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Correcting for dependent censoring
in routine outcome monitoring data by
applying the inverse probability censoring
weighted estimator

SJW Willems,1 A Schat,2 MS van Noorden2 and M Fiocco1,3

Abstract

Censored data make survival analysis more complicated because exact event times are not observed. Statistical

methodology developed to account for censored observations assumes that patients’ withdrawal from a study is

independent of the event of interest. However, in practice, some covariates might be associated to both lifetime and

censoring mechanism, inducing dependent censoring. In this case, standard survival techniques, like Kaplan–Meier estimator,

give biased results. The inverse probability censoring weighted estimator was developed to correct for bias due to

dependent censoring. In this article, we explore the use of inverse probability censoring weighting methodology and

describe why it is effective in removing the bias. Since implementing this method is highly time consuming and requires

programming and mathematical skills, we propose a user friendly algorithm in R. Applications to a toy example and to a

medical data set illustrate how the algorithm works. A simulation study was carried out to investigate the performance of

the inverse probability censoring weighted estimators in situations where dependent censoring is present in the data. In the

simulation process, different sample sizes, strengths of the censoring model, and percentages of censored individuals were

chosen. Results show that in each scenario inverse probability censoring weighting reduces the bias induced in the

traditional Kaplan–Meier approach where dependent censoring is ignored.
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1 Introduction

Survival analysis is the study of the distribution of lifetimes, i.e. the times from a pre specified initiating event (e.g.
birth, diagnosis, start of treatment) to some terminal event of interest (e.g. death, relapse, remission). It is most
prominently (but not exclusively) used in the biomedical sciences. A special feature of survival studies is that it takes
time to observe the event of interest. As a result, for a number of subjects, the event is not observed during follow-up,
and the only available information is that the event of interest has not taken place yet at the last observation time.
This phenomenon is called censoring. Methodologies are developed to include censored subjects in analysis.

Standard methods used to analyze data with censored observations assume that censoring is non-informative. This
means that censoring carries no prognostic information about the survival experience. Therefore, individuals who are
censored at a specific time point should be as likely to experience an event as those subjects who remain in the study, i.e.
the probability of being censored is the same for all subjects at risk. Informative censoringmay occur when time to event
and time to censoring are dependent, either directly or through covariates. In the latter case, dependence between event
and censoring times is induced through covariates associated to time to event and time to censoring. This type of
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informative censoring is called dependent censoring and it is the focus of this article. For example, young patients may
be more likely to quit a treatment than older patients. This implies that the event is observed more often in older than in
young patients, leading to biased estimates of survival probabilities, because the observed event times are not
representative for the event times of the whole population.

Since dependent censoring can cause bias in the results, it is crucial to consider this aspect in the analysis.
Inverse probability censoring weighting (IPCW) was proposed1–3 to correct for the presence of dependent
censoring. This method is based on the idea of compensating for censored subjects by giving extra weight to
subjects who are not censored. More specific, IPCW assigns extra weight to subjects with similar characteristics to
the ones that are censored.

Implementing IPCW is very time consuming. Programming and mathematical skills are needed to apply the
IPCW procedure, and careful bookkeeping is required. In this article, a user friendly implementation of IPCW in R is
proposed. The algorithm makes clever use of the existing survival package. It makes the IPCW method more
accessible to researchers.

As illustration, IPCW is applied to a toy data set and to a real data set from the Department of Psychiatry of
the Leiden University Medical Center (LUMC) in The Netherlands. A simulation study is performed to compare
IPCW with the traditional methodology in case dependent censoring is present in the data. Several scenarios were
generated with different sample sizes, percentages of censoring, and strengths of the censoring mechanism.
Simulations show that correcting for the presence of dependent censoring by using IPCW is crucial and reduces
bias in the estimation results.

This article is organized as follows. Notation and a short introduction to techniques concerning survival analysis and
details about the concept of dependent censoring are outlined in section 2. The IPCW method is illustrated and applied
to a real data set in section 3. In section 4, a simulation study is presented in which the performance of IPCW is
investigated. Details concerning the proposed user friendly implementation of the IPCW method in R are outlined in
Supplementary Material A, and details concerning the simulation study are described in Supplementary Material B.

2 Dependent censoring in survival analysis

2.1 Definition dependent censoring

The aim of survival analysis is to estimate time to a certain event of interest, e.g. death or recovery. However, event
times are often incompletely observed, i.e. time to the occurrence of the event of interest is not known for some
subjects. This phenomenon is called censoring. Survival data for a subject j are represented as triplets
ðtj, �j, ½Zj ðtÞ, 0 � t � tj �Þ, where the observed variable tj represents the survival time xj if the event is observed
(�j ¼ 1), or the censoring time cj if the event is not observed (�j ¼ 0), i.e. tj ¼ minðxj, cj Þ. The vector of p (time-
dependent) covariates is denoted by Zj ðtÞ ¼ ðZj1ðtÞ, . . . ,ZjpðtÞÞ

t. It is assumed that the value of Zj ðtÞ is known at
any time point in the subject’s observation time. Kaplan and Meier4 introduced the Product-Limit Estimator as an
estimator for the marginal survival function (also referred to as Kaplan–Meier estimator). This estimator is defined
as

ŜðtÞ ¼

1 if t5 t1

Q
ti�t

1� di
Yi

h i
if t � t1

,

8><
>: ð1Þ

where di and Yi are, respectively, the number of events and the number of individuals at risk at time ti. This
estimator does not consider the covariates Zj ðtÞ in the survival curve estimation.

The Kaplan–Meier (KM) estimator assumes that censoring times are non-informative, i.e. that there is no
dependence between lifetime X and censoring mechanism C. Hence, the hazard of X among subjects at risk is the
marginal hazard of X, i.e.

hXðtjC � tÞ ¼ hXðtÞ, ð2Þ

or, equivalently, the hazard of censoring time C at time t does not depend on event time X

hCðtjX,X4 tÞ ¼ hCðtjX4 tÞ: ð3Þ
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This assumption may, however, be questionable in practice. For example, in situations where the covariates
history �ZðtÞ ¼ fZðxÞ; 0 � x � tg associated with event times also predicts censoring, i.e.

hCðtj �ZðtÞ,X4 tÞ 6¼ hCðtjX4 tÞ: ð4Þ

A time-dependent Cox proportional hazard model for censoring can be used to test this condition. If equation
(4) holds, event time X and censoring time C are dependent through covariates, a phenomenon called dependent
censoring, and, as a consequence, equations (2) and (3) do not hold.3 In this case, estimators based on the
independent censoring assumption, like KM estimator, should not be used.5 A proper methodology that
accounts for dependent censoring should then be employed to avoid biased results.

To illustrate the possible bias when dependent censoring is present in the data under investigation, simulated
data in which covariates are associated to both time to event and time to censoring are used to estimate the
survival function. Results are given in Figure 1 where the traditional KM estimator and the real survival (which
simply is the KM estimator in case all events times are observed) are shown together. For details concerning the
simulations see Supplementary Material B.

As expected the KM estimator overestimates the real survival probabilities. This indicates that correction for
the presence of dependent censoring is important in order to obtain a good estimator. More examples are shown in
the simulation study described in section 4.

2.2 IPCW estimator

The IPCW estimator1–3 was developed to correct for dependent censoring. It corrects for censored subjects by
giving extra weight to subjects who are not censored. Typically, these weights are chosen in such a way that
individuals who best match the censored subjects will receive more weight. At every observed time point t, each
subject j is given a weight which is inversely proportional to the estimated probability of having remained
uncensored until time t. The estimated probability is based on the fit of a Cox model for censoring with risk
factors for failure and censoring. When a subject is censored at time tc, individuals who remain at risk should be
given extra weight from tc onward. Hence, IPCW weights have to be recalculated for each subject at risk at each
censoring time. This procedure can be summarized in the four steps below.

Step 1. Fit a model for the censoring mechanism that incorporates covariates associated with event and censoring
time.

Step 2. Estimate the probability of remaining uncensored at each observed time point t for all subjects at risk at
that time point. Denote this estimated probability for subject j at time t as K̂Z

j ðtÞ.

Step 3. Compute the IPCW weights as Ŵj ðtÞ ¼ 1=K̂Z
j ðtÞ.

Figure 1. Real survival curve and Kaplan–Meier estimate in case dependent censoring is present in the data.
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Step 4. Estimate the survival probabilities ŜIPCWðt�Þ for time to event in the absence of censoring with subjects
weighted according to the IPCW methodology at each observed time point t� of interest.

IPCW is based on the assumption that, given �ZðtÞ, the hazard ofC at time t is independent of the event timeX, i.e.

hCðtj �ZðtÞ,X,X4 tÞ ¼ hCðtj �ZðtÞ,X4 tÞ: ð5Þ

This means that all covariates that might be associated with event or censoring time must be measured, i.e. there
should be no unmeasured confounders. If this assumption holds, in theory, IPCW can fully correct for bias due to
dependent censoring. Therefore, researchers should always gather enough prognostic values that are expected to
influence censoring time, such that equation (5) may be approximately true.3 Even if all prognostic values are
included in the model, a crucial step in the IPCW method is to have good estimates for the parameters in the
censoring model. Small sample sizes, measurement errors, and other causes for a bad fit for the censoring model
may reduce the precision of the estimated weights. However, when the fitted censoring model is accurate enough,
the IPCW method will reduce the bias due to dependent censoring.

In the remainder of this section, details concerning the IPCW procedure are outlined. Data for subject j are
denoted by ðtj, �j, �Cj

, ½Zj ðtÞ, 0 � t � tj �Þ, where tj is the observed time point, �j is the event indicator, �Cj
¼ 1� �j the

censoring indicator and Zj ðtÞ the vector of covariate values at time t. To implement the IPCW procedure, careful
bookkeeping, mathematical and programming skills are required, which makes implementation time consuming. In
Supplementary Material A, a user friendly implementation of IPCW in R6 that uses the survival package7,8 is
proposed. Toy data in Table 1 are used to illustrate how the algorithm works.

2.2.1 Step 1: Fit censoring model

To assess the influence of covariates ZðtÞ on the probability of being censored, these covariates are included in the
Cox model for time to censoring

hCðtj �ZðtÞÞ ¼ hC0
ðtÞ expð�tCZðtÞÞ, ð6Þ

where hC0
is the baseline hazard, �C is the vector of model parameters, ZðtÞ represents the covariates at time t, and

�ZðtÞ the covariate history. Since this is a standard Cox model, existing methods to fit Cox models can be used for
this step.

Fitting the Cox model for time to censoring on the toy data gives a hazard ratio of 0.281 for the covariate Z,
with 95% confidence interval [0.031, 2.538]. This effect is not significant since no dependence between covariates
and censoring times was deliberately included in the data.

2.2.2 Step 2: Estimate probabilities of remaining uncensored

The estimated hazard for censoring, ĥCðtj �ZðtÞÞ in equation (6), can be used to estimate probabilities of remaining
uncensored for each individual at each time point. These probabilities can be estimated by using the analogue of
the KM estimator for survival probabilities

ŜCKM
ðtjZj ðtÞÞ ¼

Y
fi;ti5t,�i¼0g

½1� ĥC0
ðtiÞ expð�̂

t
CZj ðtiÞÞ�: ð7Þ

Table 1. Toy survival data for six subjects.

id t � Z

1 18 0 1

2 23 1 2

3 27 0 1

4 32 1 2

5 57 0 3

6 64 1 2

Note: For each subject, the observed time point t, event indicator � and time-

independent covariate Z are given.
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The estimated probabilities are denoted by K̂Z
j ðtÞ, where Z is used to emphasize the dependence on Zj ðtÞ.

Results for the toy example are shown in Table 2. Note that the estimated probabilities K̂Z
j ðtÞ are the same for

subjects with equal covariate values.

2.2.3 Step 3: Compute IPCW weights

The weights for each subject j are computed as Ŵj ðtÞ ¼ 1=K̂Z
j ðtÞ, which is inversely proportional to the estimated

probability of remaining uncensored until time t. The estimated IPCW weights for the toy example are given in
Table 2.

At the end of the study time, when most subjects have experienced the event or have been censored, the
probabilities of remaining uncensored become very small. Hence, the IPCW estimator weights will become
large and unstable. Weights can be stabilized by dividing the marginal probability of remaining uncensored by
the estimated probability of remaining uncensored (K̂0

j ðtÞ=K̂
Z
j ðtÞ).

2.2.4 Step 4: Estimate the IPCW version of the survival curve

In Steps 1–3, it was described how to compute weights for all subjects at risk at each observed time point. By
weighting the subjects, a model for time to event in the absence of censoring can be fitted. KM estimator for time
to event is adjusted to include the weighted subjects as follows

ŜIPCWðtÞ ¼

1 if t5 t1

Q
ti�st

1�

P
fj;�j ðtiÞ¼1g

ŴjðtiÞPn

k¼1
RkðtiÞŴkðtiÞ

� �
if t � t1

:

8><
>: ð8Þ

The numerator
P
fj;�j ðtiÞ¼1g

ŴjðtiÞ is the sum of weights of all subjects who experience the event at time point ti. It

represents the estimated number of events that would have occurred at ti in the absence of censoring. It can be
compared to the term di in equation (1). The denominator

Pn
k¼1 RkðtiÞŴkðtiÞ is the sum over weights of all subjects

who are at risk at ti. It represents the estimated number of subjects at risk at ti in the absence of censoring, as Yi in
equation (1). Note that in case the stabilized weights are implemented, the numerator K̂0

j ðtÞ is cancelled out in
equation (8), i.e. stabilized and unstabilized weights result in the same survival probability estimates.

Table 2. Estimated IPCW estimator weights for the toy example.

id tstart tstop d dC z K̂Z
j ðtstartÞ Ŵj ðtstartÞ

1 0 18 0 1 1 1.0000 1.0000

2 0 18 0 0 2 1.0000 1.0000

2 18 23 1 0 2 0.8890 1.1249

3 0 18 0 0 1 1.0000 1.0000

3 18 23 0 0 1 0.6577 1.5205

3 23 27 0 1 1 0.6577 1.5205

4 0 18 0 0 2 1.0000 1.0000

4 18 23 0 0 2 0.8890 1.1249

4 23 27 0 0 2 0.8890 1.1249

4 27 32 1 0 2 0.6827 1.4649

5 0 18 0 0 3 1.0000 1.0000

5 18 23 0 0 3 0.9675 1.0336

5 23 27 0 0 3 0.9675 1.0336

5 27 32 0 0 3 0.8984 1.1131

5 32 57 0 1 3 0.8984 1.1131

6 0 18 0 0 2 1.0000 1.0000

6 18 23 0 0 2 0.8890 1.1249

6 23 27 0 0 2 0.8890 1.1249

6 27 32 0 0 2 0.6827 1.4649

6 32 57 0 0 2 0.6827 1.4649

6 57 64 1 0 2 0.2828 3.5365
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Survival probabilities estimated with IPCW (ŜIPCWðtÞ) for the toy example are compared to the survival
probabilities estimated with standard KM (ŜðtÞ) in Table 3. The difference between these probabilities is very
small because there are only few subjects and no dependent censoring was induced in the data.

Figure 1 showed the poor performance of traditional KM in the presence of dependent censoring in data. To
correct for dependent censoring, the IPCW estimator version of the survival curve was estimated on the same data
set (denoted by KMIPCW). The results are shown in Figure 2 where the classical KM is plotted along with KMIPCW

and the real survival curve. From this figure, we can conclude that IPCW reduced the bias caused by dependent
censoring. More simulation results will be shown in section 4.

3 Application

3.1 Routine outcome monitoring data

IPCW is applied to a data set from the Department of Psychiatry at the LUMC and Rivierduinen, a local
healthcare provider, in The Netherlands. All patients diagnosed with Diagnostic Statistical Manual – fourth
edition – text revision (DSM-IV-TR) mood and/or anxiety disorder and with suicidal ideation were included in
the data set. Suicidal ideation was defined as a score of 2 or higher on item 10 of the Montgomery–Åsberg
Depression Rating Scale (MADRS9). Data were collected through a procedure known as routine outcome
monitoring (ROM)10 used to gather information concerning treatment progress by repeatedly measuring
symptom severity. The goal is to diagnose patients and to inform clinicians and patients about the treatment
progress. The data set was used to identify baseline predictors for remission of suicidal ideation. Remission of
suicidal ideation was defined as a score below 2 on item 10 of the MADRS. Socio-demographic variables,
functional and clinical scores on several other psychometric instruments were considered as possible predictors

Figure 2. Real survival curve and its Kaplan–Meier estimates with (KMIPCW) and without (KM) implementing IPCW.

Table 3. Survival probabilities for the toy data set estimated with standard Kaplan–Meier

(ŜðtÞ), and the IPCW estimator version (ŜIPCWðtÞ).

t ŜðtÞ ŜIPCW ðtÞ

18 1.000 1.000

23 0.800 0.810

27 0.800 0.810

32 0.533 0.517

57 0.533 0.517

64 0.000 0.000
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for remission. All patients were followed from diagnosis until remission or loss to follow-up, with a maximum of
two years.

Standard survival analysis was performed on the data set of 769 depressed and/or anxious patients with suicidal
ideation at baseline. Baseline scores were determined by the Dutch dimensional assessment of personality
pathology-short form (DAPP-SF) and the 36-item short form health survey (SF-36). DAPP-SF is a short form
of the dimensional assessment of personality pathology-basic questionnaire (DAPP-BQ) used for the assessment of
personality pathology. SF-36 is a set of quality-of-life measures. To detect baseline covariates with a significant
effect on remission of suicidal ideation, the Cox model was fitted. Table 4 shows the hazard ratios and the
corresponding 95% confidence intervals.

Covariate self-harm is the most significant covariate. To compare survival curves for patients with different
levels of self-harm, clinicians defined three groups for this variable: low, medium, and high. In Figure 3, the
estimated KM curves are shown for these three groups. Recall that the event of interest is remission; hence,
low survival probability is favorable for patients, since it indicates a high probability of remission.

3.2 Correcting for dependent censoring in ROM data

In this study, researchers were only interested in time to remission within the first two years after diagnosis.
Therefore, each patient who did not experience the event of interest within two years was censored at two
years, as is shown in Figure 4. This is called administrative censoring and was applied to all patients who were
still at risk two years after baseline measurements (5.2% of the included patients). Censoring at two years was
independent of patient characteristics. Many patients in the ROM data set (18.2%) were censored during the first
two years after baseline measurements. These patients are represented by the steps in the inverse KM curve for
time to censoring (Figure 4) during the first two years.

Figure 3. Kaplan–Meier curves for remission from suicidal ideation.

Table 4. Hazard ratios for remission of suicidal ideation.

Risk factor HR (95% CI)

Education level

Low 1

High 1.169 (0.990, 1.380)

Depression severity 0.841 (0.774, 0.913)

(adjusted MADRS)

Self-harm (DAPP-SF) 0.773 (0.711, 0.841)

General health (SF-36) 0.913 (0.841, 0.992)

MADRS: Montgomery–Åsberg depression rating scale; DAPP-SF: Dutch dimensional

assessment of personality pathology-short form.
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Clinicians believe that patients’ withdrawal is likely to be related to their health status. As ROM sessions took
place approximately every three months and a final measurement session was not obligatory, it is conceivable that
patients who achieved remission, and therefore ended the treatment, did not have a final ROM measurement
reflecting their improvement. This suggests a dependence between time to event and time to censoring through
health status, i.e. presence of dependent censoring. If true, this would result in overestimation of survival
probabilities, since patients who are more likely to experience the event (remission) are also more likely to be
censored. Therefore, less events will be observed, and the survival probabilities will be overestimated. IPCW was
applied to this data set to try to correct for dependent censoring. Unfortunately, there is no covariate that directly
represents the health status of patients. Instead, several covariates related to health status were used to fit the
censoring model. In this example, we rely on the assumption that patients who do not return for a ROM
assessment due to their remission were close to remission on their last assessment. If this assumption does not
hold, it is impossible to observe whether patients that are almost in remission are more likely to be censored than
patients with a bad health status.

Since the administrative censoring is independent of patient’s characteristics, patients who were censored at two
years after diagnosis should not be included in the Cox model for the censoring mechanism. Therefore, the IPCW
method described in this section is based on a censoring model for time to non-administrative censoring.

In the censoring model, socio-demographic variables and baseline scores considered to be possible predictors
for remission were included. In Table 5, hazard ratio’s for time to censoring and their corresponding 95%
confidence intervals are shown.

The censoring model to be fitted in step 1 of the IPCW algorithm includes all covariates given in Table 5, and
those that are significantly associated to time to event (Table 4). This censoring model was used to estimate the
conditional probabilities of remaining uncensored (step 2), and IPCW estimator weights (step 3). The resulting

Figure 4. Inverse Kaplan–Meier curve for time to censoring representing the probability of being censored at each time point since

diagnosis, given that the subject was not censored until that time point.

Table 5. Cox model for time to censoring.

Risk factor HR (95% CI)

Depression severity 1.201 (0.975, 1.478)

(adjusted MADRS)

Anxiety severity 0.825 (0.665, 1.024)

Affective lability (DAPP-SF) 0.875 (0.740, 1.035)

Self-harm (DAPP-SF) 1.198 (0.999, 1.436)

MADRS: Montgomery–Åsberg depression rating scale; DAPP-SF: Dutch dimensional assessment of

personality pathology-short form.
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IPCW survival curve (step 4) is almost identical to the original KM curve estimated without applying IPCW
estimator (not shown). This suggests that the dependent censoring has hardly any influence on the estimated
survival probabilities at population level. However, by looking at the individual level difference between the
prediction for the model with and without IPCW j�̂IPCWX Zj � �̂

0
XZj j, some difference between the survival

curves estimated with (KMIPCW) and without IPCW weights (KM) can be found. Results are shown in
Figure 5. Hence, IPCW does have an impact on individual level. As Figure 5 shows, KM estimator
overestimates the survival probabilities and this result confirms clinicians’ experience.

4 Simulation study

A simulation study was performed to investigate the behavior of IPCW under different scenarios.11 In the
simulation process, different sample sizes, strengths of the censoring model, and percentages of censored
individuals were chosen. In this section, all steps in the simulation process are illustrated and part of the results
coming from a large simulation study is discussed.

4.1 Steps in the simulations process

Step 1. For each subject j, j ¼ 1, . . . , n, generate a continuous variable Z1 from a standard normal distribution and
generate a categorical variable Z2 from a Bernoulli distribution with p¼ 0.5.

Step 2. Determine the hazards for event and censoring for each individual in the data set. Hazards depend on
covariates Z1 and Z2:

hXðtjZÞ ¼ h0X ðtÞ expð�
tZÞ, ð9Þ

hCðtjZÞ ¼ h0C ðtÞ expð�
tZÞ: ð10Þ

Step 3. Sample the event times xj and censoring times cj from an exponential distribution, with rates hXðtjZj Þ and
hCðtjZj Þ, respectively.

Step 4. For each individual compute the observed time point tj ¼ minðxj, cj Þ, and the corresponding event
indicator �j.

Step 5. Estimate the true survival curve (KM on xj), the standard KM result (KM on ðtj, �j Þ), and the IPCW
estimator survival estimates (IPCW on ðtj, �j Þ).

All details concerning the method developed to generate survival data with dependent censoring and different
scenarios are outlined in Supplementary Material B.

Figure 5. Survival curves estimated with and without the IPCW method for the subject for whom j�̂IPCW
X Zj � �̂

0
XZj j is the largest.
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4.2 Varying the sample size

To investigate the effect of sample size n on IPCW results, simulations were performed with different numbers of
subjects. Three different sample sizes n equal to 100, 250, and 500 were chosen. The other variables, like strength of
the censoring model (� ¼ ð1:5, 5Þ), censoring percentage (35%), and strength of the time to event model
(� ¼ ð0:5, 1:5Þ) remained constant. Results are illustrated in Figure 6. As expected, the survival curve estimated
by employing IPCW gets closer to the real survival curve for increasing n, while KM estimator’s performance does
not change when more subjects are observed. The improvement of the IPCW result is due to more precise
regression coefficient estimates for the censoring model based on large sample sizes, which leads to more
accurate IPCW weights, hence in better estimation outcome. As shown in Figure 6(a), IPCW always gives
better results than standard KM, even in case of a small sample size.

4.3 Varying the strength of the censoring model

The strength of the censoring model is defined by the parameter � ¼ ð�1,�2Þ, where �1 is the regression coefficient
for Z1, and �2 indicates the effect of the categorical variable Z2. For larger absolute values of �1 and �2, the
dependence between the censoring mechanism and the covariates becomes stronger. Values of � equal to (1.5, 5)
and (0.75, 2) correspond to strong and weak censoring mechanisms, respectively. Values of � equal to (0, 0) means
absence of dependent censoring.

In Figure 7, results corresponding to the different values of the censoring mechanism are shown. In these
scenarios � is equal to (0.5, 1.5), the sample size n is equal to 100 and 35% of the subjects were censored. The
two covariates Z1 and Z2 were generated from a standard normal distribution and a Bernoulli distribution,
respectively. The first may, for example, represent the ages of subjects in the study and the second one may

Figure 6. True survival probabilities (Real) and the survival curves estimated with standard Kaplan–Meier (KM) and IPCW (KMIPCW)

corresponding to different sample sizes, n equal to 100 (figure a), 250 (figure b), and 500 (figure c).

332 Statistical Methods in Medical Research 27(2)



represent gender (e.g. 0¼male and 1¼ female). In this case, the choice of � ¼ ð1:5, 5Þ for the strong censoring
mechanism indicates that expð5Þ is the risk for women to experience the event compared to men. Furthermore,
older individuals have higher censoring hazards compared to younger individuals. In the presence of weak
censoring, the hazard ratio between women and men is equal to expð2Þ, and the difference between the hazards
of young and old subjects is also smaller. Hence, when weak censoring is present in the data, covariates have a
smaller effect on the hazard, i.e. the censoring effect is smaller than in the former situation (strong censoring
mechanism).

When considering these strong and weak censoring models, subjects who have a higher probability of
experiencing the event also have a higher chance of being censored. Therefore, less events are observed and
survival probabilities are overestimated by both standard KM and IPCW (Figure 7(b) and 7(a)). The stronger
the censoring mechanism, the worse the fit for both methods. However, IPCW estimator is less biased than
standard KM in both cases. In the absence of dependent censoring (� ¼ ð0, 0Þ), both IPCW and standard KM
give accurate results (Figure 7(c)). This suggests that the IPCW method gives good estimates even in case
dependent censoring is not present.

4.4 Varying the percentage of censored subjects

Varying the percentage of censored subjects, while keeping the censoring model constant (� ¼ ð1:5, 5Þ), can be
done by changing the baseline probability of being censored (h0C ). Simulations were performed to find h0C
corresponding with censoring percentages equal to 35%, 50%, or 65%. In each simulation, � ¼ ð0:5, 1:5Þ and
sample size is equal to 100. Results in Figure 8 show that the performance of both methods becomes worse with
increasing censoring percentage. This was expected, since it is well known that the precision of the estimate
declines with increasing censoring percentage.

Figure 7. True survival probabilities (Real) and the survival curves estimated with standard Kaplan–Meier (KM) and IPCW (KMIPCW)

corresponding to different parameters � in the censoring model. The combinations used are � ¼ ð1:5; 5Þ with h0C
¼ 0:00557

(figure a), � ¼ ð0:75; 2Þ with h0C
¼ 0:041 (figure b), and � ¼ ð0; 0Þ with h0C

¼ 0:102 (figure c).
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5 Discussion

Standard survival analysis techniques assume independence between time to event and censoring. This assumption
is violated when covariates are associated to both event and censoring time. In case of dependent censoring,
traditional methods, like the KM estimator, may give biased estimates for survival probabilities. IPCW can be
used in these situations; this method corrects for censored subjects by giving extra weight to those who remain at
risk, and assigning more weight to subjects that are more similar to the censored one.

IPCW was applied to a clinical data set where patients suffer from suicidal ideation. Time to remission was the
event of interest. The IPCW method did not seem to have an effect on estimated survival curves at population
level, but it did have an impact on individual level. This result does not necessarily imply that dependent censoring
is not present in the data. There could be unmeasured covariates that influence both time to event and time to
censoring, or there could be a mechanism that causes event and censoring times to be directly dependent, i.e. not
only through covariates. In these cases, the censoring model estimated with IPCW does not fully describe the
censoring mechanism. Therefore, the IPCW results do not completely correct for the censoring mechanism.

A simulation study was carried out to study the performance of IPCW in case of dependent censoring.
Dependent censoring was induced in the generated survival data by simulating two time independent covariates
that influence both time to event and time to censoring. Several different scenarios were generated by varying the
sample size, the strength of the censoring mechanism, and the percentage of censored subjects. The simulation
study showed that in each scenario, IPCW performs better than the standard survival technique. The better the fit
for the censoring model, the more accurate the IPCW result. In this simulation study, event and censoring times
were generated from an exponential distribution, i.e. constant hazard rates were assumed for both models. In
practice, hazards may not be constant, but may vary over time. Therefore, an additional simulation study was
done where hazards are not constant. Both time to event and censoring time were generated from Gompertz
distribution.12 Also in this situation, results (not shown in this article) showed that IPCW gives better survival
estimates than the KM estimator.

Figure 8. True survival probabilities (Real) and the survival curves estimated with standard Kaplan–Meier (KM) and IPCW (KMIPCW)

corresponding to different censoring percentages, namely 35% (figure a), 50% (figure b), and 65% (figure c).
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The corrected group prognosis method (CGP)13 might be used as an alternative to IPCW in case of dependent
censoring. Here, the Cox model is fit to the whole data set. Then, survival curves, conditional on the observed
covariates, are estimated for each subject in the data set. The marginal survival curve is then obtained by averaging
over the covariate-specific curves. Since dependent censoring does not cause bias in the Cox model, this method
will give an unbiased result for the marginal survival curve. The simulation study described in this article was
repeated to compare the performance of CGP with the performance of IPCW. Simulation results suggest that both
methods perform well in case of dependent censoring. However, while IPCW can deal also with time varying
covariates (covariates which value may change over time), CGP cannot. In these situations, CGP will not perform
well, since it does not incorporate time varying covariates in the estimations of individual survival curves for each
subject. Time varying covariates can be included in the Cox model for time to censoring, and can therefore be
incorporated in the IPCW methodology.

In the analysis of survival data, attention is mainly given to the survival times and prognostic factors, but
almost no attention is given to the censoring mechanism. If the probability of being censored is not the same for
each individual at risk, standard survival analysis techniques may give biased results. Further investigation on the
censoring mechanism may be needed and IPCW that adjusts for dependent censoring can be applied.
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