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Abstract

Background: Causes and consequences of the complex changes in lipids occurring in the metabolic syndrome are only
partly understood. Several interconnected processes are deteriorating, which implies that multi-target approaches might be
more successful than strategies based on a limited number of surrogate markers. Preparations from Chinese Medicine (CM)
systems have been handed down with documented clinical features similar as metabolic syndrome, which might help
developing new intervention for metabolic syndrome. The progress in systems biology and specific animal models created
possibilities to assess the effects of such preparations. Here we report the plasma and liver lipidomics results of the
intervention effects of a preparation SUB885C in apolipoprotein E3 Leiden cholesteryl ester transfer protein
(ApoE*3Leiden.CETP) mice. SUB885C was developed according to the principles of CM for treatment of metabolic
syndrome. The cannabinoid receptor type 1 blocker rimonabant was included as a general control for the evaluation of
weight and metabolic responses.

Methodology/Principal Findings: ApoE*3Leiden.CETP mice with mild hypercholesterolemia were divided into SUB885C-,
rimonabant- and non-treated control groups. SUB885C caused no weight loss, but significantly reduced plasma cholesterol
(249%, p,0.001), CETP levels (231%, p,0.001), CETP activity (274%, p,0.001) and increased HDL-C (39%, p,0.05). It
influenced lipidomics classes of cholesterol esters and triglycerides the most. Rimonabant induced a weight loss (29%,
p,0.05), but only a moderate improvement of lipid profiles. In vitro, SUB885C extract caused adipolysis stimulation and
adipogenesis inhibition in 3T3-L1 cells.

Conclusions: SUB885C, a multi-components preparation, is able to produce anti-atherogenic changes in lipids of the
ApoE*3Leiden.CETP mice, which are comparable to those obtained with compounds belonging to known drugs (e.g.
rimonabant, atorvastatin, niacin). This study successfully illustrated the power of lipidomics in unraveling intervention
effects and to help finding new targets or ingredients for lifestyle-related metabolic abnormality.
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Introduction

The incidence of lifestyle-related cardiovascular and metabolic

health complications, often collectively named metabolic syndrome,

continues to increase world-wide [1,2]. Although the major risk

factors, including a sedentary lifestyle, overweight, unfavorable

dietary habits and smoking are essentially modifiable, lifestyle

measures often prove difficult and disappointing on the longer term.

Because of the complex and multi-factorial manifestations of the

metabolic syndrome, pharmacological strategies for primary

prevention are increasingly focusing on the use of low-dose drug

combinations. An example is the development of ‘‘polypill’’

concepts with a statin, one or more anti-hypertensive compounds

and acetylsalicylic acid to reduce risks for cardiovascular disease in

middle-aged individuals [3,4]. At the same time it has been shown

that dietary measures may be of comparable efficacy. Such a

‘‘polymeal’’ could provide a ‘‘more natural, safer and probably

tastier alternative’’ than a polypill [5]. New insights and leads for

dietary prevention or intervention can also be acquired from other

healthcare systems like Chinese Medicine (CM). In CM [6], the gap

between food and drugs has always been small, and nutrition is seen

as a normal part of prevention and healthcare. A remarkable high

number of preparations have been handed down over the centuries

with documented activity related to clinical features of what is now

described as metabolic syndrome. The possibilities to analyze the

subtle and multiple-pathway effects of such preparations have

increased by the developments in systems biology-based metabo-

lomics and specific animal models [7]. Here we report the plasma

and liver lipidomic analysis of the effects of a CM preparation,

SUB885C, in apolipoprotein E3 Leiden cholesteryl ester transfer

protein (ApoE*3Leiden.CETP) transgenic mice. SUB885C is a

multi-components preparation developed according to the princi-

ples of CM containing eight natural ingredients. The core formula is

used in China for treatment of metabolic syndrome and early stage

type 2 diabetes with obesity. A SUB885C intervention study [7] in

prediabetic ApoE*3 Leiden mice has shown that SUB885C

significantly improved insulin sensitivity as compared with non-

treated controls. Meanwhile, several other anti-inflammatory and

metabolic effects of the active ingredients in SUB885C have been

reported [8–12]. Therefore, we hypothesized that SUB885C exerts

a multi-target activity on lipid metabolism and insulin sensitivity. To

investigate this, a parallel controlled intervention study was designed

with female ApoE*3Leiden.CETP transgenic mice [13–16] show-

ing mild hypercholesterolemia and overweight. The ApoE*3Lei-

den.CETP mouse model is obtained by cross-breeding ApoE*3-

Leiden mice with mice expressing human CETP. It has been shown

to respond in a human-like manner to both lipid-lowering and high

density lipoprotein cholesterol (HDL-C) raising interventions [13–

19]. Outcome parameters included body weight, food intake,

plasma lipids and lipoproteins, and lipidomics of plasma and liver.

Lipidomics measures all or subsets of lipids and provides a thorough

perspective to study intervention induced lipid changes and

metabolism in the complex biological system [7,20].The cannabi-

noid receptor type 1 (CB1) blocker rimonabant was included as a

general control for the evaluation of weight and metabolic responses

in the study. To further explore our findings, cell-based assays in

3T3-L1 adipocytes focusing on adipolytic and adipogenic activities

of SUB885C were performed.

Materials and Methods

Ethics statement
The experiments were performed according to the rules set by

the Netherlands Law on Animal Experiments and approved by the

Institutional Ethical Committee on Animal Care and Experimen-

tation (Dierexperimenten Commissie DEC of Netherlands Orga-

nization for Applied Scientific Research, Zeist, the Netherlands)

with a permit number of DEC2489.

Materials and chemicals
Materials used for intervention studies. SUB885C was

provided by SU Biomedicine, The Netherlands. SUB885C

consists of eight natural ingredients: Fructus Crataegi (Shan Zha),

Folium Nelumbinis (He Ye), Folium Apocyni (Luo Bu Ma Ye), Flos Rosae

rugosae (Mei Gui Hua), Radix et Rhizoma Rhei (Da Huang), Depuratum

mirabilitum (Mang Xiao, also known as mirabilite or Glauber’s salt),

Thallus Sargassi (Hai Zao), and honey fried Radix Glycyrrhizae (Gan

Cao). Above dry and sliced compounds were used for a water

based decoction. After decoction and water solvent was dried into

solid phase, it was used as the preparation for the intervention

study. For the quality control of the preparation, the quantities of

defined chemical markers were used for assessment according to

pharmacopeia guideline.

Chemicals and lipid internal standards. Synthetic lipid

standards including 1-heptadecanoyl-2-hydroxy-sn-glycero-3-

phosphocholine (LPC-17:0), 1-nonadecanoyl-2-hydroxy-sn-glycero-

3-phosphocholine (LPC-19:0), 1,2-dipentadecanoyl-sn-glycero-3-

phosphatidylethanolamine (PE-30:0), 1,2-diheptadecanoyl-sn-

glycero-3-phosphoethanolamine (PE-34:0), 1,2-diheptadecanoyl-

sn-glycero-3-phospholcholine (PC-34:0) and 1,2-dinonadecanoyl-

sn-glycero-3-phospholcholine (PC-38:0) were purchased from

Avanti Polar Lipids, Inc. (Alabaster, AL, USA). 1,2,3-tripentade-

canoylglycerol (TG-45:0) and 1,2,3-triheptadecanoylglycerol (TG-

51:0) were obtained from Sigma-Aldrich Chemie B.V.

(Zwijndrecht, The Netherlands). Ultra liquid chromatography-

mass spectrometry (Ultra LC-MS) grade of acetonitrile (ACN),

methanol (MeOH), isopropanol (IPA) and water as well as LC–MS

grade of dichloromethane (CH2Cl2) were purchased from Biosolve

(Valkenswaard, The Netherlands). Phosphate Buffered Saline

(PBS), and Hanks Balanced Salt Solution (HBBS) were supplied

by Gibco. Isoproterenol, 10% sterile bovine serum albumin (BSA)

solution, methanol and dimethyl sulfoxide (DMSO) were supplied

by Sigma Aldrich. Plastic ware for tissue culture was supplied by

Greiner Bio-One. The adipolysis assay kit was purchased fom

Chemicon Int. (Temecula, CA).

Intervention studies on mice
Twenty-four female ApoE*3Leiden.CETP transgenic mice (age

6–10 weeks) were obtained from specific pathogen free (SPF)

breading stock (TNO, Leiden, The Netherlands). The animals

were fed a semi-synthetic modified Western-type diet (Hope

Farms, The Netherlands), containing 0.2% cholesterol (Cho), 15%

saturated fat and 40% sucrose as described by Nishina et al. [21],

for a run-in period of 4 weeks to get a mild hypercholesterolemia

(plasma Cho levels of 14–18 mmol/L) and body weight increase.

Following this run-in period, mice were matched on body weight,

plasma Cho and triglycerides (TG) levels (after 4 hours fasting)

and divided in three groups of eight animals each (non-treated

control, rimonabant- and SUB885C- treated). Preparations for

intervention were given orally as admix to a Western-type diet for

4 weeks. Briefly, mice received the Western-type diet, without or

with either SUB885C (SU Biomedicine, The Netherlands) at a

concentration of 2% or rimonabant (Sanofi-Aventis, The Nether-

lands) at 10 mg/kg body weight/day. Flavoured sugar lumps were

added to the diet of all groups to mask possible tastes of

intervention preparations. Body weight per mouse and food intake

per cage was measured at intervention day 0, 2, 3, 4, 9, 11, 14, 21

and 28. Blood was collected at the start of the intervention (week 0)
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and just before sacrifice of the mice (week 4) via tail vein bleeding

using CB 300 LH microvettes (Sarstedt, Nümbrecht, Germany).

Plasma samples were collected by centrifugation of the blood

samples for 10 min at 6000 rpm at 4uC. At the end of the

intervention (week 4), animals were sacrificed with rapid

asphyxiation using CO2. Livers were dissected on ice and samples

were weighted and snap-frozen in liquid nitrogen. Both plasma

and liver samples were stored at 280uC until use.

Adipocyte studies
The 3T3-L1 preadipocyte cell line (ATCC) was used to study

possible direct lipolysis or adipogenetic activity by SUB885C. The

3T3-L1 cells were cultured and differentiated from pre-adipocytes

into full grown adipocytes as described by Niwano et al. [22].

Three hundred micrograms of SUB885C was extracted with 4 ml

methanol. After evaporation of the methanol, the extract was

dissolved in 100 ml DMSO. To study adipolysis the growth

medium was removed from the cells and cells were washed twice

with 1 ml HBSS per well. Then, to each well 250 ml HBSS was

added containing 2% BSA and 2.5 ml of the diluted SUB885C

extracts in DMSO. As a positive control, 2.5 ml of 1 mM

isoproterenol in DMSO was added (final concentration 10 mM

isoproterenol). For the negative controls, either 2.5 ml DMSO

(DMSO control) or nothing (blank) was added. After 3 h

incubation glycerol release was measured with a commercial

adipolysis assay kit (Chemicon Int., Temecula, CA). For the

adipose conversion assay the addition of SUB885C started at the

initiation of the cell differentiation. Together with the differenti-

ation medium, SUB885C extract was added at different dilutions.

At every medium replacement, fresh extract was added as well.

After nine days of differentiation, the adipose conversion of the

cells was analyzed by measuring the amount of fat produced. This

was done by staining the fat with Oil Red O as described by

Ramı́rez-Zacarı́as et al. [23].

Plasma biochemical analyses and lipoprotein profile
analysis

Plasma Cho, TG, HDL-C, lipoprotein profiles, CETP levels

and activities and alanine aminotransferase (ALT) were measured

at week 0 and week 4. Plasma total cholesterol (TC) and TG

concentrations were determined in each animal using enzymatic

kits (Roche Molecular Biochemicals, Indianapolis, Ind, USA).

Pooled lipoprotein profiles were measured by fast performance

liquid chromatography (FPLC) using an AKTA apparatus

(Amersham Biosciences). TC, TG and phospholipid levels were

measured in the fractions of freshly obtained samples. Phospho-

lipids were determined in the FPLC fractions using a phospho-

lipids B kit (Instruchemie Co., The Netherlands). Plasma HDL was

determined by quantification of HDL-C in plasma after

precipitation of apoB-containing lipoproteins. Thus, 10 ml of

heparin (LEO Pharma, The Netherlands) and 10 ml of 0.2 mol/L

MnCl2 were added to 20 ml plasma, and mixtures were incubated

for 20 min at room temperature and centrifuged for 15 minutes at

13000 g at 4uC. Plasma ALT was measured in pooled samples

using a Boehringer Reflotron system. CETP levels were measured

per mouse using RB-CETP kits from Roar Biomedical, Inc.

Endogenous CETP activity was measured as described before

[24]. Briefly, 3H cholesterol was equilibrated for 24 h with plasma

cholesterol at 4uC followed by incubation at 37uC for 3 h.

Subsequently, apoB-containing lipoproteins were precipitated by

addition of heparin/MnCl2. Lipids were extracted from the

precipitate and labeled cholesteryl esters were separated from

labeled unesterified cholesterol on silica columns and assayed by

liquid scintillation counting.

Lipidomics analyses
Lipid extraction for plasma samples. Plasma samples

were thawed to room temperature and extracted with 2:1 of

CH2Cl2/MeOH as described previously [25]. Briefly, 30 ml of

heparin plasma was placed in a 2 ml vial (Eppendorf, Hamburg,

Germany). Thirty microliters of the internal standard (IS) mixture

consisting of LPC-19:0, PE-30:0, PC-38:0 and TG-45:0 with

corresponding concentrations of 30, 30, 150 and 60 mg/ml was

first added, followed by 190 ml of MeOH and then 380 ml of

CH2Cl2. The mixture was thoroughly vortexed both before and

after CH2Cl2 addition. Afterwards, 120 ml of water was added and

thoroughly vortexed. After centrifuging for 10 min at 6000 g at

10uC, 300 ml of the lower organic phase was transferred into a new

autosampler vial and stored at 220uC until analysis. For LC-MS

analysis, 25 ml of the lipid extract was diluted with 475 ml ACN/

IPA/water 65/30/5 (v/v/v) and 10 ml was injected.

Lipid extraction for liver samples. The frozen liver

samples stored at 280uC were lyophilized and ground into

powder. Ten milligrams of liver powder was weighed in a clean

1.5 ml eppendorf vial for the subsequent lipid extraction. Liver

lipid extraction was achieved by liquid-liquid extraction (LLE)

with a CH2Cl2/MeOH mixture (2:1, v/v) based on the method of

Bligh and Dyer [26] with some modifications. Briefly, 60 ml of IS

were added to 10 mg of dry liver powder followed by addition of

180 ml of MeOH containing 0.02% antioxidant butylated

hydroxytoluene (BHT), and then 360 ml of CH2Cl2 was added.

The mixture was vortexed for 1 min both before and after CH2Cl2
addition. Afterwards, the resulting suspension was placed for

5 min in an ultrasonic bath at 4uC and then put in a shaker

followed by 45 min incessantly shaking at 4uC. Thereafter 10 min

centrifugation at a rotation speed of 6000 g at 10uC was applied

before 500 ml of the supernatant was transferred into a new 1.5 ml

eppendorf vial. One hundred microliters of 0.9% NaCl was

subsequently added to the supernatant to get a two-phase system

where most of the lipids were in the lower organic phase. After

being centrifuged at 2000 g at 10uC for 10 min, a total of 300 ml of

lipid extract was collected from the bottom organic phase. The

final extract was diluted 40 times by injection solvent as described

previously [25] and then 10 ml was injected for LC-MS analysis.

LC-MS lipid profiling
LC-MS analysis was performed on a hybrid liquid chromatog-

raphy-linear ion trap-Fourier transform ion cyclotron resonance-

mass spectrometric system (LC-FTMS) consisting of a Surveyor

HPLC MS pump and an autosampler (Thermo Fisher) equipped

with an Ascentis Express C8 2.16150 mm (2.7 mm particle size)

column (Sigma-Aldrich Chemie B.V., Zwijndrecht, The Nether-

lands). The LC-MS method used has been described previously by

Hu et al. [25]. With this method, seven different lipid classes

including both polar lipids such as lyso-phosphatidylcholine (LPC),

lyso-phosphoethanolamine (LPE), phosphatidylcholine (PC), phos-

phoethanolamine (PE), sphingomyelin (SPM) and non-polar lipids

such as cholesterol esters (ChEs) and TG were eluted from the

column ionized with electrospray ionization in the positive ion

mode. The MS detection was performed in the full scan mode

with a range of mass to charge ratio (m/z) 400–1500. The

identification of the detected lipid peaks was performed as

described previously [25] and the current accurate mass data

acquired by FT and linear-ion-trap MS/MS fragmentation. For

those peaks without MS/MS fragmentations, identification was

based on the observed accurate m/z and the relative retention

times of specific m/z peaks. Forty-eight plasma samples (week 0

and week 4) and 24 liver samples (week 4) from ApoE*3.CETP

transgenic mice of three groups were prepared in duplicate and
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injected once according to the procedures described above. The

performance of the applied lipid profiling platform was assessed

through the repeated analysis of the quality control (QC) samples

[27]. The QC samples, used to monitor the LC-MS response in

time, were prepared by pooling aliquots of 48 plasma samples for

plasma lipidomics and 24 liver samples for liver lipidomics

respectively to represent the full biochemical diversity of the study

samples and allow the calculation of the analytical precision for all

lipids measured. The QC sample data is also used to correct

systematic errors such as batch to batch response differences by a

single point calibration model [28,29]. Ten QC plasma samples

and 5 QC liver samples were processed exactly in the same way as

the study samples. In total 106 plasma samples including 96 study

samples and 10 QC samples and 53 liver samples including 48

study samples and 5 QC samples were injected into the LC-MS

system. The study samples were randomly analyzed and the QC

samples were placed at regular intervals in the analysis sequence

(one QC after every 10 samples). Furthermore, method perfor-

mance was carefully monitored using multiple IS and duplicate

analysis of QC samples. Of note, plasma and liver samples were

analyzed separately.

Lipidomics data processing
In total, 140 plasma lipid peaks and 137 hepatic lipid peaks

were identified and selected as target lipids based on retention time

and m/z of peaks processed by LC-Quan 2.5 (Thermo Fisher).

The peak detection algorithm was used for peak integration using

the following parameters: ICIS; smoothing points, 7; window,

30 s; view width, 3 min; baseline, 40; area noise factor, 5; peak

noise factor, 1045. Data for each mouse was normalized for the

recovery of the IS for injection. Batch to batch differences in the

data were removed by synchronizing the medians values of the

QC samples per batch. Data was used only if the duplicates

corresponded after visual inspection and the duplicates were

averaged.

Statistical data analysis
One mouse (number 3733) in the control group was excluded

from data analyses, because it did not respond to the diet during

the run-in period and failed the inclusion criteria for hypercho-

lesterolemia. Univariate data analyses were done by SPSS 17.0

and the results are presented as means 6 standard deviation (SD)

unless indicated otherwise. Statistical differences of biochemical

parameters and lipidomics regulation at the end of the

intervention of the three groups were analyzed parametrically by

one-way analysis of variance (ANOVA). Data were log trans-

formed if homogeneity of variance assumption was rejected. The

Dunnett post hoc method was used to identify which treatment

was significantly different from the control. One-tailed and two-

tailed tests were used for biochemistry parameters and the

lipidomics data respectively, with p values ,0.05 as statistical

significance. To correct for false positives, the multiple test

correction (MTC) of Benjamini and Hochberg false discovery

rate (FDR) analysis was applied to adjust p values derived from the

univariate results of the lipidomics data. To avoid the possibility

that a few high-intensity variables dominate the final results [30],

plasma and liver lipidomics datasets were autoscaled per variable,

meaning that first the means of each variable were subtracted, and

then all variables were divided by their SD. To find treatment

dependent lipidomics grouping effects, both lipidomics datasets

were analyzed by Principal Component Analysis (PCA) [31] in

MATLAB (version 7.7.0471, the Mathworks) with the PLS

toolbox (version 5.0.3, Eigenvector Research, InC.). PCA was

used to find patterns in the data such as clusters of mice (scores) of

non-treated controls and undergoing the treatments; and to

identify which lipids contributed most to these clusters (loadings).

Partial least squares discriminant analysis (PLS-DA) [32] was

further applied to identify the specific metabolites which

contribute most to discriminate between the subtypes; and PLS-

DA models were validated using double cross validation (DCV)

[33]. Week 4 lipidomics were used for data analysis because (1) the

study interest is in the effect of SUB885C in the end of the

intervention and all baseline parameters are homogeneous among

the three groups; (2) liver lipidomics results are only available at

week 4. Finally data matrices of 15 mice (7 controls, 8 SUB885C)

6140 lipids for plasma lipidomics and 15 mice 6137 lipids for

liver lipidomics were used for multivariate data analysis.

Results

SUB885C does not influence food intake or body weight
in ApoE*3Leiden.CETP mice

Compared to the controls, SUB885C did not have an effect on

food intake in ApoE*3Leiden.CETP mice until day 20, and did

not affect mean body weight (Figure 1). After day 21, an increase

in food intake was observed with SUB885C. According to

published results in the same experiment [34], mice treated with

rimonabant showed a reduced food intake with a pronounced dip

at day 2. A significant reduction of mean body weight of

approximately 9% remained visible until the end of the

intervention [34].

Figure 1. Food intake and body weight. (A) Food intake (per cage)
and (B) body weight (per mouse) were recorded and measured at day 0,
2, 3, 4, 9, 11, 14, 21 and 28 for SUB885C-treated mice and control
(*p,0.05 vs. control).
doi:10.1371/journal.pone.0030332.g001
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Figure 2. Plasma lipid, CETP and lipoprotein. Plasma concentrations are shown for TC, TG, HDL-C, CETP level and activity (A) of the SUB885C-,
rimonabant- and non-treated mice at week 4 (concentrations in the control group are set to be 100% and relative changes of treated groups were
illustrated in % compared with the control, *p,0.05, ** p,0.01, *** p,0.001). Alterations of Cho (B), TG (C) and phospholipids (D) in the pooled
lipoprotein profiles of the SUB885C- and non-treated mice at week 4. Fractions 4–7 as VLDL; 8–9 as IDL; 10–15 as LDL and 16–23 as HDL.
doi:10.1371/journal.pone.0030332.g002
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SUB885C decreases plasma cholesterol, triglycerides and
increases HDL-C

SUB885C treatment of ApoE*3Leiden.CETP mice caused a

significant decrease in plasma Cho by 49% (861 mM versus

1562 mM, p,0.001) after 4 weeks as compared to the controls

(Figure 2A). During the 4 week intervention period plasma TG

levels in both the SUB885C treated group and in control mice

were significantly reduced by 67% (1.460.5 mM versus 462 mM,

p,0.01) and 46% (261 mM versus 462 mM, p,0.01), respec-

tively (data not shown). At week 4, TG levels in the SUB885C

group tended to be lower compared to the control mice

(Figure 2A), but this difference did not reach significance

(1.460.5 mM versus 261 mM, p = 0.06). Plasma HDL-C in the

SUB885C group was significantly increased by 39%

(1.160.3 mmol/L versus 0.860.3 mmol/L, p,0.05) as compared

to that of the controls in week 4. Lipoprotein fraction analyses

showed that SUB885C treatment caused a 3-fold decrease of very

low density lipoprotein-cholestol (VLDL-C) and 2.5 fold of VLDL-

TGs and VLDL-phospholipids, as compared to those of the

control group (Figure 2 B–D). In ApoE*3Leiden.CETP mice, the

Figure 3. Lipidomics of plasma and liver reveals differences between non-treated and SUB885C-treated mice. Principle component
analyses (PCA) of plasma and liver lipidomics datasets were applied to differentiate the non-treated controls (n = 7) and the SUB885C treated mice
(n = 8). PCA biplots for (A) plasma samples and (B) liver samples.
doi:10.1371/journal.pone.0030332.g003
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reduction of plasma TC was caused by the decrease of (V)LDL-C;

while the increase of plasma HDL-C was in line with the obvious

increase in HDL-C fraction.

Based on previous published results [34], rimonabant treatment

of ApoE*3Leiden.CETP mice induced a significant decrease of

plasma Cho with 24% (p,0.05) when compared with that of the

controls. However, there were no significant changes of plasma

TG and HDL-C at the end of the intervention. No adverse signs

were observed during the study and ALT levels of all three groups

were in the reference range.

SUB885C decreases plasma CETP level and activity
Four weeks of SUB885C intervention (Figure 2A) of ApoE*3-

Leiden.CETP mice caused a significant decrease in CETP level by

31% (2262 mg/mL versus 3164 mg/mL, p,0.001) and CETP

activity by 74% (24611 mg/mL versus 91627 mg/mL, p,0.001)

as compared to the controls. However, rimonabant did not

significantly affect the CETP level or the CETP activity in the

same experimental setting [34].

Lipidomics reveals detailed lipid changes caused by
SUB885C

Two Principal Components (PCs) were selected for plasma and

liver lipidomics. These PCs described 67% and 57% of the total

variance of the plasma- and liver-lipidomics, respectively

(Figure 3A and B). In both PCA biplots, a separation was

observed between control- and SUB885C treated-mice, indicating

major changes of measured plasma and liver lipids between two

groups. The loadings in the biplots (lipid species represented by

colored symbols in Figure 3A and B) indicated that the lipids

separating the SUB885C treated-mice from the control mice were

TG, ChE and SPM. PLS-DA with DCV was used to further

investigate the main discriminating lipids between SUB885C and

control groups. The DCV error rates in both plasma and liver

were 20%, indicating that 3 out of 15 mice were misclassified.

Among 30 main discriminating lipids between the control and

SUB885C treated mice, ChEs, SPMs, PCs, TGs contributed most

for the separation in plasma while SPMs, PCs, TGs contributed

most in liver (Table S1).

Quantitative differences in liver and plasma lipids between the

SUB885C treatment group and untreated controls were statisti-

cally further analyzed by ANOVA with a two-tailed Dunnett post

hoc method. SUB885C caused a significant reduction of plasma

lipid classes of SPM, ChE, and TG by 228% (p,0.001), 246%

(p,0.001), and 260% (p,0.01) compared to the controls,

respectively. It caused a 12% reduction (p,0.05) of total liver

SPM, without significant influence on total liver TG or ChE lipids.

It was found that 86 (61%) plasma and 22 (16%) liver lipids out

of 140 and 137 lipids respectively were significantly changed after

the 4-week SUB885C intervention as compared to the controls.

Fifteen lipids changed significantly under SUB885C intervention

in both plasma and liver, including LPC (18:2), PC (36:5), PE

(34:2), SPM (22:1), SPM (24:1), ChE (18:2), ChE (20:4), TG (50:1),

TG (54:0), ether TG (TG-O) (50:0), TG-O (50:1), TG-O (50:2),

TG-O (52:1),TG-O (52:2) and TG-O (58:2) (Table S2 and S3).

The correlation analysis, data with normal distribution by

Pearson’s and without by Spearman’s, was performed to evaluate

whether there is a relation between the concentrations of these

lipids in plasma and liver. Only TG-O (50:0) showed a positive

correlation between its concentration of plasma and liver; the

others showed no correlation (data not shown).

Table 1. Significantly changed lipids in each lipid class.

Plasma lipidomics

Lipid class All measured lipids (n) Sig. changed lipids Sig. reduced lipids

(n, % in each lipid class) (n, % in each lipid class)

LPC 12 3 (17%) 3 (17%)

LPE 2 0 0

PC 36 5 (14%) 3 (8%)

PE 7 1 (14%) 1 (14%)

SPM 14 7 (50%) 7 (50%)

ChE 10 8 (80%) 8 (80%)

TG 59 47 (80%) 47 (80%)

Total 140 70 (50%)

Liver lipidomics

Lipid class All measured lipids (n) Sig. changed lipids Sig. reduced lipids

(n, % in each lipid class) (n, % in each lipid class)

LPC 9 0 0

LPE 2 0 0

PC 29 0 0

PE 19 0 0

SPM 13 0 0

ChE 6 1 (17%) 1 (17%)

TG 59 2 (3%) 2 (3%)

Total 137 3 (2%)

doi:10.1371/journal.pone.0030332.t001
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After MTC analysis, 70 out of 86 plasma lipids and 3 out of 22

hepatic lipids remained significant (p = 0.0020.02, p values

marked in bold) by SUB885C intervention (Table S2 and S3).

All three significantly changed hepatic lipids and 68 out of 70

(97%) significantly changed plasma lipids were down regulated by

SUB885C treatment. In plasma, SUB885C caused a significant

reduction of 80% neutral lipids including ChE and TG, 50%

SPM, 17% LPC and 14% PE. Three out of 5 significantly changed

plasma PC (14%) by SUB885C was down-regulated (Table 1). In

liver, SUB885C caused a significantly reduction of 17% ChE and

3% TG, but no obvious changes in phospholipids. Thus SUB885C

induced lipid changes were more prominent in plasma (50%, 70

out of 140, changed lipids) than in liver (2%, 3 out of 137, changed

lipids). It affected the lipid classes of TG, ChE and SPM the most,

which was in line with PCA results.

Compared with the results of rimonabant induced lipid changes

from the previous publication [34], twenty four plasma lipids

including LPC (18:2), PC (38:2), SPM (16:0), ChE (18:1), TG

(46:0), TG (46:1), TG (48:0), TG (48:1), TG (48:2), TG (50:0), TG

(50:1), TG (52:2), TG (52:6), TG (54:2), TG (54:3), TG (54:4) TG

(56:3), TG (56:4), TG (56:7), TG (58:3), TG (58:4), TG (58:5), TG

(58:6), TG (58:7) were significantly changed by both SUB885C

and rimonabant, all of which were down regulated except for SPM

(16:0) that SUB885C induced a down-regulation while rimona-

bant a up-regulation. After MTC, only LPC (18:2) and PC (38:2)

remained significant in both SUB885C and rimonabant groups;

while all lipids except for SPM (16:0), TG (56:3) and TG (58:5) still

remained significant under SUB885C intervention. Two liver

lipids, PE (36:3) and TG (50:1), were significantly changed by

SUB885C and rimonabant. The former was down-regulated by

both treatments while the latter was down-regulated by SUB885C

but up-regulated by rimonabant. Both lipids did not hold

significance after MTC in SUB885C and rimonabant treatment.

SUB885C is able to stimulate adipolysis and inhibit
adipogenesis in vitro

To investigate SUB885C’s effect on adipolysis, the release of

glycerol in the medium was measured after incubation of 3T3-L1

adipocytes with SUB885C. The positive control isoproterenol, a

non-selective agonist of the b-adrenergic receptors, is known to

increase the hydrolysis of TG [22,35] and to stimulate adipolysis in

3T3-L1 adipocytes [22] (Figure 4A). When at a 5006 dilution,

SUB885C extract caused a 22% higher glycerol release as

compared to isoproterenol at a concentration of 20 mM. When

Figure 4. Adipolytic and adipogenic activities of SUB885C in 3T3-L1 adipocytes. (A) Glycerol release as the result of adipolysis in 3T3-L1
adipocytes after incubation with SUB885C (5006and 25006diluted) and 20 mM isoproterenol dissolved in DMSO with 1% as final concentration. (B)
Inhibition of adipose conversion in differentiating 3T3-L1 adipocytes by SUB885C. (C) Morphological analysis of the differentiated 3T3-L1 adipocytes.
The cells were treated with 20 mg/ml DAPI (top row), which stained the nuclei of the cells and gave an indication of cell numbers. The phase contrast
of the microscope showed the outlines of the cells (bottom row) and gave an overview of cell density and morphology. The magnification is on the
left.
doi:10.1371/journal.pone.0030332.g004
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SUB885C extract was 25006 diluted, glycerol release was 20%

lower than 20 mM isoproterenol, yet still higher than DMSO and

Blank.

The effect of SUB885C on lipid accumulation in 3T3-L1

adipocytes was investigated during their differentiation process. As

positive control the cytokine tumor necrosis factor-a (TNF-a) was

used, which interferes with adipocyte differentiation [22].

SUB885C was found to dose-dependently inhibit in vitro

adipogenesis (Figure 4B). At 50006 dilution there was 30% lipid

inhibition in the cells as compared to the control (0.1% DMSO).

At 10006 dilution there was 45% lipid inhibition and at 5006
dilution there was 100% lipid inhibition in the cells. This was

similar for TNF-a at a concentration of 2 ng/ml.

The appearance of 3T3-L1 cells cultured for 9 days in the

presence of SUB885C extract was shown in Figure 4C. The

number of nuclei did not differ much among the 0.1% DMSO

control, 5006 and 10006diluted SUB885C extracts. With 5006
dilution (top row) there was a decrease in the amount of nuclei,

indicating toxicity induced cell loss, which was in line with the

phase contrast picture of microscope with the 5006 dilution

(bottom row). The other dilutions did not show a clear effect on

the cell morphology. TNF-a, as a control, did not show any effect

on nuclei numbers and a densely packed cell layer. Inhibition of

lipid accumulation in 3T3-L1 cells after exposure to SUB885C

extract could be clearly seen at 10006 and 5006 dilutions.

Discussion

Causes and consequences of the complex changes in lipid

patterns occurring during development of the metabolic syndrome

are still only partly understood. Several interconnected processes

are deteriorating which implies that in the end multi-target

approaches might be more successful than prevention or

intervention strategies based on a limited number of surrogate

markers. Results of the present study illustrated that a metabo-

lomics-based analysis of the effects of a multi-component

preparation can be used to study potential target processes or

novel ingredients. Preparations having their origin in other

healthcare systems such as CM have been shown to provide

interesting starting points [36–42]. In a previous study it was found

that SUB885C improved insulin sensitivity compared to control in

pre-diabetic ApoE*3Leiden mice fed with a high fat diet for 10

weeks [7]. The ApoE*3Leiden.CETP mouse model used in the

present study is a cross-bred of the ApoE*3Leiden mouse with

mice expressing human CETP [16]. This further shifts the

distribution of Cho from HDL to VLDL/LDL, reduces plasma-

mediated scavenger receptor class B type I (SR-BI)-dependent Cho

efflux, and produces a strong pro-atherogenic condition [43]. The

model has shown its value for the evaluation of interventions that

reduce plasma lipids or increase HDL-C [14,15,17,34,44].

In the present study, SUB885C showed multiple effects to

improve metabolic parameters and lipid patterns, which were

summarized in figure 5. Specifically, SUB885C treatment induced

Figure 5. The summary of SUB885C effects. The effects of
SUB885C were illustrated both in vitro and in ApoE*3Leiden.CETP mice
with biochemical and lipidomics measurements. The improvement for
insulin sensitivity was result from Wang et al. [7].
doi:10.1371/journal.pone.0030332.g005

Table 2. Effects on some lipid parameters of SUB885C and existing drugs in the ApoE*3Leiden.CETP female mice model.

SUB885C Rimonabant [34] Atorvastatin [15] Torcetrapib [14] Niacin [44] Tesaglitazer [17]

Mice age 6–10 wk 6–10 wk 12 wk 18 wk

Run-in diet 4 wk 4 wk 2 wk 4 wk 3 wk 11 wk: 0.3% w/w

(cholesterol) 0.2% w/w 0.2% w/w 0.1% w/w 0.25% w/w 0.1% w/w 4 wk: 0.1%w/w

Study diet same as run-in diet same as run-in diet same as run-in diet same as run-in diet same as run-in diet 0.1% w/w

(cholesterol)

Study period 4 wk 4 wk 6 wk 14 wk 3 wk 8 wk

TC 249% 224% 233% 220% 244–68%* 255%

TG 241% (NS) 243% (NS) NS 257–77%* 271%

HDL-C +39% +12% (NS) +52% +30% +77–87%* +38%

(V)LDL-C 27% 233% 288% 226% 252–79%* 280%

CETP level 231% 24% (NS) 229% (NS) +33% 224–45%* 242%

CETP activity 274% 222% (NS) 236% 273% 224–52%* 256%

Basic diet for ApoE*3Leiden.CETP female mice during run-in and study period: Western type diet with 15% w/w fat plus different content of cholesterol.
NS: no significance.
*Dependent on different doses of Niacin.
doi:10.1371/journal.pone.0030332.t002
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a increase of plasma HDL-C, which was accompanied with a

decrease of (V)LDL levels. Both effects are commonly regarded as

anti-atherogenic [14,17]. Levels and activity of CETP, an

important regulator of HDL metabolism, were found to be

decreased, which may be related to the reduced levels of VLDL-

TG, a substrate for CETP [44]. Taken together, the effects of

SUB885C on HDL-C may be due to: 1) a decreased CETP

activity and CETP level; 2) a reduced level of (V)LDL, an acceptor

for HDL-ChE, which would reduce CETP transfer activity by

decreasing the transfer of ChE from HDLs to TG–enriched

lipoproteins, and more ChE-enriched HDL particles remain; 3)

improved insulin sensitivity. SUB885C significantly reduced

plasma TC, which likely reflected the reduction of (V)LDL-C

concentrations in the SUB885C treated mice.

During the intervention period total plasma TG levels when

measured enzymatically decreased significantly in both the control

and the SUB885C groups. At the end of intervention TG level

tended to be lower in the SUB885 group compared to that of the

control mice, but mainly due to a relatively large within group

variance this did not reach significance. With the lipidomics,

however, we found a significant reduction of 60% of total plasma

TG (p,0.01) as compared to that of the controls. This supports

our observation that SUB885C treatment induced a TG-lowering

effect. SUB885C particularly modulated a wide range of lipids

such as TGs, ChEs and SPMs in plasma while in the liver only a

few of these lipids were influenced (Table 1). After the correlation

analysis of significantly changed lipids both in plasma and liver,

only TG-O (50:0) showed a positive correlation and others not.

Instead of a redistribution of lipids between plasma and liver, the

effects of SUB885C might relate more to plasma lipoprotein

metabolism. Based on the fact that the reduced lipids (i.e. ChE,

SPM and TG) in plasma are core lipids of the lipoprotein particle,

it seems conceivable that the circulating lipoprotein particles in

plasma were reduced by SUB885C due to its influence on

lipoprotein regulators such as CETP whose activities are mainly in

plasma. This hypothesis is confirmed by the fact that SUB885C

(not rimonabant) significantly reduced the level and activity of

CETP (Figure 2A) in ApoE*3Leiden.CETP mice.

In Table 2, some of the overall effects of SUB885C were

compared with those of the drugs (i.e. rimonabant, atorvastatin,

torcetrapib, niacin and tesaglitazer) that were used for modulat-

ing plasma lipid profiles obtained in the ApoE*3Leiden.CETP

mouse model. Although detailed comparisons cannot be made

due to different study designs, effects of SUB885C on these

variables appear to be comparable to those of the drugs

investigated. Compared with the side-effects induced by these

drugs, including psychiatric abnormalities (rimonabant) [45,46],

severe flushing (niacin) [44], headache (atorvastatin), increased

risks of cardiovascular morbidity and mortality (torcetrapib)

[14,47], the elevated serum creatinine and associated decreases in

glomerular filtration rate (tesaglitazer) [48]; the reported side-

effects of the active compounds in SUB885C are scarce.

Only herbs containing anthraquinones (i.e. emodin and chryso-

phanol) were reported to cause diarrhea [12]. Thus, SUB885C

might have a higher benefit-risk ratio than other therapeutic

interventions.

In contrast to rimonabant, SUB885C did not reduce body

weight or food intake during the 4-week intervention period.

Rimonabant is a CB1 inverse agonist, which has been developed

and briefly marketed for weight management and improvement of

symptoms of the metabolic syndrome. Shortly after its introduc-

tion in Europe it was withdrawn because of its central side-effects

such as depression and other psychiatric abnormalities [45,46]. It

is now commonly assumed that its action on the central CB1

receptors produces a relatively rapid but transient decrease of

appetite [49]. In our study this was observed as a sharp dip in food

intake around day 2 (Figure 1). In addition, rimonabant acts on

peripheral CB1 receptors leading to a more sustained reduction of

body weight and beneficial effects on a number of symptoms of the

metabolic syndrome [50–52]. Binding studies using a cell

membrane preparation expressing the human cannabinoid CB1

receptor showed that a SUB885C total extract was able to displace

bound radioactive ligand 3H-CP55940 (data not shown). This

could indicate that one or more compounds present in the mixture

have affinity for CB1 receptors. However, more data are needed to

confirm this. The lack of the effect of SUB885C on body weight

and food intake at least suggests that there is no dominating overall

effect on the central or peripheral regulation of food-intake or

energy regulation.

The in vitro results showed that SUB885C is able to stimulate

lipolysis and inhibit adipogenesis in 3T3-L1 cells. At this stage it is

difficult to speculate on a possible mechanism and its relevance for

the overall in vivo effects of the preparation since there are several

compounds classes that produce such effects, including, but not

limited to CB1 blockers [22,42,53].

Further studies are needed to reveal the pathways and processes

modulated by SUB885C in more detail. Effects of the individual

active components in SUB885C have been studied. For example,

extracts of Fructus crataegi (Hawthorn berries) are used in CM for

treatment of several cardiovascular problems and have been

reported to possess anti-inflammatory properties and to modulate

mitochondrial functioning [8,11]. Flos Rosae rugosae (rose flower)

extract has been reported to increase the activities of antioxidant

enzymes and to reduce lipid peroxidation [10]. Radix et Rhizoma

Rhei (rhubarb root) and Radix Glycyrrhizae (licorice root) have

been reported to produce inhibition of fatty acid synthase, thus

contributing to weight reduction [12]. Radix et Rhizoma Rhei

contains emodin which is known as an inhibitor of 11 b-

hydroxysteroid dehydrogenase type 1 and has been shown to

ameliorate metabolic disorders in diet-induced obese mice [9].

This enzyme is now receiving considerable interest as a

pharmacological target in metabolic syndrome [49]. Folium

apocyni is obtained from leaves of Apocynum venetum L.

(Venetian dogbane) and used in CM to prepare herbal teas

against various cardiovascular and other problems.

In conclusion, our study has shown that a CM principle-based

multi-components preparation is able to produce anti-atherogenic

changes in lipid spectra of the ApoE*3Leiden.CETP mouse

model, which are comparable to those obtained with compounds

belonging to known drug classes. Our data also illustrate the power

of lipidomics in unraveling effects in detail and to help finding new

targets or ingredients. These findings can be used to develop new

preparations at the nutrition-pharma interface that can be used to

prevent metabolic syndrome or ameliorate its first symptoms.

Forthcoming studies should include dose-titrations and studies on

lipid fluxes in human volunteers.
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23. Ramı́rez-Zacarı́as JL, Castro-Muñozledo F, Kuri-Harcuch W (1992) Quantita-
tion of adipose conversion and triglycerides by staining intracytoplasmic lipids

with oil red O. Histochemistry and Cell Biology 97: 493–497.

24. Dullaart RP, Riemens SC, Scheek LM, van Tol A (1999) Insulin decreases
plasma cholesteryl ester transfer but not cholesterol esterification in healthy

subjects as well as in normotriglyceridaemic patients with type 2 diabetes.
European Journal of Clinical Investigation 29: 663–671.

25. Hu C, van Dommelen J, van der Heijden R, Spijksma G, Reijmers TH, et al.

(2008) RPLC-Ion-Trap-FTMS Method for Lipid Profiling of Plasma: Method
Validation and Application to p53 Mutant Mouse Model. Journal of Proteome

Research 7: 4982–4991.

26. Bligh E, WJ D (1959) A rapid method of total lipid extraction and purification.
Canadian Journal of Biochemistry and Physiology 37: 911–917.

27. van der Greef J, Martin S, Juhasz P, Adourian A, Plasterer T, et al. (2007) The
Art and Practice of Systems Biology in Medicine:CÇë Mapping Patterns of
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