistent evolution of chiral charge
densities and helical magnetic fields [14,18,19,21–23].
Moreover, the nonlinear interactions due to anomalous
processes induce an effective mechanism for transferring
the energy from magnetic modes with short wavelengths
(strongly affected by dissipation) to modes with longer
wavelengths (and longer lifetimes)—a phenomenon similar

to the inverse cascade in ordinary magnetohydrodynamics
[24], but driven not by turbulence. Depending on the
chosen initial conditions, it was found that the helicity
can be transferred from the fermions to the magnetic fields
or vice versa. These results support the suggestion made in
Ref. [25] that all degrees of freedom with nonvanishing
axial charge are equally excited in the equilibrium.
The chiral anomaly in a relativistic matter exhibits itself

not only via the chiral magnetic effect. Even if a chiral
asymmetry is absent, a nonzero magnetic field can induce
an axial current j5 ¼ eμB=ð2π2cÞ in a plasma with a
nonzero electric chemical potential. This phenomenon is
known as the chiral separation effect [26]. Another
prediction of the anomalous Maxwell equations in a
relativistic plasma, that utilizes an interplay of the chiral
separation and chiral magnetic effects, is a new type of
collective excitation known as the chiral magnetic wave
[27]. Further development of these ideas is anomalous
hydrodynamics, which contains new terms due to the chiral
anomaly [22,28–35].
The present study investigates the role of inhomogene-

ities in the chiral plasma evolution. Since the chiral
anomaly relation is local, it is clear that the electric and
chiral chemical potentials should be inhomogeneous just
like the helical electromagnetic fields. An important ques-
tion is whether additional contributions to the electric
current exist in the inhomogeneous case. The authors of
Ref. [15] postulated the absence of such currents, while a
different set of equations was proposed in a recent study
[22]. The present paper derives such inhomogeneous
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currents in a systematic way. Our starting point in the
analysis is the chiral kinetic theory [36–39].
This paper is organized as follows. We briefly review the

chiral kinetic theory and kinetic equations in Sec. II. The
expressions for the electric and axial currents and equations
for the local equilibrium chemical potentials in inhomo-
geneous chiral plasma in the drifting state are derived in
Sec. III. The electric and chiral currents to the second
order in electromagnetic field and derivatives are calculated
in Sec. IV in the case where neutral particles exert a
substantial drag on the system. The summary and con-
clusions are given in Sec. V. Some table integrals and useful
relations are collected in the Appendix.

II. CHIRAL KINETIC THEORY

The chiral kinetic theory describes a time evolution of
the one-particle distribution functions fλðt;x;pÞ for the
right- (λ ¼ þ) and left-handed (λ ¼ −) fermions. It was
recently suggested [36,40,41] that chiral fermions in
external electromagnetic fields are described by the chiral
kinetic theory given by [36–39]

∂fλ
∂t þ 1

1þ e
cB ·Ωλ

��
eEþ e

c
v ×Bþ e2

c
ðE ·BÞΩλ

�
·
∂fλ
∂p

þ
�
vþ eE×Ωλ þ

e
c
ðv ·ΩλÞB

�
·
∂fλ
∂x

�
¼ Icoll; ð1Þ

where the factor ð1þ eB ·Ωλ=cÞ−1 accounts for the correct
phase-space volume [40,41] and Ωλ ¼ λp=ð2jpj3Þ is the
Berry curvature [42]. The Berry curvature is a crucial
ingredient in the chiral kinetic theory that allows one to
capture the fermionic nature of particles [36–39]. The group
velocity is defined from the quasiparticle energy as follows:
v≡ ∂ϵp=∂p. By imposing the constraint of the Lorentz
invariance in Ref. [36], it was suggested that the dispersion
relation for chiral fermions in a magnetic field B should be
taken in the form ϵp ¼ cjpj − λep ·B=jpj2, which is valid to
linear order in the fieldwhen jeBj=ðcp2Þ ≪ 1. Interestingly,
however, such a definition for ϵp may be problematic
because the absolute value of the resulting group velocity,
v ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2eðB ·ΩλÞ=cþOðB2Þ

p
, appears to be larger

than the speed of light when ðB · ΩλÞ > 0. In the present
study, we will use the dispersion relation ϵp ¼ cjpj for
which the group velocity equals c.
Equation (1) is the kinetic equation for the distribution

function fiλ of particles (i ¼ p). A separate equation can be
written down for antiparticles (i ¼ a). The corresponding
equation can be obtained by simply replacing e → −e and
λ → −λ in Eq. (1). Below, when there is no risk of
confusion, we will omit index i and assume that the
expressions are given for particles. In the end, the results
for charge densities and current densities will have to
contain both particle and antiparticle contributions.

The term on the right-hand side of the kinetic equation (1)
is a collision integral. In the simplest approximation, one
can take Icoll ¼ 0. This corresponds to the so-called
collisionless limit, which is useful when the collective
particle dynamics is driven primarily by averaged electro-
magnetic fields. One of the simplest approximations
beyond the collisionless limit is the relaxation-time

approximation with Icoll ¼ −ðfλ − fðeqÞλ Þ=τ [43,44], where
τ ∼ 1=½e4T lnð1=jejÞ� [45] is the relaxation time and fðeqÞλ is
the local equilibrium distribution function. In the absence
of electromagnetic fields, it is the standard Fermi-Dirac
distribution function

fðeqÞλ ðt;x;pÞ ¼ 1

e½ϵp−μλðt;xÞ�=T þ 1
; ð2Þ

where ϵp ¼ cjpj. The corresponding equilibrium distribu-
tion function for antiparticles is obtained by replacing
μλ → −μλ. Here we introduced the notation for the chemi-
cal potentials of the right- and left-handed fermions,
μλðt;xÞ ¼ μðt;xÞ þ λμ5ðt;xÞ. It should be noted that, in
the case of local equilibrium, the temperature T in
distribution functions could also depend on the space-time
coordinates, Tðt;xÞ. However, in order to simplify our
analysis below, we will neglect such a dependence in what
follows. In the presence of electromagnetic fields, the

choice of fðeqÞλ ðt;x;pÞ is a delicate issue and we will
discuss it in more detail below.
In a general case, the local equilibrium chemical poten-

tials μλ evolve with time. Therefore, one of the central and
crucial points of our analysis is the evolution equations for
μλ which we derive from the kinetic equation. Integrating
the left-hand side of the kinetic equation (1) over momen-
tum leads to the continuity equations for the electric and
chiral currents, where the latter equation includes the chiral
anomaly term. This means that in order that the particles
densities be conserved it is necessary that the integral of the
collision integral over momentum be equal to zero. This
requirement will play a crucial role in our analysis below.

A collision integral IBGKcoll ¼ −ðfλ − nλ
nð0Þλ

fð0Þλ Þ=τ of the

Bhatnagar-Gross-Krook (BGK)-type [46] was used in
Ref. [21]. Here nλ is a local fermion number density,

fð0Þλ is a given distribution function (for example, in the
analysis of non-relativistic particle dynamics in Ref. [46], a

Maxwell velocity distribution function was used), and nð0Þλ

is determined by fð0Þλ . Clearly, such a collision integral
automatically conserves the particle number and agrees
with the chiral anomaly relation. We found that when
studying the evolution of electromagnetic fields and the
chiral asymmetry in the presence of strong magnetic fields,
where the chiral chemical potential evolves with time, it is

crucial to use the local equilibrium function fðeqÞλ rather
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than a fixed fð0Þλ , otherwise, the kinetic equation is not
entirely consistent. We checked, however, that the results

obtained for the BGK-type collision integral with fðeqÞλ

instead fð0Þλ are not much different from those found in the
relaxation-time approximation described above. Since the

relaxation-time approximation with Icoll ¼ −ðfλ − fðeqÞλ Þ=τ
is slightly simpler, we will use it in our analysis below.
The evolution of electric and magnetic fields is deter-

mined by the Maxwell equations

∇ · E ¼ 4πen; ð3Þ

∇ ×E ¼ −
1

c
∂B
∂t ; ð4Þ

∇ ·B ¼ 0; ð5Þ

∇ ×B ¼ 4π

c
ejþ 1

c
∂E
∂t : ð6Þ

By definition, the electric charge density is given by
enðxÞ ¼ P

i

P
λ¼� einiλðxÞ, where the sum over i includes

the contributions due to particles (i ¼ p) and antiparticles
(p ¼ a). Note that the latter comes with the opposite sign.
The number density of particles of a given chirality λ is
given by

nλðxÞ ¼
Z

d3p
ð2πÞ3

�
1þ e

c
B ·Ωλ

�
fλðp;xÞ: ð7Þ

Here, the factor 1þ eB · Ωλ=c in the integrand takes care
of the correct phase-space volume. After multiplying the
kinetic equation (1) by 1þ eB ·Ωλ=c, integrating over
momentum p, and using the Maxwell equations, we obtain
the following relation:

∂tnλ þ ∇ · jλ ¼ −
e2

c

Z
d3p
ð2πÞ3 ðΩλ ·∇pfλÞE ·B

¼ λe2E · Bfλðp ¼ 0Þ
4π2c

; ð8Þ

where we integrated by parts in the last equality and
used the following identity for the Berry curvature
∇p ·Ωλ ¼ 2πλδ3ðpÞ. The electric current density is given
by ejðxÞ ¼ P

i

P
λ¼� eijiλðxÞ, where the contribution due

to particles of a given chirality is determined by [36,37,43]

jλ ¼
Z

d3p
ð2πÞ3

�
v þ eE ×Ωλ þ

e
c
Bðv · ΩλÞ

�
fλ þ jðcurlÞλ :

ð9Þ

We should note that the definition of the current in Ref. [43]
differs from that in Ref. [36]. The latter has an extra term

jðcurlÞλ , the explicit form of which can be obtained by
integrating the definition of current in Ref. [36] by parts,

jðcurlÞλ ¼ ∇ ×
Z

d3p
ð2πÞ3 fλϵpΩλ: ð10Þ

As we see, this contribution is a total curl and, thus, does
not contribute to the continuity equation. However, such a
current affects the Maxwell equation (6). From the structure
of the corresponding equation and the structure of the
current, we see that the integral on the right hand on
Eq. (10) plays the role of a magnetization. Then, the current
itself can be viewed as a “magnetization” current [47].
It is instructive to emphasize that, in the case of hot

relativistic plasmas, it is essential that the complete
expressions for the electric/chiral charge densities, as well
as the corresponding currents contain the contributions of
both particles and antiparticles. This is in contrast to the
case of dense relativistic plasmas at low temperatures,
T ≪ jμλj, when the contributions of antiparticles are
exponentially suppressed and, therefore, could be safely
neglected. In the high-temperature regime, T ≫ jμλj, which
is of prime importance in cosmology, the antiparticle
number densities are given by the same expressions as
in Eq. (7), but in terms of the antiparticle distribution
functions faλ. Taking into account that antiparticles carry the
opposite electric charge, we will find that, as expected, the
corresponding high-temperature plasma will be almost
neutral. Perhaps even more importantly, antiparticles will
contribute approximately as much as particles to the electric
current and, thus, will effectively double the result.
It is interesting to note that taking the contribution of

antiparticles into account is critical also in order to obtain
the correct chiral anomaly relation from Eq. (8). The right-
hand side of the corresponding equation for particles is
proportional to the local equilibrium distribution function

fpðeqÞλ ðp ¼ 0Þ, which depends on μλ and temperature.
This seems to be at odds with the topological nature of
the corresponding relation. The same is true for antipar-
ticles. However, in view of the identity

P
if

i
λðp ¼ 0Þ ¼ 1,

the total chiral current j5 ¼
P

i

P
λ¼� λjiλ does satisfy

the conventional continuity equation with the correct
anomalous term e2E ·B=ð2π2cÞ. Note that, in the low-
temperature regime, the correct result is saturated almost
exclusively by the contribution of particles. (Of course, it is
easy to check that the electric current ej ¼ P

i

P
λ¼� eijiλ

satisfies the usual nonanomalous continuity equation.)
The complete set of the Maxwell equations (3) through

(6), the kinetic equation (1) in the relaxation-time approxi-
mation supplemented by the definitions of the number
densities (7) and currents (9) form a systemof self-consistent
equations for the one-particle distribution functions of the
left- and right-handed fermions and electromagnetic fields.
Therefore, to study, for example, the evolution of
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inhomogeneous magnetic fields and chiral asymmetry in
magnetized plasma, one should solve the corresponding
system of equations. The corresponding task is formidable.
In order to simplify it, we will derive an approximate set of
equations in the casewhere electromagnetic fields areweak.
Before proceeding to the derivation of a complete set of

equations that describe the evolution of an inhomogeneous
chiral plasma coupled to electromagnetic fields, it is
instructive to identify generic classes of such plasmas,
depending on their composition and underlying dynamics.
In particular, as will become clear below, an important role
in the analysis is played by a possible presence of addi-
tional neutral particles and their interactions with the
charged carriers of the plasma.
In order to understand the role of neutral particles better,

let us remind a very special property of a plasma that
contains no such particles. When a configuration of
perpendicular electric and magnetic fields,E⊥B (assuming
only that E < B), is applied, such a plasma drifts as a whole
with the velocity perpendicular to both electric and mag-
netic fields [48]

v̄ ¼ c
E ×B
B2

; ð11Þ

see also Sec. III below. It is crucial that the drift velocity v̄
does not depend on the specific values of charges (and
masses, if present) of particles. In fact, despite the drift, the
plasma is in perfect equilibrium. It is described by a
boosted, rather than the usual form of the Fermi-Dirac
distribution function. (This can be also understood from a
different angle: there is no electric field in the boosted
reference frame, moving with the velocity v̄ with respect to
the laboratory frame.)
It should be clear that the above-mentioned drifting state

of the plasma should be profoundly affected whenever a
background is present that exerts a drag on the system. In
solid state materials, for example, the corresponding back-
ground could be due to the lattice of ions or impurities. In
other plasmas, it could be due to neutral particles, which are
not affected by electromagnetic fields directly. In the latter
case, of course, it is assumed that the time scale for the
neutral component to develop its own drift (via the
interaction with the charged particles) is much longer than
the characteristic time scales for the evolution of electro-
magnetic fields and inhomogeneities.
In this paper, we will discuss both cases with and without

a drift of the plasma as a whole. Perhaps one of the best
realistic examples of the plasma that is subject to the drift is
a relativistic QED electron-positron plasma. An example of
a plasma where the drift may not fully develop to involve
the background of neutral particles is the quark-gluon
plasma at sufficiently high temperatures. The (electromag-
netically) neutral particles in the latter case are gluons. In
the case of chiral plasmas in Dirac/Weyl semimetals, the

background is due to the lattice ions or impurities that do
not develop any drift at all.

III. CHIRAL PLASMA IN THE DRIFTING STATE:
EXPANSION IN E∥, B, AND DERIVATIVES

In this section, we will derive the equations describing
the evolution of a weakly inhomogeneous chiral plasma
and electromagnetic fields without any additional compo-
nents (e.g., neutral particles, pinned impurities, or ion
lattices) present that could exert a substantial drag on
the charged particles. If additional components are present,
it is assumed that their interaction with charged particles is
negligible and has no qualitative effect on the electromag-
netic dynamics. We will use the kinetic equation (1) in the
relaxation-time approximation. The distribution functions
for charged particles (i ¼ p) and their antiparticles (i ¼ a)
satisfy the following equations:�
1þei

c
B ·Ωi

λ

�∂fiλ
∂t þ

�
eiEþei

c
v×Bþe2i

c
ðE ·BÞΩi

λ

�
·
∂fiλ
∂p

þ
�
vþeiE×Ωi

λþ
ei
c
ðv ·Ωi

λÞB
�
·
∂fiλ
∂x

¼−
1

τ

�
1þei

c
B ·Ωi

λ

�
ðfiλ−fiðeqÞλ Þ; ð12Þ

where ei ¼ e, Ωi
λ ¼ Ωλ for particles and ei ¼ −e, Ωi

λ ¼
−Ωλ for antiparticles.
In the case of a plasma made of only charged degrees of

freedom, the standard Fermi–Dirac distribution (2) may not
be the best choice for the zeroth order of the equilibrium
distribution function. Ideally, one would want to capture the
drift of the plasma as a whole by a modified distribution
function. The line of arguments that allows one to obtain
the corresponding function is well known.
Before considering a general configuration of electro-

magnetic fields, let us start by recalling that a field
configuration with constant E⊥B (and E < B) has no
dissipative effects on the plasma. (Of course, this will
change when the parallel component E∥ is added later as a
perturbation.) The whole system simply drifts with the
velocity v̄ [48], see Eq. (11). Of course, this is connected
with the fact that, in the reference frame K0, moving with
the drift velocity v̄ with respect to the laboratory reference
frame K, the electric field is absent [49]. In the absence of
electric field in the K0 frame, the equilibrium state is
naturally described by the standard Fermi-Dirac distribu-
tion function in the relativistic notation [50] (for the sake of
simplicity, we suppress the particle/antiparticle index i)

f0 ðeqÞλ ¼ 1

expðp0νu0ν−μ0λ
T 0 Þ þ 1

¼ 1

expðϵp0−μ0λT 0 Þ þ 1
; ð13Þ

where p0ν ¼ ðϵp0=c;p0Þ and u0ν ≡ ðu00;u0Þ ¼ ðc; 0; 0; 0Þ is
the proper velocity. We emphasize that this consideration
assumes that either no neutral particles are present or that
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their interaction is too weak to change the evolution of
electromagnetic fields in the inhomogeneous plasma.
By performing the inverse Lorentz transformation in

Eq. (13), we easily find the equilibrium distribution
function in the laboratory frame, i.e.,

fðeqÞλ ¼ 1

expðϵp−p·v̄−μλT Þ þ 1
; ð14Þ

where uν ≡ ðu0;uÞ ¼ ðc=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðv̄=cÞ2

p
; v̄=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðv̄=cÞ2

p
Þ,

T ¼ T 0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðv̄=cÞ2

p
, and μλ ¼ μ0λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðv̄=cÞ2

p
. Note that

T 0 and μ0λ are Lorentz scalars that have the meaning of the
temperature and chemical potentials in the local rest frame
of the plasma. From the form of the distribution function
(14), the parameters T and μλ appear to play the role of the
temperature and chemical potentials in the laboratory
reference frame. Such an interpretation of T and μλ should
be used with caution, however, because the plasma is not
stationary with respect to the laboratory frame. It is not
difficult to check that the distribution function (14) is
indeed a stationary solution of the kinetic equation (12) for
constant perpendicular electric and magnetic fields.
The velocity v̄ ¼ cE ×B=B2 is known in the plasma

physics as the drift velocity [48] because the motion of
charged particles in constant perpendicular electric and
magnetic fields is the superposition of circular motion
around a point called the guiding center and a drift of this
point with the velocity v̄. It is crucially important for us that
the drift velocity does not depend on the charges (and
masses) of particles. In fact, this remains true also in a
nonrelativistic plasma.
It should be emphasized that the plasma drift is well

defined only when E⊥ < B. In this case the drift speed

v̄ ¼ cE⊥=B is smaller than the speed of light c. In the
opposite case, E⊥ > B, there is no reference frame K0, in
which the perpendicular component of the electric field
vanishes.
By using function (14) as the zeroth order approximation

for the distribution function, let us proceed to the analysis
of the general case when the parallel component of the
electric field E∥ is also present and drives the system out of
equilibrium. We will seek the solution for fλ in the form of
an expansion, i.e.,

fλ ¼ fðeqÞλ þ δfð1Þλ þ � � � ; ð15Þ

where δfð1Þλ defines a deviation from the local equilibrium
to the first order in the parallel electric field E∥, magnetic
field B, and the first derivatives of electromagnetic fields
and chemical potentials.
By substituting expansion (15) into the kinetic equa-

tion (12) and keeping only the terms up to linear order, we
obtain

D̄λ

T
∂ðμλ þ p · v̄Þ

∂t −
D̄λ

T
e
ðE ·BÞðv ·BÞ

B2

þ D̄λ

T
v ·

∂ðμλ þ p · v̄Þ
∂x þ δfð1Þλ

τ
¼ 0; ð16Þ

where we used the notation D̄λðμλÞ≡fðeqÞλ ð1−fðeqÞλ Þ¼
eðcp−p·v̄−μλÞ=T=ðeðcp−p·v̄−μλÞ=T þ1Þ2. Note that the drift
velocity v̄ is defined in terms of electromagnetic fields
and, thus, may depend on the spacetime coordinates. By
solving the above equation, we obtain

δfð1Þλ ¼ τD̄λ

T

�
e
ðE ·BÞðv ·BÞ

B2
− v ·

∂ðμλ þ p · v̄Þ
∂x −

∂ðμλ þ p · v̄Þ
∂t

�
: ð17Þ

By making use of this first-order correction to the distribution function fiðeqÞλ , we can now calculate the charge densities and
current densities to the same order.
The first-order result for the chiral charge densities reads

nλ ¼
X
i

signðeiÞ
Z

d3p
ð2πÞ3

�
fiðeqÞλ þ δfi;ð1Þλ þ ei

c
ðB ·Ωi

λÞfiðeqÞλ

�

¼ nð0Þλ − τ
∂nð0Þλ

∂μλ
�
v̄ ·

∂μλ
∂x þ ∂μλ

∂t
�
− τnð0Þλ

�
ð∇ · v̄Þ þ 4v̄

ðc2 − v̄2Þ
�
v̄ ·

∂v̄
∂xþ ∂v̄

∂t
��

; ð18Þ

where, by definition,

nð0Þλ ¼ μ3λ þ π2T2μλ
6π2c3½1 − ðv̄=cÞ2�2 : ð19Þ

In deriving expression (18), we took into account that ðB · v̄Þ ¼ 0.
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To the same first order, the current densities are given by

jλ ¼
X
i

signðeiÞ
Z

d3p
ð2πÞ3

��
v þ eiE ×Ωi

λ þ
ei
c
Bðv ·Ωi

λÞ
�
fiðeqÞλ þ ∇ × ðϵpΩλf

iðeqÞ
λ Þ þ vδfi;ð1Þλ

�

¼ jðHallÞλ þ jð1Þλ þ jð2Þλ þ jðcurlÞλ þ jð3Þλ ; ð20Þ

where the first four contributions are independent of the relaxation time, while the last one, jð3Þλ , is linear in τ. The Hall
current has the standard form, i.e.,

jðHallÞλ ¼
X
i

signðeiÞ
Z

d3p
ð2πÞ3 vf

iðeqÞ
λ ¼ cnð0Þλ

E ×B
B2

: ð21Þ

The explicit expressions of the other two nondissipative terms are given by

jð1Þλ ¼
X
i

signðeiÞ
Z

d3p
ð2πÞ3 eiðE ×Ωi

λÞfiðeqÞλ ¼ λeμλ
4π2v̄3

ðE × v̄Þ
�
c
2
ln
cþ v̄
c − v̄

− v̄

�
; ð22Þ

jð2Þλ ¼
X
i

signðeiÞ
Z

d3p
ð2πÞ3

ei
c
Bðv · Ωi

λÞfiðeqÞλ ¼ λeμλ
8π2v̄

B ln
cþ v̄
c − v̄

: ð23Þ

By making use of the definition for the drift velocity, it is easy to check that, in addition to a perpendicular component, the

current jð1Þλ also contains a contribution parallel to the magnetic field. By combining the corresponding parallel component

with the other current, jð2Þλ , we obtain the usual currents of the chiral magnetic and chiral separation effects

jðCMEÞ
λ ¼ λeμλ

4π2c
B: ð24Þ

The remaining contribution is perpendicular to the magnetic field. Its explicit form reads

jð⊥Þ
λ ¼ jð1Þλ þ jð2Þλ − jðCMEÞ

λ ¼ λeμλ
4π2c

E⊥
ðE · BÞ
E2⊥

�
c
2v̄

ln
cþ v̄
c − v̄

− 1

�
: ð25Þ

This is a new topological contribution, associated with the drift of plasma. It is induced when there are both parallel and
perpendicular components of the electric field. While it is intimately connected with the chiral magnetic effect, it is not just a
Lorentz boosted form of it in the laboratory frame.
To the first order in gradients and fields, the magnetization current is given by

jðcurlÞλ ¼ λc
24π2

∇ ×

�
v̄
v̄3

ð3μ2λ þ π2T2Þ
�

cv̄
c2 − v̄2

−
1

2
ln
cþ v̄
c − v̄

��
: ð26Þ

An interesting byproduct of this result is that the drift may induce a nonzero magnetization in a chirally asymmetric plasma.
Finally, the last (dissipative) term in the complete expression for the current (20) reads

jð3Þλ ¼
X
i

signðeiÞ
Z

d3p
ð2πÞ3 vδf

i;ð1Þ
λ ¼ c2τð3μ2λ þ π2T2Þ

12π2

�
e
ðE ·BÞB

B2
−
∂μλ
∂x

�
g0

−
cτðμ3λ þ π2T2μλÞ

4π2

�
v̄ð∇ · v̄Þ þ ðv̄ · ∇Þv̄ þ v̄∇v̄

v̄
g1 þ

v̄ðv̄ · ∇v̄Þ
v̄2

g2 þ
2

3ðc2 − v̄2Þ2
∂v̄
∂t þ

8v̄ v̄
3ðc2 − v̄2Þ3

∂v̄
∂t
�
; ð27Þ

where we used the shorthand for the following functions of v̄=c:

g0 ≡ c3

2

Z
1

−1

ð1 − ξ2Þdξ
ðc − v̄ξÞ3 ¼ c3

v̄3

�
cv̄

c2 − v̄2
−
1

2
ln
cþ v̄
c − v̄

�
; ð28Þ
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g1 ≡ c4

2

Z
1

−1

ξð1 − ξ2Þdξ
ðc − v̄ξÞ4 ¼ c4

3v̄4

�
cv̄ð5v̄2 − 3c2Þ
ðc2 − v̄2Þ2 þ 3

2
ln
cþ v̄
c − v̄

�
; ð29Þ

g2 ≡ c4

2

Z
1

−1

ξð5ξ2 − 3Þdξ
ðc − v̄ξÞ4 ¼ c4

3v̄4

�
cv̄ð15c4 − 40c2v̄2 þ 33v̄4Þ

ðc2 − v̄2Þ3 þ 15

2
ln
cþ v̄
c − v̄

�
: ð30Þ

Note that, in the limit of small drift velocities v̄=c → 0,
these functions are nonsingular: g0 ≃ 2=3þOðv̄2=c2Þ,
g1 ≃Oðv̄=cÞ, and g2 ≃Oðv̄3=c3Þ.
The result in Eq. (24) renders the standard chiral

separation and chiral magnetic effect currents. In addition,
Eq. (21) gives the following currents due to the Hall effect
as well as its generalization to the case of axial current:

j ¼ cnð0Þ
E ×B
B2

¼ μðμ2 þ 3μ25 þ π2T2Þ
3π2c2½1 − ðv̄=cÞ2�2

E ×B
B2

; ð31Þ

j5 ¼ cnð0Þ5

E ×B
B2

¼ μ5ðμ25 þ 3μ2 þ π2T2Þ
3π2c2½1 − ðv̄=cÞ2�2

E ×B
B2

: ð32Þ

These have the expected structure and are not very
surprising. Much more surprising are the new contributions
to current densities in Eq. (25). The corresponding currents
appear to be of topological origin. Indeed, they appear due
to the presence of the Berry connection in the definition of
current (9) and do not depend on temperature or the
relaxation time τ. They give rise to the following electric
current and axial current densities:

j ¼ eμ5
2π2c

E⊥
ðE · BÞ
E2⊥

�
c
2v̄

ln
cþ v̄
c − v̄

− 1

�

⟶
E⊥→0 eμ5

6π2c
E⊥

ðE ·BÞ
B2

; ð33Þ

j5 ¼
eμ
2π2c

E⊥
ðE ·BÞ
E2⊥

�
c
2v̄

ln
cþ v̄
c − v̄

− 1

�

⟶
E⊥→0 eμ

6π2c
E⊥

ðE ·BÞ
B2

: ð34Þ

These currents resemble the chiral magnetic/separation
currents, but flow perpendicularly to the magnetic field.
They are of the first order in electromagnetic fields and
appear to be nondissipative. The fact that these currents are
proportional to E ·B may hint at their possible connection
with the chiral anomaly. We also observe that currents (33)
and (34) are deeply connected with the existence of
the plasma drift. They exist only when both the
perpendicular and parallel components of the electric field
are nonvanishing. This latter suggests that the new topo-
logical currents cannot be eliminated, or reduced to the

chiral magnetic/separation currents, by a simple boost
transformation.
The Ohm’s current in Eq. (27) has only the longitudinal

projection with respect to the magnetic field. This is due to
the fact that the perpendicular component of the electric
field is exactly accounted in the drift velocity. In addition to
the standard Ohm’s and diffusion currents, given by the first
term in Eq. (27), there are also other dissipative contribu-
tions in jð3Þλ , which are associated with the inhomogeneity
of the drift flow. These appear to be connected with a
nonzero viscosity of chiral plasma.
To linear order in electromagnetic fields and derivatives,

the continuity equation reads

∂nð0Þλ

∂μλ
�∂μλ

∂t þ v̄ ·
∂μλ
∂x

�
þ ∂nð0Þλ

∂v̄
�∂v̄
∂t þ v̄ ·

∂v̄
∂x

�

þ nð0Þλ ∇ · v̄ ¼ 0 ð35Þ

or equivalently,

�
3ðμ2 þ μ25Þ

π2T2
þ 1

��∂μ
∂t þ v̄ ·

∂μ
∂x

�
þ 6μμ5
π2T2

�∂μ5
∂t þ v̄ ·

∂μ5
∂x

�

þ μ

�
μ2 þ 3μ25
π2T2

þ 1

��
4v̄

c2 − v̄2

�∂v̄
∂t þ v̄ ·

∂v̄
∂x

�
þ∇ · v̄

�

¼ 0; ð36Þ

�
3ðμ2 þ μ25Þ

π2T2
þ 1

��∂μ5
∂t þ v̄ ·

∂μ5
∂x

�
þ 6μμ5
π2T2

�∂μ
∂t þ v̄ ·

∂μ
∂x

�

þ μ5

�
μ25 þ 3μ2

π2T2
þ 1

��
4v̄

c2 − v̄2

�∂v̄
∂t þ v̄ ·

∂v̄
∂x

�
þ∇ · v̄

�

¼ 0: ð37Þ

In the complete set of the anomalous Maxwell equations,
these two relations determine how local equilibrium electric
and chiral chemical potentials evolve in a self-consistent
way in a chiral plasma.

IV. EXPANSION IN POWERS OF
ELECTROMAGNETIC FIELDS

AND DERIVATIVES

In the previous section, we studied the chiral plasma in
the drifting state. This allowed us to account for the plasma
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drift exactly in the zeroth approximation of the distribution
function. In this section, we consider the case where neutral
particles exert a substantial drag on the system so that one
can use the Fermi–Dirac distribution function (2) as the
equilibrium distribution function. We will treat both electric
and magnetic fields as perturbations. From a physics
viewpoint, this is the regime of a large collision rate
[48,51]. In this case, an expansion in powers of both
electric and magnetic fields is justified. Since the calcu-
lations in this case become much simpler than those in the
previous section, we will derive the expressions for the
densities and currents to the second order in electromag-
netic fields and derivatives. For some earlier studies using
the effective action formalism, see also Ref. [52].

A. Distribution function to quadratic order in
electromagnetic fields and derivatives

We seek the solution to Eq. (12) in the form of a series in
powers of electromagnetic fields, i.e.,

fλ ¼ fðeqÞλ þ δfð1Þλ þ δfð2Þλ þ � � � ð38Þ

and treat each space/time derivative as an extra power of
electromagnetic field. By substituting the above ansatz in
Eq. (12) and keeping the terms up to linear order in
electromagnetic fields, we obtain

Dλ

T
∂μλ
∂t −

Dλ

T
eðE · vÞ þDλ

T
v ·

∂μλ
∂x þ δfð1Þλ

τ
¼ 0; ð39Þ

where we used the notation DλðμλÞ ¼ eðcp−μλÞ=T=
ðeðcp−μλÞ=T þ 1Þ2. The above equation is satisfied when

δfð1Þλ ¼ τDλ

T

�
eðEλ · vÞ −

∂μλ
∂t

�
: ð40Þ

Here, by definition, Eλ ≡ E − e−1∂μλ=∂x. By making use
of this result, we derive the following formal results for the
densities and currents:

nλ ¼
X
i

signðeiÞ
Z

d3p
ð2πÞ3

�
fiðeqÞλ þ δfi;ð1Þλ þ ei

c
ðB ·Ωi

λÞfiðeqÞλ

�
¼ μλðμ2λ þ π2T2Þ

6π2c3
−
τð3μ2λ þ π2T2Þ

6π2c3
∂μλ
∂t ; ð41Þ

jλ ¼
X
i

signðeiÞ
Z

d3p
ð2πÞ3

��
v þ eiE × Ωi

λ þ
ei
c
Bðv · Ωi

λÞ
�
fiðeqÞλ þ vδfi;ð1Þλ

�
¼ λeBμλ

4π2c
þ τeEλð3μ2λ þ π2T2Þ

18π2c
; ð42Þ

where signðeiÞ was included in order to correctly account for the contribution of antiparticles. As is clear, to this order, the
magnetization current in Eq. (10) does not contribute. Then, by making use of the continuity equation, to linear order in the
fields and derivatives we obtain

3μ2λ þ π2T2

6π2c3
∂μλ
∂t ¼ 0: ð43Þ

This result implies that the time derivative of μλ unlike the case of the drifting state considered in the previous section
vanishes to linear order. In fact, as we will see below, it is of second order in fields. Taking this into account, the leading
order correction to the distribution function takes the following form:

δfð1Þλ ¼ ecτDλ

T
ðEλ · p̂Þ; p̂ ¼ p

p
; ð44Þ

where we also took into account that v ¼ cp̂.
Before proceeding to the derivation of the quadratic correction to the distribution function, let us note the following

results:

∂δfð1Þλ

∂t ¼ ecτDλ

T
∂
∂t ðEλ · p̂Þ; ð45Þ

∂δfð1Þλ

∂p ¼ −
ec2τDλ

T2
ð1 − 2fðeqÞλ Þp̂ðEλ · p̂Þ þ

τDλ

T
ec
p
½Eλ − p̂ðEλ · p̂Þ�; ð46Þ
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∂δfð1Þλ

∂x ¼ ecτDλ

T2
ð1 − 2fðeqÞλ ÞðEλ · p̂Þ

∂μλ
∂x þ ecτDλ

T
∂
∂x ðEλ · p̂Þ: ð47Þ

To quadratic order in electromagnetic fields, the solution δfð2Þλ to the kinetic equation takes the form:

δfð2Þλ ¼ −
τDλ

T
∂μλ
∂t þ e2c2τ2Dλ

T2
ð1 − 2fðeqÞλ ÞðEλ · p̂Þ2 −

ecτ2Dλ

T

� ∂
∂tþ cp̂ ·

∂
∂x

�
ðEλ · p̂Þ

þ e2τDλ

T
ðEλ · BÞðΩλ · p̂Þ −

e2cτ2Dλ

pT
p̂ · ðB ×EλÞ −

e2cτ2Dλ

pT
½ðE ·EλÞ − ðE · p̂ÞðEλ · p̂Þ�

−
e2τDλ

T
ðB · ΩλÞðEλ · p̂Þ −

eτDλ

T
ðE ×ΩλÞ ·

∂μλ
∂x : ð48Þ

Having determined the corrections to the local equilibrium distribution function in the first and second order in
electromagnetic field and derivatives, it is not difficult to find the corresponding charge and current densities.

B. Equations for the chemical potentials

We have the following results for the densities and currents:

nλ ¼
X
i

signðeiÞ
Z

d3p
ð2πÞ3

�
fiðeqÞλ þ δfi;ð1Þλ þ ei

c
ðB ·Ωi

λÞfiðeqÞλ þ ei
c
ðB ·Ωi

λÞδfi;ð1Þλ þ δfi;ð2Þλ

�

¼ μλðμ2λ þ π2T2Þ
6π2c3

−
τð3μ2λ þ π2T2Þ

6π2c3
∂μλ
∂t −

eτ2ð3μ2λ þ π2T2Þ
18π2c

∇ · Eλ þ
λe2τðEλ · BÞ

4π2c
−
eτ2μλ
3π2c

�
Eλ ·

∂μλ
∂x

�
; ð49Þ

jλ ¼
X
i

signðeiÞ
Z

d3p
ð2πÞ3

��
v þ eiE ×Ωi

λ þ
ei
c
Bðv ·Ωi

λÞ
�
fiðeqÞλ þ ðv þ eiE × Ωi

λÞδfi;ð1Þλ þ vδfi;ð2Þλ � þ jðcurlÞλ

¼ λeBμλ
4π2c

þ τeEλð3μ2λ þ π2T2Þ
18π2c

−
eτ2ð3μ2λ þ π2T2Þ

18π2c
∂E
∂t −

e2τ2μλ
6π2

ðB ×EλÞ þ
λeτ
12π2

∇ × ðμλEÞ: ð50Þ

To this quadratic order, we had to also take into account the magnetization current in Eq. (10). The corresponding additional
contribution is the last term in Eq. (50). It can be rewritten in an equivalent form as follows:

jðcurlÞλ ¼ λeτ
12π2

μλ∇ × E −
λeτ
12π2

E ×
∂μλ
∂x ¼ −

λeτμλ
12π2c

∂B
∂t −

λeτ
12π2

E ×
∂μλ
∂x ; ð51Þ

where we used the Maxwell equation (4) in the last equality. In the continuity equation, of course, such a current plays no
role. By substituting the results in Eqs. (49) and (50) into the continuity equation, we obtain the sought equations for the
chemical potentials

3μ2λ þ π2T2

6π2c3
∂μλ
∂t þ τeð3μ2λ þ π2T2Þ

18π2c
∇ · Eλ þ

τeμλ
3π2c

�
Eλ ·

∂μλ
∂x

�
¼ λe2Eλ · B

4π2c
: ð52Þ

These are equivalent to the following equations for the electric and axial charge chemical potentials:

ð3μ2 þ 3μ25 þ π2T2Þ
�∂μ
∂t −

τc2

3
∇2μþ τec2

3
∇ · E

�
þ 6μμ5

�∂μ5
∂t −

τc2

3
∇2μ5

�
þ 3

2
ec2

�
B ·

∂μ5
∂x

�

þ 2τμc2
�
eE ·

∂μ
∂x −

�∂μ
∂x

�
2

−
�∂μ5
∂x

�
2
�
þ 2τμ5c2

�
eE ·

∂μ5
∂x − 2

∂μ
∂x ·

∂μ5
∂x

�
¼ 0; ð53Þ
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ð3μ2 þ 3μ25 þ π2T2Þ
�∂μ5
∂t −

τc2

3
∇2μ5

�
þ 6μμ5

�∂μ
∂t −

τc2

3
∇2μþ τec2

3
∇ ·E

�
þ 3

2
ec2

�
B ·

∂μ
∂x

�

þ 2τμ5c2
�
eE ·

∂μ
∂x −

�∂μ
∂x

�
2

−
�∂μ5
∂x

�
2
�
þ 2τμc2

�
eE ·

∂μ5
∂x − 2

∂μ
∂x ·

∂μ5
∂x

�
¼ 0: ð54Þ

These equations determine how local equilibrium electric and chiral chemical potentials evolve in an inhomogeneous
chirally asymmetric plasma. In order to complete our derivation of anomalous Maxwell equations for inhomogeneous chiral
plasma, we should find the explicit expressions for the currents to the second order in electromagnetic field and derivatives.
To this order, the electric current and axial current densities are

j ¼ eBμ5
2π2c

þ
X
λ

τeEλð3μ2λ þ π2T2Þ
18π2c

−
X
λ

eτ2ð3μ2λ þ π2T2Þ
18π2c

∂E
∂t −

X
λ

e2τ2μλ
6π2

ðB × EλÞ þ
X
λ

λeτ
12π2

∇ × ðμλEÞ; ð55Þ

j5 ¼
eBμ
2π2c

þ
X
λ

λ
τeEλð3μ2λ þ π2T2Þ

18π2c
−
X
λ

λ
eτ2ð3μ2λ þ π2T2Þ

18π2c
∂E
∂t −

X
λ

λ
e2τ2μλ
6π2

ðB ×EλÞ þ
X
λ

eτ
12π2

∇ × ðμλEÞ; ð56Þ

while the electric and axial charge densities are

n¼
X
λ

μλðμ2λ þπ2T2Þ
6π2c3

−
X
λ

τð3μ2λ þπ2T2Þ
6π2c3

∂μλ
∂t −

X
λ

eτ2ð3μ2λ þπ2T2Þ
18π2c

∇ ·Eλ−
eτ

2π2c

�
B ·

∂μ5
∂x

�
−
X
λ

eτ2μλ
3π2c

�
Eλ ·

∂μλ
∂x

�
;

ð57Þ

n5 ¼
X
λ

λ
μλðμ2λ þ π2T2Þ

6π2c3
−
X
λ

λ
τð3μ2λ þ π2T2Þ

6π2c3
∂μλ
∂t −

X
λ

λ
eτ2ð3μ2λ þ π2T2Þ

18π2c
∇ ·Eλ

þ eτ
2π2c

�
eE −

∂μ
∂x

�
·B −

X
λ

λ
eτ2μλ
3π2c

�
Eλ ·

∂μλ
∂x

�
: ð58Þ

Since electric and chiral chemical potentials are much smaller than temperature in a primordial plasma, it is useful to
determine the charge and current densities in the high-temperature limit.

C. Electric and chiral currents in the high-temperature limit

In the high-temperature limit, the electric current and axial current densities are

j≃ eBμ5
2π2c

þ τT2

9c

�
eE −

∂μ
∂x

�
−
eτ2T2

9c
∂E
∂t ; ð59Þ

j5 ≃ eBμ
2π2c

−
τT2

9c
∂μ5
∂x ; ð60Þ

while the electric and axial charge densities are

n≃ T2μ

3c3
−
τT2

3c3
∂μ
∂t þ

τ2T2

9c
ð∇2μ − e∇ ·EÞ − eτ

2π2c

�
B ·

∂μ5
∂x

�
; ð61Þ

n5 ≃ T2μ5
3c3

−
τT2

3c3
∂μ5
∂t þ τ2T2

9c
∇2μ5 þ

eτ
2π2c

�
eE −

∂μ
∂x

�
·B: ð62Þ

In the high-temperature limit, jμλj ≪ T, the equations for the chiral μ5 and fermion number μ chemical potentials read

E. V. GORBAR et al. PHYSICAL REVIEW D 93, 105028 (2016)

105028-10



∂μ
∂t þ

3c2

2π2T2
eB ·

∂μ5
∂x −

τc2

3
ð∇2μ − e∇ ·EÞ ¼ 0; ð63Þ

∂μ5
∂t þ 3c2

2π2T2
eB ·

∂μ
∂x −

τc2

3
∇2μ5 ¼

3e2c2E · B
2π2T2

: ð64Þ

It is interesting to point that the equations of motion for the
chemical potentials contain the diffusion terms, propor-
tional to ∇2μ5=3 and ∇2μ=3, with the diffusion constant
given by τc2=3. This is in agreement with the general
arguments in Ref. [27]. Our derivation in the present paper
not only establishes such a term, but also leads to a formal
expression for the diffusion constant in terms of the
relaxation time. In general, in the presence of a nonzero
magnetic field, one expects that there are two different
diffusion terms, a longitudinal one proportional to ∂2

zμλ and
a transverse one proportional to ΔTμλ, see, for example,
Eq. (9) in Ref. [53]. By making use of the chiral kinetic
theory, both diffusion terms can be rigorously derived.
As we see from our analysis above, to the quadratic order in
the fields, the longitudinal and transverse diffusion con-
stants are the same. It can be shown, however, that the
longitudinal diffusion constant will have a nonzero cor-
rection of order B2 that comes from the term of the
type ðB · ∇ÞðB · ∂μλ=∂xÞ.
In the case of a constant magnetic field and vanishing

electric field, the above set of the equations has a solution in
the form of a (diffusive) chiral magnetic wave. Indeed,
by setting E ¼ 0 and assuming that the magnetic field B is
constant, we find that there is a solution that describes a
diffusive chiral magnetic wave with the following
dispersion relation:

ωCMW ¼ � 3c2

2π2T2
ðeB · kÞ − i

3
τc2jkj2: ð65Þ

Note that the speed of the chiral magnetic wave is given by

vCMW ¼ 3c2jeBj
2π2T2

cos θBk; ð66Þ

where θBk is the angle between the wave vector k and the
magnetic field.

D. Explicit expressions for currents

It is instructive to discuss the physical meaning of
separate contributions in the expressions for the electric
current (55) and axial current (56) densities. Let us start
from the electric current density. After performing the sum
over λ, we derive

j ¼ eBμ5
2π2c

þ τT2

9c

�
1þ 3ðμ2 þ μ25Þ

π2T2

��
eE −

∂μ
∂x

�

þ e2τ2μ
3π2

E ×B −
2eτμμ5
3π2c

∂μ5
∂x þ eτ2μ

3π2

�
B ×

∂μ
∂x

�

þ eτ2μ5
3π2

�
B ×

∂μ5
∂x

�
−
eτ2T2

9c

�
1þ 3ðμ2 þ μ25Þ

π2T2

� ∂E
∂t

−
eτμ5
6π2c

∂B
∂t −

eτ
6π2

E ×
∂μ5
∂x : ð67Þ

Obviously, the first term describes the current of the chiral
magnetic effect, which is the current induced by a nonzero
chiral chemical potential along the direction of the mag-
netic field. The second term combines the Ohm’s and
diffusion currents. Let us note that the conductivity equals

σ ¼ e2c2τ
3

χð0Þ; ð68Þ

where we introduced the shorthand notations

χð0Þ ¼ ∂nð0Þ
∂μ ¼ 3μ2 þ 3μ25 þ π2T2

3π2c3
; ð69Þ

nð0Þ ¼
X
λ

μλðμ2λ þ π2T2Þ
6π2c3

¼ μðμ2 þ 3μ25 þ π2T2Þ
3π2c3

: ð70Þ

In order to apply our results for a deconfined quark-gluon
plasma, one could fix the relaxation-time parameter by
using the lattice results [54,55] for the quark-gluon plasma
conductivity (obtained at T ¼ 1.45Tc) and Eq. (68):

τ≃ 0.37
9

αT
≃ 375 fm=c

�
240 MeV

T

�
: ð71Þ

The last five terms in Eq. (67) are new types of terms that
are produced by time-dependent electric and magnetic
fields and gradients of the chemical potentials and, to
the best of our knowledge, have not been discussed in the
literature before. We will discuss the physical meaning of
each of them, as well as their possible implications in the
subsection below.
A few words are in order about the third term in Eq. (67),

which is nothing else but the celebrated Hall current. At the
first sight it appears to be strange that the corresponding
current is proportional to the square of the relaxation time.
Yet, we emphasize that this is a standard result in the limit
of large collision rate (small τ), see for example, Sec. VI.10
in Ref. [48]. Moreover, the usual experimental setup for
measuring the Hall effect, in which one enforces jy ¼ 0,
will lead to the well-known relation between the electric
current in the x direction and the electric field in the y
direction, i.e., jx ∝ n2Ey=ðμBÞ up to small corrections
suppressed by the second power of the magnetic field
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and the relaxation time [51]. Now, the leading order term in
such a result is indeed standard and independent of the
relaxation time.
Similarly, after performing the sum over λ in the

expression for the axial current density in Eq. (56), we
derive

j5 ¼
eBμ
2π2c

−
eτT2

9c

�
1þ 3ðμ2 þ μ25Þ

π2T2

�∂μ5
∂x þ 2e2τμμ5

3π2c
E

−
eτ2μ5
3π2

B×
�
eE−

∂μ
∂x

�
þ eτ2μ

3π2

�
B×

∂μ5
∂x

�

−
2eτμμ5
3π2c

∂μ
∂x−

2eτ2μμ5
3π2c

∂E
∂t −

eτμ
6π2c

∂B
∂t −

eτ
6π2

E×
∂μ
∂x :
ð72Þ

The first term in j5 is the celebrated chiral separation
effect current. The second term is a diffusion current.
The third term is the axial current associated with the
chiral electric separation effect [56,57]. The rest are
new terms.

E. New contributions to the electric current

Let us discuss the new terms in the electric current (67)
connected with inhomogeneities of the electric and axial
charge densities in chiral plasma. The first of the three new
types of currents is associated in a simple way with a chiral
diffusion,

j∂χ ¼ −
2eτμμ5
3π2c

∂μ5
∂x : ð73Þ

It is induced in a plasma in which both the fermion number
and chiral chemical potentials are nonzero. The direction of
the current coincides with the gradient ∂μ5=∂x. The current
of the second type goes perpendicularly to the magnetic
field, as well as to the gradient of the electric/chiral
chemical potential, i.e.,

jB×∂ ¼ eτ2μ
3π2

�
B ×

∂μ
∂x

�
þ eτ2μ5

3π2

�
B ×

∂μ5
∂x

�
; ð74Þ

therefore, we will call this current the Hall diffusion. The
currents in Eqs. (73) and (74) occur already in absence of
electric fields. The current of the third type is driven by a
time-dependent electric field,

j∂tE ¼ −
eτ2T2

9c

�
1þ 3ðμ2 þ μ25Þ

π2T2

� ∂E
∂t : ð75Þ

This current is clearly a time-dependent electric field
analogue of the Ohm’s current, cf. the second term in
Eq. (67). Finally, we also get the following contributions
due to the magnetization current:

jðcurlÞ ¼ −
eτμ5
6π2c

∂B
∂t −

eτ
6π2

E ×
∂μ5
∂x : ð76Þ

The second term is very interesting. It describes a
current perpendicular to the electric field and the gradient
of the axial chemical potential. Such a current resembles
the anomalous Hall effect current [58], which happens in
the absence of magnetic field. In the case of the chiral
plasma at hand, it describes the anomalous chiral Hall
effect.

F. New contributions to the axial current

Let us now turn to the new terms in the axial current (72).
The first of them, i.e.,

j5;EB ¼ e2τ2μ5
3π2

E ×B; ð77Þ

is a chiral analogue of the Hall effect with the axial current
induced in a mediumwith μ5 ≠ 0 [59]. The existence of this
term is very interesting. In principle, it allows one to
determine experimentally the sign of the chiral charge of
dominant carriers in a chiral plasma. The corresponding
sign could be extracted from the direction of j5 in
orthogonal electric and magnetic fields.
The current of the second type is driven by gradients

of the electric and chiral chemical potentials and a
perpendicular magnetic field, i.e.,

j5;B×∂ ¼ eτ2μ5
3π2

�
B ×

∂μ
∂x

�
þ eτ2μ

3π2

�
B ×

∂μ5
∂x

�
: ð78Þ

Obviously, this current is a chiral analogue to the Hall
diffusion current in Eq. (74). The last contribution to the
axial current is given by two terms

j5;∂tE ¼ −
2eτμμ5
3π2c

∂μ
∂x −

2eτ2μμ5
3π2c

∂E
∂t : ð79Þ

Since current (79) vanishes in a plasma where μ or μ5
equals zero, this current defines diffusion and time-
dependent electric field analogues of the current of the
chiral electric separation effect given by the third term in
Eq. (72) (note that the corresponding numerical coefficients
of the currents match too). At last, the magnetization
current gives the following contribution to the axial current
density:

jðcurlÞ5 ¼ −
eτμ
6π2c

∂B
∂t −

eτ
6π2

E ×
∂μ
∂x : ð80Þ

The last term is analogous to the anomalous chiral Hall
effect current, given by the last term in Eq. (76). However,
the corresponding contribution to the axial current is
perhaps even more interesting. It implies that, in an electric
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field, the perpendicular component of the gradient of the
chemical potential should lead to a nonzero j5.
Before concluding this section, let us emphasize that the

main results of this section are the explicit expressions for
the currents in an inhomogeneous chiral plasma. These
expressions provide a critical ingredient in the analysis of
the anomalous Maxwell equations (3) through (6), together
with the equations for time-dependent and spatially inho-
mogeneous chemical potentials. The corresponding com-
plete set of equations is a starting point for the future
studies of the inverse cascade scenarios with a realistic
treatment of plasma inhomogeneities.

V. CONCLUSION

In this paper, by making use of the chiral kinetic
equation, we derived a closed set of anomalous Maxwell
equations relevant for the study of relativistic plasmas with
chiral asymmetry and inhomogeneities. By utilizing an
expansion in powers of electromagnetic fields and deriv-
atives, we derived electric and axial currents as well as a
closed set of the coordinate-space equations for the electric
(or fermion number) and chiral chemical potentials. We
studied the two regimes in which the zero order distribution
function is given by the standard Fermi-Dirac distribution
function and a boosted one. The latter realizes the drifting
state where the plasma drifts as a whole with the drift
velocity perpendicular to both electric and magnetic fields.
In this case, the expansion proceeds only in powers of the
component of electric field parallel to the magnetic field
whereas the perpendicular component of electric field is
taken into consideration exactly. In addition to the Hall
current for the electric current, we found its analogue for
the axial current generated by the axial density. The chiral
magnetic effect current is reproduced exactly in the drifting
state. What is surprising is that we also found two addi-
tional electric and axial currents of a possible topological
origin. They resemble the chiral magnetic/separation cur-
rents, but flow perpendicular to the magnetic field and are
driven by the perpendicular component of electric field, as
well as the scalar product of the electric and magnetic
fields.
While a relativistic QED electron-positron plasma pro-

vides perhaps one the best examples of a plasma in the
drifting state, quark-gluon plasma at sufficiently large
temperatures may give an example of plasma where the
drift is not fully developed because electromagnetically
neutral gluons provide an essential drag on the charged
particles. For such a case, we treated both electric and
magnetic fields as perturbations and derived the expres-
sions for the densities and currents to the second order in
electromagnetic fields and derivatives. In the special case of
vanishing electric field, we found a solution in the form of a
diffusive chiral magnetic wave with the propagation speed
vCMW ∝ jeBj=T2, see Eq. (66). The diffusion constant is

given by c2τ=3, where τ ∼ 1=½e4T lnð1=jejÞ� is the relax-
ation time [45].
In the framework used, we also derived the explicit

expressions for the fermion number and chiral densities, as
well as the corresponding currents. The results are in
agreement with the continuity equations, supplemented
by the appropriate quantum anomaly term. The final results
reproduce several previously known effects. In the case of
the electric current, we reproduced the Ohm’s and diffusion
currents, as well as the chiral magnetic effect. In addition,
we found several new types of contributions connected
with inhomogeneities in relativistic plasma that have not
been reported before. They are the chiral diffusion and two
diffusion terms of the Hall type perpendicular to the
magnetic field. There is also a term driven by a time-
dependent electric field. One of the very interesting new
contributions is the anomalous chiral Hall effect current,
which describes an electric current perpendicular to the
applied electric field and the gradient ∂μ5=∂x. The origin
of this current is related to the Berry curvature. We also find
that there is its counterpart in the axial current density,
which is driven by the electric field and the gradient of the
chemical potential. It is even more amazing because it can
be induced even in a chirally symmetric plasma.
In the case of the chiral current, we reproduced the well-

known results for the chiral separation and chiral electric
separation effects. We also found an expected diffusion
current and several new types of currents including a chiral
analogue of the Hall effect, which may allow one to
experimentally determine the sign of the chiral charge of
dominant carriers in a chiral plasma. In addition, there are
two new types of chiral diffusion currents of the Hall type
and two diffusion and time-dependent electric field ana-
logues of the chiral electric separation effect.
The theoretical framework of our study here is a starting

point in the study of the inverse cascade scenario proposed
in a number of recent papers. In the simplified analysis of
the corresponding dynamics, it is often assumed that a
space-average currents and density correctly capture the
underlying dynamics of the inverse cascade. It is quite
natural to suggest that such an assumption may not be
justified. Indeed, the underlying mechanism relies on the
clear separation of the short- and long-range modes at the
scale set by the chiral chemical potential. If the latter is not
uniform, a whole window of length scales opens, where
the dynamics does not have a preferred direction of the
cascade. If the underlying processes in this region would
happen to enhance the degree of inhomogeneities, the
corresponding window of length scales would widen and
prematurely quench the cascade. Indirectly, this may have
been suggested by a recent study in Ref. [60], although the
conclusions of that study may not be conclusive. In fact,
there are indications that the inverse cascade in the model of
Ref. [60] should be realized when sufficiently large lattices
are used [61].
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The natural continuation of the present study is a critical
reexamination of the cosmological inverse cascade scenario,
in which plasma inhomogeneities are properly accounted
for. The corresponding investigation seems possible only by
making extensive use of numerical methods. That is beyond
the scope of the present paper, but will be attempted in the
future study and reported elsewhere.
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APPENDIX: USEFUL TABLE INTEGRALS
AND RELATIONS

In this appendix, for reader’s convenience, we list the key
table integrals and relations used in the main text.
By making use of the shorthand notation DλðμλÞ≡

fðeqÞλ ð1−fðeqÞλ Þ¼ eðcp−μλÞ=T=ðeðcp−μλÞ=T þ1Þ2, is it straight-
forward to derive the following results of integrations over
the momenta:

Z
d3p
ð2πÞ3

DλðμλÞ
p2

¼ T
2π2c

1

1þ e−μλ=T
; ðA1Þ

Z
d3p
ð2πÞ3

DλðμλÞ
p

¼ T2

2π2c2
ln ð1þ eμλ=TÞ; ðA2Þ

Z
d3p
ð2πÞ3 p

n−2fðeqÞλ ðμλÞ

¼ −
Tnþ1Γðnþ 1Þ

2π2cnþ1
Linþ1ð−eμλ=TÞ; n ≥ 0; ðA3Þ

Z
d3p
ð2πÞ3 p

n−2DλðμλÞ

¼ −
Tnþ1Γðnþ 1Þ

2π2cnþ1
Linð−eμλ=TÞ; n ≥ 0; ðA4Þ

Z
d3p
ð2πÞ3DλðμλÞð1 − 2fðeqÞλ Þ ¼ T3

π2c3
ln ð1þ eμλ=TÞ: ðA5Þ

When calculating the contributions of antiparticles, one
also encounters similar integrals with DλðμλÞ → Dλð−μλÞ.
In order to simplify the final expressions for currents and
densities, then, it is often useful to take into account the
following relations:

1

1þ ex
þ 1

1þ e−x
¼ 1; ðA6Þ

lnð1þ exÞ − lnð1þ e−xÞ ¼ x; ðA7Þ

Li2ð−exÞ þ Li2ð−e−xÞ ¼ −
x2

2
−
π2

6
; ðA8Þ

Li3ð−exÞ − Li3ð−e−xÞ ¼ −
x3

6
−
π2x
6

; ðA9Þ

Li4ð−exÞ þ Li4ð−e−xÞ ¼ −
x4

24
−
π2x2

12
−
7π4

360
: ðA10Þ
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