Universiteit

4 Leiden
The Netherlands

Computability of the étale Euler-Poincaré characteristic
Jin, J.

Citation
Jin, J. (2017, January 18). Computability of the étale Euler-Poincaré characteristic. Retrieved
from https://hdl.handle.net/1887/45208

Version: Not Applicable (or Unknown)
Licence agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/45208

License:

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/45208

Cover Page

The handle http://hdl.handle.net/1887/45208 holds various files of this Leiden University
dissertation.

Author: Jin, J.
Title: Computability of the étale Euler-Poincaré characteristic
Issue Date: 2017-01-18

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/45208
https://openaccess.leidenuniv.nl/handle/1887/1�

Effective algebraic geometry

In this chapter we describe the basics of computations in algebraic geometry. We
start by explaining in Sections to the view on computability taken in this
dissertation, before treating the basic constructions in algebraic geometry that we
will need for the algorithm described in the later chapters.

1.1 Primitive recursive functions and computability

In order to algorithmically compute with mathematical objects, one first needs to be
able to present these objects into some computational model. There are a number of
classical such models, e.g. that of the Turing machine, the random-access machine (or
RAM), and that of the recursive functions. We wish to be able to describe a theory
of algorithms that are “bounded” in some way; this can be done the most naturally
in the theory of recursive functions, in which we have a class of primitive recursive
functions.

A modern treatment on (primitive) recursive functions can be found in most books
on computability; the following treatment is based on that of Moret [31]].

We will define the set of primitive recursive functions as a subset of [[_ o INN";

note that NN’ = IN.

Definition 1.1. The base functions are the following:

e the constant 0 € IN;

o the successor function S: IN — IN, x — x + 1;

e for positive integers 7, i such that i < n, the projection function P!': N" — IN
on the i-th coordinate.

Next, we define the two operations under which we want the set of primitive
recursive functions to be closed.

Definition 1.2. Let m,n > 0 be integers, and let g: N — IN, hy,..., hy: IN" — IN
be functions. Then the function 0y, (g, 1, ..., hm): IN" — N given by
(%1, xn) = g (X1, .o x0), oo (X1, X))
is said to be obtained from g, Iy, . . ., h, by substitution.
Note that in the edge case m = 0, the function 0p,(g) is the constant function

(from IN") with value g; in the other edge case n = 0, the function 0y, 0(g, 111, ..., hm)
isg(hy,..., hym) € N.

Chapter 1 Effective algebraic geometry

Definition 1.3. Let 1 be a positive integer, and let g: N"~! — Nand h: N"*! — N
be functions. Then the function p;, (g, 1): N" — IN given recursively by

Q(x2,x3,...,x,) ifx; =0
(X1 2n) = { h(xy —1pn(gh)(x1 —1,x0,..., %), %2,..., %) ifx7 >0

is said to be obtained from g, I by primitive recursion.
Now we can define the set of primitive recursive functions.

Definition 1.4. The set R, of primitive recursive functions is the smallest subset of the
set [I5—o INN" that contains the base functions, and such that
o for all non-negative integers m,n, and all g: N" — N, hy,..., hy: N — IN
such that g, 1y, ..., hy € Ry, we have 0y, (g, 11, ..., hm) € Rp;
e for all positive integers 1, and all functions g: N"~! — N, h: N"*! — N
such that g, 1 € Ry, we have p,,(g,h) € Rp.

An algorithm computing a certain primitive recursive function f is in this context
an explicit expression of f in terms of the base functions, substitution, and primitive
recursion.

Example 1.5. The functiond: IN — N given by x — max(x — 1,0) is primitive recur-
sive. An algorithm computing it is

p1(0, PP).
For any primitive recursive function f: IN — IN (together with an algorithm com-
puting it), the function if: IN x N — IN defined by (n,x) + f"(x) is primitive
recursive, and an algorithm computing iy is given by

p2(PL,o15(f, P3)).
Note that ig is the addition map on IN.

Note that the primitive recursive functions form a strictly smaller class of func-
tions than what are typically called recursive or computable functions. We get the
usual notion back once we add the unbounded minimisation operator, and temporarily
also consider partial functions IN"” — IN.

Definition 1.6. Let f: N"*! — N be a partial function. Then u 7o IN" = N is the
partial function such that y f(xl, ..., Xy) is undefined whenever f(y,x1,...,x,) #0
forally € IN, and such that p¢(x1,...,x,) =y if y € N is the minimal number such
that f(y,x1,...,xn) = 0. We say that y¢ is obtained from f by unbounded minimisa-
tion.

This allows us to define the set of recursive functions.
Definition 1.7. The set R’ of partial recursive functions is the smallest set of partial

functions IN” — IN (with varying #) that contains the base functions, and such that

o for all integers m,n > 0, and all partial functions g: IN" — IN and all par-
tial functions hy, ..., hy: N — N with g, hy,..., hy € R/, the partial func-
tion oy, (g, h1, ..., hm) lies in R';

1.3 Explicitly given fields and factorial fields

e for all integers n > 0, and all partial functions ¢: N"~! — IN, h: N"*! - N
with g,h € R/, we have p,(g,h) € R’;

e for all integers n > 0, and all partial functions g: N"*! — N with ¢ € R/,
we have i, € R'.

The set R of recursive functions is the subset of R’ of total functions.

1.2 Explicitly given sets and maps

The following is essentially the theory of (primitive) recursive sets, as can be found
in most books on computability, e.g. Moret [3I]. We will view IN as a pointed set
with base point 0 in what follows; we will think of 0 as an “error code”.

Definition 1.8. A presentation of a set X consists of an injective presentation map
: X — N — {0} together with an algorithm computing the characteristic function
Xr(x) of (X). An explicitly given set is a pair (X, 7rx) of a set and a presentation 7rx
of X.

Definition 1.9. Let (X, 7tx), (Y, 7ty) be explicitly given sets. A presentation of a map
f: Y — X is an algorithm computing the unique function ¢: N — IN such that
¢(y) =0forally ¢ ry(Y), and such that the following diagram commutes.

y N

fl qu

X — NN
X
An explicitly given map Y — X isamap Y — X together with a presentation.

We obtain a collection Set, of explicitly given sets and explicitly given maps, which
only becomes a category after we identify algorithms defining the same map (in
other words, we forget the algorithm). There is a forgetful functor Set; — Set, which
is faithful by definition, but not full (as not every function is primitive recursive).

Example 1.10. Let, for any non-empty set X and any x € X, the set Seq,, ,(X) denote
the set of sequences (x;)7°, such that x; = x for all but finitely many i. We first give
the Gadel encoding of Seq,, ,(IN). Let po = 2, py,... denote the increasing enumera-
tion of the prime numbers. Then the Godel encoding 7: Seq,, ,(IN) — IN sending
(ag,a1,...) to pg’pi" - - - is a presentation of Seq,,, o(IN).

Now let X be a non-empty explicitly given set, and x € X an element such
that mx(x) = 1. The map X — N, x — 7mx(x) — 1 then induces a presentation
Seq,, ,(X) — Seq,,o(IN) — IN, which sends the constant sequence x to 1. This al-
lows us to iterate this process, obtaining presentations for e.g. Seq, . (Seqy, (X)),
etc.

Moreover, let, for any non-empty set X, the set Seq(X) denote the set of finite
sequences in X. We then have an injective map Seq(IN) — Seq,,,(IN) sending
(a1,...,ay) to (n,ay,...,a,), which induces a presentation of Seq(IN). If X is an
explicitly given set, then as before, the map X — IN, x — mx(x) — 1 induces a
presentation Seq(X) — Seq(IN) — IN.

Chapter 1 Effective algebraic geometry

1.3 Explicitly given fields and factorial fields

In this section we will give a definition of a factorial field, cf. e.g. Ayoub [2]. We first
give a definition of explicitly given rings and fields.

Definition 1.11. An explicitly given ring is an explicitly given set R that is a ring,
together with elements 0,1 € R, the characteristic of R, and encodings of the maps
+,-: Rx R — R, —: R — R. An explicitly given morphism R — S of explicitly given
rings is an explicitly given map that is also a morphism of rings. An explicitly given
field is an explicitly given ring k that is a field, together with a presentation of the
map -~': k— {0} — k— {0}.

Remark 1.12. Note that at times, elements of fields are more naturally given as equiv-
alence classes of elements of some set, e.g. the case of a fraction field of an integral
domain. Therefore it may be more desirable to accommodate for this and define an
explicitly given ring or field as an explicitly given set R together with a primitive
recursive equivalence relation on R and the usual operations (which are to satisfy
the usual relations only up to equivalence). However, since bounded minimisation
is primitive recursive, so is the (characteristic function of the) set of minimal rep-
resentatives of each equivalence class and the map R — R sending each x to its
corresponding minimal representative. Therefore we can construct from such R an
explicitly given ring or field in the sense of the definition above, and we lose no
generality.

Example 1.13. The fields IF; (for g4 a prime power) and Q can be given the structure
of an explicitly given field. Suppose that k is an explicitly given field. Any finitely
generated extension of k can be given the structure of an explicitly given field. The
field k(x1, x2, ...) can be given the structure of an explicitly given field.

For an explicitly given ring R, we will give R[x] the structure of an explicitly given
ring. First, identify R[x] with Seq, ((R) by identifying a polynomial f = }3*, a;x!
with the sequence (a;)°,. Since we have obvious algorithms to compute addition,
multiplication, and additive inverse, we get the structure of an explicitly given ring
on R[x]. By iterating this process, one gets a structure of an explicitly given ring on
the polynomial ring R[x1, ..., x,] as well.

Since we now have a presentation of polynomials and therefore also of finite se-
quences thereof, we can now introduce the notion of a polynomial factorisation al-
gorithm.

Definition 1.14. A factorial field is an explicitly given field k, together with a presen-
tation of a map k[x] — {0} — Seq(k[x]) sending f to a tuple (f1,..., fu) such that
f = fi--- fnand every f; is irreducible.

Example 1.15. Any finitely generated extension of IF; (for 4 a prime power) or Q can
be given the structure of a factorial field.

There exist explicitly given fields for which polynomial factorisation is not com-
putable, see Frohlich and Shepherdson [12].

1.5 Algebra over explicitly given fields

1.4 Remarks on “algorithms” and “complexity”

First note that the notion of algorithm given above is not a very convenient notion
to work with. However, there is a different way of describing primitive recursive
functions which may be a bit more amenable, namely as so-called loop programs (see
e.g. Handley and Wainer [20, Sec. 1]). Roughly speaking, these are algorithms using
only finite loops of precomputed length (so no recursion is allowed a priori). Of
course, as many algorithms use recursion, this is still a bit too restrictive in practice.
In practice, we will also allow recursion if the total number of recursive calls for a
single instance can be bounded by a precomputed number; it is possible to rewrite
such recursively defined functions as a loop of a precomputed length. This allows
us to discuss algorithms much more informally, and we will usually do so.

Note moreover that while the notion of explicitly given (or factorial) field de-
scribed above is suitable for a notion of computability, it doesn’t admit a good notion
of arithmetic complexity, i.e. the number of field operations needed to compute a func-
tion (as a function in the input); as the field operations are assumed to be primitive
recursive, they can be described in terms of base functions, the notion of a number
of field operations isn’t even well-defined! While the notion of an arithmetic com-
plexity can be formalised, see e.g. Diem [10} Sec. 1.6.4] for RAMs, we will use the
term informally, viewing the field operations of an explicitly given or factorial field
as primitive operations.

Finally, note that in the definition of a factorial field, we have included a primi-
tive recursive univariate factorisation algorithm, but in practice, some efficient such
algorithms use randomisation, but halt with probability 1 and with the correct out-
put, i.e. they are Las Vegas algorithms. Therefore algorithms involving factorisation
should be viewed as Las Vegas algorithms in general. Other than that, we will usu-
ally ignore the difference between Las Vegas and deterministic algorithms.

1.5 Algebra over explicitly given fields

As stated in the previous section, we will be a lot less formal with algorithms from
now on.

1.5.1 Vector spaces

We present a finite-dimensional vector space over k (with given basis) by its dimen-
sion, and a k-linear map from a vector space of dimension m to a vector space of
dimension n by its n X m-matrix with respect to the given bases.

If vector spaces V and V' have bases (e1,¢,...,e,) and (e}, e5,...,e,), respec-
tively, then we will assume their direct sum V & V' to be equipped with the basis
(er,€2,...,em €, €,..., e), and their tensor product V ® V' to be equipped with the

basis (e; @ el;) ;1’;1,;,:1, with the lexicographical order on the indices. This has the addi-
tional advantage that if we have three vector spaces V, V', V" with given bases, that
then the natural isomorphisms (V@ V)@ V"' = Ve (Vo V"), kV =V =Vk,
and (Vo V) V"= (Ve V") ® (V' @ V") preserve the induced bases.

We present a subspace of dimension m of a given vector space of dimension n by
an n X m-matrix in reduced row echelon form. Therefore, by Gaussian elimination,

Chapter 1 Effective algebraic geometry

we can compute kernels and images of linear maps, in a number of field operations
polynomially bounded by the dimensions of the source and target. Moreover, we can
compute the quotient of a vector space by a subspace, and therefore we can compute
cokernels of linear maps as well, also in a number of field operations polynomially
bounded by the dimensions of the source and target.

1.5.2 Finitely generated algebras

We present an ideal I of k[x1, ..., x,] by a finite set of generators fi, ..., fs. An alge-
bra of finite type over k then is given by a non-negative integer m, and an ideal of
k[x1,..., %]

We present an element f of k[x1,...,xy|/I by an element of f + I in k[xy,..., Xu);
note that sums and products of elements can be computed, and that equality of
two elements can be tested using Grobner basis algorithms. A k-algebra morphism
k[x1,...,xm|/T — kl[y1,...,yn]/] is given by the images of the x;, under the condi-
tion that the generators of I map to 0 (which can be tested by the above). Moreover,
compositions of morphisms can be computed, and equality of two morphisms can
be tested using Grobner basis algorithms.

We will consider more properties in[Section 1.7}
1.5.3 Finite algebras

We describe two ways to present a finite k-algebra.

One way to present a finite k-algebra A is the vector space presentation, namely by
its underlying vector space over k, together with the inclusion :: k — A and the
multiplication map p: A ® A — A; these are to be such that the following diagrams
commute:

" ‘

AAA ™A A A AL Ao A

idg ®yl l}t idg ®zl iﬂ
A®A#>A A®AT>A

and we present a morphism A — B of finite k-algebras by its underlying k-linear
map; this map must be such that the following diagrams commute.

AoA LY BeB

k
| [N
A——B A———— B
f f

One other way to present a finite k-algebra is by the quotient of k[x1, ..., x,,] by a
zero-dimensional ideal; in this case the morphisms are presented by morphisms of
k-algebras. We claim that these two ways are equivalent; i.e. that we can transform
one presentation into the other primitive recursively. We will only work this out for
the objects, leaving the morphisms to the reader.

First suppose that we are given A as a vector space together with maps 1: k = A
andy: AQ A — A,andlet (t1,...,t,) be the given basis of A. Then A is isomorphic

1.5 Algebra over explicitly given fields

to k[t1,...,tm|/1, where I is generated by t;t; — u(t; @ t;) and 1 — i(1). Note that this
is done in a number of field operations polynomially bounded in dimy A.

Conversely, assume that we are given a zero-dimensional ideal I C k[xy, ..., x]
such that A = k[xy,...,x5]/I. Then we can compute from a Grobner basis of I
a k-basis for A consisting of monomials, and we can compute the multiplication
and inclusion maps with respect to this basis using division with remainder with
respect to the Grobner basis. Note that this involves computing Grébner basis of
zero-dimensional ideals, which can theoretically be done in a number of field op-
erations exponentially bounded in the number of given generators of the ideal, see
Dickenstein et al. [9].

We now list a number of properties that can be decided algorithmically. We start
with the property of being étale over k.

Proposition 1.16. There exists an algorithm that takes as input an explicitly given field k
and a finite k-algebra A, and decides whether A is étale over k, in a number of field operations
polynomially bounded in dimy A.

Proof. Note that A is étale over k if and only if the trace form A — Homy (A, k) given
by a — (b~ Tr(ab)) is invertible. Since we can compute the trace form and the de-
terminant thereof in a number of field operations bounded polynomially in dimy A,
we get the desired result. g

To decide whether a finite k-algebra A is local, we use the following result.

Proposition 1.17 (Khuri-Makdisi [25, Sect. 7]). There exists an algorithm that takes as
input a factorial field k and a finite k-algebra A, and returns an isomorphism [[; A; = A
with all A; finite local k-algebras, in a number of field operations polynomially bounded in
dimk A.

Corollary 1.18. There exists an algorithm that takes as input a factorial field k and a finite
k-algebra A, and decides whether A is local, in a number of field operations polynomially
bounded in dim; A.

Since for a finite k-algebra, being étale and local is equivalent to being a finite
separable field extension of k, we also get the following.

Corollary 1.19. There exists an algorithm that takes as input a factorial field k and a finite
k-algebra A, and decides whether A is a finite separable field extension of k, in a number of
field operations polynomially bounded in dimy, A.

Finally, we can decide whether a finite k-algebra is a finite Galois (field) extension
of k.

Proposition 1.20. There exists an algorithm that takes as input a factorial field k and a finite
separable field extension | over k, and outputs the Galois closure of | over k, in a number of
field operations exponentially bounded in dimy [.

Proof. Decompose | ® I = []; ;. Then note that each /; is a separable field extension
of I, and that [is Galois if and only if every I; is equal to I. Therefore replacing [
iteratively by an /; with maximal dimension (and using that the Galois closure of [
over k has degree at most [! : k|! over k) computes the Galois closure of [over k in a
number of field operations exponentially bounded in dimy [. O

Chapter 1 Effective algebraic geometry

Corollary 1.21. There exists an algorithm that takes as input a factorial field k and a finite
k-algebra A, and decides whether A is a finite Galois (field) extension of k, in a number of
field operations polynomially bounded in dimy A.

Next, we compute the Galois group of a finite Galois extension of k.

Proposition 1.22. There exists an algorithm that takes as input a factorial field k and a finite
Galois extension I of k, and outputs Gal(l/k).

Proof. We note that Gal(l/k) is the set of k-rational points of a finite algebraic sub-
group of GLgjm, 1 x, which we can compute using Grobner bases. (]

Finally, given a finite Galois extension ! of k with Galois group G, we can make
Galois theory effective: given a subgroup H of G, we can compute /! (as the inter-
section of the kernels of the k-linear maps 1 — & for h € H), and vice versa, given a
subextension I’ of | over k, we can compute Gal(I/1").

1.5.4 Galois sets

The following treatment is essentially that of Couveignes and Edixhoven [5] p.69-
70].

Let G be the absolute Galois group of k; recall that it is a profinite group. There
are two natural ways of presenting a finite continuous G-set. For the first one, note
that the category of finite continuous G-sets is equivalent to the opposite of that of
finite separable k-algebras; so we present a finite continuous G-set by a finite sepa-
rable k-algebra, and we present a morphism Y — X of finite continuous G-sets by a
morphism of finite separable k-algebras (in the opposite direction).

Alternatively, note that a finite continuous G-set is given by a finite set X, to-
gether with a continuous group morphism G — S(X), where S(X) is the permuta-
tion group on X. Its kernel N is a closed subgroup of finite index, which corresponds
to a finite Galois extension / over k, and the Galois set X is determined by the action
of Gal(!/k) on X. This shows that we can present a finite continuous G-set by a tuple
(I, X, w) of a finite Galois extension [over k, a finite set X, and an action « of Gal(l/k)
on X.

We can extend the above to any finite number of finite continuous G-sets, to see
that we can present a finite number of finite continuous G-sets by a tuple (1, (X;, «;);),
such that every (I, X;,«;) presents a finite continuous G-set. In particular, we see
that we can present a morphism of finite continuous G-sets by a finite Galois exten-
sion [over k, finite sets X, Y, actions ax, ay of Gal(l/k) on X, Y, respectively, and a
Gal(l/k)-equivariant map f: Y — X.

Using[Section 1.5.3] we see that these two presentations can be converted into one
another in a straightforward way; if A is a finite separable k-algebra, and A = [T, I;
is a decomposition of A into fields, then a corresponding triple is (I, X, a) where
I is the Galois closure of the compositum of the /; and the set X is [[; Homy([;,1)
together with the natural Gal(!/k)-action on the Homy ([;,1); conversely, if (I, X, «) is
a presentation of a finite continuous G-set, then decompose X into Gal(!/k)-orbits
X;, compute for each i a stabiliser G; of a point of X; (which is well-defined up to
inner automorphisms), and set A = [T, .

1.6 Curves over explicitly given fields

1.5.5 Multivariate and absolute factorisation

Recall that a factorial field is an explicitly given field together with an algorithm for
univariate polynomial factorisation. However, using a trick attributed to Kronecker
in van der Waerden [37, Sec. 42], one can easily reduce multivariate polynomial fac-
torisation to univariate polynomial factorisation; this uses an number of field opera-
tions exponential in the degree of the polynomial to be factored.

Next, we consider absolute factorisation, i.e. given a polynomial f € k[x1,...,xm],
find the factorisation of f over the algebraic closure of k. Note that this factorisation
is defined over a finite extension ! of k. By Chistov [4, Sec. 1.3], absolute factorisation
can be reduced to ordinary multivariate polynomial factorisation in a number of field
operations which is polynomial in the degree of the polynomial to be factored.

It follows that any factorial field admits an algorithm computing absolute factori-
sations of polynomials in k[x1, ..., Xp].

1.6 Curves over explicitly given fields

Let k be an explicitly given field. In this section we describe two ways to describe
IP}-vector bundles, one of which is more or less classical, essentially going back to
Dedekind and Weber [6] (another reference is Diem [10]), and an alternative one
better suited for our purposes. We can then describe curves together with a finite
locally free morphism to IP}< as vector bundles on]P,% with an algebra structure.

1.6.1 Vector bundles via function fields

The following is a slight generalisation and alteration of the idea described in Diem
[10, Sect. 2.5.4.2].

The basic idea here is to describe a vector bundle € on IP; by (€, £(Up), (L)),
where 1 €]P]% is the generic point, and Uy, U; are the standard affine open subsets of
IP;. Here we view the &£(U;) as subsets of £,. The rule attaching to £ a triple as above
is a functor, the target category of which we describe below. There, we will identify
O]P]l(,”, O]P]l((Uyp), (’)]P; (Uy) with k(x), k[x], k[x1], respectively.

Consider the category L£(k) defined as follows. The objects of L(k) are tuples
(V, Vo, V1), where V is a finite dimensional vector space over k(x), say of dimension
m, and Vj (resp. V1) is a free k[x]-submodule (resp. k[x~!]-submodule) of V of rank
m, such that V and V; generate the same k[x, x~!]-submodule of V. The morphisms
(V,Vo, V1) — (W, Wy, W) in L(k) are the morphisms V — W that map V; into W;
fori e {0,1}.

Note that the functor from the category of vector bundles on P! to £(k) defined
by

& (&,E(Upy), E(Uy)).
is an equivalence of categories.

By expanding the definition of the objects and morphisms of £(k) in terms of ma-
trices, we see that £(k) (hence also the category of vector bundles on IP}) is equiv-
alent to the category P’ (k) (of presentations of finite locally free OP}(-modules) de-

fined below.

Chapter 1 Effective algebraic geometry

The objects of P’ (k) are tuples (m, By, By), where m is a non-negative integer and
By, By: k(x)™ — k(x)™ are k(x)-linear isomorphisms, the columns of the matrices of
which generate the same k|[x, x ~1]-submodules of k(x)™, i.e. the matrix of ByB; ! has
entries in k[x, x~!]. (Matrices are always taken with respect to the standard bases.)

Now consider two objects (11, By, B1) and (1, Cy, Cq) of Pj (k). The morphisms in
P’ (k) from (m, By, B1) to (1n,Cp, Cy) are the k(x)-linear maps f: k(x)™ — k(x)", such
that the k[x]-submodule generated by the columns of the matrix of By is mapped
into that of Cy, and such that the k[x~!]-submodule generated by the columns of the
matrix of By is mapped into that of C;. In other words, we have that the matrices of
Cy ' fBo, resp. C; ! fB; have entries in k[x], resp. k[x!].

Note that the tensor product (m, By, B1) ® (m’, B, B]) of two objects in P’ (k) is
given by (mm’, By ® Bj, B; ® B}), and that the tensor product of two morphisms
f: (m,By,B1) — (n,Co,Cq) and f': (m', B, By) — (n’,C},C}) is given by f ® f’ (as
k(x)-linear map k(x)™" — k(x)""). Moreover, ® is associative and the (identity
morphism on) the object (0,0, 0) is neutral for ®.

1.6.2 Vector bundles via Dedekind-Weber splitting

There is an alternative way to present vector bundles on]P,l. The following theorem
(commonly attributed to Grothendieck) describes all isomorphism classes of vector
bundles on P}.

Theorem 1.23 (Dedekind and Weber [6]). Let k be a field, and let £ be a finite locally
free OH,}(-module. Then there exists a (up to permutation unique) finite sequence of integers
(a;);_, such that £ = @;_; (’)IP}((a;).

Write, for a finite sequence a = (a;);_; of integers, (’)]Pl]((a) for the OP}(-module
@i, OP}((a;). We will use the “linear algebra” of such objects to describe the cate-
gory of finite locally free (’)]Pi-algebras. Since for all finite sequences 4, b of integers,
we have

Hom@ 1 (O]Pl (ﬂ), O]Pl (b)) = @ HOI’I‘I@ 1 (Oll’l (ai), O]Pl (b]))
i k k Y Pe k k
= P Op (b — a;) (P}),
ij

we see that giving a morphism (’)]P; (a) — (’)IP}{ (b) is the same as giving an element
of

Maty , (k) = {M € Maty s (k[x,y]) : M;j; € k[x, y]h].,ai},
where s and t are the respective lengths of the sequences a and b.

Therefore the category of vector bundles on IP}C is equivalent to the category P (k)
of which the objects are finite sequences of integers, and in which the set of mor-
phisms from a finite sequence a to a finite sequence b is given by Maty ,(k) (with
composition given by matrix multiplication).

Next, we describe tensor products in P (k). For two finite sequences a,a’ of inte-
gers the sequence a @ a’ is the set {a; + a/, }; s together with the order on the index

10

1.7 Commutative algebra over explicitly given fields

set given by the lexicographical order on pairs (i,i’), so that there is an isomorphism

~

O]P% (a@a) = O]Pi (a) ® OH,% (a’). Moreover, the tensor product of two morphisms

can be computed by viewing morphisms as matrices with entries in k(x, y).

1.6.3 Converting presentations

We now describe explicit quasi-inverse equivalences between P (k) and P’ (k).
First we describe the functor F: P (k) — P’(k). For an object a of P (k), i.e. a finite
sequence of integers, we set F(a) to be the triple

(@ Op1(ai)y, Bo, Bl),
1

where we identify OlP}f (a;)y with k(x) by identifying y with 1, and where By is the
identity matrix, and where B; is the diagonal matrix of which the i-th entry is x“.
The given identification of OP}((a;)y with k(x) also immediately gives a description
of F on morphisms.

Next, we describe its quasi-inverse G: P'(k) — P(k). Suppose that we have
an object (m, By, By) of P’(k). Then the method of e.g. Gortz and Wedhorn [16)
Lem. 11.50], see also Hess [22] Sec. 4], gives an algorithm to compute a basis C = {C;}
of k(x)™ over k such that C generates the same k[x]-submodule as By, and a sequence
of integers a of length s such that x C; spans the same k[x~!]-submodule of k(x)™ as
B;. In this case, we set G(m, By, By) = a.

Next, if we have a morphism ¢: (m, By, B;) — (1,Co, C1) in P’(k), we consider
their corresponding sequences of integers a, b, and the matrix M of the correspond-
ing k-linear map k(x)™ — k(x)" with respect to the k(x)-bases given above. By
definition of a morphism, the entries of this matrix lie in k[x], and in fact, the degree
of the (j,i)-entry is at most b; — a;. Let M’ be the matrix in k[x, y] obtained from M
by replacing each entry M;;(x) by aji(x/y)ybf”". Then G(¢) is given by M.

By construction, the following is now clear.

Proposition 1.24. The functors F and G defined above are quasi-inverse equivalences.

1.7 Commutative algebra over explicitly given fields

In this section, we consider certain constructions in commutative algebra. We present

k-algebras of finite type as in [Section 1.5.2

1.7.1 Localisations

For an element f € k[x,..., x| and an ideal I of k[xy,...,x], the localisation
(k[x1, ... 2m] /I)f of k[xy, ..., xp] is given by the morphism

k[xl,...,xm}/l — k[xl,...,xm,merﬂ/(I-F (xm+1f_1>)

sending x; to x; (fori =1,2,...,m).

11

Chapter 1 Effective algebraic geometry

1.7.2 Equality of radicals of ideals

Given two ideals I,] of k[x1, ..., x|, we can test algorithmically whether their radi-
cals are equal using an effective Nullstellensatz, like the following theorem by Kollar.

Theorem 1.25 (Kollar 26|, Cor. 1.7]). Let k be a field, and let fy,...,fs € k[x1,..., Xm]
and let d be the maximum of 3 and their degrees. Then for all h € +/(f1,..., fs) there exist
a positive integer t < 2d™ and g1, ..., s € k[x1,..., X] such that
ht:g1f1+...+gsfs
with deg gifi < (1+ degh)2d™.
In fact, if we weaken the condition in the lastline to deg g f; < (1+2d4™ degh)2d™,
then we can take t = 2d™. Therefore checking whether a polynomial lies in the

radical of some ideal of k[x1, ..., xy] boils down to solving a large system of linear
equations.

1.7.3 Tensor products

Let A =k[x1,...,xu]/1, B=k[y1,...,yn]/], C =k[z1,...,2p]/K. Let 9: A — B and
¢: A — C be morphisms of k-algebras. Then the tensor product B ® 4 C is given by

klxt, o X, Y1, Yn 21, - - -, Zp)
I+]+K+ (@(x1) —x1,. .0, @(xm) — X, P(x1) — X1, ..., P(X) — Xp1)
together with the obvious morphisms B+ B®4 Cand C - B®4 C.

1.7.4 Other algorithms

We list some more algorithms we will make use of, namely those for Noether normal-
isation and primary decomposition.

Theorem 1.26 (Nagata [32]). There exists an algorithm that takes as input an explicitly
given field k and a k-algebra A of finite type, and outputs an injective integral morphism
k[x1,...,xm| — A in an effectively bounded number of field operations.

Theorem 1.27 (Gianni et al. [15]). There exists an algorithm that takes as input a factorial
field k and an ideal I C k[x1,...,Xp|, and outputs a primary decomposition of I in an
effectively bounded number of field operations.

Remark 1.28. We remark that the algorithm by Gianni et al. [15] a priori is not prim-
itive recursive because of the use of an unbounded search at two points, namely
Proposition 3.7 and Proposition 8.2. Fortunately, in the case that we need, this can be
amended, as explained below.

First, the unbounded search in Proposition 3.7 collapses, as we only need the case
that p = 0. Moreover, we note that the crucial step in Proposition 8.2 in the case
that we need, is the following: given ideals I,] of k[x1,...,x,] and s € k[xq,..., Xx],
compute a positive integer m such that s] C [if one exists. This can be done prim-
itive recursively by first computing I : | (using Grobner bases) and then checking if
s € y/I:], using an effective Nullstellensatz like the one by Kollar [26] mentioned
above.

12

1.8 Schemes of finite type over a field

Moreover, replacing every occurrence of a factorisation in their algorithm by an
absolute factorisation will give an algorithm computing an absolute primary decom-
position (i.e. a primary decomposition over k) instead.

1.8 Schemes of finite type over a field
1.8.1 Affine schemes

The category of affine schemes of finite type over a field k is just the opposite of the
category of k-algebras of finite type, so we present an affine scheme X of finite type
over k by its ring O(X) of global sections, and a morphism Y — X of affine schemes
of finite type over k by the morphism O(X) — O(Y) of k-algebras. For an affine
scheme X and s € O(X), we will denote by Dx(s) the standard open subscheme of
X defined by s.

Note that we can compute fibre products of affine schemes.

1.8.2 Quasi-affine schemes

We present a quasi-affine scheme U of finite type over k by an affine scheme X of
finite type over k, together with a finite sequence sy, ..., s, € O(X) of elements gen-
erating an ideal defining the complement of U in X. Note that we can view an affine
scheme X as a quasi-affine scheme presented by (X, 1). We can test algorithmically
whether two such presentations define the same open subscheme of a fixed scheme
X, since this boils down to checking that two ideals have the same radical.

Suppose the quasi-affine schemes U and V are presented by tuples (X, s1,...,5m)
and (Y, ty,...,tn), respectively. A morphism V — U with respect to the given
presentations is then given by a map a: {1,...,n} — {1,...,m} and morphisms
Dy(tj) — Dx(84(j)) such that the following diagram commutes for all j and j" in
{1,...,n}.

Dy (tj) —— Dx(sa(j))

D (t-t-,)/ \
] \)/

Dy(f,]'/) — Dx(Sa(

X

]/

Note that for any morphism f: V — U where U C X and V C Y are open
subschemes with X and Y affine and of finite type over k, there exist presentations
of U and V such that f can be given with respect to those presentations.

We want to be able to compute compositions of composable morphisms and test
whether two morphisms are equal. To this end, we first explain how to compute the
fibre product of two quasi-affine schemes.

Suppose that the quasi-affine schemes U, V, W are given by tuples (X,s1,...,5m),
(Y, t1,...,tn), (Z,uq,..., up), respectively, and let V. — U and W — U be morphisms
with respect to the given presentations. Then by the classical construction of fibre

13

Chapter 1 Effective algebraic geometry

products of schemes, we see that V x; W is given by
(Y xx Z, t]-uk)

(with (j, k) running through all pairs such that the images of jand kin {1,...,m} are
the same). We have obvious projection morphisms V xy W — Vand V xy W — W
with respect to the given presentations.

Now let U, V, W be quasi-affine schemes, and let f: V — U and g: W — V be
morphisms. Suppose that V is given as an open subscheme of the affine scheme Y,
and view the presentations of V used for f and g as morphisms V — Y of quasi-
affine schemes. We can then compute the composition fg using the following di-
agram, in which we do not simplify the expression V xy V as both factors are in
general given by distinct presentations.

Wxy (VxyV) ——— VxyV

— N

144 — u

\/

The composition fg then is the morphism W xy (V Xy V) — U in the diagram
above.

In a similar vein, if U and V are quasi-affine schemes, given as open subschemes,
of the affine schemes X and Y, respectively, and f,g: V — U are morphisms, then
we can test whether f = g since this is the case if and only if the following diagram
commutes.

— u

/\ N

V xy V X

~ S

V—>U

Finally, suppose that U, U’ are both open subschemes of an affine scheme X, that
V is an open subscheme of an affine scheme Y, and that f: V — U is a morphism of
schemes. We can test whether the image of f is contained in U’ by considering the
diagram

VxyUxxl) ——— Uxx U

— N
~.

v

14

1.8 Schemes of finite type over a field

and testing that V x; (U x x U’) (which is given as an open subscheme of the scheme
Y xx X = Y) is the same as V. Moreover, we see that if the image of f is contained
in U, then the diagram above gives a way to compute a presentation of the induced
morphism V — U’.

1.8.3 Presentations of schemes

A scheme of finite type over k is presented by gluing data:

o affine schemes Xj, ..., X, of finite type over k;

e foralli,j € {1,...,m} an open subscheme Xij € X; such that X;; = X; for all
ie{l,...,m};

e foralli,j € {1,...,m} a morphism ¢;;: X;; — Xj; of quasi-affine schemes,
such that ¢;; is the identity on X; for all i € {1,...,m}, and such that the
cocycle condition holds, i.e.:

foralli,j,k € {1,...,m}, the image of Xij x x; Xjx under @;; is contained in
Xjk, and the diagram

Pji
Xij xx; Xik

Xji xx; Xjk

Pri Pkj
Xki X x; Xk

is commutative.

We will denote such a presentation by the shorthand (Xj, ..., Xy).

Note that the cocycle condition for i = k implies that ¢;; = q)i;l for all 7,j in
{1,...,m} and that the induced morphism ¢;;: X;; xx, Xjx — Xj; xx; Xjk is an iso-
morphism foralli,j, k € {1,...,m}.

A morphism (Yy,...,Ys) — (Xi,...,Xmu) of presentations of schemes of finite
type over k is givenbyamap a:{1,...,n} = {1,...,m}, morphisms f;: Y; — X,(;),
and morphisms fjr: Yjir — Xy (ia(n) compat1ble w1th gluing data. More prec1sely,
the following diagrams commute forall j,j' € {1,...,n}.

fj]" f]]
Yijr —— Xa(ja(j) Yijr —— Xa(ja(j)

[

7 Kl Yii =5 Kutiat)

First note that we can algorithmically determine whether two morphisms of pre-
sentations of schemes define the same morphism between the schemes that they
present, by the following.

Lemma 1.29. Let f,g: (Y1,...,Yn) — (X1, ..., Xmm) be morphisms between presentations
of schemes (with «, B the correspondmg maps on indices). Then they define the same mor-
phism of schemes if and only if the following holds: for all j € {1,...,n}, the projections

15

Chapter 1 Effective algebraic geometry

Yj xx, X() Xa(j)p() — Y and Y; xXﬁ Xa(j)p(j) = Yj are isomorphisms and the composi-
flOTlS Y — Y XX (])ﬂ() = oc(]) () and Y — Y Xxﬁ oc(]) () — ofthe
respectzve inverses and the projections are equal.

fx(]

Proof. In this proof, we will identify the X;, X;,Y;, Y;i with the open subschemes of
the schemes they define.

First suppose that f, ¢ define the same morphism of schemes. Then, for all j, the
image of Y; lies in X,y and Xg;), and therefore in X, ;)5(j). Hence the projections
Yi XX, Xa(iypl) = Y and Y] X Xg) Xa(j)p(j) — Yjare isomorphisms. Moreover, the
morph1sm Y; = Xu(h)p(j) mduced by fj now is the composition

Yj = Y %) Xaipli) = Xa(i)p(j)e
and the one induced by g; is the Composmon
Yj = Yj XXy Xatipt) = Xatip)e

so these two must be equal.

Conversely, suppose that the projection morphisms Y; x X Xa()pG) = Y and
Yj X x5 Xa(j)p(j) — Yj are isomorphisms for all j € {1,...,n}, and that the compo-
51t10ns

Yi = Y5 XXy Xa(pi) — Xa()p0)

and
Yj = Y5 Xxg Xa(pt) — Xu()Bl)

of the respective inverses and the projections are equal. The first condition implies
that the image of every Y; under both f and g lies in X, (j)4(;), and the second condi-
tion then implies that the resulting morphisms Y; — X, (;)4(;) are equal. Since the Y;
cover Y, it follows that f and g define the same morphism of schemes. g

Note that we can also compute algorithmically compositions of morphisms of
presentations of schemes. Moreover, if (Xi,...,Xu), (Y1,...,Yn), (Z1,...,Zp) are
presentations of schemes X, Y, Z, respectively, and (Y3,...,Y,) — (Xq,..., Xu) and
(Z1,...,Zp) — (Xq,..., Xy) are morphisms of presentations, then the construction
of fibre products of schemes gives a way to compute a presentation of the fibre prod-
uctY xx Z.

Next, we describe presentations of open subschemes of schemes. Let X be a
scheme, presented as (X1,...,Xm). Then an open subscheme U of X is presented
by a tuple (Uj, ..., U,) together with a map a: {1,...,n} — {1,...,m} and stan-
dard open subschemes U; — X, ;) forallj € {1,...,n}.

The corresponding description of U as a scheme is then given by the additional
data of the intersections, which can be computed as the open subscheme

Ujy = (U %%, Xa(ira() Xt @7 Uy X%, 0, X >a<;>>
of Uj, together with the isomorphisms U;;; — Uj; induced by Pij !. We then have an

obv1ous morphism U — X given with respect to the given presentat1ons.

16

1.8 Schemes of finite type over a field

Note that we can test algorithmically whether U = X by testing that for all i
in {1,...,m}, the union in the affine scheme X; over all j € {1,...,n} of the open
subschemes q);&)i(uj XXy Xa(j)i) is X itself.

Let us call a presentation of such an open subscheme U = X of X a refinement;
these present the identity morphism on X. Now note that with the same methods
as in the case of quasi-affine schemes, if two morphisms Z — Y and ¥ — X are
given, together with a chain of refinements connecting the target of the former to
the source of the latter, one can compute the composition Z — X. Moreover, again
with the same methods as in the case of quasi-affine schemes, if two morphisms
Y — X are given, together with a chain of refinements connecting the targets, and
one connecting the sources, one can test whether these two morphisms are equal.

1.8.4 Finite étale morphisms of schemes

Let (Xy,...,Xm) be a presentation of a scheme X. Then we present a finite étale
X-scheme (or equivalently, a finite locally constant sheaf on X¢;) by a descent datum
w.r.t. the open cover {X; — X}; more precisely, by the following data:

e foralli € {1,...,m} a finite étale morphism Y; — X;;

e foralli,j € {1,...,m} amorphism y;;: Y; xx, Xjj = Yj xx; Xj; lying over

the morphism ¢;;: X;; — Xjj,

such that ;; is the identity on Y; for all i and such that the cocycle condition holds,
ie.foralli,jk € {1,...,m} the following diagram commutes

Pji

Yi X x; Xij xx; Xik Yj xx; Xji xx; X

Pii %k/
Yy X x Xii Xx, Xkj

Note that a presentation as above in particular defines a (presentation) of a scheme
Y, and a morphism Y — X with respect to the given presentations. A morphism
Z — Y of finite étale X-schemes is therefore simply a commutative triangle

Z —— Y

N

17

