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The quantum-mechanical counterpart of a classical random walk offers a rich dynamics that has recently been
shown to include topologically protected bound states (zero modes) at boundaries or domain walls. Here we
show that a topological zero mode may acquire a dynamical role in the presence of nonlinearities. We consider
a one-dimensional discrete-time quantum walk that combines zero modes with a particle-conserving nonlinear
relaxation mechanism. The presence of both particle-hole and chiral symmetry converts two zero modes of
opposite chirality into an attractor-repeller pair of the nonlinear dynamics. This makes it possible to steer the
walker towards a domain wall and trap it there.
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I. INTRODUCTION

A classical random walk is invariably associated with
diffusive motion, but quantum superposition and interference
allow for a more varied dynamics. A quantum walk can explore
phase space more rapidly than its classical counterpart [1–3], a
shift from diffusive to ballistic dynamics that is at the origin of
the quadratic speedup of quantum search algorithms [4,5].
Diffusion is recovered for temporal disorder, while spatial
disorder can induce an Anderson quantum phase transition
to localized wave functions [6–12].

Two recent developments have further enriched the phe-
nomenology. One development is the discovery that quantum
walks can exhibit a topological phase transition, at which a
bound state (a so-called zero mode) appears at a boundary
or domain wall [13–21]. A second development involves
the introduction of nonlinearities in the dynamics [22,23].
These have been associated with soliton structures [24,25] and
investigated as a means to speed up the quantum search [26].
Here we wish to connect these two separate developments,
and explore how nonlinearities manifest themselves in a
topological quantum walk.

We consider the simplest case of a one-dimensional
discrete-time quantum walk in the chiral orthogonal sym-
metry class (also known as class BDI, familiar from the
Su-Schrieffer-Heeger model [27]). The topological phase
transition manifests itself by the appearance of a pair of
zero modes of opposite chirality. We demonstrate that these
zero modes may survive in the presence of nonlinearities and
moreover acquire a special role as the attractor and repeller of
the nonlinear dynamics.

II. FORMULATION OF THE LINEAR QUANTUM WALK

We study the one-dimensional dynamics of a two-level
system, represented by a spin- 1

2 degree of freedom on the
lattice x ∈ Z. We employ a stroboscopic description, so that
time t ∈ Z is discretized as well as space. The linear dynamics
is obtained by repeated applications of a unitary operator U

on a spinor ψ ,

ψt = (U )tψ0, ψt (x) = (u(x,t),v(x,t)). (1)

Quite generally, a single time step of such a discrete-time
quantum walk can be decomposed into two operations: a
rotation Rϑ of the spinor and a shift S to the left or to the
right dependent on the spin component:

Rϑψ = e−iϑσy ψ = (u cos ϑ − v sin ϑ,u sin ϑ + v cos ϑ),

S(u(x,t),v(x,t)) = (u(x − 1,t),v(x + 1,t)). (2)

We can combine the two operations as SRϑ or RϑS, but we
prefer to take the symmetrized product [28],

U = Rϑ/2SRϑ/2. (3)

The evolution operator (3) is representative of a chiral
orthogonal quantum walk, meaning that U = U ∗ is real
orthogonal (particle-hole symmetry) and (σxU )2 = 1 (chiral
symmetry). This BDI symmetry class supports a topologically
protected zero mode bound to a domain wall where ϑ(x)
changes sign. Its time-independent state �±(x) satisfies [29]

U�± = �±, σx�± = ±�±. (4)

The eigenvalue ±1 of the Pauli matrix σx distinguishes the
chirality of the zero mode [30].

III. INTRODUCTION OF A NONLINEARITY

We now introduce a nonlinearity (strength κ) into the
quantum walk by inserting a ψ-dependent rotation at each
time step,

ψt+1(x) = Uψ̄t (x), (5a)

ψ̄t (x) = exp(−iκMz(x,t)σy)ψt (x), (5b)

Mz(x,t) = ψ
†
t (x)σzψt (x) = |u(x,t)|2 − |v(x,t)|2. (5c)

This nonlinear time evolution conserves particle-hole sym-
metry (a real ψ remains real), but chiral symmetry no longer
applies. Still, a zero mode �± of the linear problem (κ = 0)
remains a stationary state when we switch on the nonlinearity,
because Mz = 0 for any eigenstate of σx .

To appreciate the new features introduced by the nonlin-
earity, it is helpful to look at a uniform ϑ and a real initial
state ψ = (cos α, sin α) without any spatial dependence. In
one time step the angle α is mapped to α + ϑ + κ cos 2α. This
map is invertible if |κ| � 1/2, but it is not area preserving.
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FIG. 1. Solid curve: position-dependent rotation angle ϑ(x) with
a pair of domain walls at which the angle changes sign. Plotted
is the profile (6) with L = 500, λ = 10, and ϑ0 = 0.4 used in the
numerical simulations. Dashed curves: the two (unnormalized) spinor
components of the zero modes bound to the two domain walls,
calculated from Eq. (9). The state �± is an eigenvector of σx with
eigenvalue ±1.

The phase space contracts around one of two attractive
fixed points, defined by cos 2αc = −ϑ/κ , sin 2αc > 0. Note
that this relaxation does not involve any loss of particles:∑

x(|u|2 + |v|2) is conserved by the nonlinear dynamics.
As we will now show, for a spatially dependent ϑ(x) the

zero mode at a domain wall becomes an attractive or repulsive
fixed point, depending on its chirality. We first present
numerical evidence and then give the analytical solution in
the continuum limit.

IV. COLLAPSE ONTO A ZERO MODE

We take a lattice of length L with periodic boundary
conditions, −L/2 < x < L/2. The profile of ϑ(x) consists
of two domains, with domain walls of width λ � L at
x± = ±L/4:

ϑ(x) =
{
ϑ0 tanh(x/λ − L/4λ) for 0 < x < L/2,

−ϑ0 tanh(x/λ + L/4λ) for − L/2 < x < 0,

(6)

see Fig. 1. As initial condition for the numerics we take a real
Gaussian wave packet centered at x = 0,

ψ0 = (u0,u0), u0(x) = (2σ
√

π)−1/2 exp(−x2/2σ 2), (7)

normalized to unity,
∫

ψ
†
0ψ0 dx = 1. Figure 2 shows how this

state collapses onto one of the two domain walls, depending
on the sign of κ .

For the analytics we take the continuum limit of the
discrete-time quantum walk, obtained from Eq. (5) under
the assumption that the change δψ in one time step δt is
infinitesimal. The state-dependent rotation contributes a term
−iδt(ϑ + κψ†σzψ)σyψ to δψ , while the state-dependent shift
contributes −δtσz∂ψ/∂x, resulting in the Dirac equation [2]

i
∂ψ

∂t
= −iσz

∂ψ

∂x
+ (ϑ(x) + κψ†σzψ)σyψ. (8)

For large L the two domain walls may be considered separately.
The zero mode bound to the domain wall at x± = ±L/4 is

FIG. 2. Time evolution of the density ψ
†
t ψt , starting from a real

Gaussian wave packet ψ0 = (u0,u0) [given by Eq. (7) with σ 2 = 50],
for the quantum walk with rotation angle profile of Fig. 1. The three
panels show the result for the linear quantum walk [panel (a), κ = 0]
and for the nonlinear quantum walk [panels (b) and (c), κ = ±1.4].
Depending on the sign of the nonlinearity, the state collapses onto the
zero mode �+ or �−.

given by

�± ∝ (u±, ± u±), u±(x) = exp

(
±

∫ 0

x

ϑ(x ′)dx ′
)

. (9)

The time-independent state �± is an eigenvector of σx with
eigenvalue ±1, selected by the sign of ϑ ′(x) at the domain
wall.

We now perform a linear stability analysis for a real
perturbation ψ(x,t) = �±(x) + η(x,t) of the zero mode. To
linear order in η we have

∂η

∂t
= −σz

∂η

∂x
− ϑ(x)iσyη − 2κu2

±(x)(±η − σxη). (10)

We focus on perturbations η = eikxη(t) of the zero mode with
wave number k � 1/λ, so we may neglect the spatial depen-
dence of ϑ(x) and u±(x). The resulting ordinary differential
equation,

dη

dt
= −η,  = ikσz + iϑσy + 2κu2

±(±1 − σx), (11)

has relaxation matrix  with eigenvalues μ1,μ2 given by

μ1 = ±2κu2
± + �, μ2 = ±2κu2

± − �,
(12)

�2 = 4κ2u4
± − k2 − ϑ2.

We conclude that for κ > 0 the zero mode �+ is an attractor
(Re μ1,μ2 > 0) and �− is a repeller (Re μ1,μ2 < 0), while
for κ < 0 the roles are interchanged.
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FIG. 3. Same as Fig. 2(b), but with a complex initial state ψ0 =
(u0,iu0).

V. INITIAL STATES WITHOUT PARTICLE-HOLE
SYMMETRY

Particle-hole symmetry ensures that a real ψ remains real,
but we might start with an initially complex state and ask for
the stability of the zero mode under complex perturbations.
Substitution into Eq. (8) of ψ = �± + η + iζ , with real
�±,η,ζ , shows that to first order in η,ζ the nonlinear term
contains only the real perturbation:

∂

∂t
(η + iζ ) = − σz

∂

∂x
(η + iζ ) − ϑ(x)iσy(η + iζ )

− 2κu2
±(x)(±η − σxη). (13)

The relaxation matrix for the real perturbation is as in
Eq. (11), with eigenvalues μ1,μ2 given by Eq. (12). But the
relaxation matrix for the imaginary perturbation,

dζ

dt
= −0ζ, 0 = ikσz + iϑσy, (14)

has purely imaginary eigenvalues,

μ3 = i
√

k2 + ϑ2, μ4 = −i
√

k2 + ϑ2. (15)

More generally, a perturbation of a complex zero mode
�±(x) = eiφ(u±,u±) has (for κ > 0) a decaying in-phase
component eiφη and a nondecaying out-of-phase component
ieiφζ [with real spinors η = (η1,η2),ζ = (ζ1,ζ2)]. Figures 3
and 4 illustrate the resulting localized peak on the extended
background.

VI. DISCUSSION

Figure 2 summarizes our key finding: while the linear
quantum walk is only slightly perturbed by the emergence of
zero modes at a topological phase transition, once we turn on

FIG. 4. Decomposition of the state ψ = eiφ(η + iζ ) at a late time
(t = 8 × 104), starting from the complex state ψ0 = (u0,u0 + iu0),
with u0 the Gaussian wave packet (7) (κ = 1.4, other parameters as
in Fig. 1). The spinor η = (η1,η2) is in phase with the zero mode �+;
the spinor ζ = (ζ1,ζ2) is out of phase.

FIG. 5. Optical Galton board consisting of an array of beam
splitters with an adjustable transmission, conditioned on the output
of a pair of photodetectors. The left panel shows a single element of
the array; the right panel shows their combination.

the nonlinearity the wave packet is steered towards a domain
wall and trapped in a zero mode of definite chirality. This
striking dynamics follows from a specific model calculation.
How generic is it, and how might it be realized in an
experiment?

For the experimental connection, we recall that quantum
walks can be realized with true quantum mechanical ele-
ments [31] (ion traps, cold atoms, quantum dots)—or they
can be simulated with classical waves [32,33], as in the
optical Galton board [34–36]. Such a simulated quantum
walk combines linear optical elements to mimic the quantum
evolution of a spin-1/2 degree of freedom. Nonlinearities
can be introduced via nonlinear optics [37], or while staying
within linear optics by introducing a feedforward element
conditioned on the output of a photodetector [38]. A scheme of
the latter type [39] is illustrated in Fig. 5. This optical Galton
board simulates a quantum walk with evolution operator
SRϑ exp(−iκMzσy), which differs from Eqs. (3) and (5) by
the order of the operators (SRϑ instead of Rϑ/2SRϑ/2). In the
continuum limit of Eq. (8) this order is irrelevant, and we have
checked numerically that the dynamics is essentially the same
as in Fig. 2.

Concerning the generality of the result, we have two
necessary conditions for the nonlinearity: it should preserve
the zero mode as a fixed point of the dynamics and it should
contract phase space, breaking the area preservation of the
linear dynamics. Both conditions hold if Eq. (5) is replaced by

ψt+1 = Uψ̄t , ψ̄t = exp(−iκ̃M̃n̂ · σ̂ )ψt,
(16)

M̃ = ψ
†
t (m̂ · σ̂ )ψt,

with σ̂ = (σx,σy,σz) and two unit vectors n̂ = (0,ny,nz) and
m̂ = (0,my,mz) satisfying m̂ × n̂ �= 0 (otherwise the map
would be area preserving). Particle-hole symmetry is broken
for nz �= 0, but the zero mode �± is preserved. A complex
perturbation δψ has relaxation matrix dδψ = −̃δψ with
eigenvalues μ̃n, n = 1,2,3,4, given by Eqs. (12) and (15), upon
the replacement κ 	→ κ̃(n̂ × m̂) · x̂. The attractor-repeller pair
is preserved, demonstrating the generality of our findings.

We finally note that discrete time quantum walks have
been used as a design principle for quantum algorithms. For
instance, the search algorithms of Refs. [40,41] can be under-
stood in terms of bound states in effectively one-dimensional
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quantum walks. The key observations in this paper, namely the
convergence towards certain bound states from arbitrary initial
states, as well as the accelerated escape from unwanted bound
states, thus may have promising implications for quantum
algorithms. This is in line with several other recent results
on continuous time quantum walks, where nonlinearities are
observed to speed up quantum algorithms [26].
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