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Chapter 6

Permutation Tests for Label
Ranking

Cláudio Rebelo de Sá, Carlos Soares, Arno Knobbe

in local proceedings of the 27th Benelux Conference on Artificial In-
telligence, 2015

Abstract

In recent years, many Label Ranking (LR) methods have been proposed, along
with an increasing number of datasets. The validation of these algorithms
has been done empirically, as is usual in Machine Learning, by testing them
on a set of benchmark datasets. Due to the scarcity of real-world LR data,
most of the experiments are based on LR datasets that were adapted from
classification and regression datasets from the UCI repository and Statlog
project. In this work, we want to test how strong is the relation between the
target rankings and independent variables. In other supervised learning tasks,
target swap randomization methods have been used to test it. We propose
two target swap randomization approaches for LR and apply them on KEBI
datasets. Our results show that there are meaningful relations between the
independent variables and the target rankings and that the relative importance
of each label in a ranking varies in some cases.
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6.1 Introduction

The study of label ranking is receiving increased attention [27, 36, 28, 116, 64].
Label Ranking (LR) studies the problem of learning a mapping from instances
to rankings over a finite number of predefined labels. It can be considered a
variant of the conventional classification problem [26]. However, in contrast
to a classification setting, where the objective is to assign examples to a
specific class, in LR we are interested in predicting the (possibly incomplete)
true preference order of the labels for every example. This means that the
true ranking of the labels is available for the training examples.

Due to the lack of benchmark LR datasets, 16 semi-synthetic datasets were
proposed in [26]. They are based on multi-class and regression datasets
from the UCI repository and Statlog project. For multi-class problems, also
referred as type A, the naive Bayes classifier was trained to give a probability
score to each class, and the true ranking is based on that score. For the
regression problems, type B, some numeric attributes were normalized and
the true ranking was based on the relative order of their values.

Since then, this set of 16 datasets has been used by the majority and the most
influential contributions in the Label Ranking field [28, 27, 116, 64]. However,
it is unclear if the type B datasets contain any real relations between the
target rankings and independent variables. While type A can be interpreted
as the preferences of an agent, which in this case is the naive Bayes classifier,
on type B, the relations is application-specific and it is unclear whether it
exists or not. To test whether such a relation exist, we expect to find strong
statistical validation of it.

In many data mining applications, Swap Randomizations techniques are used
together with statistical tests to validate the significance of findings [62]. Af-
ter swapping the position of the values along the attributes, the resulting
models are compared with the ones obtained from the original data. There-
fore, statistical significance tests can be used to validate the latter.

In this work, we investigate the usefulness of the type B datasets from the
KEBI data repository by comparison to type A. For that purpose, we pro-
pose two swap randomization methods specific for the LR task. Our results
show that both types of semi-synthetic data have relevant preference infor-
mation.

The paper is organized as follows: Section 6.2 introduces the LR problem.
Section 6.3 introduces the swap randomization and Section 6.4 describes
the method proposed here. Section 6.5 presents the experimental setup and
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discusses the results. Finally, Section 6.6 concludes this paper.

6.2 Label Ranking

The LR task is similar to classification. In classification, given an instance
x from the instance space X, the goal is to predict the label (or class) λ to
which x belongs, from a predefined set L = {λ1, . . . , λk}. In LR, the goal is
to predict the ranking of the labels in L that are associated with x [74]. A
ranking can be represented as a total order over L defined on the permutation
space Ω. In other words, a total order can be seen as a permutation π of the
set {1, . . . , k}, such that π(a) is the position of λa in π.

As in classification, we do not assume the existence of a deterministic X→ Ω
mapping. Instead, every instance is associated with a probability distribution
over Ω [26]. This means that, for each x ∈ X, there exists a probability
distribution P(·|x) such that, for every π ∈ Ω, P(π|x) is the probability
that π is the ranking associated with x. The goal in LR is to learn the
mapping X → Ω. The training data is a set of instances D = {〈xi, πi〉}, i =
1, . . . , n, where xi is a vector containing the values xji , j = 1, . . . ,m of m
independent variables describing instance i and πi is the corresponding target
ranking.

Given an instance xi with label ranking πi, and the ranking π̂i predicted by
an LR model, we evaluate the accuracy of the prediction with a loss function
on Ω. One such function is the number of discordant label pairs,

D(π, π̂) = #{(a, b)|π(a) > π(b) ∧ π̂(a) < π̂(b)}

If normalized to the interval [−1, 1], this function is equivalent to Kendall’s
τ coefficient [85], which is a correlation measure where D(π, π) = 1 and
D(π, π−1) = −1 (π−1 denotes the inverse order of π).

The accuracy of a model can be estimated by averaging this function over
a set of examples. This measure has been used for evaluation in recent
LR studies [26, 40] and, thus, we will use it here as well. However, other
correlation measures, like Spearman’s rank correlation coefficient [118], can
also be used.
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6.2.1 IB-PL

Instance-Based Placket-Luce (IB-PL) is an highly competitive method in
label ranking proposed in [24]. It is a local prediction method based on
the nearest neighbor estimation principle. Given a new instance x̂ it uses the
{π1, . . . , πK} rankings associated with the K nearest neighbors to predict the
ranking π̂ associated with x̂. The estimation of π̂ is made using a Maximum
Likelihood Estimation of the Plackett-Luce (PL) model which assumes that
the rankings have been produced independently of each other.

6.2.2 APRIORI-LR

APRIORI-LR is an algorithm that generates Label Ranking Association Rules
(LRAR) [36] which are a straightforward adaptation of Class Association
Rules (CAR): A → π Where A ⊆ desc (X) and π ∈ Ω. Where desc (X)
is the set of descriptors of instances in X, typically pairs 〈attribute, value〉.
Similar to how predictions are made with CARs in CBA (Classification Based
on Associations) [97], when an example matches the antecedent of the rule,
A→ π, the predicted ranking is π.

6.2.3 Datasets

Even though Label Ranking potentially has a large number of practical ap-
plications [74], before the KEBI datasets, there were not many datasets avail-
able [26]:

• Meta-learning [17] on which we try to predict a total ranking of a set of
algorithms accordingly to the best expected accuracy for each dataset.

• Microarray [74] which provides information of genes from Yeast on five
different micro-array experiments (spo, heat, dtt, cold and diau).

• Image categorization [58] of landscape pictures from several categories
(beach, sunset, field, fall foliage, mountain, urban).

To solve this problem, the KEBI Label Ranking data repository was cre-
ated [26]. Data from the UCI repository and Statlog collection was trans-
formed into Label Ranking data using the following two procedures:

type A The multi-label data is used in the training of a naive Bayes clas-
sifier. The predicted class probabilities are ranked by decreasing order
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for each example, which will result in a label ranking. (To avoid incom-
plete rankings, the labels with lower indexes are ranked first in case of
ties)

type B With the regression data, the process consisted of transforming some
attributes into labels. A selected set of attributes are normalized and
then ranked by descent order for each example. The remaining at-
tributes will then be used to predict the rankings. As some of the
attributes are correlated, this transformation is believed to keep a re-
lation between predictors and rankings.

While the type A rankings can be interpreted as the preferences of a classifier,
namely the naive Bayes, the interpretation on type B is not so clear. As
mentioned in [26], type B datasets lead to more difficult learning problems.
In this work, we analyze both data types.

6.3 Swap Randomization

Swap randomization consists of the creation of randomized datasets {D′i}i=1,...,s

from a given dataset D to compare and validate the findings of data min-
ing algorithms. We can maintain the margins of the attributes of D in all
{D′i}i=1,...,s by swapping the position of the values per attribute (see Fig-
ure 6.1).

ID Att

1 A

2 A

3 C

4 B

ID Att

1 B

2 C

3 A

4 A

Figure 6.1: Illustration of a swap randomization per attribute.

Given an interest measure ai, for example the accuracy of a learning method,
an estimation of {ai}i=1,...,s can be obtained for {D′i}i=1,...,s, respectively. Con-
sidering aD as the estimation of a in the dataset D by a given method, if aD
deviates significantly from the distribution of {ai}i=1,...,s we can consider aD
to be significant, otherwise we do not consider it to be relevant [62].
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The same concept has also been widely used in the classification task to
validate classifiers [63, 103], and is commonly referred to as the permuta-
tion test. The p-value can be seen as the fraction of {D′i}i=1,...,s where the
classifiers obtained better results than in D. In other words, this procedure
measures to what extent the accuracy of classifiers could have been due to
chance [105]. The null hypothesis assumes that there is no relation between
the independent variables and the targets.

If we reverse the interpretation, we can also use learning methods to assess
the information contained in the datasets. By using more than one learner
we can avoid the bias of the methods.

6.4 Validating ranking data with permuta-

tion tests

Swap Randomization is used to verify the significance of Data Mining discov-
eries from any given method [62]. If we use the same concept and randomly
permute the position of the target attribute relatively to the independent
variables, we should be able to verify if the relation attribute-target is also
meaningful. While the target class has only one dimension, the target rank-
ing has k dimensions. This property allows us to make partial permutations
i.e. we permute the ranks of one label while leaving the remaining ranks
unchanged. The different approaches are detailed below.

6.4.1 Random permutation of rankings

Randomly permuting the rankings is a natural adaptation of the methods
used in classification like in [63]. By randomly permuting the target rankings,
we want to test the strength of the relation X→ Ω in the data, as exemplified
in Table 6.2. After the permutation, since we break this relation, we can
measure how the LR learners behave and compare with the results on the
original data. If the differences are not significant, we can conclude that
there is no real relation X → Ω. Otherwise, we can statistically show that
the attributes-ranking relations are meaningful.
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ID Att Ranking

1 A a > c > b

2 A a > b > c

3 C c > b > a

4 B c > a > b

ID Att Ranking

1 A c > a > b

2 A c > b > a

3 C a > b > c

4 B a > c > b

Figure 6.2: Illustration of a permutation of rankings.

6.4.2 Random permutation of labels

In LR the target can be seen as a multidimensional variable, from which both
labelwise and pairwise levels of information can be extracted. We refer to a
labelwise permutation when the ranks of a specific label are permuted.

By permuting one label at a time, we can assess the importance of each label
by dataset. We can then compare the distributions of the permuted labels
with the non-permuted results.

In [19], each attribute was permuted at a time to measure the impact of
variables in prediction, in terms of misclassification rate. The results in [19]
indicated that some variables did not contribute to increase the predictive
power of the method used, while others were very important. Similarly, in
our approach to labels, we test if similar conclusions can be drawn, but in
terms of relevance of the labels of rankings.

We would like to note that this process will never lead to a completely dif-
ferent ranking from the original, since only the relation of one label versus
the others is affected per ranking. This is exactly what we intend here, in
order to test the relevance of a label at a time. The process is exemplified in
Figure 6.3, where the label a is permuted within the rankings.

6.5 Experiments

We use two LR algorithms, APRIORI-LR [36] and IB-PL [24]. The perfor-
mance of the methods is estimated using a ten-fold cross-validation in terms
of Kendall’s τ . The data for APRIORI-LR was discretized with equal width
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ID Att Ranking

1 A a > c > b

2 A a > b > c

3 C c > b > a

4 B c > a > b

ID Att Ranking

1 A c > a > b

2 A b > c > a

3 C a > c > b

4 B c > b > a

Figure 6.3: Illustration of a labelwise permutation of the label a.

discretization with 4 bins.

Table 6.1: Summary of the datasets.

Datasets type #examples #labels #attributes

bodyfat B 252 7 7
calhousing B 20,640 4 4
cpu-small B 8,192 5 6
elevators B 16,599 9 9
glass A 214 6 9
housing B 506 6 6
iris A 150 3 4
segment A 2310 7 18
stock B 950 5 5
vehicle A 846 4 18
vowel A 528 11 10
wine A 178 3 13
wisconsin B 194 16 16

To compare the results, we used the t.test function from the stats package
[113] with a confidence level of 95%. In Section 6.5.1 we use the standard t-
test approach and in Section 6.5.2 a paired t-test. The p-values are mentioned
below.

To check whether the mean accuracy in the original data is better or not, we
use the following hypotheses:

H0 The mean accuracy is equivalent in both original and permuted datasets.

H1 The mean accuracy on the original datasets is better than the average
accuracy on the permuted datasets.
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If the p-value < 5%, we reject H0.

6.5.1 Ranking permutations

For each dataset, we performed 100 random permutations of the targets and
measured the accuracy for APRIORI-LR and IB-PL. Then we compared with
10 repetitions on the original data. The distributions for IB-PL are shown
in Figure 6.4.

bodyfat calhousing cpu−small

elevators glass housing

iris segment stock

vehicle vowel wine

wisconsin
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Figure 6.4: Distribution of the accuracy of IB-PL on randomized rankings (blue)
and original data (red).

In Figure 6.4 it is clear that in most datasets the distribution of the accuracy
on the permuted datasets is less than the accuracy with the original dataset.
When the difference is big, it indicates that the algorithm is not being able
to find relevant patterns in the randomized datasets. The statistical tests
indicated that for all the cases, there is a significantly better mean accuracy
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on the original datasets, with p-values � 1%. Very identical results were
obtained using the APRIORI-LR algorithm.

6.5.2 Labelwise permutations

In this part of the experiments, we permuted one label at a time with 10
repetitions. By comparing it to the 10 repetitions on the original data, we
can statistically test whether the latter are better.

Even though we used two LR methods, if we can statistically show that at
least one method yielded better results with the original data than with a
label permuted, then we do not need to consider the other on that particular
label.
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Figure 6.5: Distribution of the accuracy of APRIORI-LR on vehicle dataset per
permuted label and original data.

In Figure 6.5 it is clear that the distribution of the accuracy with any label
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permuted is less than the accuracy on the original dataset. Therefore it seems
that there are no doubts about the importance of each label for the accuracy.
Also, from Figure 6.5 it is clear how label 4, when randomized, affects the
accuracy in a more extreme way than the remaining labels. Statistical tests
confirm that with p-values� 1% using both APRIORI-LR and IB-PL.
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Figure 6.6: Distribution of the accuracy of APRIORI-LR on glass dataset per
permuted labels and original data.

In the results obtained with the glass dataset, on Figure 6.6, the difference
is not clear and the distribution of some randomized labels overlaps the
distribution with the original data. However, statistical tests indicated that
the distribution on the original data is significantly better.

On the other hand, it is also very interesting how labels 3 and 6 have a much
higher impact on the accuracy for this model than the others. Similar to [19],
we can suggest a level of relevance by label, using this approach.

Figure 6.7 gives the accuracy distribution of IB-PL per label permuted and
with the original dataset. In this case, statistical tests obtained a p-value
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< 5% for all the permuted labels except for label 6. Also APRIORI-LR failed
to obtain a p-value < 5% for the same label.

This seems to indicate that label 6 does not have a very relevant relation with
the other labels. This is somewhat expected from type B datasets rather than
type A. Since in the former, some attributes were transformed into labels of
a ranking, if these come from attributes that are not strongly related with
the remaining, the label rank should also be measured as irrelevant.
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Figure 6.7: Distribution of the accuracy of IB-PL on the bodyfat dataset per
permuted label and original data.

Due to space limitations we do not present results for all datasets, but instead
we show the most relevant which are also representative of the others.
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6.6 Conclusions

In this work, we show that, even though KEBI datasets have a semi-synthetic
nature, they carry relevant preference information that can be learned by
contemporary label rankers. In particular, there were no obvious differences
between the type A and type B datasets. Statistical tests showed that the
prediction models over this datasets are not due to chance.

This work also proposes a simple way to measure the relevance of each label
on the prediction accuracy, based on the work of [19]. We also found out
that some labels seem to affect the accuracy more than other, such as in the
glass and vehicle dataset.

This methods can also be used on real world datasets too, in order to give a
richer analysis. For example, by measuring the relative importance of each
label or determining which algorithm is more resistant to noise in rankings
[39]. In the future, we intend to propose a specific method to assess the
relevance of ranking data with a proper statistical framework.
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