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Chapter 3

Entropy-based discretization
methods for ranking data

Cláudio Rebelo de Sá, Carlos Soares, Arno Knobbe

in Information Sciences Journal, 2016

Abstract

Label Ranking problems are becoming increasingly important in Machine
Learning. While there has been a significant amount of work on the devel-
opment of learning algorithms for LR in recent years, there are not many
pre-processing methods for LR. Some methods, like Naive Bayes for LR and
APRIORI-LR, cannot handle real-valued data directly. Conventional dis-
cretization methods used in classification are not suitable for LR problems,
due to the different target variable. In this work, we make an extensive anal-
ysis of the existing methods using simple approaches. We also propose a new
method called EDiRa for the discretization of ranking data. We illustrate the
advantages of the method using synthetic data and also on several benchmark
datasets. The results clearly indicate that the discretization is performing as
expected and also improves the results and efficiency of the learning algo-
rithms.

49



50 CHAPTER 3. DISCRETIZATION

3.1 Introduction

Research in Label Ranking (LR) has been increasing over the last few years [116,
36, 27, 28, 123, 127]. Label Ranking (LR) studies the problem of learning a
mapping from instances to rankings over a finite number of predefined labels.
An example of an LR problem is the ranking of a set of restaurants according
to the preferences of a given person. It can be considered as a variant of the
conventional classification problem [26]. However, in contrast to a classifica-
tion setting, where the objective is to assign examples to a specific class, in
LR we are interested in assigning a complete preference order of the labels
to every example. An additional difference is that the true (possibly partial)
ranking of the labels is available for the training examples.

As in any machine learning task, data preparation is essential for the devel-
opment of accurate LR models. For instance, some algorithms are unable
to deal with numeric variables, such as the basic versions of Naive Bayes
and Association Rules [102, 4], in which case numeric variables should be
discretized beforehand. Discretization, from a general point of view, is the
process of partitioning a given interval into a set of discrete sub-intervals. It
is normally used to split continuous intervals into two or more sub-intervals
which can then be treated as nominal values. In theory, a good discretization
should have a good balance between the loss of information and the number
of partitions [90]. While there has been a significant amount of work on
the development of learning algorithms for LR in recent years, there are not
many pre-processing methods specifically for this task.

Discretization methods are typically organized in two groups, depending on
whether or not they involve target variable information. These are usu-
ally referred to as supervised and unsupervised discretization, respectively.
Previous research found that the supervised methods produce more useful
discretizations than unsupervised methods [46]. The difference in nature be-
tween the target variable in classification and in LR problems implies that
supervised discretization methods developed for the former are not suitable
for the latter. In fact, in classification, two target values (i.e., classes) are
either equal or different, while in LR, the difference between two rankings is
closer to a continuous function, similar to the error in a regression setting. In
this work, we make an extensive empirical analysis of the existing methods.
We also propose a new method based on Minimum Description Length Prin-
ciple (MDLP) [54] for the discretization of ranking data. The new method
of supervised discretization for ranking data, which we refer to as EDiRa
(Entropy-based Discretization for Ranking), follows the line of work in [40].
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Based on MDLP for classification, it adapts the concept of entropy to LR
based on the distance between rankings.

We also make an extensive study of the Minimum Description Length Prin-
ciple for Ranking data (MDLP-R) method proposed in [40], which is also
based on MDLP [54]. This analysis includes varying its parameter to assess
how it affects the performance of the learner.

Finally we present a comparison between the newly proposed approach EDiRa
and MDLP-R, along with the original MDLP (i.e. for classification). The
results observed show that EDiRa behaves better in many scenarios and is
also more robust.

The paper is organized as follows: Section 3.2 introduces the LR problem
and the learning algorithms used in this paper. Section 3.3 introduces dis-
cretization and Section 3.4 describes the method proposed here. Section 3.5
presents the experimental setup and discusses the results. Finally, Section
3.6 concludes this paper.

3.2 Label Ranking

The LR task is similar to classification. In classification, given an instance
x from the instance space X, the goal is to predict the label (or class) λ to
which x belongs, from a predefined set L = {λ1, . . . , λk}. In LR, the goal is
to predict the ranking of the labels in L that are associated with x [74]. A
ranking can be represented as a total order over L defined on the permutation
space Ω. In other words, a total order can be seen as a permutation π of the
set {1, . . . , k}, such that π(a) is the position of λa in π.

As in classification, we do not assume the existence of a deterministic X→ Ω
mapping. Instead, every instance is associated with a probability distribution
over Ω [26]. This means that, for each x ∈ X, there exists a probability
distribution P(·|x) such that, for every π ∈ Ω, P(π|x) is the probability that
π is the ranking associated with x. The goal in LR is to learn the mapping
X → Ω. The training data contains a set of instances D = {〈xi, πi〉}, i =
1, . . . , n, where xi is a vector containing the values xji , j = 1, . . . ,m of m
independent variables describing instance i and πi is the corresponding target
ranking.

Given an instance xi with label ranking πi, and the ranking π̂i predicted by
an LR model, we evaluate the accuracy of the prediction with a loss function
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on Ω. One such function is the number of discordant label pairs,

D(π, π̂) = #{(a, b)|π(a) > π(b) ∧ π̂(a) < π̂(b)}

If normalized to the interval [−1, 1], this function is equivalent to Kendall’s
τ coefficient [85], which is a correlation measure where D(π, π) = 1 and
D(π, π−1) = −1 (π−1 denotes the inverse order of π).

The accuracy of a model can be estimated by averaging this function over
a set of examples. This measure has been used for evaluation in recent
LR studies [26, 40] and, thus, we will use it here as well. However, other
correlation measures, like Spearman’s rank correlation coefficient [118], can
also be used.

Given the similarities between LR and classification, one could consider
workarounds that treat the label ranking problem essentially as a classifica-
tion problem. One such workaround is Ranking As Class (RAC) [40], which
replaces the rankings with classes:

∀πi ∈ Ω, πi → λi.

This approach allows the use of all pre-processing and prediction methods
for classification in LR problems.

3.2.1 Association Rules for Label Ranking

Label Ranking Association Rules (LRAR) [36] are a straightforward adapta-
tion of Class Association Rules (CAR):

A→ π

where A ⊆ desc (X) and π ∈ Ω. Where desc (X) is the set of descriptors of
instances in X, typically pairs 〈attribute, value〉. Similar to how predictions
are made with CARs in CBA (Classification Based on Associations) [97],
when an example matches the antecedent of the rule, A → π, the predicted
ranking is π.

If the RAC approach is used, the number of classes can be extremely large,
up to a maximum of k!, where k is the number of labels in L. This means
that the amount of data required to learn a reasonable mapping X→ Ω can
be very large.

Alternatively, mining of LRAR uses similarity-based support and confidence
measures [36].



3.2. LABEL RANKING 53

Similarity-based Support and Confidence

Given a measure of similarity s(πa, πb), the support of the rule A → π is
defined as follows:

suplr(A→ π) =

∑
i:A⊆desc(xi)

s(πi, π)

n
(3.1)

This essentially assigns a weight to each target πi in the training data, that
represents its contribution to the probability that π may be observed.

The similarity function is of the form:

s(πa, πb) =

{
s′(πa, πb) if s′(πa, πb) ≥ θsup

0 otherwise
(3.2)

where s′ is itself a similarity function between rankings. Any function that
measures ranking similarity, such as Kendall’s τ or Spearman’s ρ, can be
used as s′. This general form assumes that below a given threshold, θsup, it
is not useful to discriminate between different similarity values, as they are
too different from πa anyway.

The confidence of a rule A→ π is obtained simply by replacing the measure
of support with the new one:

conflr (A→ π) =
suplr (A→ π)

sup (A)

In a similar way to conf in classical Association Rule Mining [71], conflr (A→ π),
can be interpreted as the conditional probability of finding π givenA, P(π|A).

As in [36], we use Kendall τ to measure the similarity between rankings in
our experiments.

3.2.2 Naive Bayes for Label Ranking

Naive Bayes for Label Ranking (NBLR) [6] is an LR method based on the
naive Bayes Classifier. It uses a measure of probability adapted for rankings,
based on similar reasoning to the one underlying APRIORI-LR. This adapted
probability measure is plugged directly into the naive Bayes algorithm to
generate a LR model.
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The prior probability of a ranking π is defined in [6] as the mean similarity
between π and all the others:

PLR(π) =

∑n
i=1 ρ(π, πi)

n

where ρ is the Spearman rank correlation coefficient [118]. This assumes
that the larger the number of rankings similar to π there are, the higher the
probability to observe π. Similarly, the conditional probability of the value i
of attribute j, vji given ranking π is defined as:

PLR(vji |π) =

∑
i:xji=vji

ρ(π, πi)

|{i : xji = vji }|

Given an observation xi, the Naive Bayes for LR outputs the ranking π̂ with
the highest PLR(π|xi) value:

π̂ = arg max
π∈ΠL

PLR(π|xi)

where PLR(π|xi) is the estimated posterior probability of ranking π:

PLR(π|xi) = PLR(π)
m∏
j=1

PLR(xji |π)

3.3 Discretization

Discretization methods define intervals or ranges in continuous variables
which allows them to be used as nominal variables by learning algorithms.
Discretization is of great relevance since several algorithms can improve their
performance by using discretized data [53], even those that can discretize
variables on-the-fly [54], such as the ID3 discretizer [112].

The main issue in discretization is the choice of the intervals, because a con-
tinuous variable can be discretized in an infinite number of ways. An ideal
discretization method finds a reasonable number of cut points that split the
data into meaningful intervals. For classification datasets, a meaningful in-
terval should be coherent with the class distribution along the variable.

Discretization approaches can be divided along several dimensions:
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Top-down/Bottom-up Discretization methods with a Top-down or Bottom-
up approach start by sorting the dataset with respect to the variable which
will be discretized. In the Top-down approach, the method starts with an
interval containing all points. Then, it recursively splits the intervals into
sub-intervals, until a stopping criterion is satisfied. One example is MDLP
method [54].

In the Bottom-up approach, the method starts with the maximal number of
intervals (i.e., one cut point between each pair of adjacent values) and then
iteratively merges them until a stopping criterion is satisfied. One well-known
Bottom-up method is ChiMerge [86].

Static/Dynamic A dynamic discretization method acts on-the-fly, while
the learner is building the model. Static methods discretize the data before
the learning method starts to run. The latter are independent from the
learning methods whereas the dynamic methods only have access to data as
it is provided by the learner. Most of the discretization methods are static,
such as ChiMerge [86] or MDLP [54]. An example of a dynamic method is
how the ID3 algorithm deals with numeric variables [112].

Univariate/Multivariate Univariate methods, like MDLP [54], discretize
one attribute at a time while multivariate ones, such as MVD [12] or SMDNS [76],
can discretize two or more variables simultaneously. The latter can be useful
when there are high levels of interaction between attributes [60].

Supervised/Unsupervised The discretization methods can use the val-
ues of the target variable, when available, or not. These options are referred
to as supervised and unsupervised respectively. The unsupervised methods
ignore the classes of the objects and divide the interval into a user-defined
number of bins. Examples of the latter are the EqualWidth and EqualFre-
quency discretizations [60]. The supervised methods, like MDLP [54] or [73],
take into account the distribution of the class labels in the discretization pro-
cess. Previous research shows that the supervised methods tend to produce
better discretizations than the unsupervised ones [46].

It is not an easy task to determine which discretization technique is the best
because several criteria can be used to evaluate their performance [60]. These
include direct measures, such as the number of intervals generated, the pro-
cessing time and inconsistency [99], and indirect ones, such as measurement
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of the accuracy of classification algorithms on the discretized data. How-
ever, some tests have been done with the most well-known algorithms and
the results indicate that ChiMerge [86], MDLP [54], Zeta [72], Distance [22],
and Chi2 [99] are among the best ones [60]. Based on these results and on
the fact that it is one of the most commonly used methods, we decided to
adapt MDLP to discretize ranking data. A first adaptation of this method
for LR was already introduced, named MDLP-R [40] (Section 3.4). However,
as shown below, this method can be improved.

3.3.1 Entropy-based methods

Several methods perform discretization by optimizing entropy [29, 54]. In
classification, class entropy is a measure of uncertainty in a finite interval of
classes and it can be used as an evaluation metric.

The entropy of classes used in the original MDLP method [54], which derives
from the Shannon entropy, is defined as:

Ent (S) = −
K∑
i=1

P (Ci, S) log (P (Ci, S)) (3.3)

where P (Ci, S) stands for the proportion of examples with class Ci in a
subset S, and K is the number of distinct classes in S and

P (Ci, S) =
#Ci
nS

where nS is the number of instances in subset S.

A good partition is such that it minimizes the overall entropy in its subsets.
Likewise, in discretization, a good partition of the continuous variable mini-
mizes the class entropy in the subsets of examples it creates. It is well known
that the optimal cut points must be between instances of distinct classes [54].
In practical terms, the class information entropy is calculated for all possi-
ble partitions and compared with the entropy without partitions. This can
be done recursively until some stopping criterion is satisfied. The stopping
criteria can be defined by a user or by a heuristic method like MDLP.

Minimum Description Length Principle MDLP [54] is a well-known
method used to discretize continuous attributes in classification tasks. It
measures the information gain of a given split point by comparing the values
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of entropy before and after the partition. For each split point considered,
the entropy of the initial interval is compared with the weighted sum of the
entropy of the two resulting intervals. Given an interval S:

Gain (A, T ;S) = Ent (S)− |S1|
nS

Ent (S1)− |S2|
nS

Ent (S2)

where |S1| and |S2| are the number of instances on the left side (S1) and
the number of instances on the right side (S2), respectively, of the cut point
T in attribute A. The decision criterion for accepting or rejecting a new
partition by MDLP is given by the Minimum Description Length Principle
Cut (MDLPC) [54].

MDLPC Criterion The partition induced by a cut point T for a set S of
nS examples is accepted iff

Gain (A, T ;S) >
log2 (nS − 1)

nS
+

∆ (A, T ;S)

nS

where ∆ (A, T ;S) is equal to:

log2

(
3K − 2

)
− [KEnt (S)−K1Ent (S1)−K2Ent (S2)]

and K,K1, K2 is the number of distinct target values in S, S1, S2 respec-
tively.

3.4 Discretization for Label Ranking

A supervised discretization method for LR should take into account the speci-
ficities of its type of target, namely rankings. Two properties, in particular,
are important: how many different rankings are present in the subset and
how similar they are to each other. To adapt MLDP for LR, an entropy
measure should be used that accounts for these two properties [40].

In this work, we compare two different adaptations of the Shannon entropy
for rankings with the regular MDLP after an RAC transformation. These
entropy measures use MDLPC as a stopping criterion, in the same way as it
is used for classification. First we describe the adaptations of the entropy for
rankings and then we show how to integrate it with MDLP.
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Table 3.1: Example dataset Dex - Small artificial dataset with noise in the rank-
ings.

TID x1 π λRAC

1 0.1 (1,2,4,3,5) a
2 0.2 (1,2,3,4,5) b
3 0.3 (2,1,3,4,5) c
4 0.4 (1,3,2,4,5) d
5 0.5 (1,2,3,5,4) e
6 0.6 (5,4,3,1,2) f
7 0.7 (4,5,3,2,1) g
8 0.8 (5,3,4,2,1) h

3.4.1 Adapting the concept of entropy for rankings

In this section, we explain how the adapted versions of entropy for LR can be
used. We start by a motivation of the approach with a discussion of the use
of the concept of entropy in LR. We then show in detail how the heuristic
adaptation of entropy for rankings behaves.

Let us consider a very simple synthetic dataset Dex, presented in Table 3.1.
In this dataset, we have eight distinct rankings in the target column π. Even
though they are all distinct, the first five rankings are very similar (the label
ranks are mostly in ascending order), the last three are also very similar to
each other (descending order), but the first group is very different from the
second. Without any further considerations, it is natural to assume that an
optimal split point for x1 should lie between values 0.5 and 0.6 (instances 5
and 6).

In the RAC approach, the rankings are transformed into eight distinct classes
as shown in column λRAC . The natural split point identified earlier is com-
pletely undetectable in column λRAC . As shown in Equation 3.3, the entropy
of a set of classes depends on the relative proportion of a class. If we measure
the ranking proportion in the same way, we get:

P
(
λRACi , Dex

)
= 1/8, ∀λRACi ∈ Dex

This example illustrates why the concept of entropy cannot be applied di-
rectly to rankings. In fact, the problem we are facing here is the same as
in the adaptation of the concept of support for LRAR in APRIORI-LR [36]
(Equation 3.4). Hence, a similar line of reasoning as the one in Section 3.2.1
can be followed here. The uncertainty associated with a certain ranking
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decreases in the presence of similar – although not equal – rankings. Fur-
thermore, this decrease is proportional to that distance. To take this into
account, we can use the distance-based ranking proportion of ranking πi in
set S [40]:

Pπ (πi, S) =

∑nS

j=1 s (πi, πj)∑K
i=1

∑nS

j=1 s (πi, πj)
(3.4)

where

s(πa, πb) =

{
s′(πa, πb) if s′(πa, πb) ≥ θdisc

0 otherwise
(3.5)

and θdisc is the threshold parameter of the similarity measure, equivalent to
the threshold for similarity support, θsup, in Equation 3.2. As in [40], we
use Kendall τ as s′, by default, and the negative correlations are ignored
(Section 3.2.1), i.e. θdisc ≥ 0.

However, this approach alone is not enough to give a fair measure for the
entropy of rankings. The entropy of the set of classes {λ1, λ2} is the same as
{λ1, λ3} or {λ2, λ3}. This happens because, λ1 is as different from λ2 as λ2

is from λ3. However, in LR, the difference between two rankings is closer to
a continuous function. Considering these two sets:

1)S1 = {π1 = (1, 2, 3, 4, 5) , π2 = (1, 2, 3, 5, 4)}

2)S2 = {π1 = (1, 2, 3, 4, 5) , π3 = (5, 4, 3, 2, 1)}

the distance-based ranking proportion of π1 relative to sets S1 and S2, using
Kendall τ as a similarity measure, for S1 and S2 is, respectively:

Pπ (π1,S1) =
s (π1, π1) + s (π1, π2)

s (π1, π1) + s (π1, π2) + s (π2, π1) + s (π2, π2)
=

=
1 + 0.8

1 + 0.8 + 0.8 + 1
= 0.5 (3.6)

and

Pπ (π1,S2) =
s (π1, π1) + s (π1, π3)

s (π1, π1) + s (π1, π3) + s (π3, π1) + s (π3, π3)
=

=
1 + 0

1 + 0 + 0 + 1
= 0.5. (3.7)

Since the ranking proportions will be the same in both cases, the entropy will
also be the same. If we decompose these rankings into pairwise-comparisons,
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Table 3.2: Pairwise-comparisons perspective.

Pairwise π1(1,2,3,4,5) π2(1,2,3,5,4) π3(5,4,3,2,1)

λ1 � λ2 true true false
λ1 � λ3 true true false
λ1 � λ4 true true false
λ1 � λ5 true true false
λ2 � λ3 true true false
λ2 � λ4 true true false
λ2 � λ5 true true false
λ3 � λ4 true true false
λ3 � λ5 true true false
λ4 � λ5 true false false

we obtain the 10 label comparisons presented in Table 3.2. π1 matches 9
pairs with π2, but it does not match any with π3.

Another issue that must be taken into account when adapting entropy for
rankings is that, as in any probabilistic phenomenon, ranking data is ex-
pected to contain some noise. Noise in rankings may be caused by different
reasons. For example, if a total ranking results from the combination of a
set of incomplete pairwise preferences, it may not be an entirely accurate
representation of the true ranking. Or, give a set of items (e.g. products) as-
sociated with an utility function (e.g. price), when asked to rank those items
according to the utility function, different experts might provide slightly dif-
ferent rankings. The differences can arise due to imperfect or incomplete
access to information [92]. As an example, instances 6, 7 and 8 in Dex could
represent the same “real” ranking, say (5, 4, 3, 2, 1), but perceived by differ-
ent experts. Additionally, as the number of labels increases, we expect that
the probability of being affected by noise is also higher. For simplicity, in
this work, we assume all different sources of noise have similar manifestations
and, thus, are treated in the same way.

Considering that entropy is a measure of disorder, we believe that a measure
of entropy for rankings should generate lower values for sets with similar
rankings (low noise) and higher values for sets with different rankings (high
noise).
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MDLP-R

As discussed in [40], MDLP-R addresses the issues discussed earlier. It is
based on an adaptation of entropy for rankings EntLR, which is defined
as:

EntLR (S) =
K∑
i=1

Pπ (πi, S) log (Pπ (πi, S))× log (Q (πi, S)) (3.8)

where K is the number of distinct rankings in S and Q (πi, S) is the average
similarity of the ranking πi with the rankings in the subset S:

Q (πi, S) =

∑nS

j=1 s (πi, πj)

nS

where s is a similarity measure (Equation 3.5). Additionally, abs (log (Q (πi, S)))
can be seen as a dispersion measure around πi. If a lot of rankings in S are
similar to πi, Q (πi, S) will be close to 1. On the other hand, low values
are obtained when there are no rankings in S that are similar to πi. As a
practical example, using this measure on the sets mentioned before, S1 and
S2, we get, Q (π1,S1) = 0.90 and Q (π1,S2) = 0.50. Which will result in
abs (log (0.90)) = 0.105 and abs (log (0.5)) = 0.693, as expected.

The value of EntLR depends strongly on the threshold θdisc. If the similarity
measure, s (πi, πj), generates negative correlations, Q (πi, S) may, under cer-
tain conditions, be negative. Since the log of negative values is not defined,
the domain of the parameter θdisc is defined as: 0 ≤ θdisc ≤ 1. Alternatively,
this limitation is not required if the value of s is rescaled to the interval [0, 1]
(Equation 3.5).

In our example, the value of EntLR on the sets S1 and S2 is EntLR (S1) ≈
0.073 and EntLR (S2) ≈ 0.480, respectively. Intuitively, this makes more
sense than the values obtained using MDLP with RAC, which is the same
for the two sets EntRAC (S1) = EntRAC (S2) ≈ 0.693.

EDiRa

Here, we propose a new entropy measure for rankings which is more simple
and intuitive than MDLP-R and has no parameters. This new measure can
be divided into two parts. The first part is the Shannon entropy as defined
in [54] (Equation 3.3). The second part is a dispersion measure which makes
the entropy measure more sensitive to overall similarity between the rankings
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in the set S. It is expressed as an average of the similarity measure, s′,
normalized between 0 and 1.

While, in MDLP-R, the proportion in entropy is similarity-based, the new
measure uses the standard proportion as in classification, P (πi, S). In fact,
some tests indicated that, in this particular approach, the two types of pro-
portions yielded equivalent results. 1 This means that the second part of
the formula has a stronger impact on the similarity level. For this reason
we decided to keep the simplest approach, both from a theoretical and a
computational perspective, which is the standard proportion.

In the second part of the expression, which represents the homogeneity of the
rankings in the subset S, we use log

(
kt (S)

)
. Where kt (S) is the average

normalized 2 Kendall τ distance in the subset S:

kt (S) =

∑K
i=1

∑nS

j=1
τ(πi,πj)+1

2

K × nS

As an example, kt (S1) = 0.95 and kt (S2) = 0.50

This leads to the new expression to compute the entropy of rankings:

EntLR2 (S) =
K∑
i=1

P (πi, S) log (P (πi, S)) log
(
kt (S)

)
(3.9)

where K is the number of distinct rankings in S. This measure makes the
discretization method more robust to noise, as shown in Section 3.5. The
values of this new measure on the example sets S1 and S2 are EntLR2 (S1) ≈
0.036 and EntLR2 (S2) ≈ 0.480. These values show that this new entropy is
consistent with the previous one.

Given that Kendall τ is a measure of the proportion of the concordant pairs
of labels, this entropy measure can still work with partial orders, as long as
there is at least one pairwise comparison per instance. However, in this work,
we focus on total orders.

Two different discretization methods can be created simply by replacing the
standard entropy measure by each of the two new measures in the entropy of
rankings in the MDLP presented in [54]. In terms of taxonomy (Section 3.3),
MDLP-R and EDiRa are, thus, in the same category as MDLP, namely Top-
down, Static, Univariate and Supervised.

1In the interest of space, we opted to omit these results.
2Since similarity measures for rankings, such as Kendall τ and Spearman ρ, are defined

in the interval [−1, 1], we rescale their to the interval [0, 1] by adding 1 and dividing by 2.
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3.5 Experimental Results

In this paper, we are investigating discretization methods, which are hard to
evaluate directly. Thus, they are evaluated here as pre-processing methods
to the APRIOR-LR [36] and NBLR [6] algorithms. The experimental study
is divided into three parts. In the first part, we perform experiments on
benchmark datasets to gain some understanding about how the parameter
θdisc affects the performance of MDLP-R. The second part consists of exper-
iments on controlled artificial datasets to investigate whether the methods
are performing as expected. The third part tests the discretization methods
with the APRIORI-LR algorithm and NBLR on datasets from the KEBI
Data Repository [26] (Table 3.3).

For these experiments in particular, it is useful to define a simple measure of
the diversity of the target rankings, which we refer to as Unique Ranking’s
Proportion, Uπ. Uπ is the proportion of distinct target rankings for a given
dataset (Table 3.3). As a practical example, the iris dataset has 5 distinct
rankings for 150 instances, which will result in a Uπ = 5

150
≈ 3%. This means

that all the 150 rankings are duplicates of these 5.

We believe that datasets with high Uπ should be more difficult to discretize
using the RAC approach because the number of classes is very high. The ex-
periments performed in the artificial datasets (Section 3.5.2) provide evidence
that support this observation.

Table 3.3: Summary of the datasets.

Datasets type #examples #labels #attributes Uπ
bodyfat B 252 7 7 94%
calhousing B 20,640 4 4 0.1%
cpu-small B 8,192 5 6 1%
elevators B 16,599 9 9 1%
fried B 40,769 5 9 0.3%
glass A 214 6 9 14%
housing B 506 6 6 22%
iris A 150 3 4 3%
segment A 2310 7 18 6%
stock B 950 5 5 5%
vehicle A 846 4 18 2%
vowel A 528 11 10 56%
wine A 178 3 13 3%
wisconsin B 194 16 16 100%
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The evaluation measure is Kendall’s τ and the performance of the methods
was estimated using ten-fold cross-validation. In Section 3.5.2 the experi-
ments were repeated ten times, due to the random nature of the changes
made to the data. For the generation of Label Ranking Association Rules
(LRAR), we used an extension of CAREN [10] for LR.

3.5.1 Sensitivity to the θdisc parameter

The entropy of a set of rankings varies depending on the value of the θdisc
threshold (Equation 3.8), sometimes significantly affecting its value. The first
set of experiments investigates how that affects the accuracy of the learning
methods. We did experiments with APRIORI-LR on KEBI datasets for
different θdisc thresholds, varying θdisc from 0 to 1 by steps of 0.1.
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Figure 3.1: Accuracy of APRIORI-
LR (expressed in terms of Kendall τ)
as θdisc varies, in datasets where the
distinct rankings represent less than
5% of the data. (Uπ < 5%)
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Figure 3.2: Accuracy of APRIORI-
LR (expressed in terms of Kendall
τ) as θdisc varies, in datasets where
the distinct rankings represent more
than 5% of the data. (Uπ ≥ 5%)

The results indicate that θdisc plays an important role in the behavior of
MDLP-R. Which, on the other hand, will influence the accuracy of APRIORI-
LR. To better understand how to adjust θdisc for any given dataset, it is useful
to divide the datasets into two distinct groups: 1) Uπ < 5% (Figure 3.1) and
2) Uπ ≥ 5% (Figure 3.2).

The most interesting impact of splitting the datasets by high and low Uπ is
that they seem to behave differently. For the first group (Figure 3.1) as θdisc
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increases, the accuracy of APRIORI-LR increases for most of the datasets
and very rarely decreases the accuracy. On the other hand, in Figure 3.2
we can see that increasing θdisc has the opposite effect on the second group.
This means that when there are only a few distinct rankings in the data,
the method can be less sensitive to the ranking similarities. As the value
of the parameter increases, the method tends to fit every distinct ranking
into a different bin. This should work as long as there is a reasonable small
number of distinct rankings. A lower θdisc threshold allows the method to
group larger ranges into each bin. In datasets with higher Uπ, as the method
is more robust to noise, it should create better partitions, i.e. by grouping
the “closer” rankings together in the same bins.

This analysis shows that θdisc plays an important role in the effectiveness of
the partitions made by MDLP-R. Also, by measuring Uπ, we can get some
clues about a reasonable value for θdisc.

3.5.2 Results on Artificial Datasets

Table 3.4: Discretization results using the MDLP, MDLP-R and EDiRa methods.

Partitions
TID x1 π MDLP-R/EDiRa MDLP

1 0.1 (1,2,4,3,5) 1 1
2 0.2 (1,2,3,4,5) 1 2
3 0.3 (2,1,3,4,5) 1 3
4 0.4 (1,3,2,4,5) 1 4
5 0.5 (1,2,3,5,4) 1 5
6 0.6 (5,4,3,1,2) 2 6
7 0.7 (4,5,3,2,1) 2 7
8 0.8 (5,3,4,2,1) 2 8

Results obtained with artificial datasets can give more insight about how
the discretization methods perform. Table 3.4 compares the intervals dis-
cretized by the MDLP-R and MDLP on the very simple dataset presented in
Table 3.1. As expected, since there are eight distinct rankings, the RAC ap-
proach with MDLP for classification will see eight distinct classes and break
the dataset into eight intervals. MDLP-R and EDiRa, however, can identify
the similarities of rankings, and split the dataset into two intervals.

For a more thorough analysis, we follow the experimental setup used in [40]
with some variations. The synthetic datasets are based on a simple set with
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100 examples, containing one independent variable with value 1 for the first
example, 2 for the second, and so on, and the target rankings are distributed
in the following order:

• Examples 1 to 38: variations of π1 = (10, 2, 3, 4, 5, 6, 7, 8, 9, 1)

• Examples 39 to 75: variations of π2 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

• Examples 76 to 100: variations of π3 = (10, 9, 8, 7, 6, 5, 4, 3, 2, 1)

The natural breakpoints for this dataset are T1 = 38.5 and T2 = 75.5 which
were intentionally chosen to avoid trivial partitions. However, considering
that π1 is much closer to π2 than to π3, T2 should have a bigger impact in
the total entropy than T1. In order to test the advantages of our method
in comparison with the RAC approach, we intentionally introduced noise in
the target rankings, by performing several swaps. Each swap is an inversion
of two consecutive ranks in every ranking of the data. For each ranking, the
choice of the pairs to invert is random. Swaps will be done repeatedly, to
obtain different levels of noise.

We performed experiments which vary the number of swaps from 0 to 150.
As the number of random swaps increases, the proportion of unique rankings
Uπ should also increase. Therefore it becomes harder to learn an accurate
model. In the following experiments, Uπ grows very rapidly, as any number
of swaps bigger than 5 produce a Uπ ≥ 99%.

In [40], minconf was fixed to 50% in all APRIORI-LR runs and minsup =
0.1%. When APRIORI-LR cannot find at least one LRAR to rank a new
instance it predicts a default ranking. Here, we use a different approach.
As the default rule is only used as a last resort, for a fair comparison of the
methods, the minimum confidence (minconf ) is adjusted with a simple greedy
method (Algorithm 2), so that Cov ≥ 95%, where Cov is the proportion of
test examples covered by the model, i.e. with a prediction not generated
by the default rule. For each run, a different minconf can be found, so the
values presented in Table 3.5 are the average of the 10 runs.

Figure 3.3 (top graph) shows the effect of varying the number of swaps on
the ranking accuracy obtained by APRIORI-LR with the three different dis-
cretization methods, MDLP, MDLP-R and EDiRa. The graph, clearly indi-
cates that the discretization with EDiRa (orange line) leads to better results
for APRIORI-LR, than with the other two. While for lower number of swaps,
the difference is not so evident, as the noise increases, the other methods are
increasingly more affected by it than EDiRa.

The two ranking discretization methods, MDLP-R and EDiRa, behave simi-
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Figure 3.3: Accuracy (Top) and its Standard Deviation (Bottom) of the
APRIORI-LR (expressed in terms of Kendall τ) as a function of the number of
swaps and its standard deviation, for MDLP (black dotted line), MDLP-R (blue
dashed line) and EDiRa (orange line).
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Figure 3.4: Comparison of the average number of partitions generated by MDLP
(black dotted line), MDLP-R (blue dashed line) and EDiRa (orange line).
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Figure 3.5: Comparison of the number of rules generated by APRIORI-LR after
discretization with MDLP (black dotted line), MDLP-R (blue dashed line) and
EDiRa (orange line).



70 CHAPTER 3. DISCRETIZATION

Algorithm 2 Parameter tuning method.

minconf ← 100%
minsup← 1%
Cov ← 0%
while Cov < 95% do

function APRIORI-LR(minconf,minsup)
return Cov

end function
if Cov < 95% then

mconf ← mconf − 5
end if

end while
return minconf

larly between 0 to 20 swaps, with equivalent accuracies obtained by APRIORI-
LR (as it can be seen in the top graph in Figure 3.3 by the overlapping lines).
However, from that point on, MDLP-R starts to behave worst, in terms of
APRIORI-LR accuracy, than EDiRa and even MDLP.

If we analyze Figure 3.3 (bottom graph) representing the standard deviation
over the 10 repetitions of the results presented in the top graph, there is addi-
tional information in favor of MDLP-R and EDiRa. The standard deviation
of the results of these methods is smaller in the presence of small amounts of
noise (until approximately 30 swaps for MDLP-R and 80 swaps for EDiRa).
This means that EDiRa is the most reliable method in this scenario.

One great advantage of using EDiRa can be seen in Figure 3.4, which rep-
resents the number of partitions made by the methods for different values
of the number of swaps. For any number of swaps up to 80, approximately,
EDiRa makes two partitions, which means that the split point choice is in-
variant to greater amounts of noise than MDLP-R and MDLP. This will
result in a smaller number of rules generated by APRIORI-LR, as supported
by the graph in Figure 3.5. In this scenario, EDiRa makes APRIORI-LR
much more efficient because it will use less than 10% of the rules, relatively
to MDLP, and even gets slightly better accuracy. Furthermore, fewer rules
means that the model is easier to interpret by humans, which is an important
requirement in many applications [94].

In Figure 3.6, we can see how the average minconf (determined by Algo-
rithm 2) evolves as the number of swaps increase. Intuitively, we expect that
fewer partitions will produce rules with lower confidence as we increase the
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Figure 3.6: Comparison of the average minconf used by APRIORI-LR with the
three discretization methods. MDLP (black dotted line), MDLP-R (blue dashed
line) and EDiRa (orange line).



72 CHAPTER 3. DISCRETIZATION

noise. These values are in agreement with the observed graphs, in particular
with Figure 3.4.

Remember that we aim to decrease the entropy of the system by making
partitions. However, as the level of noise increases the relationship between
the independent variable and the target becomes weaker and, at some point,
random. Ideally, a supervised discretization method should be able to detect
this phenomenon. This is exactly what we observe in Figure 3.4 for EDiRa,
when the number of swaps is greater than 100, which in a ranking of 10 labels
will probably lead to a random target ranking, it stops making partitions.
On the other hand, from around 20 swaps, MDLP-R starts to make more
and more partitions, resulting in worst accuracy for APRIORI-LR.

Finally, in Figure 3.7 we are able to see how the different methods measure
entropy for the same data. It is interesting to realize that, in the graph of 0
swaps, the methods behave similarly. As we increase the number of swaps,
we start to see how the behaviors diverge. For 6 swaps or more MDLP cannot
identify any obvious partitions, which explains the flat line of the method in
Figure 3.4. On the other hand, for MDLP-R and EDiRa the partitions are
still very clear up to 50 swaps.

Taking into account that the two rankings used to generate the target rank-
ings for examples 1 to 75 are more similar to each other than to the ranking
used in the remaining examples, it makes more sense to observe lower values
near T2 than near T1. The graphs for 1 to 10 swaps in Figure 3.7 show that
MDLP-R is giving very similar values for this two cut points, while EDiRa
clearly indicates that T2 is the most important cut.

In previous work, [40], MDLP-R was performing better than MDLP in most
of the results but this is not observed in Figure 3.3. This is due to the use
in these experiments of a different setup and different parameters from the
ones used in [40]. The tuning of minconf leads to an increase of accuracy for
APRIORI-LR with an MDLP discretization, which outperforms the results
obtained with MDLP-R. We believe that the main reason is that from a
certain level of noise (more than 20 swaps) MDLP-R is overfitting. This
observation is supported by Figure 3.4, where the number of partitions grows
up to almost 50 partitions for very noisy scenarios. This number of partitions
represents almost %50 of the number of instances in these experiments. Still,
for smaller levels of noise, MDLP-R is a better choice in comparison to MDLP,
as the accuracy of APRIORI-LR is higher, even though, using fewer rules
Figure 3.5.

All of these results are good indicators that EDiRa creates more meaningful
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intervals for ranking data.

3.5.3 Results on Benchmark Datasets

In this section, we describe experiments carried out with two algorithms
which are more suitable for nominal rather than continuous variables, APRIORI-
LR [36] and NBLR [6]. Finally, we also briefly discuss how the methods
behave using different similarity measures.

Results with APRIORI-LR

In these experiments, we used a similar experimental setup to the one in [40].
Given that the majority of the datasets have less than 1000 instances and we
want to avoid overfitting, the minimum support (minsup) was set to 1% in-
stead of 0.1%. For the minconf, we use the method proposed in Section 3.5.2
(Algorithm 2).

Table 3.5: Results obtained by APRIORI-LR with MDLP, MDLP-R and EDiRa
discretization on benchmark datasets. The mean accuracy is represented in terms
of Kendall’s tau, τ .

MDLP MDLP-R EDiRa
τ mconf #rules #part τ mconf #rules #part τ mconf #rules #part

bodyfat .087 28 748 59 .000 5 744 80 .139 24 144 2
calhousing .291 35 113 7 .193 26 89 106 .272 35 107 9
cpu-small .414 37 209 3 .399 38 302 37 .429 35 332 4
elevators .646 60 206 3 .465 45 678 116 .669 60 714 4
fried .749 35 1,733 6 .523 24 1,019 20 .706 25 1,281 12
glass .815 90 52 3 .825 99 510 10 .800 87 43 2
housing .720 57 373 10 .762 66 465 22 .715 56 210 5
iris .944 93 24 3 .941 85 31 4 .906 83 31 3
segment .891 90 3,415 13 .891 85 1,887 36 .895 90 3467 7
stock .868 81 324 11 .834 78 340 19 .858 80 315 8
vehicle .827 94 4,506 4 .782 87 2,282 14 .812 94 4,664 4
vowel .668 74 4,013 14 .568 59 1,881 112 .648 63 794 3
wine .937 100 617 2 .884 100 1,549 6 .937 100 1,028 2
wisconsin .268 41 1,058 44 .220 38 1149 76 .404 52 10,550 2
average τ .651 - - - .591 - - - .656 - - -
standard dev τ .276 - - - .301 - - - .251 - - -

Table 3.5 shows that EDiRa improves the APRIORI-LR accuracy in the
benchmark datasets when compared to MDLP-R. With this new method, the
average number of partitions (#part) is drastically reduced in all datasets.

Comparing EDiRa with MDLP, we observe that both methods lead to very
similar accuracy. We would like to give particular attention to the two
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datasets where Uπ is very big namely bodyfat and wisconsin. The datasets
have Uπ = 94% and Uπ = 100% respectively. The average number of par-
titions with EDiRa in these two datasets is much smaller than with MDLP
while the accuracy of APRIORI-LR has a major increase.

Another important fact that can be observed in Table 3.5 is that every time
that APRIORI-LR generated more rules with EDiRa than with MDLP-R,
there is an increase in the accuracy. This is true for datasets calhousing,
cpu-small, elevators, fried, segment, vehicle and wisconsin.

Results with NBLR

The second LR algorithm tested was an adaptation of the simple naive Bayes
algorithm for Label Ranking [6]. This adaptation of the algorithm cannot be
used with numeric variables.

Table 3.6: Results obtained for naive Bayes for Label Ranking with MDLP,
MDLP-R and EDiRa discretization on benchmark datasets. (The mean accuracy
is represented in terms of Kendall’s tau, τ).

MDLP MDLP-R EDiRa
τ #part τ #part τ #part

bodyfat .060 59 .081 80 .175 2
calhousing .293 7 .322 106 .286 9
cpu-small .397 3 .408 37 .400 4
elevators .611 3 .580 116 .602 4
fried .823 6 .897 20 .896 12
glass .759 3 .675 10 .717 2
housing .742 10 .777 22 .684 5
iris .889 3 .876 4 .836 3
segment .711 13 .712 36 .702 7
stock .736 11 .742 19 .719 8
vehicle .657 4 .682 14 .657 4
vowel .686 14 .497 112 .616 3
wine .786 2 .794 6 .786 2
wisconsin .346 44 .268 76 .394 2

average τ .607 - .593 - .605 -
standard dev τ .240 - .245 - .213 -

Table 3.6 shows the accuracy of this algorithm for the benchmark datasets.
In this case, there is no clear winner among any of the three discretization
methods available. However, the results obtained with EDiRa seem to be
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more consistent as the standard deviation of the accuracy shows. This indi-
cates that EDiRa is more reliable than the other methods.

Additionally, if we observe the two datasets with the highest Uπ, which are
expected to be the hardest for the methods, the best accuracy is obtained
with EDiRa.

Using a different similarity measure

As mentioned in Section 3.4.1, any ranking similarity measure can be used
for MDLP-R or EDiRa. Similar results to the ones presented in Table 3.5
and Table 3.6, were obtained using Spearman ρ as similarity measure. In
the interest of space, we do not present those results. However, to illustrate
them, we present in Figure 3.8 how the accuracy obtained by APRIORI-
LR follows the same behavior for both discretization methods using the two
similarity measures.

3.6 Conclusions

In this paper, we presented an extensive study of discretization for LR prob-
lems. Despite the increase in research on LR, most papers focus on the
development of new algorithms and, thus, little attention has been paid to
pre-processing methods. We carried out a detailed analysis on MDLP-R. We
also introduced a new method for supervised discretization in LR problems,
EDiRa, based on an improved measure of entropy. Both methods use differ-
ent entropy measures which were adapted to take into account the similarity
of rankings.

An analysis of MDLP-R in terms of the similarity threshold parameter θdisc
was performed to better understand its behavior. It was clear that, in simple
scenarios, MDLP-R deals with noisy ranking data according to expectation
and that θdisc plays a major role in it. However, in more complex situations,
MDLP-R tends to overfit the data.

The new method, EDiRa, was motivated by the need for increased sensitivity
to the homogeneity of rankings in a set. The results show that EDiRa is a
viable LR discretization method which clearly outperforms MDLP-R.

We believe that the measure of entropy for rankings proposed here, despite its
heuristic nature, makes sense and may be more generally useful in LR. This
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Figure 3.8: Comparison of the accuracy (in terms of Kendall τ) of APRIORI-LR
in the datasets from Table 3.3. The data was discretized with MDLP-R (circles)
and EDiRa (squares), using Kendall (vertical-axis) and Spearman (horizontal-axis)
similarity measures as s′.
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new measure and EDiRa bring new possibilities for processing ranking data
and can motivate the creation of new methods for LR learning that cannot
deal with continuous data. Furthermore, even though it was developed in
the context of the LR task, it can be also applied to other fields such as
regression since it is based on a distance measure such as Kendall τ .

We also investigated the robustness of the methods to the measure of ranking
similarity used. We compared two different measures, observing that the
results are very similar.

Empirical tests were carried out on benchmark problems from the KEBI
repository. These datasets are adapted from UCI classification problems.
Although they can be used for the development of methods, such as in this
and many other LR papers, it is essential for the field that the methods are
tested on real LR problems like meta-learning or predicting the rankings of
financial analysts [6].
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