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Chapter 2

Preference Rules

Cláudio Rebelo de Sá, Paulo Azevedo, Carlos Soares,
Aĺıpio Mário Jorge, Arno Knobbe

submitted to Information Fusion Journal, 2016

Abstract

In this paper we investigate two variants of association rules for preference
data, Label Ranking Association Rules and Pairwise Association Rules. Label
Ranking Association Rules (LRAR) are the equivalent of Class Association
Rules (CAR) for the Label Ranking task. In CAR, the consequent is a single
class, to which the example is expected to belong to. In LRAR, the consequent
is a ranking of the labels. The generation of LRAR requires special support
and confidence measures to assess the similarity of rankings. In this work, we
carry out a sensitivity analysis of these similarity-based measures. We want
to understand which datasets benefit more from such measures and which pa-
rameters have more influence in the accuracy of the model. Furthermore, we
propose an alternative type of rules, the Pairwise Association Rules (PAR),
which are defined as association rules with a set of pairwise preferences in
the consequent. While PAR can be used both as descriptive and predictive
models, they are essentially descriptive models. Experimental results show
the potential of both approaches.
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20 CHAPTER 2. PREFERENCE RULES

2.1 Introduction

Label ranking is a topic in the machine learning literature [57, 26, 123] that
studies the problem of learning a mapping from instances to rankings over
a finite number of predefined labels. One characteristic that clearly dis-
tinguishes label ranking problems from classification problems is the order
relation between the labels. While a classifier aims at finding the true class
on a given unclassified example, the label ranker will focus on the relative
preferences between a set of labels/classes. These relations represent relevant
information from a decision support perspective, with possible applications in
various fields such as elections, dominance of certain species over the others,
user preferences, etc.

Due to its intuitive representation, Association Rules [4] have become very
popular in data mining and machine learning tasks (e.g. Mining rankings [70],
Classification [97] and even Label Ranking [36], etc). The adaptation of AR
for label ranking, Label Ranking Association Rules (LRAR) [36], are simi-
lar to their classification counterpart, Class Association Rules (CAR) [97].
LRAR can be used for predictive or descriptive purposes.

LRAR are relations, like typical association rules, between an antecedent
and a consequent (A → C), defined by interest measures. The distinction
lies in the fact that the consequent is a complete ranking. Because the
degree of similarity between rankings can vary, it lead to several interesting
challenges. For instance, how to treat rankings that are very similar but
not exactly equal. To tackle this problem, similarity-based interest measures
were defined to evaluate LRAR. Such measures can be applied to existing
rule generation methods [36] (e.g. APRIORI [4]).

One important issue for the use of LRAR is the threshold that determines
what should and should not be considered sufficiently similar. Here we
present the results of sensitivity analysis study to show how LRAR behave in
different scenarios, to understand the effect of this threshold better. Whether
there is a rule of thumb or this threshold is data-specific is the type of ques-
tions we investigate here. Ultimately we also want to understand which pa-
rameters have more influence in the predictive accuracy of the method.

Another important issue is related to the large number of distinct rankings.
Despite the existence of many competitive approaches in Label Ranking,
Decision trees [120, 26], k -Nearest Neighbor [17, 26] or LRAR [36], prob-
lems with a large number of distinct rankings can be hard to predict. One
real-world example with a relatively large number of rankings, is the sushi
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dataset [81]. This dataset compares demographics of 5000 Japanese citizens
with their preferred sushi types. With only 10 labels, it has more than 4900
distinct rankings. Even though it has been known in the preference learn-
ing community for a while, no results with high predictive accuracy have
been published, to the best of our knowledge. Cases like this have motivated
the appearance of new approaches, e.g. to mine ranking data [70], where
association rules are used to find patterns within rankings.

We propose a method which combines the two approaches mentioned above [36,
70], because it can could contribute to a better understanding of the datasets
mentioned above. We define Pairwise Association Rules (PAR) as associa-
tion rules with one or more pairwise comparisons in the consequent. In this
work we present an approach to identify PAR and analyze the findings in
two real world datasets.

By decomposing rankings into the unitary preference relation i.e. pairwise
comparisons, we can look for sub-ranking patterns. From which, as explained
before, we expect to find more frequent patterns than with complete rank-
ings.

LRAR and PARs can be regarded as a specialization of general association
rules that are obtained from data containing preferences, which we refer to
as Preference Rules. These two approaches are complementary in the sense
that they can give different insights from preference data. We use LRAR and
PAR in this work as predictive and descriptive models, respectively.

The paper is organized as follows: Sections 2.2 and2.3 introduce the task
of association rule mining and the label ranking problem, respectively; Sec-
tion 2.4 describes the Label Ranking Association Rules and Section 2.5 the
Pairwise Association Rules proposed here; Section 2.6 presents the exper-
imental setup and discusses the results; finally, Section 2.7 concludes this
paper.

2.2 Association Rule Mining

An association rule (AR) is an implication: A → C where A
⋂
C = ∅ and

A,C ⊆ desc (X), where desc (X) is the set of descriptors of instances in the
instance space X, typically pairs 〈attribute, value〉. The training data is
represented as D = {〈xi〉}, i = 1, . . . , n, where xi is a vector containing the
values xji , j = 1, . . . ,m of m independent variables, A, describing instance i.
We also denote desc(xi) as the set of descriptors of instance xi.
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2.2.1 Interest measures

There are many interest measures to evaluate association rules [106], but typ-
ically they are characterized by support and confidence. Here, we summarize
some of the most common, assuming a rule A→ C in D.

Support percentage of the instances in D that contain A and C:

sup (A→ C) =
#{xi|A ∪ C ⊆ desc(xi), xi ∈ D}

n

Confidence percentage of instances that contain C from the set of in-
stances that contain A:

conf (A→ C) =
sup (A→ C)

sup (A)

Coverage proportion of examples in D that contain the antecedent of a
rule: coverage [65]:

coverage (A→ C) = sup (A)

We say that a rule A→ C covers an instance x, if A ⊆ desc (x).

Lift measures the independence of the consequent, C, relative to the an-
tecedent, A:

lift (A→ C) =
sup(A→ C)

sup(A) · sup(C)

Lift values vary from 0 to +∞. If A is independent from C then lift(A →
C) ∼ 1.

2.2.2 APRIORI Algorithm

The original method for induction of AR is the APRIORI algorithm, pro-
posed in 1994 [4]. APRIORI identifies all AR that have support and confi-
dence higher than a given minimal support threshold (minsup) and a min-
imal confidence threshold (minconf ), respectively. Thus, the model gener-
ated is a set of AR, R, of the form A → C, where A,C ⊆ desc (X), and
sup(A → C) ≥ minsup and conf (A → C) ≥ minconf . For a more detailed
description see [4].
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Despite the usefulness and simplicity of APRIORI, it runs a time consuming
candidate generation process and needs substantial time and memory space,
proportional to the number of possible combinations of the descriptors. Ad-
ditionally it needs multiple scans of the data and typically generates a very
large number of rules. Because of this, many alternative methods were previ-
ously proposed, such as hashing [107], dynamic itemset counting [21], parallel
and distributed mining [108] and mining integrated into relational database
systems [119].

In contrast to itemset-based algorithms, which compute frequent itemsets
and rule generation in two steps, there are rule-based approaches such as
FP-Growth (Frequent pattern growth method) [67]. This means that, rules
are generated at the same time as frequent itemsets are computed.

2.2.3 Pruning

AR algorithms typically generate a large number of rules (possibly tens of
thousands), some of which represent only small variations from others. This
is known as the rule explosion problem [80] which should be dealt with by
pruning mechanisms. Many rules must be discarded for computational and
simplicity reasons.

Pruning methods are usually employed to reduce the amount of rules without
reducing the quality of the model. For example, an AR algorithm might find
rules for which the confidence is only marginally improved by adding further
conditions to their antecedent.Another example is when the consequent C of
a rule A→ C has the same distribution independently of the antecedent A.
In these cases, we should not consider these rules as meaningful.

Improvement A common pruning method is based on the improvement
that a refined rule yields in comparison to the original one [80]. The improve-
ment of a rule is defined as the smallest difference between the confidence of
a rule and the confidence of all sub-rules sharing the same consequent:

imp(A→ C) = min(∀A′ ⊂ A, conf (A→ C)− conf (A′ → C))

As an example, if one defines a minimum improvement minImp = 1%, the
rule A′ → C will be kept if conf (A′ → C) − conf (A → C) ≥ 1%, where
A ⊂ A′.

If imp(A→ C) > 0 we say that A→ C is a productive rule.
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Significant rules Another way to prune non productive rules is to use
statistical tests [125]. A rule is significant if the confidence improvement
over all its generalizations is statistically significant. The rule A → C is
significant if ∀A′ → C,A′ ⊂ A the difference conf (A→ C) − conf (A′ → C)
is statistically significant for a given significance level (α).

2.3 Label Ranking

In Label Ranking (LR), given an instance x from the instance space X, the
goal is to predict the ranking of the labels L = {λ1, . . . , λk} associated with
x [74]. A ranking can be represented as a strict total order over L, defined
on the permutation space Ω.

The LR task is similar to the classification task, where instead of a class we
want to predict a ranking of labels. As in classification, we do not assume
the existence of a deterministic X → Ω mapping. Instead, every instance is
associated with a probability distribution over Ω [26]. This means that, for
each x ∈ X, there exists a probability distribution P(·|x) such that, for every
π ∈ Ω, P(π|x) is the probability that π is the ranking associated with x. The
goal in LR is to learn the mapping X→ Ω. The training data contains a set
of instances D = {〈xi, πi〉}, i = 1, . . . , n, where xi is a vector containing the
values xji , j = 1, . . . ,m of m independent variables, A, describing instance i
and πi is the corresponding target ranking.

The rankings can be either total or partial orders.

Total orders A strict total order over L is defined as:1

{∀ (λa, λb) ∈ L|λa � λb ∨ λb � λa}

which represents a strict ranking [123], a complete ranking [57], or simply a
ranking. A strict total order can also be represented as a permutation π of
the set {1, . . . , k}, such that π(a) is the position, or rank, of λa in π. For
example, the strict total order λ1 � λ2 � λ3 � λ4 can be represented as
π = (1, 2, 3, 4).

However, in real-world ranking data, we do not always have clear and unam-
biguous preferences, i.e. strict total orders [15]. Hence, sometimes we have

1For convenience, we say total order but in fact we mean a totally ordered set. Strictly
speaking, a total order is a binary relation.
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to deal with indifference and incomparability. For illustration purposes, let
us consider the scenario of elections, where a set of n voters vote on k can-
didates. If a voter feels that two candidates have identical proposals, then
these can be expressed as indifferent so they are assigned the same rank (i.e.
a tie).

To represent ties, we need a more relaxed setting, called non-strict total
orders, or simply total orders, over L, by replacing the binary strict order
relation, �, with the binary partial order relation, �:

{∀ (λa, λb) ∈ L|λa � λb ∨ λb � λa}

These non-strict total orders can represent partial rankings (rankings with
ties) [123]. For example, the non-strict total order λ1 � λ2 = λ3 � λ4 can
be represented as π = (1, 2, 2, 3).

Additionally, real-world data may lack preference data regarding two or more
labels, which is known as incomparability. Continuing with the elections
example, the lack of information about one or two of the candidates, λa
and λb, leads to incomparability, λa ⊥ λb. In other words, the voter cannot
decide whether the candidates are equivalent or select one as the preferred,
because he does not know the candidates. Incomparability should not be
confused with intrinsic properties of the objects, as if we are comparing
apples and oranges. Instead, it is like trying to compare two different types
of apple without ever having tried either. In this cases, we can use partial
orders.

Partial orders Similarly to total orders, there are strict and non-strict
partial orders. Let us consider the non-strict partial orders (which can also
be referred to as partial orders) over L:

{∀ (λa, λb) ∈ L|λa � λb ∨ λb � λa ∨ λa ⊥ λb}

We can represent partial orders with subrankings [70]. For example, the
partial order λ1 � λ2 � λ4 can be represented as π = (1, 2, 0, 4), where 0
represents λ1, λ2, λ4 ⊥ λ3.

2.3.1 Methods

Several learning algorithms were proposed for modeling label ranking data
in recent years. These can be grouped as decomposition-based or direct.
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Decomposition-based methods divide the problem into several simpler prob-
lems (e.g., multiple binary problems). An example is ranking by pairwise
comparisons [57] and mining rank data [70]. Direct methods treat the rank-
ings as target objects without any decomposition. Examples of that include
decision trees [120, 26], k -Nearest Neighbors [17, 26] and the linear utility
transformation [68, 41]. This second group of algorithms can be divided into
two approaches. The first one contains methods that are based on statis-
tical distributions of rankings (e.g. [26]), such as Mallows [91], or Plackett-
Luce [24]. The other group of methods are based on measures of similarity
or correlation between rankings (e.g. [120, 6]).

LR-specific preprocessing methods have also been proposed, e.g. MDLP-
R [40] and EDiRa [39]. Both are direct methods and based on measures
of similarity. Considering that supervised discretization approaches usually
provide better results than unsupervised methods [46], such methods can
be of a great importance in the field. In particular, for AR-like algorithms,
such as the ones proposed in this work, which are typically not suitable for
numerical data.

For more information on label ranking learning methods, more information
ca be found in [57].

Label Ranking by Learning Pairwise Preferences

Ranking by pairwise comparisons basically consists of reducing the prob-
lem of ranking into several classification problems. In the learning phase,
the original problem is formulated as a set of pairwise preferences prob-
lem. Each problem is concerned with one pair of labels of the ranking,
(λi, λj) ∈ L, 1 ≤ i < j ≤ k. The target attribute is the relative order be-
tween them, λi � λj. Then, a separate modelMij is obtained for each pair of

labels. Considering L = {λ1, . . . , λk}, there will be h = k(k−1)
2

classification
problems to model.

In the prediction phase, each model is applied to every pair of labels to obtain
a prediction of their relative order. The predictions are then combined to
derive rankings, which can be done in several ways. The simplest is to order
the labels, for each example, considering the predictions of the models Mij

as votes. This topic has been well studied and documented [55, 74].
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2.3.2 Evaluation

Given an instance xi with label ranking πi and a ranking π̂i predicted by a LR
model, several loss functions on Ω can be used to evaluate the accuracy of the
prediction. One such function is the number of discordant label pairs:

D (π, π̂) = #{(a, b)|π(a) > π(b) ∧ π̂(a) < π̂(b)}

If there are no discordant label pairs, the distance D = 0. Alternatively, the
function to define the number of concordant pairs is:

C (π, π̂) = #{(a, b)|π(a) > π(b) ∧ π̂(a) > π̂(b)}

Kendall Tau Kendall’s τ coefficient [85] is the normalized difference be-
tween the number of concordant, C, and discordant pairs, D:

τ (π, π̂) =
C − D

1
2
k (k − 1)

where 1
2
k (k − 1) is the number of possible pairwise combinations,

(
k
2

)
. The

values of this coefficient range from [−1, 1], where τ (π, π) = 1 if the rankings
are equal and τ(π, π−1) = −1 if π−1 denotes the inverse order of π (e.g.
π = (1, 2, 3, 4) and π−1 = (4, 3, 2, 1)). Kendall’s τ can also be computed in
the presence of ties, using tau-b [5].

An alternative measure is the Spearman’s rank correlation coefficient [118].

Gamma coefficient If we want to measure the correlation between two
partial orders (subrankings), or between total and partial orders, we can use
the Gamma coefficient [93]:

γ (π, π̂) =
C − D
C +D

Which is identical to Kendall’s τ coefficient in the presence of strict total
orders, because C +D = 1

2
k (k − 1).

Weighted rank correlation measures When it is important to give
more relevance to higher ranks, a weighted rank correlation coefficient can
be used. They are typically adaptations of existing similarity measures, such
as ρw [110], which is based on Spearman’s coefficient.
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These correlation measures are not only used for evaluation estimation, they
can be used within learning [36] or preprocessing [39] models. Since Kendall’s
τ has been used for evaluation in many recent LR studies [26, 40], we use it
here as well.

The accuracy of a label ranker can be estimated by averaging the values of
any of the measures explained here, over the rankings predicted for a set
of test examples. Given a dataset, D = {〈xi, πi〉}, i = 1, . . . , n, the usual
resampling strategies, such as holdout or cross-validation, can be used to
estimate the accuracy of a LR algorithm.

2.4 Label Ranking Association Rules

Association rules were originally proposed for descriptive purposes. However,
they have been adapted for predictive tasks such as classification (e.g., [97]).
Given that label ranking is a predictive task, the adaptation of AR for label
ranking comes in a natural way. A Label Ranking Association Rule (LRAR)
[36] is defined as:

A→ π

where A ⊆ desc (X) and π ∈ Ω. LetRπ be the set of label ranking association
rules generated from a given dataset. When an instance x is covered by the
rule A → π, the predicted ranking is π. A rule rπ : A → π, rπ ∈ Rπ, covers
an instance x, if A ⊆ desc(x).

We can use the CAR framework[97] for LRAR. However this approach has
two important problems. First, the number of classes can be extremely large,
up to a maximum of k!, where k is the size of the set of labels, L. This means
that the amount of data required to learn a reasonable mapping X → Ω is
unreasonably large.

The second disadvantage is that this approach does not take into account
the differences in nature between label rankings and classes. In classifica-
tion, two examples either have the same class or not. In this regard, label
ranking is more similar to regression than to classification. In regression,
a large number of observations with a given target value, say 5.3, increases
the probability of observing similar values, say 5.4 or 5.2, but not so much
for very different values, say -3.1 or 100.2. This property must be taken
into account in the induction of prediction models. A similar reasoning can
be made in label ranking. Let us consider the case of a data set in which
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ranking πa = (1, 2, 3, 4) occurs in 1% of the examples. Treating rankings
as classes would mean that P (πa) = 0.01. Let us further consider that the
rankings πb = (1, 2, 4, 3) , πc = (1, 3, 2, 4) and πd = (2, 1, 3, 4), which are ob-
tained from πa by swapping a single pair of adjacent labels, occur in 50% of
the examples. Taking into account the stochastic nature of these rankings
[26], P (πa) = 0.01 seems to underestimate the probability of observing πa.
In other words it is expected that the observation of πb, πc and πd increases
the probability of observing πa and vice-versa, because they are similar to
each other.

This affects even rankings which are not observed in the available data. For
example, even though a ranking is not present in the dataset it would not
be entirely unexpected to see it in future data. This also means that it is
possible to compute the probability of unseen rankings.

To take all this into account, similarity-based interestingness measures were
proposed to deal with rankings [36].

2.4.1 Interestingness measures in Label Ranking

As mentioned before, because the degree of similarity between rankings can
vary, similarity-based measures can be used to evaluate LRAR. These mea-
sures are able to distinguish rankings that are very similar from rankings
that are very very distinct. In practice, the measures described below can be
applied to existing rule generation methods [36] (e.g. APRIORI [4]).

Support The support of a ranking π should increase with the observation
of similar rankings and that variation should be proportional to the similarity.
Given a measure of similarity between rankings s(πa, πb), we can adapt the
concept of support of the rule A→ π as follows:

suplr(A→ π) =

∑
i:A⊆desc(xi)

s(πi, π)

n

Essentially, what we are doing is assigning a weight to each target ranking πi
in the training data that represents its contribution to the probability that
π may be observed. Some instances xi ∈ X give a strong contribution to the
support count (i.e., 1), while others will give a weaker or even no contribution
at all.
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Table 2.1: An example of a label ranking dataset.

π1 π2 π3

TID A1 (1, 3, 2) (2, 1, 3) (2, 3, 1)
1 L 0.33 0.00 1.00
2 L 0.00 1.00 0.00
3 L 1.00 0.00 0.33

Any function that measures the similarity between two rankings or permu-
tations can be used, such as Kendall’s τ [85] or Spearman’s ρ [118]. The
function used here is of the form:

s(πa, πb) =

{
s′(πa, πb) if s′(πa, πb) ≥ θ

0 otherwise
(2.1)

where s′ is a similarity function. This general form assumes that below a
given threshold, θ, is not useful to discriminate between different rankings,
as they are so different from πa. This means that, the support suplr of
A→ πa will be based only on the items of the form 〈A, πb〉, for all πb where
s′(πa, πb) > θ).

Many functions can be used as s′. However, given that the loss function we
aim to minimize is known beforehand, it makes sense to use it to measure
the similarity between rankings. Therefore, we use Kendall’s τ as s′.

Concerning the threshold, given that anti-monotonicity can only be guar-
anteed with non-negative values [109], it implies that θ ≥ 0. Therefore we
think that θ = 0 is a reasonable default value, because it separates between
the positive and negative correlation between rankings.

Table 2.1 shows an example of a label ranking dataset represented according
to this approach. Instance ({A1 = L, π3}) (TID=1) contributes to the sup-
port count of ruleitem 〈{A1 = L}, π3〉 with 1, as expected. However, that
same instance, will also give a contribution of 0.33 to the support count of
ruleitem 〈{A1 = L}, π1〉, given their ranking similarity. On the other hand,
no contribution to the support of ruleitem 〈{A1 = L}, π2〉 is given, because
these rankings are clearly different. This means that suplr (〈{A1 = L}, π3〉) =
1+0.33

3
.

Confidence The confidence of a rule A→ π comes in a natural way if we
replace the classical measure of support with the similarity-based suplr.

conf lr (A→ π) =
suplr (A→ π)

sup (A)
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Improvement Improvement in association rule mining is defined as the
smallest difference between the confidence of a rule and the confidence of
all sub-rules sharing the same consequent [80]. In LR it is not suitable to
compare targets simply as equal or different (Section 2.4). Therefore, to im-
plement pruning based on improvement for LR, some adaptation is required
as well. Given that the relation between target values is different from clas-
sification, as discussed in Section 2.4.1, we have to limit the comparison
between rules with different consequents, if S ′ (π, π′) ≥ θ.

Improvement for Label Ranking is defined as:

implr(A→ π) = min(conf lr(A→ π)− conf lr(A
′ → π′))

for ∀A′ ⊂ A, and ∀ (π, π′) where S ′ (π′, π) ≥ θ. As an illustrative example,
consider the two rules r1 : A1 → (1, 2, 3, 4) and r2 : A2 → (1, 2, 4, 3), where
A2 is a superset of A1, A1 ⊂ A2. If S ′ ((1, 2, 3, 4) , (1, 2, 4, 3)) ≥ θ then r2 will
only be kept if, and only if, conf (r1)− conf (r2) ≥ minImp.

Lift The lift measures the independence between the consequent and the
antecedent of the rule [9]. The adaptation of lift for LRAR is straightforward
since it only depends the concept of support, for which a version for LRAR
already exists:

lift lr(A→ π) =
suplr(A→ π)

sup(A) · suplr(π)

2.4.2 Generation of LRAR

Given the adaptations of the interestingness measures proposed, the task
of learning LRAR can be defined essentially in the same way as the task
of learning AR, i.e. to identify the set of LRAR that has a support and a
confidence higher than the thresholds defined by the user. More formally,
given a training set D = {〈xi, πi〉}, i = 1, . . . , n, the algorithm aims to create
a set of high accuracy rules Rπ = {rπ : A → π} to cover a test set T =
{〈xj〉}, j = 1, . . . , s. If Rπ does not cover some xj ∈ T , a DefaultRanking
(Section 2.4.3) is assigned to it.
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Implementation of LRAR in CAREN

The association rule generator we are using is CAREN [10]. 2 CAREN imple-
ments an association rule algorithm to derive rule-based prediction models,
like CAR and LRAR. For Label Ranking datasets, CAREN derives associa-
tion rules where the consequent is a complete ranking.

CAREN is specialized in generating association rules for predictive mod-
els and employs a bitwise depth-first frequent pattern mining algorithm.
Rule pruning is performed using a Fisher exact test [10]. Like CMAR [95],
CAREN is a rule-based algorithm rather than itemset-based. This means
that, frequent itemsets are derived at the same time as rules are generated,
whereas itemset-based algorithms carry out the two tasks in two separated
steps.

Rule-based approaches allow for different pruning methods. For example,
let us consider the rule A → λ, where λ is the most frequent class in the
examples covering A. If sup (A→ λ) < minsup then there is no need to
search for a superset of A, A∗, since any rule of the form A∗ → λ,A ⊂ A∗

cannot have a support higher than minsup.

CAREN generates significant rules [125]. Statistical significance of a rule is
evaluated using a Fisher Exact Test by comparing its support to the support
of its direct generalizations. The direct generalizations of a rule A→ C are
∅ → C and (A \ {a})→ C where a is a single item.

The final set of rules obtained define the label ranking prediction model,
which we can also refer as the label ranker.

CAREN also employs prediction for strict rankings using consensus ranking
(Section 2.4.3), best rule, among others.

2.4.3 Prediction

A very straightforward method to generate predictions using a label ranker
is used. The set of rules Rπ can be represented as an ordered list of rules,
by some user defined measure of relevance:

< rπ1 , rπ2 , . . . , rπt >

As mentioned before, a rule r∗π : A∗ → π∗ covers (or matches) an instance xi ∈
T , if A∗ ⊆ desc(xi). If only one rule, r∗π, matches xi, the predicted ranking

2http://www4.di.uminho.pt/~pja/class/caren.html

http://www4.di.uminho.pt/~pja/class/caren.html
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for xi is π∗. However, in practice, it is quite common to have more than one
rule covering the same instance xi, R∗π (xj) ⊆ Rπ. In R∗π (xj) there can be
rules with conflicting ranking recommendations. There are several methods
to address those conflicts, such as selecting the best rule, calculating the
majority ranking, etc. However, it has been shown that a ranking obtained
by ordering the average ranks of the labels across all rankings minimizes the
euclidean distance to all those rankings [84]. In other words, it maximizes
the similarity according to Spearman’s ρ [118]. This can be referred to as
the average ranking [17].

Given any set of rankings {πi} (i = 1, . . . , s) with k labels, we compute the
average ranking as:

π (j) =

s∑
i=1

πi (j)

s
, j = 1, . . . , k (2.2)

The average ranking π can be obtained if we rank the values of π (j) , j =
1, . . . , k. A weighted version of this method can be obtained by using the
confidence or support of the rules in R∗π (xj) as weights.

Default rules

As in classification, in some cases, the label ranker might not find any rule
that covers a given instance xj, so R∗π (xj) = ∅. To avoid this, we need to
define a default rule, r∅, which can be used in such cases:

{∅} → default ranking

A default class is also often used in classification tasks [66], which is usually
the majority class of the training set D. In a similar way, we could define
the majority ranking as our default ranking. However, some label ranking
datasets have as many rankings as instances, making the majority ranking
not so representative.

As mentioned before, the average ranking (Equation 2.2) of a set of rankings,
minimizes the distance to all rankings in that set [84]. Hence we can use the
average ranking as the default ranking.
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2.4.4 Parameter tuning

Due to the intrinsic nature of each different dataset, or even of the pre-
processing methods used to prepare the data (e.g., the discretization method),
the maximum minsup/minconf needed to obtain a rule set Rπ, that covers
all the examples, may vary significantly [98]. The trivial solution would be,
for example, to set minconf = 0 which would generate many rules, hence
increasing the coverage. However, this rule would probably lead to a lot of
uninteresting rules as well, as the model would overfit the data. Then, our
goal is to obtain a rule set Rπ which gives maximal coverage while keeping
high confidence rules.

Let us define M as the coverage of the model i.e. the coverage of the set of
rules Rπ. Algorithm 1 represents a simple, heuristic method to determine
the minconf that obtains the rule set such that a certain minimal coverage
is guaranteed minM .

Algorithm 1 Confidence tuning algorithm

Given minsup and step
minconf = 100%
while M < minM do

minconf = minconf − step
Run CAREN with (minsup,minconf ) and determine M

end while
return minconf

This procedure has the important advantage that it does not take into ac-
count the accuracy of the rule sets generated, thus reducing the risk of over-
fitting.

2.5 Pairwise Association Rules

Association rules use a sets of descriptors to represent meaningful subsets of
the data [69], hence providing an easy interpretation of the patterns mined.
Due to the intuitive representation, since its first application in the market
basket analysis [2], they have become very popular in data mining and ma-
chine learning tasks (Mining rankings [70], Classification [97], Label Ranking
[36], etc).
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LRAR proved to be an effective predictive model, however they are designed
to find complete rankings. Despite its similarity measures, which take into
account possible ranking noise, it does not capture subranking patterns be-
cause it will always try to infer complete rankings. On the other hand,
association rules were used to find patterns within rankings [70], however,
they do not relate it with the independent variables. Besides, in [70], the
consequent is limited to one pairwise comparison.

In this work, we propose a decomposition method to look for meaningful
associations between independent variables and preferences (in the form of
pairwise comparisons), the Pairwise Association Rules (PAR), which can be
regarded as predictive or descriptive model. We define PAR as:

A→ {λa � λb ∨ λa ⊥ λb ∨ λa = λb|λa, λb ∈ L}

where, as in the original AR paper [4], we allow rules with multiple items,
not only in the antecedent but also in the consequent, i.e. PAR can have
multiple sets of pairwise comparisons in the consequent.

Similarly to RPC (Section 2.3.1), we decompose the target rankings into
pairwise comparisons. Therefore, PAR can be obtained from data with strict
rankings, partial rankings and subrankings. 3

Contrary to LRAR, we use the same interestingness measures that are also
used in typical AR approaches, instead of the similarity-based versions de-
fined for LR problems, i.e. sup, conf, etc. This allows PAR to filter out
non-frequent/interesting patterns and makes it more difficult to derive strict
rankings. When methods cannot find interesting rules with enough pair-
wise comparisons to define a strict ranking, partial rankings, subrankings or
even with sets of disjoint pairwise comparisons can be found. This is, inter-
est measures are defining the borders between what the model will keep or
abstain.

Abstention is used in machine learning to describe the option to not make
a prediction when the confidence in the output of a model is insufficient.
The simplest case is classification, where the model can abstain itself to
make a decision [11]. In the label ranking task, a method that makes partial
abstentions was proposed in [28]. A similar reasoning is used here both for
predictive and descriptive models.

More formally, let us define D = {〈xi, πi〉}, i = 1, . . . , n where πi can be a
complete ranking, partial ranking or a sub-ranking. For each π of size k we

3To derive the PAR, we added a pairwise decomposition method to the CAREN [10]
software.
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can extract up to h pairwise comparisons. We consider 4 possible outcomes
for each pairwise comparison:

• λa � λb

• λb � λa

• λa = λb (indifference)

• λa ⊥ λb (incomparability)

As an example, a PAR can be of the form:

A→ λ1 � λ4 ∧ λ3 � λ1 ∧ λ1 ⊥ λ2

The consequent can be simplified into λ3 � λ1 � λ4 or represented as a
subranking π = (2, 0, 1, 3).

2.6 Experimental Results

In this section we start by describing the datasets used in the experiments,
then we introduce the experimental setup and finally present the results
obtained.

2.6.1 Datasets

The data sets in this work were taken from KEBI Data Repository in the
Philipps University of Marburg [26] (Table 2.2).

To illustrate domain-specific interpretations of the results, we experiment
with two additional datasets. We use an adapted dataset from the 1999 COIL
Competition [96], Algae [34], concerning the frequencies of algae populations
in different environments. The original dataset consisted of 340 examples,
each representing measurements of a sample of water from different Euro-
pean rivers on different periods. The measurements include concentrations
of chemical substances like nitrogen (in the form of nitrates, nitrites and
ammonia), oxygen and chlorine. Also the pH, season, river size and its flow
velocity were registered. For each sample, the frequencies of 7 types of algae
were also measured. In this work, we considered the algae concentrations as
preference relations by ordering them from larger to smaller concentrations.
Those with 0 frequency are placed in last position and equal frequencies are
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Table 2.2: Summary of the datasets

Datasets type #examples #labels #attributes Uπ
bodyfat B 252 7 7 94%
calhousing B 20,640 4 4 0.1%
cpu-small B 8,192 5 6 1%
elevators B 16,599 9 9 1%
fried B 40,769 5 9 0.3%
glass A 214 6 9 14%
housing B 506 6 6 22%
iris A 150 3 4 3%
segment A 2310 7 18 6%
stock B 950 5 5 5%
vehicle A 846 4 18 2%
vowel A 528 11 10 56%
wine A 178 3 13 3%
wisconsin B 194 16 16 100%

Algae (COIL) 316 7 10 72%
Sushi 5000 10 10 98%

represented with ties. Missing values in the independent variables were set
to 0.

Finally, the Sushi preference dataset [81], which is composed of demographic
data about 5000 people and sushi preferences is also used. Each person sorted
a set of 10 different sushi types by preference. The 10 types of sushi, are a)
shrimp, b) sea eel, c) tuna, d) squid, e) sea urchin, f) salmon roe, g) egg h)
fatty tuna, i) tuna roll and j) cucumber roll. Since the attribute names were
not transformed in this dataset, we can make a richer analysis of it.

Table 2.2 presents a simple measure of the diversity of the target rankings,
the Unique Ranking’s Proportion, Uπ. Uπ is the proportion of distinct target
rankings for a given dataset. As a practical example, the iris dataset has 5
distinct rankings for 150 instances, which results in Uπ = 5

150
≈ 3%.

2.6.2 Experimental setup

Continuous variables were discretized with two distinct methods: (1) Entropy-
based Discretization for Ranking data (EDiRa) ([39]) and (2) equal width
bins. EDiRa is the state of the art supervised discretization method in La-
bel Ranking, while equal width is a simple, general method that serves as
baseline.
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The evaluation measure used in all experiments is Kendall’s τ . A ten-fold
cross-validation was used to estimate the value for each experiment. The gen-
eration of Label Ranking Association Rules (LRAR) and PAR was performed
with CAREN [10] which uses a depth-first based approach.

The confidence tuning Algorithm 1 was used to set parameters. We consider
that 5% seems a reasonable step value because the minconf can be found
in, at most, 20 iterations. Given that a common value for the minsup in
Association Rules (AR) mining is 1%, we use it as default for all datasets.
We define the minM as 95% to get a reasonable coverage, and minImp = 1%
to avoid rule explosion.

In terms of similarity functions, we use a normalized Kendall τ between the
interval [0, 1] as our similarity function s (Equation 2.1).

2.6.3 Results with LRAR

In the experiments described in this section we analyze the performance from
different perspectives, accuracy, number of rules and average confidence as
the similarity threshold θ varies. We expect to understand the impact of using
similarity measures in the generation of LRAR and provide some insights
about its usage.

LRAR, despite being based on similarity measures, are consistent with the
classical concepts underlying association rules. A special case is when θ = 1,
where, as in CAR, only equal rankings are considered. Therefore, by varying
the threshold θ we also understand how similarity-based interest measures
(0 ≤ θ < 1) contribute to the accuracy of the model, in comparison to
frequency-based approaches (θ = 1).

We would also like to understand how some properties of the data relate the
sensitivity to θ. We can extract two simple measures of ranking diversity
from the datasets, the Unique Ranking’s Proportion (Uπ), mentioned before,
and the ranking entropy [39].

Sensitivity analysis

Here we analyze how the similarity threshold θ affects the accuracy, number
and quality (in terms of confidence) of LRAR.
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Figure 2.1: Average accuracy (Kendall τ) of CAREN as the θ varies

Accuracy In Figure 2.1 we can see the behavior of the accuracy of CAREN
in terms of θ. It shows that, in general, there is a tendency for the accuracy
to decrease as θ gets closer to 1. This happens in 12 out of the 14 datasets
analyzed. On the other hand, in 9 out of 14 datasets, the accuracy is rather
stable in the range θ ∈ [0, 0.6].

If we take into consideration that the model ignores all similarities between
rankings for θ = 1, the observed behavior seems to favor the similarity-
based approach. In line with that, two extreme cases can be seen with fried
and wisconsin datasets, where CAREN was not able to find any LRAR for
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θ = 1. 4

Let us consider the accuracy range, the maximum accuracy minus the mini-
mum accuracy. To find out which datasets are more likely to be affected by
the choice of θ, we can compare their ranking entropy with the measured ac-
curacy range from Figure 2.1. In Figure 2.2 we compare the accuracy range
with the ranking entropy [39]. We can see that, the higher the entropy, the
more the accuracy can be affected by the choice of θ.

Results seem to indicate that, when mining LRAR in datasets with low
ranking entropy, the choice of θ is not so relevant. On the other hand, as the
entropy gets bigger, a reasonable value should be 0 ≤ θ ≤ 0.6.

One interesting behavior can be found in the dataset fried. Despite the
fact that it has a very low proportion of unique rankings, Uπ (fried) = 0.3%
(Table 2.2) its entropy is quite high (Figure 2.2). For this reason, it makes it
more sensitive to θ, as seen in Figure 2.1. On the other hand, iris and wine,
with very low entropy, seem unaffected by θ.

Number of rules Ideally, we would like to obtain a small number of rules
with high accuracy. However, such a balance is not expected to happen fre-
quently. Ultimately, as accuracy is the most important evaluation criterion,
if a reduction in the number of rules comes with a high cost in accuracy,
it is better to have more rules. Thus, it is important to understand how
the number of LRAR varies with the similarity threshold θ, while taking the
impact in the accuracy of the model into account as well.

In Figure 2.3 we see how many LRAR are generated per dataset as θ varies.
The majority of the plots, 10 out of 14, show a decrease in the number of
rules as θ gets closer to 1. As discussed before, the accuracy in general also
decreases as θ ≥ 0.6, so let us focus on θ ∈ [0, 0.6].

In the interval θ ∈ [0, 0.6], the number of rules generated is quite stable in
9 out of 14 datasets. In the first half of this interval, θ ∈ [0, 0.3], it is even
more remarkable for 13 datasets.

We expect the number of rules to decrease as θ increases, however, results
show that the number of rules does not decrease so much, especially for val-
ues up to 0.3. This is due to the fact that θ is also used in the pruning step
(Section 2.4.1), reducing the number of rules against which the improvement
of an extension is measured and, thus, increasing the probability of an ex-

4The default rule was not used in these experiments because it is not related with θ.
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Figure 2.2: Measured accuracy range (Kendall τ) of CAREN in comparison to
ranking entropy.

tension not being kept in the model. This means that, minImplr is being
effective in the reduction of LRAR.

As mentioned before, implr (A→ π) not only compares rules A′ → π where
A′ ⊂ A, but also rules A→ π′ where S ′ (π′, π) ≥ θ. In other words, with the
minImplr we are pruning LRAR with similar rankings too.

These results do not lead to any strong conclusions about the ideal value for
θ regarding the number of rules. However, they are in line with the previous
analysis of accuracy.

Minimum Confidence As mentioned before, we use a greedy algorithm to
automatically adjust the minimum confidence in order to reduce the number
of examples that are not covered by any rule. This means that the method has
to adapt the value of minconf per dataset per θ, as seen in Figure 2.4.

In general, the minconf decreases in a monotonic way as θ increases. As



42 CHAPTER 2. PREFERENCE RULES

bodyfat calhousing

cpu−small elevators

fried glass

housing iris

segment stock

vehicle vowel

wine wisconsin

0

100

200

300

100

200

300

100
200
300
400
500

500

1000

1500

2000

500

1000

1500

25

50

75

100

125

100

200

300

24

28

32

36

2000
3000
4000
5000
6000
7000

200

300

400

500

4000
4500
5000
5500
6000

500

1000

1500

900

1000

1100

1200

5000

10000

15000

20000

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Theta

#R
ul

es

Figure 2.3: Number of Label Ranking Association Rules generated by CAREN
as the θ varies



2.6. EXPERIMENTAL RESULTS 43

θ ≈ 1 the minconf gets to its minimum with 13 out of 14 datasets, which
is consistent with the accuracy plots (Figure 2.1). This means that, if we
want to generate rules with as much confidence as possible, we should use
the minimum θ, i.e. θ = 0.
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Figure 2.4: Mininum confidence adjusted to CAREN as the θ varies

Support versus accuracy We vary the minimum support threshold, minsup,
to test how it affects the accuracy of our learner. A similar study has been
carried out on CBA [75]. Specifically, we vary the minsup from 0.1% to 10%,
using a step size of 0.1%. Due to the complexity of these experiments, we
only considered the six smallest datasets.
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In general, as we increase minsup the accuracy decreases, which is a strong
indicator that the support should be small (Figure 2.5). All lines are mono-
tonically decreasing, i.e. either the values remain constant or they decrease
as minsup increases.

From a different perspective, the changes are generally very small for minsup ∈
[0.1%, 1.0%]. Considering that lower minsup generate potentially more rules,
we recommend minsup = 1% as a reasonable value to start experiments
with.

Discretization techniques To test the influence of the discretization method
used, we performed the same analysis using a non-supervised discretization
method, equal width. In general, the accuracy had the same behavior, as
a function of θ, as with EDiRa, i.e. the results are highly correlated (Fig-
ure 2.6). However, the supervised approach is consistently better. These
results add further evidence that EDiRa is a suitable discretization method
for label ranking [39].

Similar behavior was observed concerning the number of rules generated and
the minimum confidence.
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Figure 2.6: Ranking accuracy (Kendall τ) of CAREN after the discretization of
data using equal width and EDiRa. This plot aggregates all the experiments carried
out, concerning different issues, which means that each dataset is represented
multiple times, with different parameter settings.

Summary It is well known that general, simple rules to set parameters
of machine learning algorithms do not exist. Nevertheless it is good to
know where reasonable values lie. Hence, we think that θ ∈ [0.5, 0.6] and
minsup = 1% are good default values for LRAR with CAREN. In terms of
the discretization methods, our results confirm that a supervised approach,
such as EDiRa, is a good choice.

2.6.4 Results with PAR

In this work we use PAR, as a descriptive model, to find patterns concerning
subsets of labels. We focus in the descriptive task for two reasons. One is
to make the approach more simple and the other one is because this comple-
ments with the predictive LRAR approach.
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The minimum support and confidence presented here are defining the absten-
tion level of the model. The minsup and minconf were adjusted manually
to generate a small set of rules between 150 to 200.

In the generation of PAR, we set the minimum lift to 1.5. Despite that many
interesting rules were found, due to space limitations we only present the
most relevant.

Algae data Using the Algae dataset, we found 179 PARs with minsup = 2
and minconf = 90. With sup = 2.2% and conf = 100% the rule with the
highest lift (approx. 6) was:

Riversize = small ∧ pH ≥ 37.9 ∧ Flowvelocity = high∧
Chloride ≥ 3.4 ∧ Nitrates&Ammonia ≥ 18.5

→ L6 � L2 ∧ L5 � L7 ∧ L2 � L7

The consequent of this rule can be represented as L6 � L2 � L7∧L5 � L7.
Considering that the labels represent algae populations, this rule states that
it is always true that, under these conditions, type 6 is more prevalent than
type 2. It also states that type 7 is less prevalent than types 2, 5 and 6.

The second rule with highest lift, with sup = 3.1% and conf = 91% is:

Flowvelocity = medium ∧ Nitrates&Ammonia < 18.5∧
Nitrogenasnitrates < 7.9

→ L1 � L7 ∧ L7 � L3

The target of this rule is the partial ranking L1 � L7 � L3.

If this PAR was used for prediction, the subranking π = (1, 0, 3, 0, 0, 0, 2)
would have been the prediction.

Sushi data When analyzing the sushi dataset we got 166 rules with minconf =
70% and the minsup = 1%. With a lift of 1.95 the following rule was
found:

Ageinterval = 15− 19 ∧ Sex = Male ∧ Livedin = Eastern Japan

→ egg � seaurchin ∧ shrimp � seaurchin

In the whole dataset, 37% of the people show this relative preferences egg �
seaurchin∧shrimp � seaurchin. This PAR shows that this number almost
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double (72%), if we consider males from Eastern Japan, aged between 15−
19.

A related rule was also found concerning a different group of people, with
different age and from a different region (sup = 1.1%, conf = 71.6% and
lift = 1.65):

Ageinterval = 30− 39 ∧ Sex = Male∧
Livesin = Western Japan ∧ Changedcity = Yes

→ seaurchin � egg∧
fattytuna � tunaroll∧
tunaroll � cucumberroll∧
fattytuna � egg

This rule includes one relative preference found in this group, seaurchin �
egg, which is the opposite to what was observed in the previous rule. Based
on this information, we analyzed the data and found out that 75% of people
that live in Eastern Japan prefer egg to seaurchin while 84% of people from
Western Japan prefer seaurchin to egg.

2.7 Conclusions

In this paper we address the problem of finding association patterns in label
rankings. We present an extensive empirical analysis on the behavior of a
label ranking method, the CAREN implementation of Label Ranking Asso-
ciation Rules. The performance was analyzed from different perspectives,
accuracy, number of rules and average confidence. The results show that,
similarity-based interest measures contribute positively to the accuracy of
the model, in comparison to frequency-based approaches, i.e. when θ = 1.
The results confirm that LRAR are a viable label ranking tool which helps
solving complex label ranking problems (i.e. problems with high ranking
entropy). The results also enabled the identification of some values for the
parameters of the algorithm that are good candidates to be used as default
values.

Results also seem to indicate that, the higher the entropy, the more the
accuracy can be affected by the choice of θ. An user can measure the ranking
entropy of a dataset beforehand and adjust θ accordingly.

Additionally, we propose Preference Association Rules (PAR), which are as-
sociation rules where the consequent represents multiple pairwise preferences.
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We illustrated the usefulness of this approach to identify interesting patterns
in label ranking datasets, which cannot be obtained with LRAR.

In future work, we will use PAR for predictive tasks.


