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Chapter 1

Introduction

Preferences are present in many tasks in our daily lives. Buying the right
car, choosing a suitable house or even deciding on the food to eat, are trivial
examples of decisions that reveal information, explicitly or implicitly, about
our preferences. Hence, extracting and modeling preferences can provide
us with invaluable information about the choices of a group of persons or
individuals. However, this problem is non-trivial because, quite often, pref-
erences depend on different context and options available [83]. Moreover, in
areas like e-commerce, which typically deal with decisions from thousands of
users, the acquisition of preferences can be a difficult task [57].

For that reason, artificial intelligent methods have been increasingly impor-
tant for the discovery and automatic learning of preferences [47]. In particu-
lar, a subfield of machine learning which focuses on the study and modeling
of preferences is Preference Learning.

In this thesis, we focus on one subtask of Preference Learning (introduced in
Section 1.1), the prediction and analysis of preferences given a predefined set
of objects/labels, commonly referred to as Label Ranking (Section 1.2).

1.1 Preference Learning

Preference Learning is an emerging subfield of machine learning that focuses
on the study and modeling of preferences1. Preference learning methods

1A comprehensive overview of the state-of-the-art in the field of preference learning can
be found in the Preference Learning book [57].
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2 CHAPTER 1. INTRODUCTION

are conceptually different from standard machine learning problems such as
classification or regression, as it can involve the prediction of more complex
structures [7]. Classification and regression problems focus on the prediction
of single values, while preference learning methods are designed to predict
the order, or ranking, of a set of objects by relative importance.

In this field, the term preference is not strictly referring to preferences of
individuals, but can also represent more general order relations. In turn, this
flexibility gives an important advantage to the paradigm of preference-based
learning, like extracting knowledge which, otherwise, would be harder [14].
However, without loss of generality, the discussion will focus on the more
traditional type of preferences for easier interpretation.

Preferences can be extracted in an explicit way. As an illustrative example,
a person who claims to prefer apples to pears, represented as:

apples � pears

is giving information about an explicit preference. In [81], 5000 Japanese
people were asked to order 10 types of sushi by preference.

However, sometimes, information about preference is only implicitly given.
Going back to the fruit example, if someone picks bananas from a basket
containing apples, pears and bananas, one can implicitly infer that:

bananas � apples ∧ bananas � pears

One real example can be found in [114], where preferences are implicitly
taken from clicking behavior of users.

Regardless of how preferences are extracted, they can be given as relative
or absolute. Relative preferences cannot be quantifiable (e.g. sorting fruit by
taste: bananas � apples � pears) [57]. On the other hand, absolute pref-
erences are given in a quantitative form (e.g. the cost of the fruit: bananas
= 2$, pears = 1$, apples = 3$). Despite its different nature, in preference
learning all types of preferences are combined in the same learning perspec-
tive [57].

In terms of modeling the preferences, there are two main approaches, learn-
ing utility functions and learning preference relations [57]. Learning utility
functions, is learning to assign a relevance score to each object, which can
later be ordered by comparison. Learning preference relations, is to learn
the relative order relations between the objects being studied. This type
of approach can be difficult to learn in cases where there are many objects
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to order [42]. For example, consider the ordering of web pages by search
engines [78]. In such cases, it is easier to rely on methodologies that learn
utility functions.

In short, preference learning, is to learn from empirical data with implicit
or explicit preferences. These preferences are explored by preference mining
methods [57]. Preference learning is also about predicting preferences in new
scenarios, when good generalizations from the given data are possible.

Preference learning can be divided into three main categories [57], object
ranking, instance ranking and label ranking.

Object ranking The goal in the object ranking task is to output the rank-
ing of a given set of objects, that, in theory, can be infinitely large. It can
be considered a regression task whose target variables are orders [82]. A
practical example are the lists of ordered web pages generated by search en-
gines [78, 114]. In these case, utility functions are trained to assign a score
to each newly given object [57].

Instance ranking In instance ranking, the setting is similar to ordinal
classification [23], where an instance belongs to a class, among a finite set
of classes with a natural order [57]. As an example, consider the assignment
of conference papers to categories like: reject, weak reject, weak accept and
accept [57].

Instance ranking is a generic term for bipartite [89] and multipartite [59]
ranking.

In this thesis, we focus on the label ranking task (Section 1.2) and its appli-
cations.

1.2 Label Ranking

Label ranking is a sub-field of preference learning [57, 26, 123] which studies
the problem of learning a mapping from instances to rankings over a finite
number of predefined labels. It can be considered a variant of the conven-
tional classification problem [26]. While in classification the goal is to assign
examples to a specific class, in label ranking we are interested in assigning
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a complete preference order of the labels to every example. If this is not
possible, incomplete orders can also be assigned to some examples [28].

There are two approaches to tackle label ranking data [6, 24]. Reduction tech-
niques (Section 1.2.3), also known as decomposition methods, divide the prob-
lem into several simpler problems (e.g. ranking by pairwise comparisons [56]).
Direct methods (Section 1.2.4) treat the rankings without any transformation
(e.g. decision trees adapted for the label ranking task [120, 26] or case-based
approaches for label ranking [17, 24]).

Label ranking has been used in different applications, mainly for predictive
tasks. For example, in meta-learning [16], to predict a ranking of a set of
algorithms according to the best expected accuracy on a given dataset. In
microarray analysis [74], to find patterns in genes from Yeast on different
micro-array experiments. And also in image categorization [58], to predict
the relative importance of categories of elements in landscape pictures (e.g.
beach, sunset, field, fall foliage, mountain and urban).

1.2.1 Definition

Given an instance x from the instance space X, the goal is to predict the
ranking of the labels L = {λ1, . . . , λk} associated with x [74]. The ranking
can be represented as permutation or as an ordered vector.2 The permu-
tation, denoted as π, contains numbers from 1 to k, where 1 indicates the
first position and k the last one (e.g. π = (1, 2, 3, 4)). The ordered vector
represents the objects with an operator indicating the order of the preference
(e.g. λa � λb � λc � λd).

The goal in label ranking is to learn the mapping X→ Ω, where Ω is defined
as the permutation space. However, as in classification, we do not assume
the existence of a deterministic X → Ω mapping. Instead, every instance is
associated with a probability distribution over Ω [26]. This means that, for
each x ∈ X, there exists a probability distribution P(·|x) such that, for every
ranking π ∈ Ω, P(π|x) is the probability that π is the ranking associated
with x. The training data contains a set of instances D = {〈xi, πi〉}, i =
1, . . . , n, where xi is a vector containing the values xji , j = 1, . . . ,m of m
independent variables, A, describing instance i and πi is the corresponding
target ranking.

Rankings can be either total or partial orders.

2Both notations will be used interchangeably in this dissertation.
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Total orders A strict total order over L is defined as:3

{∀ (λa, λb) ∈ L|λa � λb ∨ λb � λa}

which represents a strict ranking [123], a complete ranking [57], or simply a
ranking. A strict total order can also be represented as a permutation π of
the set {1, . . . , k}, such that π(a) is the position, or rank, of λa in π. For
example, the strict total order λ1 � λ2 � λ3 � λ4 can be represented as
π = (1, 2, 3, 4).

However, in real-world ranking data, we do not always have clear and unam-
biguous preferences, i.e. strict total orders [15]. Hence, sometimes we have
to deal with indifference (∼) and incomparability (⊥) [42]. For illustration
purposes, let us consider the scenario of elections. If a voter feels that two
candidates have identical proposals, then her preference can be expressed
as indifferent, so they are assigned the same rank (i.e. a tie). To represent
ties, we need a more relaxed setting, called non-strict total orders, or simply
total orders, over L, by replacing the binary strict order relation, �, with the
binary partial order relation, �:

{∀ (λa, λb) ∈ L|λa � λb ∨ λb � λa}

These non-strict total orders can represent partial rankings (rankings with
ties) [123]. For example, the non-strict total order λ1 � λ2 ∼ λ3 � λ4 can
be represented as π = (1, 2, 2, 3).

Additionally, real-world data may lack preferences data regarding two or
more labels, which is known as incomparability. Continuing with the elections
example, if the voter is familiar with the proposals of λa but not those of λb,
she is unable to compare them, λa ⊥ λb. In other words, the voter cannot
decide whether the candidates are equivalent or select one as her favorite. In
this case, we can use partial orders.

Partial orders Similar to total orders, there are strict and non-strict par-
tial orders. Let us consider the non-strict partial orders (which can also be
referred to as partial orders) over L:

{∀ (λa, λb) ∈ L|λa � λb ∨ λb � λa ∨ λa ⊥ λb}

We can represent partial orders with subrankings [70]. For example, the
partial order λ1 � λ2 � λ4 can be represented as π = (1, 2, 0, 4), where 0
represents that λ3 is incomparable to the others, i.e. λ1, λ2, λ4 ⊥ λ3.

3For convenience, we say total order but in fact we mean a totally ordered set. Strictly
speaking, a total order is a binary relation.
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1.2.2 Evaluation

Given an instance xi with label ranking πi and a ranking π̂i predicted by a
label ranking model, several loss functions on Ω can be used to evaluate the
accuracy of the prediction. One such function is the number of discordant
label pairs:

D (π, π̂) = #{(a, b) |π (a) > π (b) ∧ π̂ (a) < π̂ (b)}

If there are no discordant label pairs, the distance D = 0. On the other hand,
the function to define the number of concordant pairs is:

C (π, π̂) = #{(a, b) |π (a) > π (b) ∧ π̂ (a) > π̂ (b)}

These concepts are used in the definition of several metrics that can be used
for evaluation in label ranking:

Kendall Tau Kendall’s τ coefficient [85] is the normalized difference be-
tween the number of concordant, C, and discordant pairs, D:

τ (π, π̂) =
C − D

1
2
k (k − 1)

where 1
2
k (k − 1) is the number of possible pairwise combinations,

(
k
2

)
. The

values of this coefficient range from [−1, 1], where τ (π, π) = 1 (i.e. when the
rankings are equal) and τ(π, π−1) = −1 if π−1 denotes the inverse order of π
(e.g. π = (1, 2, 3, 4) and π−1 = (4, 3, 2, 1)). Kendall’s τ can also be computed
in the presence of ties, using τB [5].

Gamma coefficient If we want to measure the correlation between two
partial orders (subrankings), or between total and partial orders, we can use
the Gamma coefficient [93]:

γ (π, π̂) =
C − D
C +D

Note that the Gamma coefficient is identical to Kendall’s τ coefficient in the
presence of strict total orders, because, in this case, C+D = 1

2
k (k − 1).
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Spearman distance One other commonly used measure is the Spearman’s
rank correlation coefficient [118]. It is defined as:

ρ (π, π̂) = 1− 6dS (π, π̂)

k (k2 − 1)

where dS is the squared sum of rank differences, also referred as Spearman
distance [82]:

dS (π, π̂) =
k∑
a=1

(π (a)− π̂ (a))2

In other words, the Spearman’s rank correlation coefficient is the normalized
version of the Spearman distance into the interval [−1, 1].

Weighted rank correlation measures Sometimes it is more important
to predict the items in the top ranks than the ones ranked lower. For in-
stance, when predicting the ranking of financial analysts to choose which ones
to follow [6], it is more important to predict the best ones correctly than the
worst ones. That is because it would not be very wise to follow the rec-
ommendations of the worst analysts. Thus, labels could be associated with
cost and benefit values, which determine the real value of the ranking. For
instance, to follow a given analyst, I have to buy the stocks he recommends.
On the other hand, following different analysts will likely yield different gains
or losses in the market. The empirical evaluation of ranking methods will
only be useful in practice if these issues are taken into account.

In these cases, a weighted rank correlation coefficient can be used. They
are typically adaptations of existing similarity measures, such as a weighted
version of the Spearman’s rank coefficient [110].

In terms of evaluation techniques, the usual resampling strategies, such as
holdout or cross-validation, can be used to estimate the accuracy of a label
ranking algorithm [26]. The accuracy of a label ranker can be estimated by
averaging the values of any of the measures explained here, over the rankings
predicted for a set of test examples.

To assess the significance of differences between models, using paired tests di-
rectly is not advised, since straightforward paired tests on multiple methods
might reject the null hypothesis due to random chance [43]. For this reason,
two-step statistical tests are usually performed [17, 26]. The first step, con-
sists of a Friedman test, where the null hypothesis is that all learners have



8 CHAPTER 1. INTRODUCTION

equal performance. If this hypothesis is rejected, a two-tailed sign test to
compare learners such as the Dunn’s Multiple Comparison Procedure [104]
is performed.

1.2.3 Reduction techniques

Because label ranking is a relatively new field in machine learning, some
methods were basically approaching a reduction to a classification or regres-
sion problem [24], i.e. Reduction techniques. One great advantage of the
reduction is that it makes a label ranking problem viable to be transformed
into classification [74] or regression [41] problems. Also, reduction techniques
can be quite efficiently implemented and easily applied for distributed sys-
tems [124]. On the other hand, there are also some disadvantages.

One option is to reduce the problem to the prediction of the best label (multi-
label classification). This, however, will come with loss of information [23].
Assume we have the ranking of 3 algorithms in two scenarios: Alg1 � Alg2 �
Alg3 and Alg2 � Alg1 � Alg3. A classifier, by focusing on the best one,
will struggle to predict the most accurate, while a ranker will conclude that
algorithms 1 and 2 perform better than 3.

One most commonly accepted reduction technique is to decompose rankings
into binary preference relations, referred to as pairwise comparisons [74].
In simple words, it consists into reducing the problem of ranking into sev-
eral classification problems. Examples of that are: Ranking by Pairwise
Comparison (RPC) [74], Likelihood Pairwise Comparisons (LPC) [44] and
Rule-based Label Ranking [64]. However, it has been noted that minimizing
the classification error on several binary problems is not always equivalent
to minimizing a loss function on rankings [23].

Ranking by Pairwise Comparisons

The method Ranking by Pairwise Comparisons (RPC) [74] is a well known
reduction technique in the label ranking field. In simple terms, RPC can be
divided in two phases, prediction of pairwise preferences and derivation of
the rankings [74].

Before the first step, one needs to decomposed rankings into pairwise com-
parisons for each pair of labels of the form:

(λa, λb) ∈ L, 1 ≤ a < b ≤ k
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Considering that L = {λ1, . . . , λk}, there will be k(k−1)
2

different pairwise
comparisons.

The first step is to learn a classification model from the training data for
each pair of labels. This is, considering each pairwise comparison as a class,
a separate model, Mab, is called to learn a mapping of the form:

xi →
{

1 if λa � λb
0 if λb � λa

}
, xi ∈ D

This mapping can be done by any classifier at hand [74].

This approach has the advantage that it can be used with partial rankings.
For any instance xi, where nothing is known about the preference relation of
a pair of labels (λa, λb) ∈ L, the modelMab ignores xi in the training.

As a matter of choice, this can be easily adapted to deal with the interval
[0, 1]. This will result in a valued preference relation, vprx, for every instance
x ∈ X:

vprx (λa, λb)

{
Mab if a < b

1−Mab if a > b

Finally, there is the aggregation step, where the predictions are combined to
derive the rankings. Given the predicted pairwise comparisons for each x,
the simplest approach is to order the labels, considering the predictions of
the modelMab as weights. Each label λa is ranked depending on the sum of
the weights: ∑

λa 6=λb

vprx (λa, λb)

This task may not be trivial as there are possibilities of ties. In this regard,
there are some well studied and documented approaches [55, 74]. However,
one simple approach is to favor the most common classes according to the
class distribution [74].

1.2.4 Direct approaches

Direct methods treat the rankings without any transformation. Hence, avoid-
ing some of the problems of the reduction approaches [23], mentioned in
Section 1.2.3. In this section, we outline some direct approaches for label
ranking problems which have been proposed in recent years.
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The most prominent approaches in the label ranking field are based on
probabilistic distribution of rankings, like Mallow’s Model [26] or Plackett-
Luce [24]. These probabilistic methods estimate the conditional probability
P(π|x) from the training data. This gives methods the advantage that, be-
sides predicting a ranking, also provide a reliability score [24].

Case-based methods are also highly competitive direct approaches in label
ranking (e.g. k -Nearest Neighbor [17, 26]). In [17] a nearest neighbor ap-
proach was proposed to deal with the problem of meta-learning. From a
different perspective, in [24], the authors combined case-based with proba-
bilistic models using the Instance-Based Label Ranking method.

A different group of label ranking methods tackle the ranking similarities with
distance-based approaches (e.g., [120, 36, 116]). A relatively recent example
is a neural networks adaptation proposed with Multilayer Perceptron for
Label Ranking [116]. Also, in the naive Bayes for Label Ranking method [6],
the prior probabilities of the rankings are similarity-based. In this cases,
ranking correlation measures, like Kendall’s τ coefficient [85] or the Spearman
distance [82], are used to calculate the distance between rankings. These so-
called distance-based models, make the prediction problem more similar to
a regression task, where the difference between two rankings is similar to the
error in a regression setting.

Tree-based models are popular in label ranking [120, 115, 26]. Decision trees
are known to be competitive methods which are relatively easy to inter-
pret [26]. In [120], Predictive Clustering Trees, successfully combine hier-
archical clustering with decision trees for predicting rankings. Probabilistic
models are combined in the tree generation to derive the nodes in Label
Ranking Trees [26].

1.3 Contributions of this thesis

In this section, we give an overview of the contributions of this thesis, and its
motivations. As mentioned in Section 1.2, there are two main approaches to
the problem of label ranking [6, 24]. Decomposition approaches which divide
the problem into several simpler problems and Direct methods that treat the
rankings as target objects without any transformation. We focus more on
direct methods but we also propose decomposition approaches.

The first part of this PhD project extends the work started with the MSc
thesis [33] of the candidate. In the latter, Label Ranking Association Rules
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(LRAR) were proposed [36]. LRARs are based on traditional Association
Rules, redefining the support and confidence measures, in order to take into
account the nature of label rankings. However, in the MSc project the em-
pirical study was limited and little information about the behavior of LRARs
was obtained. In the PhD project, this work was consolidated, namely to
better understand how the rules perform in extreme conditions and in which
cases are correctly applied (Section 1.3.1).

In this project we also addressed the lack of pre-processing methods that are
specific to label ranking problems. LRARs, like Association Rules, cannot
handle numeric data directly, which needs to be discretized beforehand. We
proposed two discretization approaches that are specific for label ranking
problems (Section 1.3.2). Both approaches are based on a new measure of
ranking entropy which was developed as part of this work.

The new measure of ranking entropy was also the basis for a third contri-
bution. We proposed Entropy Ranking Trees (Section 1.3.3), which is an
adaptation to the problem of label ranking of a Top-Down Induction of De-
cision Trees algorithm. Based on this new algorithm, we made a fourth
contribution, which is an ensemble method for label ranking. The algorithm
is Label Ranking Forests (Section 1.3.3), which, as the name indicates, is an
adaptation of Random Forests for label ranking.

There is not much work on descriptive pattern mining of label rankings and
preference data. We address this shortcoming with two additional contribu-
tions, Pairwise Association Rules and Exceptional Preferences Mining (Sec-
tion 1.3.4), which are two rule-based methods.

Most empirical studies on label rankings are based on a set of benchmark
datasets, in the KEBI Data Repository [26]. These were generated from other
datasets which were not original label ranking problems. Given the process
of transformation used, it is unclear whether these datasets are useful to
assess the quality of label ranking methods. Thus, the final contribution
of this thesis are two swap randomization techniques for the label ranking
task (Section 1.3.5). The proposed methods were used to investigate the
usefulness of the available label ranking datasets.

1.3.1 Label Ranking Association Rules

Association Rules mining is used to discover interesting relationships between
attributes in large databases [2]. An association rule has the form A → B,
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meaning that when the set of values A is observed in the data, there is a
chance of observing B.

Although association rules were originally developed for descriptive tasks,
their success has quickly lead to their adaptation for prediction problems.
The motivation for adapting Association Rules (AR) for classification is that,
a classification rule model built from such an unrestrained set of rules, can
potentially be more accurate than the ones using a greedy search approach
[97].

Label Ranking Association Rules [33] were proposed as a predictive approach
for label ranking [36]. The main adaptations to the original algorithm were
on the support and confidence measures, which were modified to take into
account the similarity between rankings.

The method proposed originally to mine LRAR has a parameter. Such pa-
rameter, works as a threshold that determines what should and should not
be considered a sufficiently similar pair of rankings, in order to be covered
by the same rule. However, the impact of that parameter in the results was
not investigated originally. In Chapter 2, we consolidate the original work by
discussing results of the analysis on the values of this parameter. The type
of questions we investigate is, whether there is a rule of thumb to select its
value or it is data-specific.

1.3.2 Discretization

As in any machine learning task, data preparation is essential for the devel-
opment of accurate label ranking models. For instance, some algorithms are
unable to deal with numeric variables, such as the basic versions of Naive
Bayes and Association Rules [102, 4], in which case numeric variables should
be discretized beforehand.

While there has been a significant development of learning algorithms for
label ranking in recent years, there are not many pre-processing methods
specifically for this task. Following the adaptation of Association Rules for
Label Ranking, the development of a suitable discretization method was
paramount. Without such a method, it would not be possible to adequately
analyze data with numerical variables.

Discretization, from a general point of view, is the process of partitioning
a given interval into a set of discrete sub-intervals. It is normally used to
split continuous intervals into two or more sub-intervals which can then be
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treated as nominal values. When we transform continuous intervals into
discrete sub-intervals, regardless of the splits taken, generally leads to a loss of
information [60]. In theory, a good discretization should have a good balance
between the loss of information and the number of partitions [90].

Discretization methods are typically organized into two groups, supervised
and unsupervised, depending on whether or not they involve the target vari-
able, respectively. In prediction problems, supervised methods usually pro-
duce more useful discretizations than unsupervised methods [46].

The difference in nature between the target variable in classification and label
ranking problems implies that supervised discretization methods developed
for classification are not suitable for LR. For this reason, two methods, based
on a well-known supervised discretization approach for classification, were
proposed as part of this PhD research. The original method, Minimum
Description Length Partition (MDLP) [54], uses a measure of entropy from
information theory, known as Shannon entropy [54].

The first proposed approach, Minimum Description Length Partition for
Ranking (MDLP-R) [40] (Chapter 3), uses a ranking entropy measure based
on the similarities between rankings. This ranking entropy is the equivalent
of the Shannon entropy for label ranking problems. A simpler and improved
measure of entropy was latter proposed and implemented in a new method,
EDiRa (Entropy-based Discretization for Ranking) [39] (Chapter 3).

1.3.3 Tree-based models

Tree-based models are popular for a number of reasons, including how they
can clearly express information about the problem, because their structure is
relatively easy to interpret even for people without a background in learning
algorithms. They have been used in classification [111], regression [20] and
also label ranking [120, 26] tasks.

On the other hand, ensemble methods, which use multiple learning algo-
rithms, usually compensate some loss in interpretability with significant ac-
curacy improvements [19]. One of the most popular approaches are ensembles
of trees, such as Random Forests [19].

Our contributions concerning the development of tree-based models for label
ranking are a new variant of decision trees and the adaptation of the random
forests algorithm for this task.
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Entropy Ranking Trees Decision trees, like ID3 [111], grow in a top-
down recursive partitioning scheme that iteratively splits data into smaller
subsets [102]. This splits are performed such that each node divides the
data into increasingly more homogeneous subsets, in terms of the target
variable. The search for the best split point tries to optimize a given splitting
criterion, such as the information gain [102]. Information gain measures the
difference in entropy between the previous and current state relatively to a
target variable.

By implementing the previously proposed ranking entropy measure (Sec-
tion 3) in the splitting process, we proposed a novel ranking tree approach,
Entropy Ranking Trees [35] (Chapter 4). The goal is to obtain leaf nodes that
contain examples with target rankings as homogeneous as possible.

Label Ranking Forests Adapting Random Forests to label ranking comes
in a natural way based on any decision trees approach for label ranking.
Motivated by the success of Random Forests in terms of improved accuracy
for classification and regression problems [13], we proposed a Random Forest
approach for label ranking, Label Ranking Forests [32] (Chapter 4).

1.3.4 Descriptive mining for label ranking

Preference learning approaches can benefit from the analysis of descriptive
methods [57]. In label ranking, only recently, a few descriptive approaches
for mining label ranking data have been proposed [70, 122]. In [70], the
authors suggest an approach using association rules that search for patterns
exclusively in rankings (i.e. the independent variables are ignored). In [122],
a ranked tiling approach to search for patterns in the ranking scores, i.e.
ranks, is suggested.

The available label ranking mining approaches focus exclusively on the tar-
get ranking, and do not relate its values to the values of the independent
variables. However, we believe that much valuable information can be ex-
tracted by taking both into account. For example, consider we discover that
in 80% of the cases sushi A is preferred to sushi B. By taking independent
variables into account, we might actually find that females prefer sushi B to
sushi A, but males, which represent 80% of the population, prefer sushi A to
sushi B. For that reason, we propose two approaches for mining label ranking
data.
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Exceptional Preferences Mining In Chapter 5, we propose an approach
for finding deviating patterns in label rankings, in the context of Subgroup
Discovery [88], referred to as Exceptional Preferences Mining. The aim of
Subgroup Discovery is to discover subgroups for which the target shows an
unusual distribution, as compared to the overall population in the data [88].

In the context of label ranking, we need to determine to what extent the
subgroups show different preferences, and whether any of these preferences
are in conflict with the average behavior. To that end, we developed three
quality measures, Pairwise, Labelwise and Norm. Each of them strives to
find subgroups where the preference relations are exceptional from slightly
different perspectives.

The Pairwise measure identifies subgroups with strong deviating preferences
between pairs of labels. The Labelwise measure identifies subgroups where
at least one particular label is exceptionally under- or over-appreciated. Fi-
nally, the Norm quality measure will give more relevance to subgroups where
several, or all, labels deviate strongly.

Pairwise Association Rules Association rules use a set of descriptors to
represent meaningful subsets of the data [69], hence providing an easy inter-
pretation of the patterns mined. We propose an approach that decomposes
rankings into pairwise comparisons and then looks for meaningful associa-
tions rules of the form:

A→ {λa � λb ∨ λa ⊥ λb ∨ λa = λb|λa, λb ∈ L}

which we refer as Pairwise Association Rules (Chapter 2). 4

1.3.5 Label Ranking Data

Due to the lack of benchmark LR datasets, 16 semi-synthetic datasets were
adapted from multi-class and regression datasets from the UCI repository
and Statlog project [26]. For each multi-class problem, an LR dataset (re-
ferred to as type A problem) was created by training a Naive Bayes and the
target was replaced with a ranking based on the probability score of each

4For similar reasons, Label Ranking Association Rules can also be used for mining
label ranking data. However, the fact that these search exclusively for complete ranking
patterns, can be seen as a limitation.
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class. Additionally, for each regression problem, the ranking target was cre-
ated based on the values of a set of selected numerical attributes (type B
problems).

This set of 16 datasets has been used by the majority and the contributions
in the Label Ranking field [28, 27, 116, 64]. However, it is unclear if the type
B datasets contain any meaningful relations between the target rankings
and independent variables. Additionally, the rankings in type A problems
represent the preferences of an agent, which in this case is the naive Bayes
classifier. Therefore, the bias in these algorithms seems too strongly de-
fined and, thus, their ability to represent real world distributions of data is
questionable.

In many data mining applications, swap randomizations techniques are used
together with statistical tests to validate the significance of findings [62]. Us-
ing a similar concept, we can investigate the usefulness of type B datasets.
For this purpose, we propose two swap randomization methods specific for
the label ranking datasets, ranking permutations and labelwise permuta-
tions.

Ranking permutations Randomly permuting the rankings is a natural
adaptation of the methods used in classification [63]. By doing so, we want
to test the strength of the relation between independent variables and targets
in the data. After the permutation, because we break this relation, we can
measure how the label ranking learners behave and compare with the results
on the original data. If the differences are not significant, we can conclude
that there is no real relation between independent variables and targets.

Labelwise permutations In [19], each attribute was permuted at a time
to measure the impact of variables for prediction, in terms of misclassification
rate. We propose a similar method by applying the same concept to each
individual label (Chapter 6). We define labelwise permutation as the process
of permuting the ranks of a specific label. This enables us to test if the
amount of information in the independent variables about the rank of the
selected label is significant. By comparison with the original data (without
permutations), statistical significance tests can be used to assess the relevance
of each label.

The number of benchmark datasets for label ranking is still relatively small.
A final contribution of this project is the adaptation from a multivariate
regression problem into a label ranking dataset (Chapter 5). We adapted
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the dataset from the COIL 1999 Competition Data, taken from the UCI
Repository [96], concerning the frequencies of algae populations in different
environments, which we refer to as Algae.

1.4 Thesis outline

This thesis is presented as a series of papers in the form of self-contained
chapters. These are either papers that have been published or that have been
submitted for publication. The dissertation consists of 6 chapters following
this introductory chapter.

Chapter 2, Preference Rules [37], presents an empirical study on Label Rank-
ing Association Rules and Pairwise Association Rules. This paper, which has
been submitted to the Information Fusion journal, is an extension of previous
work, Mining Association Rules for Label Ranking [36].

Chapter 3, Entropy-based discretization methods for ranking data [39], presents
a supervised approach to discretize datasets with target rankings. This chap-
ter, which is published in the Information Sciences journal, is based on pre-
liminary work published in the proceedings of the Discovery Science 2013
conference, Singapore [40].

In Chapter 4, Label Ranking Forests [32], we can find a successful adaption
of ensembles of trees for label ranking problems, which has been published
in the Expert Systems journal. This work is an extension to the prelimi-
nary work published in EPIA 2015, in which Entropy Ranking Trees, were
proposed [35].

Chapter 5, Exceptional Preferences Mining [34], proposes an approach to look
for exceptional behavior in label ranking datasets. This paper is published
in the proceedings of the Discovery Science 2016 conference held in Bari,
Italy.

Chapter 6, Permutation Tests for Label Ranking [38], presents a smaller con-
tribution where, semi-synthetic datasets used in Label Ranking community,
where evaluated with different tests. This chapter is published in the local
proceedings of the BENELUX conference on artificial intelligence 2015.

Finally, Chapter 7, gives an overview of the main contributions and findings
in this PhD dissertation.
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